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Energy-Efficient Timely Truck Transportation for
Geographically-Dispersed Tasks

Qingyu Liu, Haibo Zeng, Minghua Chen

Abstract—We consider a common truck operation scenario,
where a long-haul heavy-duty truck drives across a national high-
way system to fulfill multiple geographically-dispersed tasks in a
specific order. The objective is to minimize the total fuel consump-
tion subject to the pickup and delivery time window constraints of
individual tasks, by jointly optimizing task execution times, path
planning, and speed planning. The need to coordinate execution
times for multiple tasks differentiates our study from existing
ones on single task. We first prove that our problem is NP-hard.
Moreover, it is uniquely challenging to solve our problem, as
we further show that optimizing task execution times is a non-
convex puzzle. We then exploit the problem structure to develop
(i) a Fully-Polynomial-Time Approximation Scheme (FPTAS),
and (ii) a fast and efficient heuristic algorithm, called SPEED
(Sub-gradient-based Price-driven Energy-Efficient Delivery). We
characterize sufficient conditions under which SPEED generates
an optimal solution, and derive an optimality gap for SPEED
when the conditions are not satisfied. We evaluate the practical
performances of our solutions using real-world traces over the US
national highway. We observe that our solutions can save up to
22% fuel as compared to the fastest-/shortest- path baselines, and
up to 10% fuel than a conceivable alternative generalized from the
state-of-the-art single-task algorithm. The fuel saving is robust
to the number of tasks to be fulfilled. Simulations also show that
our algorithms always obtain close-to-optimal solutions and meet
time window constraints for all feasible problem instances. In
comparison, the conceivable alternative fails to meet time window
constraints for up to 45% of the instances.

Index Terms—Energy-efficient transportation, timely delivery,
task execution times optimization, path planning, speed planning.

I. INTRODUCTION

The US trucking industry is critical and drives the US
national economy. In 2016, it hauls 70.6% (up to 10.42 billion
tons) of all freight tonnage [2], and collects $676 billion in
gross freight revenues, accounting for 79.8% of the freight
bill [2]. This number would rank 19th worldwide if measured
against the GDP of countries. Meanwhile, with only 4% of
total vehicle population, heavy-duty trucks consume 18% of
energy in the whole transportation sector [3]. This alerting
observation, together with that fuel consumption accounts
for the largest truck operating cost factor (26%) [3], makes

Corresponding author: Qingyu Liu, Haibo Zeng, and Minghua Chen.
Part of this work has been presented at the ACM International Conference

on Future Energy Systems, Karlsruhe, Germany, June 12 - 15, 2018 [1]. A
major part of this work was done during Qingyu’s visit to the Department of
Information Engineering, The Chinese University of Hong Kong, in 2017.

Q. Liu and H. Zeng are with the Department of Electrical and Com-
puter Engineering, Virginia Tech, Blacksburg, USA (e-mail: {qyliu14,
hbzeng}@vt.edu). M. Chen is with the Department of Information Engi-
neering, The Chinese University of Hong Kong, Hong Kong, China (e-mail:
minghua@ie.cuhk.edu.hk).

it critical to reduce fuel consumption for cost-effective and
environment-friendly heavy-duty truck operation.

We consider a common truck operation scenario where a
long-haul truck drives across a national highway to fulfill
multiple tasks in a specific order. Our objective is to minimize
the total fuel consumption subject to the pickup and delivery
time window constraints of individual tasks. Pickup and de-
livery time window constraints are common in the trucking
industry. For instance, mobile applications like uShip1 and
Uber Freight2 nowadays provide lots of freight transportation
requests for truck operators, which are often associated with
earliest and latest pickup and delivery time requirements. Our
design space includes path planning, speed planning, and
task execution times optimization. Path planning and speed
planning are two well-recognized approaches to effectively
save fuel3, as studied in the single-task setting [4], [5].

