
Energy-Efficient Timely Transportation of Long-Haul
Heavy-Duty Trucks

Lei Deng
Dept. of IE, CUHK

Mohammad H. Hajiesmaili
Dept. of IE, CUHK

Minghua Chen
Dept. of IE, CUHK

Haibo Zeng
Dept. of ECE, Virginia Tech

ABSTRACT
We consider a timely transportation problem where a heavy-
duty truck travels between two locations across the nation-
al highway system, subject to a hard deadline constrain-
t. Our objective is to minimize the total fuel consump-
tion of the truck, by optimizing both route planning and
speed planning. The problem is important for cost-effective
and environment-friendly truck operation, and it is unique-
ly challenging due to its combinatorial nature as well as the
need of considering hard deadline constraint. We first show
that the problem is NP-Complete; thus exact solution is
computational prohibited unless P=NP. We then design a
fully polynomial time approximation scheme (FPTAS) that
attains an approximation ratio of 1 + ε with a network-size
induced complexity of O(mn2/ε2), where m and n are the
numbers of nodes and edges, respectively. While achieving
highly-preferred theoretical performance guarantee, the pro-
posed FPTAS still suffers from long running time when ap-
plying to national-wide highway systems with tens of thou-
sands of nodes and edges. Leveraging elegant insights from
studying the dual of the original problem, we design a fast
heuristic solution with O(m+n logn) complexity. The pro-
posed heuristic allows us to tackle the energy-efficient timely
transportation problem on large-scale national highway sys-
tems. We further characterize a condition under which our
heuristic generates an optimal solution. We observe that
the condition holds in most of the practical instances in nu-
merical experiments, justifying the superior empirical per-
formance of our heuristic. We carry out extensive numerical
experiments using real-world truck data over the actual U.S.
highway network. The results show that our proposed solu-
tions achieve 17% (resp. 14%) fuel consumption reduction,
as compared to a fastest path (resp. shortest path) algorith-
m adapted from common practice.

CCS Concepts
•Applied computing→Transportation; •Mathematics
of computing → Mixed discrete-continuous optimization;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

e-Energy’16, June 21-24, 2016, Waterloo, ON, Canada
c© 2016 ACM. ISBN 978-1-4503-4393-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2934328.2934338

Keywords
Energy-efficient transportation; timely delivery; route plan-
ning; speed planning

1. INTRODUCTION
In the U.S., heavy-duty trucks haul more than 70% of all

freight tonnage [11], and they consume 17.6% of energy in
transportation sector [21, Tab. 2.8] and contribute to about
5% of the greenhouse gas emission [8]. Fuel cost is the largest
operating cost (34%) of truck owners/operators [25], and
reducing fuel consumption is critical for cost-effective and
environment-friendly heavy-duty truck operations.

Currently there are mainly two lines of efforts to reduce
fuel consumption of heavy-duty trucks. The first line is to
operate with more fuel efficient trucks, from better designs
for engines, drivetrains, aerodynamics, and tires [13,27,38],
to better management of truck parts such as maintaining
optimal tire pressures [4]. The second line is to operate
heavy-duty trucks more economically. This explores several
possibilities, e.g., reducing idling energy consumption [40],
platooning more than one heavy-duty trucks [15, 32], route
planning [23, 41, 43], and speed planning [3, 10, 29, 30]. In
this paper, we focus on route and speed planning. Differen-
t routes could have different mileages, levels of congestion,
road grades, and surface types, etc., all of which would large-
ly affect the fuel consumption. Real-world studies [43] show
that choosing a more efficient route for a heavy-duty truck
can improve its fuel economy by 21%. Speed planning is
another well recognized approach to effectively reduce fuel
consumption: As a rule of thumb for truck operations on
highway, every one mile per hour (mph) increase in speed
incurs about 0.14 mile per gallon (mpg) penalty in fuel e-
conomy [3,10].

However, operating at low speed may result in excessive
travel time and the goods carried by the truck cannot be
delivered on time. We remark that timely delivery is critical
for truck operators [12,35]. As estimated by the U.S. Federal
Highway Administration (FHWA) in [35], unexpected delay
can increase freight cost by 50% to 250%. Multiple reasons
can explain the importance of timely delivery. First, some
freight goods are perishable, such as food [18], which defi-
nitely require timely delivery. Second, to ensure customer-
s’ satisfaction, some companies, e.g., Amazon, may have a
service-level agrement (SLA) with users, under which the
delivery delay is guaranteed [6]. Finally, violating scheduled
delay can introduce difficulties for global logistic decisions
and even increase the uncertainty and inefficiency of supply
chains [35]. Overall, it is crucial to ensure timely goods de-

livery for truck operators, and considering timely delivery in
fuel cost minimization poses a unique challenge of which only
partial results for special cases are recently available [29,30].

Motivated by the above observations, in this paper, we
study the problem of energy-efficient timely transportation
for heavy-duty trucks. We aim to minimize the heavy duty
truck’s fuel consumption while satisfying a hard deadline
constraint, under which we take both route planning and
speed planning into account to exploit complete design space
of reducing fuel consumption. Since heavy-duty trucks are
mainly operated for long-haul delivery and most of time run
on highways [21, Tab. 5.2 and Fig. 5.1], we focus our model
on their operation in the highway transportation network
system. We summarize our contributions in the following.

� We formulate an energy-efficient timely transportation
problem of minimizing the fuel consumption subject to a
hard deadline constraint for a heavy-duty truck running on a
highway transportation network, with design spaces of both
route planning and speed planning in Sec. 2. We show that
our problem is NP-Complete.

� In Sec. 3, we design a fully polynomial time approxima-
tion scheme (FPTAS) for solving the energy-efficient timely
transportation problem. The proposed FPTAS attains an
approximation ratio of 1 + ε with a network-size induced
complexity of O(mn2/ε2), where m and n are the numbers
of nodes and edges, respectively.

� While achieving highly-preferred theoretical performance
guarantee, the proposed FPTAS still suffers from long run-
ning time when applying to national-wide highway systems
with tens of thousands of nodes and edges. In Sec. 4, by
leveraging elegant insights from studying the dual of the
original problem, we design a fast heuristic solution with
O(m + n logn) complexity. The proposed heuristic scheme
allows us to tackle the energy-efficient timely transporta-
tion problem on large-scale national highway systems. We
further characterize a condition under which our heuristic
generates an optimal solution. We observe that the condi-
tion holds in most of the practical instances in numerical
experiments in Sec. 5, justifying the superior empirical per-
formance of our heuristic.

� We carry out extensive numerical experiments using
real-world truck data over the U.S. highway network in Sec. 5.
The results show that our proposed solutions achieve 17%
(resp. 14%) fuel consumption reduction, as compared to a
fastest path (resp. shortest path) algorithm adapted from
common practice. The amount of fuel consumption saving
is enough to power up more than 90% of the entire trans-
portation sector in New York State [2].
� For those who are familiar with Restricted Shortest

Path (RSP) problem [26, 28, 31], our energy-efficient timely
transportation problem is a generalized version of RSP, in-
cluding an extra design space of speed planning. Therefore,
from the theoretical perspective, we generalize the FPTAS
design and the dual-based design of RSP to our problem.

2. MODEL AND PROBLEM FORMULATION

2.1 System Model
Consider a highway transportation network as exemplified

in Fig. 1. We model it as a directed graph G = (V, E),
where V is the vertex/node set and E is the edge/road set.

We define n , |V| as the number of nodes and m , |E|
as the number of edges. For each edge e ∈ E , we denote

43

1 2

{D
e
, R

lb e
, R

ub e
, f

e
}

{D
e
, R

lb e
, R

ub e
, f

e
}

ss dd

Figure 1: System model.

De > 0 as its distance (unit: mile), and Rlb
e > 0 (resp.

Rub
e ≥ Rlb

e) as its minimal (resp. maximal) speed (unit:
mph). (Governments usually set the maximal speed for all
highways and the minimal speed for some highways. For the
sake of both safety and fuel efficiency, lower speed limits than
passenger cars may be applied to large commercial vehicles
like heavy-duty trucks and buses.) Now consider a long-haul
heavy-duty truck who aims to ship cargos from a source
node s ∈ V to a destination node d ∈ V. The goal is to
minimize the energy/fuel1 consumption subject to a hard
delay requirement T > 0 (unit: hour).

Fuel consumption and travel delay are usually in conflict
with each other, both of which are related to the speed pro-
file of the truck. High travel speed obviously decreases the
travel delay, but it can also increase the fuel consumption
significantly [3, 10]. To analyze the performance tradeoff
between energy and delay, we need to model the relation-
ship between the fuel consumption and the travel speed.
There are an intensive number of such models (see a survey
in [22]). In this paper, we use the instantaneous fuel con-
sumption model [14, 22] which generally depends on three
factors: (i) static vehicle/road/environment properties, (ii)
instantaneous acceleration/deceleration, and (iii) instanta-
neous speed. As we consider a specific vehicle running over
a specific network, static vehicle/road/environment proper-
ties are fixed. The instantaneous acceleration/deceleration
reflects the speed variation. However, since we consider a
highway model, the truck spends most of time to maintain
a relatively constant cruise speed [17, 36] such that the fuel
consumption caused by acceleration/deceleration would be
negligible. This motivates us to model the instantaneous
fuel consumption as a function of the instantaneous speed.