In addition, we consider a new design space of task execu-
tion times optimization for saving fuel, which differentiates
our study under the multi-task setting from existing ones
under the single-task setting. In the single-task setting, the task
execution time budget (also known as the deadline constraint)
is a fixed input [4], [5]. However, in the multi-task setting it is
necessary to optimally coordinate execution times for individ-
ual tasks by jointly considering their time window constraints.
To be specific, for individual tasks, a longer execution time
budget can save fuel due to a bigger design space of path
planning and speed planning. However, we cannot allocate an
arbitrarily long execution time budget for each task, because it
is crucial to catch time window constraints to avoid substantial
penalty of violation. Further, due to that different tasks can
have temporally overlapped time window constraints, although
increasing the execution time budget of one task can save its
fuel, overall it may consumes more fuel to fulfill all tasks
because of the decreasing execution time budgets of other
tasks. In conclusion, task execution times optimization is a
must for effectively saving fuel in the multi-task setting.

We remark that optimizing task execution times is challeng-
ing, as it is a non-convex puzzle as proven later in Sec. III-C.
Hence existing single-task studies, e.g., [4], [5], cannot be
adapted to solve our multi-task problem directly, due to the
lack of an efficient task execution times optimization scheme.

Tab. I compares our work with existing studies on energy-
efficient timely truck operations. We present details of related
work later in Sec. II. In conclusion, we are the first to

1uShip, https://www.uship.com/
2Uber Freight, https://freight.uber.com/
3US Department of Energy, https://afdc.energy.gov/data/
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TABLE I: Comparison of our work and existing energy-efficient timely truck transportation studies.

Studied problem RSP [6]–[8] PASO [4], [5] [9], [10] [11], [12] Our work
Setting Fulfill multiple tasks 7 7 7 7 3

Design
space

Path planning 3 3 7 3 3
Speed planning 7 3 3 7 3

Task execution times optimization 7 7 7 7 3

Constraint Time window constraints 3 3 7 7 3

study the problem of minimizing the fuel consumption for
a long-haul heavy truck to fulfill multiple transportation tasks
subject to task pickup and delivery time window constraints.
Solving our problem requires to simultaneously optimize task
execution times, path planning, and speed planning. We make
the following specific contributions in this paper.

� We prove that our problem is NP-hard. We show that
optimizing task execution times is a new design space for
saving fuel introduced by the multi-task setting, and it is a
non-convex puzzle. Thus it is uniquely challenging to solve our
problem under the multi-task setting, as compared to solving
existing ones under the single-task setting.

� We design a Fully-Polynomial-Time Approximation
Scheme (FPTAS). Theoretically it always achieves a (1 + ε)-
approximate solution with a time complexity polynomial in
problem inputs and 1/ε, for any user-defined ε > 0. Practically
it is suitable for solving small-scale problem instances.

� We develop an efficient heuristic SPEED (Sub-gradient-
based Price-driven Energy-Efficient Delivery), based on dual
sub-gradient updates of task execution times. We characterize
conditions under which SPEED generates an optimal solution,
and further derive a performance gap comparing the solution
of SPEED with the optimal when the conditions are not satis-
fied. Practically SPEED can obtain close-to-optimal solutions
quickly for large-scale problem instances.

� We evaluate our solutions using real-world traces over
the US national highway system. Our solutions save up to
22% fuel as compared to the fastest-/shortest- path baselines,
and up to 10% fuel as compared to a conceivable alternative
generalized from the state-of-the-art single-task algorithm. Be-
sides, our algorithms always obtain close-to-optimal solutions
and meet the time window constraints for all feasible problem
instances. In comparison, the conceivable alternative fails to
meet one or more time window constraints for up to 45%
of the instances. We also observe that the fuel saving of our
solutions is independent to the number of tasks.