We thus define fe : [Rlb
e , R

ub
e] → R+ as the (instanta-

neous) fuel-rate-speed function of the truck running on edge
e: if the vehicle’s speed on edge e is re (unit: mph), the fuel
consumption rate is fe(re) (unit: gallons per hour (gph)),
and then the total fuel consumption for driving time τ (unit:
hour) with the constant speed re is fe(re) · τ (unit: gallon).
Since many existing models [14,16,17,19,39] use polynomi-
al functions to model the fuel consumption which are also
strictly convex in a reasonable speed limit region, in this
paper, we assume that fe(·) is a polynomial function and is
strictly convex2 over [Rlb

e , R
ub
e]. This assumption also holds

in the physical interpretation of fuel-rate-speed function as
shown in our technical report [24], and is further verified in
our simulation using real-world data (see Fig. 5(a)).

1We interchangeably use fuel and energy in this paper.
2The strict convexity can be relaxed to convexity. For sim-
plicity, we use the strict convexity in this paper.

2.2 Problem Formulation
We consider two design spaces: path selection (route plan-

ning) and speed optimization (speed planning). For path
selection, we define a binary variable xe for any e ∈ E ,

xe =

{
1, Edge e is on the selected path;

0, otherwise.
(1)

For the speed optimization, the truck needs to determine
a speed profile (speeds at all travel time) over any select-
ed edge. This is a functional variable, but the convexity of
fuel-rate-speed function can simplify the speed profile sig-
nificantly based on the following lemma.

Lemma 1. For any edge e, if the travel time te is given,
i.e., the truck must pass edge e with exactly te hours, then
the optimal speed profile to minimize the fuel consumption
is to maintain constant speed De/te during the whole trip.

Lemma 1 shows that for any edge, any non-constant speed
profile is dominated by another constant speed profile in
terms of fuel consumption without sacrificing the delay per-
formance. Therefore, without loss of optimality, the truck
only needs to follow a constant speed for any edge. As ex-
plained in Sec. 2.1, since we consider a long-haul highway
scenario, we will ignore the speed transition period between
two adjacent edges. Thus, for the speed optimization, we
consider the travel time te > 0 over each edge e as the de-
sign variable, which equivalently implies a constant speed
De/te over e. We then define a fuel-time function ce(·) for
each road e,

ce(te) , te · fe(De
te

), (2)

which is the total fuel consumption for the truck traveling
edge e with travel time te.

By vectorizing our decision variables as x , {xe : e ∈ E}
and t , {te : e ∈ E}, now we are ready to formulate our
PAth selection and Speed Optimization (PASO) problem,

PASO: min
x∈X ,t∈T

∑
e∈E

xe · ce(te) (3)

s.t.
∑
e∈E

xete ≤ T, (4)

In PASO, set X restricts that one and only one s− d path
is selected, defined as

X , {x : xe ∈ {0, 1}, ∀e ∈ E , and∑
e∈out(v)

xe −
∑

e∈in(v)
xe = 1{v=s} − 1{v=d},∀v ∈ V},

where 1{·} is the indicator function, in(v) , {(u, v) : (u, v) ∈
E} is the set of incoming edges of node v ∈ V, out(v) ,
{(v, u) : (v, u) ∈ E} is the set of outgoing edges of node v.
Set T captures the speed limits of all roads, defined as

T , {t : tlbe ≤ te ≤ tube ,∀e ∈ E},

where tlbe , De

Rub
e

and tube , De

Rlb
e

are the minimal and maximal

travel time due to the speed limits on edge e, respectively.
Constraint (4) is to satisfy the hard delay requirement. Ob-
jective (3) is to minimize the total fuel consumption over the
selected path.

2.3 Complexity Hardness
PASO has both integer variables and continuous variables.

Thus it is worth understanding its hardness first. It turns
out that a special case of PASO is the well-known Restricted
Shortest Path (RSP) problem [26, 28]. In RSP, a directed
graph is given where each edge has a fixed travel time and
travel cost, and the goal is to find a minimal-cost path sub-
ject to a hard path delay requirement. Clearly, our problem
PASO generalizes RSP where we allow a varying edge cost
and edge time because of the design space of speed optimiza-
tion. Since RSP is NP-Complete [26], we can thus easily
prove that our problem PASO is also NP-Complete.

Theorem 1. PASO is NP-Complete.

Proof. We can prove it by setting Rlb
e = Rub

e to an ap-
propriate value for each edge e in PASO, and using the result
that RSP is NP-Complete [26].

2.4 Preprocessing and Some Notations
We first check the feasibility of our problem PASO. We

can use the shortest path algorithm where each edge e has
cost tlbe to find the fastest path. If the travel time of the
fastest path is larger than the delay requirement T , PASO is
infeasible. In the rest of this paper, we thus assume that the
delay constraint T is at least the travel time of the fastest
path such that the problem is feasible.

We then analyze properties of the fuel-time function ce(·).

Lemma 2. ce(te) is strictly convex over [tlbe , t
ub
e]. Also,

there exists a point t̂e ∈ [tlbe , t
ub
e] such that ce(te) is first

strictly decreasing over [tlbe , t̂e] and then strictly increasing
over [t̂e, t

ub
e].

Based on Lemma 2, we can easily prove that the travel
time over edge e, i.e., te, in any optimal solution of PASO
must be in the region [tlbe , t̂e]. Otherwise, we can decrease the
trave time from te to t̂e and at the same time decrease the
fuel consumption, which violates the optimality of te. Thus,
without loss of optimality, we can reset the travel time limit
from [tlbe , t

ub
e] to [tlbe , t̂e], which equivalently implies that we

reset the speed limit from [Rlb
e , R

ub
e] to [De/t̂e, R

ub
e]. After

such preprocessing, in the rest of the paper, ce(te) can be
assumed to be strictly convex and strictly decreasing over
te ∈ [tlbe , t

ub
e] without loss of optimality.

In the rest of the paper, define an s− d path p as the set
of all edges over p and tp , {te : e ∈ p} as the corresponding

travel time set. Moreover, we define c(p, tp) ,
∑
e∈p ce(te)

as the fuel consumption of path p with travel time set tp,
and OPT as the optimal value of PASO.

Next, we will propose a fully polynomial time approxi-
mation scheme (FPTAS) in Sec. 3 and a fast dual-based
heuristic scheme in Sec. 4 to solve our problem PASO.

3. AN FPTAS FOR PASO
Since PASO generalizes RSP, which is well-known to have

an FPTAS [28, 34], it is natural to ask whether we can ex-
tend RSP’s FPTAS for our problem PASO. In this section,
by carefully tackling the difference between PASO and RSP,
we “reformulate” PASO such that we can adapt RSP’s FP-
TAS to construct an FPTAS for PASO. More specifically,
in this section, we propose an approximation scheme (Al-
gorithm 3) such that for any given ε ∈ (0, 1), it can find a

(1+ε)-approximate solution in the sense that the solution is
feasible and the corresponding fuel consumption is at most
(1 + ε)OPT, and the time complexity is polynomial in both
the problem size and 1

ε
.

The essence of RSP’s FPTAS [28, 34] is a test procedure.
For any input value V > 0 and any input accuracy param-
eter δ > 0, the test procedure can “approximately” compare
V and the optimal value OPT in the sense that it can tell
either OPT > V or OPT ≤ (1 + δ)V in polynomial time.
Based on this test procedure, starting with some arbitrary
lower bound LB and upper bound UB for OPT, a binary
search scheme is designed [28, 34] to exponentially narrow
down the bounding interval [LB,UB] and finally a (1 + ε)-
approximate solution is outputted.

To solve our problem PASO, we adapt RSP’s FPTAS by
designing our own test procedure. In RSP, [28] and [34]
use the rounding and scaling technique, where each fixed
edge cost is rounded into certain (polynomial) number of
cost levels controlled by the accuracy parameter δ. As we
only require an “approximate” comparison, rounding into
certain number of cost levels is enough to perform such a
task. However, as opposed to a fixed edge cost in RSP, in
PASO each edge has a fuel-time function. Hence, instead
of rounding a fixed cost in RSP, we quantize the continu-
ous fuel-time function ce(·) into another staircase fuel-time
function c̃e(·) according to the input value V and the input
accuracy parameter δ, which can be further characterized
by a polynomial number of representative points. We then
prove that such quantization can perform the “approximate”
comparison.

Later on we will describe our algorithms in a bottom-up
fashion. We first describe the quantizing procedure (Algo-
rithm 1) in Sec. 3.1. Then we present our own test proce-
dure (Algorithm 2) which invokes Algorithm 1 in Sec. 3.2.
Finally, we describe the whole FPTAS (Algorithm 3) which
invokes Algorithm 2 in Sec. 3.3.

3.1 Quantizing Fuel-Time Function
For any input value V > 0 and N ∈ Z+, we quantize the

edge-e fuel-time function ce(te) to be

c̃e(te) , min

{⌊
ce(te)

V

⌋
+ 1, N

}
,∀te ∈ [tlbe , t

ub
e]. (5)

Since we have assumed that ce(te) is strictly decreasing in
Sec. 2.4, c̃e(te) thus becomes a staircase function with at
most N stairs. During the quantization, parameter V is
to control the accuracy, which is the vertical span of each
stair. Larger V means rougher quantization and lower accu-
racy but smaller complexity. Parameter N is to control the
maximal number of stairs. Since ce(te) could take an arbi-
trarily large value, the number of stairs could be unbounded,
which definitely incurs high complexity. To design a poly-
nomial time test procedure where we only need to perform
an “approximate” comparison, we truncate ce(te) by putting
a ceil V N . This truncation is sufficient for use in the test
procedure (see Sec. 3.2). Clearly, c̃e(te) is a quantized and
truncated version of ce(te). An example is shown in Fig. 2.
Here we set V = 20, N = 4. Thus, each stair spans 20
and ce(te) is truncated by the ceil V N = 80. The result-
ing curve c̃e(te) is a non-increasing staircase function, which
jumps from 4 to 3 at te = 1.8 and jumps from 3 to 2 at
te = 2.8.

Moreover, since c̃e(te) is a staircase function and only

1 2 3 4
20

40

60

80

100

120

te

c e
(t

e
)

V = 20.00, N = 4

(2.8, 2)

(1.8, 3)

(1.0, 4)

1 2 3 4
1

2

3

4

5

6

c̃ e
(t

e
)

Original curve
Quantized curve
Representative points

Figure 2: An example for
quantizing ce(·).

BL BUV 2V

BUBL OPT

BL BUOPT

Before TEST(V,V,1)

TEST(V,V,1) Returns FAIL

TEST(V,V,1) Returns A Path

Figure 3: Binary search
(Step 2) of Algorithm 3.

Algorithm 1 A Quantizing Procedure QUANTIZE(e, V,N)

1: for i = 1, 2, · · · , N do
2: Set τ ie = nan
3: end for

4: Set nmin = c̃e(t
ub
e) = min{b ce(t

ub
e)

V
c+ 1, N}

5: Set nmax = c̃e(t
lb
e) = min{b ce(t

lb
e)

V
c+ 1, N}

6: Set τnmax
e = tlbe

7: for i = nmin, nmin + 1, · · · , nmax − 1 do
8: Solve the equation ce(te) = iV over te ∈ [tlbe , t

ub
e]

9: if the equation has a solution te then
10: Set τ ie = te
11: end if
12: end for
13: return τ e = (τ1e , τ

2
e , · · · , τNe)

takes integer values, we can use an N -dim vector τ e to
represent it without any information loss. We define it as
τ e , (τ1e , τ

2
e , · · · , τNe) where τ ie is the minimal travel time

over [tlbe , t
ub
e] such that c̃e(·) = i and is defined as nan if

c̃e(·) = i has no solution. For the example in Fig. 2, we have
τe = (τ1e , τ

2
e , τ

3
e , τ

4
e) = (nan, 2.8, 1.8, 1).

We call (τ ie, i) the i-th representative point of c̃e(·). Thus
c̃e(·) is characterized by at most N representative points,
which will play a key role in our test procedure in Sec. 3.2.
We summary the quantizing procedure QUANTIZE(e, V,N) in
Algorithm 1. The basic idea is to first find the range of the
stair levels, i.e., [nmin, nmax] and then find τ ie for any level i
in this range by solving an equation ce(te) = iV .

Time Complexity: The major complexity of Algorith-
m 1 comes from line 8, which needs to solve an equation.
Since we have assumed that ce(te) is a strictly decreasing
function, we can use a binary search to solve this equation,
which has time complexity O(log

(
tube − tlbe

)
)3. Hence, the

total complexity of QUANTIZE(e, V,N) is O(N log
(
tube − tlbe

)
).

If we define

ξ , max
e∈E

(
tube − tlbe

)
(6)

as the maximal range of travel time over all edges, for any
e ∈ E , the complexity of QUANTIZE(e, V,N) is O(N log ξ).

3.2 The Test Procedure
3We normally cannot solve an equation exactly, but we
should ensure some precision/tolerance level. Precisely, the

complexity should be O(log
(
tube −t

lb
e

tol

)
) where tol is the tol-

erance level. For simplicity, we do not discuss this preci-
sion/tolerance issue in this paper.

As introduced above, the test procedure should “approx-
imately” compare V and the optimal value OPT such that
it can answer either OPT > V or OPT ≤ (1 + δ)V in poly-
nomial time. Inspired by [34], which improves the FPTAS
of RSP in [28], we adopt a more powerful test procedure,
denoted by TEST(L,U, δ). It can answer either OPT > U or
OPT ≤ U + δL. Clearly, if we set L = U = V , TEST(V, V, δ)
can answer either OPT > V or OPT ≤ (1 + δ)V , which ex-
actly completes the “approximate” comparison. The reason
to adopt a more powerful test procedure, similar to [34], is
that we will also use it to finally output a (1+ε)-approximate
solution. We will discuss it soon in Sec. 3.3.

The details of TEST(L,U, δ) are shown in Algorithm 2.
As we mentioned before, the major difference between our
problem PASO and the existing problem RSP is that PASO
has a continuous fuel-time function for each edge instead of a
fixed cost. Thus, different from the test procedure for RSP
(see [34, Fig. 1]), we have a step to invoke the quantizing
procedure (Algorithm 1) to quantize the fuel-time function,
as shown in lines 3-5 in Algorithm 2. More importantly,
since our test procedure TEST(L,U, δ) aims to check either
OPT > U or OPT ≤ U + δL, roughly speaking, we do not
need to quantize the portion of each fuel-time function with
high fuel cost, i.e., larger than U + δL. Hence, to ensure
polynomial time complexity eventually, we put a ceil V (N+
1) for ce(te) as shown in line 4 of the algorithm, where V
and N are appropriately set such that V (N + 1) ≥ U + δL.

After such quantization, the fuel-time function ce(te) for
each edge e consists of at most N + 1 representative points.
Therefore, conceptually we can construct a new graph G̃ =
(V, Ẽ). Each edge e ∈ E in the original graph corresponds

to at most N + 1 edges in the new graph Ẽ . For each edge
e ∈ Ẽ , the edge cost c̃e is a positive integer, as shown in (5).
This is exactly an RSP problem. Therefore, the remaining
steps follow the test procedure for RSP on the new graph
G̃. Specifically, since each edge e ∈ E has at most N + 1
possible cost values all of which are positive integers (each

edge e in the new graph Ẽ has a positive integer cost), we can
use dynamic programming to complete such test. Similar
to [28, 34], we define gv(c) as the minimal path travel time
among all s−v paths whose path cost is at most c ∈ Z+, and
define gv(c) =∞ if no such path. The optimality condition
(or Bellman’s equation) becomes, for any c = 1, 2, · · · ,

gv(c) = min{gv(c− 1),

min
u,i:e=(u,v)∈E,i=1,··· ,N,τie 6=nan

{gu(c− i) + τ ie}} (7)

which is shown in line 10 in Algorithm 2. Since we only need
to answer either OPT > U or OPT ≤ U+δL, we do not have
to process large c. Instead, iterating c from 1 to N is enough
for us to complete this task. This dynamic programming
procedure is shown in lines 6-15 of Algorithm 2.

In PASO, we should carefully design the quantizing and
the dynamic programming procedures jointly to guarantee
performance, as shown in the following lemmas, which are
the counterparts to Lemma 2 and Lemma 3 for RSP in [34].

Lemma 3. If Algorithm 2 returns a path p and travel
time set tp, then we have

OPT ≤ c(p, tp) ≤ U + Lδ. (8)

Algorithm 2 A Test Procedure TEST(L,U, δ)

1: Set V = Lδ
n+1

2: Set N = bU
V
c+ n+ 1

3: for e ∈ E do
4: Get τ e = QUANTIZE(e, V,N + 1)
5: end for
6: Set gs(c) = 0, ∀c = 0, 1, · · · , N
7: Set gv(0) =∞, ∀v 6= s, v ∈ V
8: for c = 1, 2, · · · , N do
9: for v ∈ V do

10: Set gv(c) according to (7)
11: end for
12: if gd(c) ≤ T then
13: return the corresponding path p and travel time

set tp = {te : e ∈ p}
14: end if
15: end for
16: return FAIL

Lemma 4. If U ≥ OPT, then Algorithm 2 must return
a feasible path p and travel time set tp, which satisfy

c(p, tp) ≤ OPT + Lδ. (9)

Lemma 5. If Algorithm 2 returns FAIL, then we have

OPT > U. (10)

Proof. This directly follows Lemma 4.