II. RELATED WORK

Restricted Shortest Path (RSP): RSP requires to find a path
such that the path fuel consumption is minimized while the
path travel time is within a deadline constraint. RSP is NP-
hard [6] with heuristic algorithms [8] and FPTASes [6], [7]
designed. RSP optimizes fuel consumption with only path
planning involved, assuming fixed speeds. Moreover, RSP
considers only single task, where the task execution time
budget is given as a fixed deadline constraint, and thus no task
execution times optimization is involved. Therefore, existing
results on RSP cannot be directly applied to the multi-task
setting where the challenging design space of task execution
times optimization is a must for saving fuel.

PAth selection and Speed Optimization (PASO): PASO [4],
[5] generalizes RSP with speed planning taken into account.
Deng et al. [4], [5] develop both an FPTAS and a heuristic
for PASO. Similar to RSP, PASO considers only single task.
Therefore, existing results on PASO cannot be easily gener-
alized to our scenario of multiple tasks, as solving the multi-
task version of the problem involves addressing a uniquely
challenging puzzle of task execution times optimization.

Pickup and Delivery Problem with Time Window (PDPTW):
PDPTW is a generalization of the Traveling Salesman Prob-
lem (TSP) [13] and Vehicle Routing Problem (VRP) [14].
PDPTW [15]–[17] and its extensions [18], [19] minimize fuel
consumption for a set of vehicles to timely fulfill multiple
tasks. Note that PDPTW and our problem are fundamentally
different: (i) we optimize path planning and speed planning
for fulfilling each task, while PDPTW assumes fixed paths
(e.g., shortest paths) and fixed road driving speeds for fulfilling
each task; (ii) the main challenge of PDPTW is to optimize
the execution order of tasks, while our setting assume the
execution order of tasks is given; (iii) PDPTW is proven to
be APX-hard [20] and thus no PTAS exists unless P = NP,
while our problem admits an FPTAS (see our Sec. IV).

Other studies: Sahlholm et al. [21] present an approach
to estimate road grade. Such grade information can be used
by assistance systems to optimize driving speed to save
fuel, as studied in [9], [10]. Studies [9], [10] both focus on
fulfilling one task without time window constraint, assuming
that the path is given and hence no path planning is involved.
Boriboonsomsin et al. [11] present an eco-routing navigation
system that determines the most fuel-economic path. Scora
et al. [12] analyze the tradeoff between the amount of fuel
savings and the added travel time relative to the fastest path.
Both studies [11], [12] are under the single-task setting without
time window constraint, assuming fixed road driving speeds
and hence no speed planning is involved. Alam et al. [22]
observe that improved fuel-efficiency can be obtained by
maintaining the platoon of trucks throughout a hill, motivating
subsequent studies, e.g., [23], [24], which focus on developing
control strategies for truck platooning for saving fuel.

Overall to our best knowledge, we are the first to study
the problem of minimizing fuel consumption for a long-haul
heavy truck to fulfill multiple transportation tasks under task
pickup and delivery time window constraints. Solving the
problem requires us to simultaneously optimize task execution
times, path planning, and speed planning. As compared to
existing studies under the single-task setting, task execution
times optimization is a new critical design space for saving
fuel for our problem that is under the multi-task setting.
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(a) System model: an example of a
truck driving in a highway network.

(b) Simulated US highway network
that is partitioned into 22 regions.

Fig. 1: A truck timely fulfills multiple transportation tasks in
a national highway system, with fuel consumption minimized.

III. PRELIMINARY

A. System Model

We model a national highway network as a directed graph
G , (V,E) where an edge e ∈ E represents a road
segment, and a node v ∈ V represents a connecting point
of multiple road segments. A road segment is assumed to
have homogeneous environmental conditions, e.g., grade and
surface resistance, that can impact the fuel consumption rate
of a truck. We define n , |V | and m , |E|. For each e ∈ E,
we denote De > 0 as its distance, rle > 0 (resp. rue ≥ rle) as its
minimum (resp. maximum) traveling speed, and cle > 0 (resp.
cue ≥ cle) as its minimum (resp. maximum) fuel consumption.