Our test procedure either returns a path p and travel time
set tp in line 13, which implies that OPT ≤ U+Lδ from Lem-
ma 3, or returns FAIL in line 16, which implies OPT > U
from Lemma 5. Therefore, Lemma 3 and Lemma 5 justify
that our test procedure (Algorithm 2) completes the “ap-
proximate” comparison, i.e., answers either OPT > U or
OPT ≤ U + Lδ.

Thus, for the purpose of the test procedure, Lemma 3 and
Lemma 5 are enough. However, we present Lemma 4, which
is stronger than Lemma 5, to provide a sufficient condition
such that our test procedure returns a path p and travel time
set tp. We will use Lemma 4 shortly in Sec. 3.3 to finally
output a (1 + ε)-approximate solution.
Time Complexity: The quantizing procedures for all

edges in lines 3-5 require O(mN log ξ). The dynamic pro-
gramming procedure in lines 6-15 requires O(mN2). Since
N = bU

V
c+n+1 = bU

L
· n+1

δ
c+n+1 = O(U

L
· n
δ

+n), the to-

tal time complexity of Algorithm 2 is O(mN log ξ+mN2) =
O(m(U

L
· n
δ

+ n) log ξ +m(U
L
· n
δ

+ n)2).

3.3 The Proposed FPTAS
Based on our own test procedure (Algorithm 2), we then

follow the FPTAS for RSP in [34, Fig. 2] by replacing its
test procedure with ours. For completeness, we present the
FPTAS in Algorithm 3 and explain it with the following
three steps.

Step 1 (line 1): To initialize the bound interval, we need to
first obtain a lower bound LB and an upper bound UB for the
optimal value OPT. Define that the minimal single-edge fuel
cost is Clb , mine∈E ce(t

ub
e) and the maximal single-edge fuel

cost is Cub , maxe∈E ce(t
lb
e). Simply, we can use the minimal

single-edge fuel consumption Clb as the lower bound LB and
use the maximal single-path4 fuel consumption nCub as the
4A simple path can have at most n edges.

Algorithm 3 An FPTAS

1: Get a lower bound LB and upper bound UB for OPT
2: Set BL = LB
3: Set BU = UB
4: while BU

BL
> 16 do

5: V =
√
BL ·BU

6: Call TEST(V, V, 1)
7: if TEST(V, V, 1) returns FAIL then
8: Set BL = V
9: else

10: Set BU = 2V
11: end if
12: end while
13: Call TEST(BL, BU , ε)

upper bound UB. Also, in Sec. 4, we will propose a heuristic
scheme which can always output a set of LB and UB.

Step 2 (lines 2-12): Using the initial lower bound LB and
upper bound UB, we design a binary search scheme, which
repeatedly invokes our test procedure (Algorithm 2) to ex-
ponentially narrow down the bound interval [BL, BU] until
BU/BL ≤ 16. The binary search step is visualized in Fig. 3.
Note that we always keep BL as a lower bound and BU as
an upper bound for OPT. Whenever BU/BL > 16, we in-
put the geometric mean V =

√
BL ·BU and δ = 1 to the

test procedure, as shown in lines 5 and 6. If TEST(V, V, 1)
returns FAIL, then according to Lemma 4, we must have
V < OPT. In this case, we reset the lower bound BL to be
V in line 8. Otherwise, TEST(V, V, 1) returns a feasible path
p and travel time set tp. According to Lemma 3, we must
have OPT ≤ V + δV = 2V . We reset the upper bound to be
2V in line 10. It can be easily shown that this binary search
returns a lower bound BL and an upper bound BU for OPT
such that BU/BL ≤ 16 in O(log log UB

LB
) iterations.

Step 3 (line 13): When BU
BL
≤ 16, we call our test pro-

cedure again but we use L = BL and U = BU and δ = ε.
Since BU ≥ OPT, according to Lemma 4, TEST(BL, BU , ε)
must return a feasible path p and travel time tp such that

c(p, tp) ≤ OPT + εBL ≤ OPT + εOPT = (1 + ε)OPT.

Therefore, we get a (1 + ε)-approximate solution to PASO.
Time Complexity: Step 1 requires O(m) to get an ini-

tial lower bound LB and upper bound UB. Step 2 invokes
the test procedure O(log log UB

LB
) times and each invoke takes

O(mn log ξ + mn2) time by using L = U = V and δ = 1.
Thus Step 2 takes O((mn log ξ+mn2) log log UB

LB
). Step 3 al-

so invokes the test procedure, and it takes O(mn log ξ
ε

+ mn2

ε2
)

time by using δ = ε < 1 and O(U
L

) = O(BU
BL

) = O(1)

because BU
BL
≤ 16 = O(1). Here we can also see why we

need to use a binary search to obtain BU
BL
≤ 16 in Step

2. This is because BU
BL

= O(1) ensures polynomial time

complexity in Step 3. Therefore, the total complexity is

O((mn log ξ +mn2) log log UB
LB

+ mn log ξ
ε

+ mn2

ε2
).

We summarize our results for the approximate scheme in
the following theorem.

Theorem 2. Algorithm 3 returns a (1 + ε)-approximate
solution for PASO in time O((mn log ξ + mn2) log log UB

LB
+

mn log ξ
ε

+ mn2

ε2
). In addition, when we use LB = Clb and

UB = nCub where Clb , mine∈E ce(t
ub
e) and Cub , maxe∈E ce(t

lb
e) =

ce1(tlbe1), we have log log UB
LB

= max{O(log logn), O(Ie1)} where
Ie1 is the input size of all parameters of edge e1. Thus, Al-
gorithm 3 has time complexity polynomial in the input size
of the problem PASO and therefore is an FPTAS.

Although we generalize the FPTAS design from RSP to
PASO, such an FPTAS (Algorithm 3) still has high com-
plexity for a large-scale highway network with tens of thou-
sands of nodes and edges. In the next section, we propose a
heuristic scheme with substantially lower complexity.

4. A FAST DUAL-BASED HEURISTIC
In this section, we present a heuristic scheme for our prob-

lem PASO based on Lagrangian relaxation. Such a heuris-
tic scheme, as we will show later in Sec. 4.3, runs much
faster than the FPTAS (Algorithm 3). Also, it always out-
puts a lower bound LB and an upper bound UB on OPT,
which implements Step 1 in Algorithm 3. Moreover, in most
practical scenarios as shown in Sec. 5, this heuristic scheme
outputs an optimal (or at least near optimal) solution, i.e.,
LB = UB = OPT (or at least LB ≈ OPT ≈ UB).

4.1 Lagrangian Relaxation and Dual Problem
In our problem PASO, since the hard delay constraint (4)

couples path selection variable x with speed optimization
variable t, we relax it and introduce a Lagrangian dual vari-
able λ ≥ 0, which can be interpreted as a (per-unit) delay
price over the entire network.

Based on such relaxation, we can get the corresponding
Lagrangian,

L(x, t, λ) ,
∑
e∈E

xe · ce(te) + λ(
∑
e∈E

xete − T)

=
∑
e∈E

xe · (ce(te) + λte)− λT, (11)

and the corresponding dual function is defined as D(λ) ,
minx∈X ,t∈T L(x, t, λ). Then the dual problem of PASO is
formulated as

(PASO-Dual) max
λ≥0

D(λ)

4.2 Obtain Dual Function
Before we solve the dual problem, let us first show how to

obtain the dual function for a given λ as follows,

D(λ) = min
x∈X ,t∈T

L(x, t, λ)

= −λT + min
x∈X ,t∈T

∑
e∈E

xe · (ce(te) + λte)

(E1)
= −λT + min

x∈X

[
min
t∈T

∑
e∈E

xe · (ce(te) + λte)

]
(E2)
= −λT + min

x∈X

∑
e∈E

xe · min
tlbe≤te≤tube

(ce(te) + λte)

(E3)
= −λT + min

x∈X

∑
e∈E

xe · [ce(t∗e(λ)) + λt∗e(λ)]

(E4)
= −λT + min

x∈X

∑
e∈E

xe · we(λ)

(E5)
= −λT +

∑
e∈p∗(λ)

we(λ). (12)

We explain (E1)− (E5) in (12) one by one. Equality (E1)
is because no coupled constraints exist for x and t. Equality
(E2) is because no coupled constraints exist for the travel
time at different edges in T .

In equality (E3), t∗e(λ) is defined as

t∗e(λ) , arg min
tlbe≤te≤tube

(ce(te) + λte) . (13)

Note that since we have assumed that ce(te) is strictly con-
vex and strictly decreasing over [tlbe , t

ub
e] in Sec. 2.4, t∗e(λ) is

unique and thus (13) is well defined. Specifically, t∗e(λ) can
be obtained analytically as follows.

Lemma 6. Define c′−1
e (·) as the inverse function of ce(·).

Then we have

t∗e(λ) =

tube , If 0 ≤ λ < −c′e(tube);

c′−1
e (−λ), If −c′e(tube) ≤ λ ≤ −c′e(tlbe);

tlbe , If λ > −c′e(tlbe).

(14)

In addition, (13) has a nice economic interpretation. As
we have relaxed the hard delay constraint, we penalize each
edge e with a delay cost, which is the product of the travel
time te and the (per-unit) delay price λ. Then for a given
delay price λ, each edge selects the optimal travel time to
minimize its generalized cost, including both fuel cost ce(te)
and delay cost λte. Thus, t∗e(λ) is the best response of edge
e for a given delay price λ.

In equality (E4), we(λ) is defined as

we(λ) , ce(t
∗
e(λ)) + λt∗e(λ), (15)

which can be interpreted as the minimal generalized cost
(including both fuel cost and delay cost) of edge e for a
given delay price λ. Obviously, we(λ) is the generalized cost
under the best response t∗e(λ).

In equality (E5), since X restricts that an s − d path is
selected, minx∈X

∑
e∈E xe · we(λ) is exactly a shortest path

problem where each edge e has a generalized cost we(λ). We
define p∗(λ) as the resulting shortest-generalized-cost path.

In summary, (12) shows that for any dual variable λ, we
only need to solve a shortest path problem to obtain the
dual function value D(λ), which is much easier than PASO.

4.3 The Heuristic Algorithm
Our heuristic scheme relies on one key observation. Define

δ(λ) ,
∑

e∈p∗(λ)

t∗e(λ), (16)

which is the total travel time of the resulting shortest-generalized-
cost path p∗(λ) for a given λ. Our key observation is the
following theorem (see an example in Fig. 6).

Theorem 3. δ(λ) is non-increasing over λ ∈ [0,+∞).

Theorem 3 shows that increasing λ will decrease the total
travel time of the selected path based on the best respons-
es of all edges. Intuitively, since λ can be interpreted as
a delay price, increasing λ will force all edges to select a
shorter travel time and further force the resulting shortest-
generalized-cost path to have a shorter travel time.

Based on Theorem 3, we can use a simple dual variable
λ to coordinate the total travel time. For example, when
δ(λ) > T , we can increase λ such that δ(λ) can be decreased
to finally satisfy the hard delay requirement. On the other

Algorithm 4 A Heuristic Scheme

1: Set λL = 0
2: Set λU = λmax

3: while λU − λL > tol do
4: Set λ0 = λL+λU

2
5: Get t∗e(λ0) from Lemma 6 for all e ∈ E
6: Get we(λ0) = ce(t

∗
e(λ0)) + λ0t

∗
e(λ0) for all e ∈ E

7: Get the shortest path p∗(λ0) in terms of we(λ0)
8: if δ(p∗(λ0)) = T then
9: return (p∗(λ0), {t∗e(λ0)})

10: else if δ(p∗(λ0)) > T then
11: Set λL = λ0

12: Set p∗(λL) = p∗(λ0)
13: Set t∗e(λL) = t∗e(λ0), ∀e ∈ E
14: else
15: Set λU = λ0

16: Set p∗(λU) = p∗(λ0)
17: Set t∗e(λU) = t∗e(λ0), ∀e ∈ E
18: end if
19: end while
20: return (p∗(λL), {t∗e(λL)}) and (p∗(λU), {t∗e(λU)})

hand, when δ(λ) < T , it means that the truck travels very
fast and there still exists some room to increase the travel
time and thus decrease the fuel consumption. Then we de-
crease λ such that δ(λ) can be increased to reach T . This is
called a coordination mechanism [20, Ch. 5.1.6]. Therefore,
we aim to find a λ0 such that δ(λ0) = T . However, our prob-
lem PASO is not convex but has a combinatorial difficulty.
Thus it is not guaranteed to find such a λ0. We thus call our
binary search for λ0 (Algorithm 4) as a heuristic scheme.

In Algorithm 4, we first set an initial lower bound λL = 0
and an initial upper bound λU = λmax for the targeted
λ0. In practice, since we are considering the fuel consump-
tion and λ can be interpreted as a delay price, λmax can
be reasonably set to be an upper bound of the fuel con-
sumption per hour. In our simulation in Sec. 5, we set
λmax = 100, which works for all settings. Then we do bina-
ry search in lines 3-19, where tol in line 3 is the tolerance
level for termination which is close to zero. During the bi-
nary search, based on the non-increasing property of δ(λ)
(Theorem 3), we keep updating the lower bound λL and its
corresponding solution (p∗(λL), {t∗e(λL) : e ∈ p∗(λL)}), as
well as the upper bound λU and its corresponding solution
(p∗(λU), {t∗e(λU) : e ∈ p∗(λU)}).

This algorithm has two possible results:
� Case 1: If it returns in line 9, then we have found a λ0

such that δ(λ0) = T . We prove that the returned solution
is optimal for PASO in Theorem 4.
� Case 2: If it returns in line 20, then we have found a
λ0 such that δ(λL) > T and δ(λU) < T . With a small
enough tolerance level tol, λL = λ0 − tol/2→ λ−0 . Likewise,
λU = λ0 + tol/2 → λ+

0 . Roughly speaking, this means that
δ(λ) is not continuous at λ = λ0. Although this return
does not guarantee optimality, we prove in Theorem 5 that
the returned solutions (p∗(λL), {t∗e(λL) : e ∈ p∗(λL)}) and
(p∗(λU), {t∗e(λU) : e ∈ p∗(λU)}) give a lower bound LB and
an upper bound UB for OPT, respectively.

Theorem 4. If Algorithm 4 returns in line 9, then the
returned solution (p∗(λ0), {t∗e(λ0) : e ∈ p∗(λ0)}) is an opti-
mal solution of PASO.

As a by-product, Theorem 4 also shows that the strong
duality for the combinatorial problem PASO holds in this
case, and λ0 is the optimal dual solution to PASO-Dual.

Theorem 5. If Algorithm 4 returns in line 20, and de-
fine LB ,

∑
e∈p∗(λL) ce(t

∗
e(λL)) and UB ,

∑
e∈p∗(λU) ce(t

∗
e(λU)),

then we have LB ≤ OPT ≤ UB.

The LB and UB returned by Algorithm 4 in line 20 can be
used for Step 1 of Algorithm 3. For the case that Algorithm
4 returns in line 9, we use the returned optimal solution as
both a lower bound and an upper bound with LB = UB =
OPT. After such unification, Algorithm 4 always outputs a
LB and UB for the optimal solution OPT.

Time Complexity: If we use Dijkstra’s shortest-path
algorithm with a min-priority queue in line 7 in Algorithm 4,
Algorithm 4 has complexity O((m+n logn) log λmax), much
faster than the FPTAS (Algorithm 3).

Remark: A similar dual-based heuristical approach for
RSP is proposed in [31]. However, as mentioned in Sec. 3,
different from RSP, our problem PASO has an extra design
space of speed optimization. Therefore, theoretically our
contribution in this section is to generalize the dual-based
heuristical design from RSP [31] to PASO.

5. PERFORMANCE EVALUATION
In this section, we use real-world data to evaluate the per-

formance of our algorithms. Our objectives are three-fold:
(i) collect realistic dataset and model the fuel-rate-speed
function, (ii) evaluate and compare the performance of our
FPTAS and heuristic, and (iii) compare our algorithms with
baseline algorithms, including both shortest path algorithm
and fastest path algorithm adapted from common practice.

5.1 Dataset
Transportation Network: We construct the U.S. Na-

tional Highway Systems (NHS) from the dataset of Clinched
Highway Mapping (CHM) Project [42]. The whole highway
network graph file is specified in [1], which consists of 84504
nodes (waypoints) and 89119 (one-direction) edges.

Elevation: In this paper, we consider the grade/slope ef-
fect when modeling the road-dependent fuel-rate-speed func-
tion. To obtain the road grades, we use the Elevation Point
Query Service [9] provided by the U.S. Geological Survey
(USGS) to query elevations of all nodes in the NHS graph.

Speed Limits: We use the historical average speed as
the maximal speed Rub

e for each road e. HERE map [7] has
put speed detectors over many countries including U.S., and
it provides APIs to query location-based real-time speed in-
formation. We collect the real-time speed information from
HERE map [7] for two weeks and use the average as Rub

e for
each road e in the NHS graph. For the minimal speed limit
Rlb
e , we manually set it to be Rlb

e = min{30, Rub
e }.

Fuel Consumption Data: It is hard for us to get suit-
able real-world fuel consumption data. In this paper, we
instead leverage the widely-used ADVISOR simulator [37]
to collect fuel consumption data (see Sec. 5.2).

Heavy-Duty Truck: Fuel consumption highly depends
on the truck type. Another benefit of using ADVISOR is
that it also provides some heavy-duty truck configurations.
In this simulation, we use the Kenworth T800 Vehicle [5], a
Class 8 heavy-duty truck, with 36-ton full load. It is speci-
fied in files VEH_KENT800Trailer.m and HeavyTruck_in.m in
ADVISOR with the following parameters in Tab. 1.

7.1 Dataset
Transportation Network: To construct United States

National Highway Systems (NHS), we use the graph dataset
from Clinched Highway Mapping (CHM) Project [17]. The
whole graph file is specified in [2] which consists of 84504
nodes (waypoints) and 89119 edges. Each node has its lat-
itude/longitude coordinates while each edge is represented
by a pair of nodes. The graph data has a reasonable level of
accuracy for us to model the NHS network.

Elevation: In this paper, we only consider the grade/slope
effect when modeling road-dependent fuel-rate-speed con-
sumption function. In order to obtain the grade of each
road segment, we use the Elevation Point Query Service [7]
provided U.S. Geological Survey (USGS). We write a script
to query elevations of all 84504 nodes in the NHS graph.

Speed Limits: Although usually U.S. highways will spec-
ify its maximal speed limit, it is generally meaningless to use
the maximal speed limit. Instead, it is more reasonable to
use the average speed limit according to historical flow data
for each road segments. HERE map [6] has put speed de-
tectors over many countries including U.S., and it provides
some APIs to query location-based real-time speed informa-
tion. For our purpose, using the corridor parameter is a
suitable choice [6]. For each edge (road segment), we use
the latitude/longitude coordinates of its two endpoints and
a width of 100 meters to specify the corridor. We are keep-
ing collecting the real-time speed information for the whole
NHS graph and using the running average as the average
speed of each road segments.

Fuel Consumption Data: It is hard for us to get good
real-world fuel consumption function data. In this paper,
we instead use the widely-used ADVISOR simulator [14] to
collect fuel consumption data.

Heavy-Duty Truck: Fuel consumption highly depen-
dents on which truck is used. Another benefit of using
ADVISOR is that it also provides some heavy-duty truck
profiles. In this simulation, we use the Kenworth T800 Ve-
hicle [3], a Class 8 heavy-duty truck. It is defaulted speci-
fied in files VEH_KENT800Trailer.m and HeavyTruck_in.m in
ADVISOR with the following parameters in Tab. 1.

Table 1: Truck Parameters (Kenworth T800).

Drag Coefficient

cd

Frontal area

Af

Glider

Mass

Cargo

Mass

0.7 8.5502 m2 2,552kg 33,234kg

Preprocessing Network: In the original NHS graph
from CHM [2], a lot of road segments are very short. To be
added...

Table 2: Network Statistics. “O” is the original net-
work and “E” is the “eastern” US with longitude ≥
−1000 and “M” is the graph after merging. θ is the
grade.

G n m
avg De

(mile)

avg Rlb
e

(mph)

avg Rlb
e

(mph)

avg |θ|
(%)

O 84504 178238 2.08 37.4 55.97 0.64

E 65520 137521 1.97 37.3 55.55 0.58

M 38213 82781 3.26 36.43 54.19 0.82

 120 ° W
 110° W 100° W 90° W 80

° W
 70

° W

 25 ° N

 30 ° N

 35 ° N

 40 ° N

 45 ° N

 50 ° N

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Figure 4: USA map and 22 regions.

7.2 Fuel-Rate-Speed Function Modeling
We will use the following fuel-rate-speed function model,

fe(x) = aex
3 + bex

2 + cex+ de, ∀e ∈ E (22)

which can capture most cases in [8–10,15] and also our physi-
cal interpretation in Appendix A. Here x is the speed in unit
of mph and fe(x) is the fuel rate consumption in unit of gph
(gallons per hour). Although our model (22) can capture
any road-dependent features, e.g., grade, rolling resistance,
and air density, etc., in this simulation, we only consider the
road grade. This is because that grade is a major factor for
truck fuel consumption [?].
Collecting Data from ADVISOR: To learn the pa-

rameters ae, be, ce, de in (22), we collection data from ADVI-
SOR [14]. We use the ADVISOR without the GUI by invok-
ing function adv_no_gui(action,input) where we specify
action=drive_cycle to run a driving cycle test, see ADVI-
SOR document [1, Ch. 2.3].

As mentioned in Sec. 7.1, we choose the default vehicle
file HeavyTruck_in where we use vehicle type VEH_KENT800.
This specifies all parameters for the class 8 heavy-duty truck,
Kenworth T800.

Next we need to specify the driving cycle. We generate a
driving cycle file for our purpose where we specify a constant
speed (say x) profile over a total of 4 hours and a constant
grade/slope (say θ) over the whole speed profile. Then after
running ADVISOR, we can get total fuel consumption w
(gallons) over a 4-hour driving time with speed x and over
a road with grade θ. Since almost all the time the truck will
running with constant speed x, we can get the corresponding
fuel-rate consumption as w/4 (gph).

By enumerating x from 10mph to 70mph with a step of
0.2mph, and enumerating θ from -10.0% to 10.0% with a
step of 0.1%, we collection many (x, θ, w/4) data points.
Fitting: For each grade θ from 10.0% to 10.0% with a

step of 0.1%, we use all (x,w/4) points to fit the model
(22) by using MATLAB’s fit function. We sampled several
grade points in Tab. 3, where we also put the convex region
for the fitted fuel-rate-speed function fe(x). As we can see,
the fuel-rate-speed function fe(x) is convex in reasonable re-
alistic scenarios. For example, when grade is 0 (a flat road),
the fuel-rate-consumption function is convex if the speed is
larger than 16.78mph, which holds generally in reality. This

Figure 4: U.S. map and 22 regions.

Table 1: Truck Parameters (Kenworth T800).
Drag Coefficient

cd

Frontal area

Af

Glider

Mass

Cargo

Mass

0.7 8.5502 m2 2,552kg 33,234kg

Preprocessing Highway Network: In the original NHS
graph from CHM [1], we observe that: (i) most roads are in
the “eastern” U.S., and (ii) many roads are very short with
degree-1 endpoints (non-intersection roads). To create a net-
work with more diverse paths, we first cut the whole NHS
graph to the “eastern” part with longitude to the east of
100◦W (see Fig. 4). We further merge the non-intersection
roads with the same level of grades into a single road. Some
network statistics after these two kinds of preprocessing are
shown in Tab. 2. Note that since the average distance for
each edge is 3.26 miles after preprocessing, it is reasonable to
ignore the speed transition over two adjacent edges, which
justifies the assumption in our fuel consumption model.

Moreover, to better visualize our results, we divide the
major “eastern” U.S. into 22 regions (see Fig. 4). In each
region i ∈ [1, 22], we find the node in the graph which is
nearest to the region’s center. We also call it node i. Next we
will use such 22 nodes as the source and destination nodes.

Table 2: Network Statistics. “O” is the original NHS
graph, “E” is the “eastern” graph (to the east of
100◦W), and “M” is the merged one. θ is the grade.

G n m
avg De

(mile)

avg Rlb
e

(mph)

avg Rub
e

(mph)

avg |θ|
(%)

O 84504 178238 2.08 37.4 55.97 0.64

E 65520 137521 1.97 37.3 55.55 0.58

M 38213 82781 3.26 36.43 54.19 0.82

5.2 Model Fuel-Rate-Speed Function
We model the fuel-rate-speed function as

fe(x) = aex
3 + bex

2 + cex+ de, ∀e ∈ E (17)

Here x is the speed (unit: mph) and fe(x) is the fuel rate
consumption (unit: gph (gallons per hour)). Although our
model (17) can capture any road-dependent features/factors,
e.g., grade, rolling resistance, and air density, etc., we only
consider the road grade θ in this simulation, which is the
major factor for truck fuel consumption [14]. We collect fu-
el consumption data from ADVISOR and fit fuel-rate-speed
functions fe(x) by MATLAB’s fit tool. Due to the space
limitation, the details are shown in our technical report [24].

Our results show that the fuel-rate-speed function fe(x) is
strictly convex in reasonable speed limit regions. More con-

cretely, we visualize the fuel-rate-speed function fe(x) and
fuel-time function ce(te) for three sampled grades, −1.0%,
0.0%, and 1.0%, as shown in Fig. 5. We can see that both
of them are strictly convex in reasonable regions. We also
verify that ce(te) will first strictly decrease and then strictly
increasing and thus we only need to focus on the decreasing
interval without loss of optimality, as discussed in Sec. 2.2.

20 40 60
0

5

10

15

speed (mph)

fu
e

l−
ra

te
−

s
p

e
e

d
 f

u
n

c
ti
o

n
 (

g
p

h
)

data (−1%)

fitted (−1%)

data (0%)

fitted (0%)

data (1%)

fitted (1%)

(a) Fuel-rate-speed function
fe(x).

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

time (hours)

fu
e

l−
ti
m

e
 f

u
n

c
ti
o

n
 (

g
a

llo
n

s
)

data (−1%)

fitted (−1%)

data (0%)

fitted (0%)

data (1%)

fitted (1%)

(b) Fuel-time function ce(te)
over a 100-mile road.

Figure 5: Fit curve v.s. data for grades 0%, ±1%.

5.3 Evaluate/Compare FPTAS and Heuristic
We implement our algorithms with C++ where we use

the SNAP graph structure [33]. We evaluate on a server
with an 8-core Intel Core-i7 3770 3.4 Ghz CPU and 16 GB
memory, running CentOS 6.4. To evaluate and compare our
FPTAS (Algorithm 3) and heuristic scheme (Algorithm 4),
we consider 4 different settings, S1, S2, S3, and S4, as shown
in Tab. 3. Note that since we aim to compare them, we use
LB = 1 and UB = 1000 in Step 1 of Algorithm 3.

In terms of the minimized fuel cost of the algorithms,
Tab. 3 shows that the heuristic scheme always outputs the
optimal solution (LB = UB, hence LB = UB = OPT), and
the FPTAS also outputs a near-optimal solution (e.g., in S1,
74.812 is only a little bit larger than OPT = 74.811). This
demonstrates that both FPTAS and the heuristic scheme
have good performance. However, in terms of time/space
complexity, the heuristic scheme is much better than FP-
TAS. As we can see, the FPTAS only works fine for the
small-scale settings (S1 and S4), where the transportation
network in regions 1 and 2 in Fig. 4 is considered, with only
1185 nodes and 2568 edges. When we use a little bit larger
scale setting S2, it runs for nearly 1 hour and consumes 14.76
GB memory (out of 16 GB in total). Our server cannot run
any other setting whose scale is larger than S2. We also note
that the complexity of the FPTAS increases significantly as
we decrease ε from 0.1 to 0.05, as shown in settings S1&S4.
Contrarily, our heuristic scheme can handle all 22 regions
(setting S3) with 38213 nodes and 82781 edges easily with
low time/space complexity.

Tab. 3 verifies that the FPTAS is not necessarily scalable
to practical large-scale highway networks, but our heuris-
tic scheme works very well in terms of both performance
and complexity. To see why the heuristic scheme perform-
s well, we examine an example source-destination pair in
the setting S3, (s, d) = (4, 22), and plot its δ(λ) function
(the total travel time of the shortest-generalized-cost path,
see (16)) in Fig. 6. We observe that function δ(λ) is non-
increasing, which verifies Theorem 3. Moreover, δ(λ) has
only a few small non-continuous jumps (e.g., a jump at
point λ = 11.47 from 37.83 to 37.62). Whenever a (fea-

0 5 10 15
35

40

45

50

55

(4.48,40)

λ

δ
(λ
)

11 11.5 12
37.6

37.7

37.8

37.9

Figure 6: An example for
δ(λ) when (s, d) = (4, 22).

36 38 40 42 44 46
280

300

320

340

Delay (hour)

F
ue

l c
on

su
m

ed
 (

ga
llo

n)

F
F−SO
S
S−SO
OPT−UB
OPT−LB

Figure 7: The delay ef-
fect when (s, d) = (9, 22).

sible) delay is not within such jump regions, we can always
find a λ0 such that δ(λ0) = T . According to Theorem 4,
the output solution must be optimal. For example, when
T = 40, we can find λ0 = 4.48 such that δ(λ0) = 40, as
shown in Fig. 6. The optimal solution can be derived as
(p∗(λ0), {t∗e(λ0)}). Even when T is within one of such jump
regions (e.g., T ∈ (37.62, 37.83)), since the length of the de-
lay region (e.g., (37.62, 37.83) has a length of 0.21 hours) is
often negligible as compared to a nearly 40-hour travel, the
output LB and UB would be very close. Hence, our heuristic
scheme outputs an optimal (at least near-optimal) solution
for any input T . We will further justify this observation
with more instances in Sec. 5.4.

Table 4: Description of 6 solutions.
Solution Description Benchmark

F Sol. of fastest path with maximal speed Time

F-SO Sol. of fastest path with optimal speed -

S Sol. of shortest path with maximal speed Distance

S-SO Sol. of shortest path with optimal speed Distance

OPT-LB Sol. of LB of our heuristic scheme Fuel

OPT-UB Sol. of UB of our heuristic scheme -

5.4 Compare Performance with Baselines
In this section, we compare the performance of our heuris-

tic scheme with the following 4 baseline algorithms: (i)
fastest (time) path algorithm with maximal speed, (ii) fastest
path algorithm with optimal speed, (iii) shortest (distance)
path algorithm with maximal speed, and (iv) shortest path
algorithm with optimal speed. Each of them outputs one
solution for PASO. Since our heuristic scheme outputs two
solutions respectively corresponding to the LB and UB, we
have 6 solutions in total, as summarized in Tab. 4.

In later comparison, since the travel time of F is the min-
imal time for any feasible solution of PASO, we will use it
as the time benchmark. For example, a solution SOL (e.g.,
SOL could be OPT-UB) with time increment 10% means that
Travel time of SOL−Travel time of F

Travel time of F
= 10%. Similarly, we use the

travel distance of S/S-SO as the distance benchmark, and
use the fuel consumption of OPT-LB as the fuel benchmark.

Now we input all 22 regions in Fig. 4 as the underlaying
highway network and use all permutations of the 22 nodes
(the nearest points to each individual region) as (s, d) pairs.
For each (s, d) pair, we use ten different delays, from dT fe
to dT fe+ 9 where T f is the fastest travel time from s to d.

A Single Instance: We first consider one instance (s, d, T) =
(9, 22, 40). Tab. 5 compares the 6 solutions As we can see,
our heuristic scheme again outputs the optimal solution.
It consumes 300.1 gallons of fuel, runs 10.76% slower than

Table 3: Comparisons of FPTAS and Heuristic. Here an instance is the tuple (source, destination, delay),
i.e., (s, d, T). For example, in S1, (1,2,8) means that the source (resp. destination) node is 1 (resp. 2), which
is the nearest node to the center of region 1 (resp. region 2) in Fig. 4, and the total delay is 8 hours.

No.
Network Input Performance (gallon) Time (second) Memory (GB)

Reg. n m Instance ε Heuri. LB/UB FPTAS Heuri. FPTAS Heuri. FPTAS

S1 1&2 1185 2568 (1,2,8) 0.1 74.811/74.811 74.812 1 50 0.29 2.73

S2 17&18 3274 7465 (18,17,10) 0.1 60.2795/60.2795 60.2798 2 3511 0.29 14.76

S3 1-22 38213 82781 (4,22,40) 0.1 290.744/290.744 - 365 - 0.29 -

S4 1&2 1185 2568 (1,2,8) 0.05 74.811/74.811 74.812 1 126 0.29 6.84

Table 5: Performance of instance (s, d, T) = (9, 22, 40).

Sol.
Time

(hour)

Incre.

(%)

Dist.

(mile)

Incre.

(%)

Fuel

(gal.)

Incre.

(%)

F 36.11 - 1821 2.71 332.1 10.67

F-SO 40 10.76 1821 2.71 308.3 2.73

S 38.58 6.85 1773 - 318.0 5.99

S-SO 40 10.76 1773 - 307.0 2.30

OPT-LB 40 10.76 1778 0.30 300.1 -

OPT-UB 40 10.76 1778 0.30 300.1 0

Table 6: Average performance of all instances.

Sol.
Avg Time

Incre.(%)

Avg Dist.

Incre.(%)

Avg Fuel

Incre.(%)

Avg Fuel

Econ.(mpg)

F - 1.71 20.14 5.05

F-SO 32.80 1.71 2.00 5.94

S 2.82 - 16.40 5.13

S-SO 32.80 - 0.31 5.94

OPT-LB 32.95 0.17 - 5.96

OPT-UB 32.89 0.18 0.02 5.96

the time benchmark (F), and 0.3% longer than the distance
benchmark (S/S-SO). Also, without speed optimization, the
fastest path (F) consumes 32 more gallons (10.67%) and the
shortest path (S) consumers 18 more gallons (5.99%). But
with speed optimization, both fastest path and shortest path
have near-optimal performance.

For (s, d) = (9, 22), we also evaluate the effect of input
delay T as shown in Fig. 7. Considering speed optimiza-
tion, when the input delay T ∈ [36.11, 38.58), the shortest
path is infeasible, which shows that fastest path outperform-
s shortest path. The shortest path becomes feasible when
T ≥ 38.58, and it outperforms the fastest path when T > 39.
This figure thus shows that the shortest path becomes bet-
ter and better as the delay constraint increases. Intuitively,
when the hard delay constraint can be satisfied, the travel
distance would be critical for the total fuel consumption.

The OPT-UB curve in Fig. 7 is the energy-delay tradeoff
of (s, d) = (9, 22). We see that increasing delay can save fuel
consumption, and the saving has a “diminishing” property.
For example, the truck can save 6.6 gallons of fuel if it in-
creases its delay from 37 to 38 hours, but the saving reduces
to 1.46 gallons if its delay is relaxed from 45 to 46 hours.

All Instances: Similar to Tab. 5, we can get the time,
distance, and fuel of the 6 solutions for all source-sink pairs.
We evaluate the average performance of all running instances
in terms of time/distance/fuel increments compared to the
benchmark numbers, as summarized in Tab. 6. Note that in
4.84% of instances, shortest path is infeasible. Tab. 6 only
has the average performance over the instances where the
shortest path is feasible.

Tab. 6 shows that on average OPT-UB only consumes
0.02% of more fuels than the fuel benchmark (OPT-LB).
This again shows that our heuristic scheme outputs a near-
optimal solution in all instances.

For the baseline algorithms, Tab. 6 shows that the fastest
path (resp. shortest path) algorithm without speed opti-
mization consumes 20.14% (resp. 16.40%) of more fuels than
our solution. Our heuristic solution also improves the 36-
ton-truck’s fuel economy from 5.05 for the fastest path and
5.13 for the shortest path to 5.96. Considering its significant
portion of energy consumption, our solution can indeed save
much fuel cost for the long-haul heavy-duty trucks.

When we allow speed optimization for the fastest path and
the shortest path, we find that on average both of them are
close to the optimal solution. More specifically, F-SO con-
sumes 2.00% of more fuels and S-SO only consumes 0.31%
of more fuels than OPT-LB. This apparently suggests that
in the U.S., it is good enough to first choose the shortest or
fastest path and then do speed optimization. However, in
our simulation, the shortest path is infeasible among 4.84%
of all instances, and the fastest path with speed optimization
can consume 21.32% of more fuels in the worst instance. As
opposed to them, our PASO solution is robust in the sense
that it always output a solution that is both feasible and
near-optimal. We also leave it as a future work to under-
stand under which conditions the fastest/shortest path with
speed optimization is close to the optimal solution.

6. CONCLUSION AND FUTURE WORK
Provisioning both energy-efficient and timely delivery is of

great importance for logistic operators. This paper presents
a first step to study the energy-efficient timely transporta-
tion problem with an emphasis for long-haul heavy-duty
trucks. We propose two algorithms: the first one is an FP-
TAS and the second one is a heuristic with lower complexi-
ty and near-optimal empirical performance. Our real-world
data-driven simulations show that our solution guarantees
timely delivery and can save up to 17% of fuel consumption
as compared to a fastest/shortest path algorithm adapted
from common practice. An interesting and important fu-
ture direction is to generalize our results beyond the highway
setting to cover more sophisticated local driving scenarios.

Acknowledgment
The work presented in this paper was supported in part
by National Basic Research Program of China (Project No.
2013CB336700) and the University Grants Committee of the
Hong Kong Special Administrative Region, China (Theme-
based Research Scheme Project No. T23-407/13-N and Col-
laborative Research Fund No. C7036-15G).

7. REFERENCES
[1] CHM U.S. national highway systems. http:

//courses.teresco.org/chm/graphs/usa-national.gra.

[2] Energy consumption estimates by end-use sector,
ranked by state, 2013.
http://www.eia.gov/state/seds/data.cfm?incfile=
/state/seds/sep sum/html/rank use.html&sid=US.

[3] Fuel economy at various driving speeds.
http://www.afdc.energy.gov/data/10312.

[4] Keeping your vehicle in shape.
https://www.fueleconomy.gov/feg/maintain.jsp.

[5] Kenworth T800 vehicle.
http://www.kenworth.com/trucks/t800.

[6] Place an order with guaranteed delivery. https:
//www.amazon.com/gp/help/customer/display.html/
ref=hp left v4 sib?ie=UTF8&nodeId=201117390.

[7] Traffic flow using corridor in HERE maps.
https://developer.here.com/api-explorer/rest/traffic/
flow-using-corridor.

[8] Transportation overview.
http://www.c2es.org/energy/use/transportation.

[9] USGS elevation point query service.
http://nationalmap.gov/epqs/.

[10] Smarter trucking saves fuel over the long haul.
http://news.nationalgeographic.com/news/energy/
2011/09/110923-fuel-economy-for-trucks/, 2011.

[11] Improving the fuel efficiency of American trucks.
https://www.whitehouse.gov/the-press-office/2014/
02/18/fact-sheet-opportunity-all-improving-fuel-
efficiency-american-trucks-bol, 2014.

[12] Transportation logistics enhances your business
efficiency. http://www.readytrucking.com/
transportation-logistics-business-efficiency/, 2014.

[13] Supertruck team achieves 115% freight efficiency
improvement in Class 8 long-haul truck.
http://energy.gov/eere/vehicles/articles/supertruck
-team-achieves-115-freight-efficiency-improvement
-class-8-long-haul, 2015.

[14] K. Ahn. Microscopic fuel consumption and emission
modeling. Master’s thesis, Virginia Polytechnic
Institute and State University, 1998.

[15] A. A. Alam, A. Gattami, and K. H. Johansson. An
experimental study on the fuel reduction potential of
heavy duty vehicle platooning. In Prof. IEEE ITSC,
2010.

[16] F. An and M. Ross. Model of fuel economy with
applications to driving cycles and traffic management.
Transportation Research Record, 1993.

[17] S. Ardekani, E. Hauer, and B. Jamei. Traffic impact
models. Chapter 7 in Traffic Flow Theory, Oak Bridge
National Laboratory Report, 1992.

[18] B. H. Ashby. Protecting Perishable Foods during
Transport by Truck. U.S. Department of Agriculture,
2006.

[19] I. M. Berry. The effects of driving style and vehicle
performance on the real-world fuel consumption of
U.S. light-duty vehicles. Master’s thesis,
Massachusetts Institute of Technology, 2010.

[20] D. P. Bertsekas. Nonlinear Programming. Athena
scientific, 1999.

[21] S. C. Davis, S. W. Diegel, and R. G. Boundy.

Transportation Energy Data Book: Edition 34. U.S.
Department of Energy, 2015.

[22] E. Demir, T. Bektaş, and G. Laporte. A comparative
analysis of several vehicle emission models for road
freight transportation. Transportation Research Part
D: Transport and Environment, 2011.

[23] E. Demir, T. Bektaş, and G. Laporte. A review of
recent research on green road freight transportation.
European Journal of Operational Research, 2014.

[24] L. Deng, M. H. Hajiesmaili, M. Chen, and H. Zeng.
Energy-efficient timely transportation of long-haul
heavy-duty trucks. Technical Report,
http://www.ie.cuhk.edu.hk/%7Emhchen/papers/
EETT.eEnergy.16.TR.pdf.

[25] W. Ford Torrey and D. Murray. An analysis of the
operational costs of trucking: A 2015 update. 2015.

[26] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. 1979.

[27] W. Harrington and A. Krupnick. Improving fuel
economy in heavy-duty vehicles. Resources for the
Future DP, 2012.

[28] R. Hassin. Approximation schemes for the restricted
shortest path problem. Mathematics of Operations
Research, 1992.

[29] E. Hellström, J. Åslund, and L. Nielsen. Design of an
efficient algorithm for fuel-optimal look-ahead control.
Control Engineering Practice, 2010.

[30] E. Hellström, M. Ivarsson, J. Åslund, and L. Nielsen.
Look-ahead control for heavy trucks to minimize trip
time and fuel consumption. Control Engineering
Practice, 2009.

[31] A. Jüttner, B. Szviatovski, I. Mécs, and Z. Rajkó.
Lagrange relaxation based method for the QoS routing
problem. In Proc. IEEE INFOCOM, 2001.

[32] J. Larson, K.-Y. Liang, and K. H. Johansson. A
distributed framework for coordinated heavy-duty
vehicle platooning. IEEE Transactions on Intelligent
Transportation Systems, 2015.

[33] J. Leskovec and R. Sosič. SNAP: A general purpose
network analysis and graph mining library in C++.
http://snap.stanford.edu/snap, 2014.

[34] D. H. Lorenz and D. Raz. A simple efficient
approximation scheme for the restricted shortest path
problem. Operations Research Letters, 2001.

[35] W. Mallett. Freight Performance Measurement: Travel
Time in Freight-Significant Corridors. U.S. Federal
Highway Administration, 2006.

[36] F. Mannering, W. Kilareski, and S. Washburn.
Principles of Highway Engineering and Traffic
Analysis. John Wiley & Sons, 2007.

[37] T. Markel, A. Brooker, T. Hendricks, V. Johnson,
K. Kelly, B. Kramer, M. O’Keefe, S. Sprik, and
K. Wipke. ADVISOR: a systems analysis tool for
advanced vehicle modeling. Journal of Power Sources,
2002.

[38] Z. Mohamed-Kassim and A. Filippone. Fuel savings
on a heavy vehicle via aerodynamic drag reduction.
Transportation Research Part D: Transport and
Environment, 2010.

[39] E. K. Nam and R. Giannelli. Fuel consumption

modeling of conventional and advanced technology
vehicles in the physical emission rate estimator
(PERE). U.S. Environmental Protection Agency, 2005.

[40] F. Stodolsky, L. Gaines, and A. Vyas. Analysis of
technology options to reduce the fuel consumption of
idling trucks. Technical report, Argonne National Lab,
2000.

[41] Y. Suzuki. A new truck-routing approach for reducing
fuel consumption and pollutants emission.
Transportation Research Part D: Transport and
Environment, 2011.

[42] J. D. Teresco. The Clinched Highway Mapping (CHM)
project. http://cmap.m-plex.com/.

[43] M. Tunnell. Estimating truck-related fuel consumption
and emissions in maine: A comparative analysis for
six-axle, 100,000 pound vehicle configuration. In Proc.
TRB Annual Meeting, 2011.