We consider the scenario where one long-haul heavy-duty
truck travels across G to fulfill K transportation tasks denoted
by ~τ = {τi, i = 1, 2, ...,K}, as illustrated in Fig. 1a. We make
the following assumptions:

1) the truck must fulfill tasks in a specific order, namely
the ith task τi must be fulfilled before the jth task τj
for any 1 ≤ i < j ≤ K;

2) the truck cannot simultaneously transport cargoes be-
longing to different tasks.

We model ~τ by a sequence of nodes ~σ = {σi ∈ V :
i = 1, 2, ...,K + 1}. For each task τi ∈ ~τ , it requires the
truck to pick up cargoes with a mass of ρi ≥ 0 at the node
σi ∈ ~σ within a pickup time window, and deliver them to
the node σi+1 ∈ ~σ within a delivery time window. The time
window constraints are modeled by an earliest leaving time
requirement T out

i ≥ 0 and a latest arrival time requirement
T in
i ≥ 0 associated with each node σi ∈ ~σ:
1) T out

i defines the earliest time when the truck can leave
σi. The truck cannot leave σi until the time T out

i to finish
both the delivery of the task τi−1 and the pickup of the
task τi;

2) T in
i defines the latest time when the truck can arrive at
σi. The truck must arrive at σi no later than the time
T in
i to finish both the delivery of the task τi−1 and the

pickup of the task τi.
The truck fuel consumption depends on many factors [25].

Like [4], [5], in this paper we ignore the fuel consumption
incurred by acceleration and deceleration of a truck. This
is because (i) when driving inside a road segment with
homogeneous environmental conditions, as discussed in [26],

[27] and proven by [5, Lem. 1], driving at a constant-speed
is most fuel-economic; (ii) although a truck may acceler-
ate or decelerate when it switches between different road
segments, in our setting of long-haul truck transportation
across a national highway network, the fuel consumption of
acceleration/deceleration of switching can be fairly ignored as
compared to that of traversing the road segment following a
constant-speed (e.g., as shown in [28], a truck can accelerate
from 0mph to 31mph in just 3% of the average length of road
segments in our simulations over the US national highway. We
empirically verify this observation in detail later in Sec. V-B
by simulations using real-world traces). With the above justifi-
cation, ignoring truck acceleration and deceleration allows us
to simplify the formulation of our problem without incurring
a significant optimality loss. Now given a road segment, it is
reasonable to assume that the truck fuel consumption rate is
a function of the cargo mass and the driving speed [4], [5].

We define fe(re, ρ) :
[
rle, r

u
e

]
→ R+ as the fuel con-

sumption rate for the truck to pass a road segment e ∈ E
following a constant-speed of re with a load of ρ. Same to
the assumption made by [4], [5] and verified by both physical
laws and comprehensive simulations using real-world data, we
assume fe(re, ρ) to be a strictly convex function with re over
the interval

[
rle, r

u
e

]
, given a truck load ρ ≥ 0.

With the fuel consumption rate fe(re, ρ), we can define the
following function ce (te, ρ) which calculates the truck fuel
consumption of passing e with load ρ and travel time te

ce (te, ρ) , te · fe (De/te, ρ) . (1)

Due to the strict convexity of fe(·), following the proof
of [4, Lem. 2], we have: (i) ce (te, ρ) is strictly convex over
te ∈

[
tle, t

u
e

]
given a truck load ρ, where tle , De/r

u
e is the

minimum travel time and tue , De/r
l
e is the maximum travel

time, and (ii) there exists a travel time t̂e(ρ) ∈
[
tle, t

u
e

]
such

that ce (te, ρ) is first strictly decreasing over
[
tle, t̂e(ρ)

]
and

then strictly increasing over
[
t̂e(ρ), tue

]
, given a load ρ. Hence,

in order to fulfill the task τi, for any e ∈ E, the possible travel
time in the optimal solution of our problem must belong to
the range of

[
tle, t̂e(ρi)

]
. Without loss of generality, we assume

ce
(
t̂e(ρi), ρi

)
≥ cle and ce

(
tle, ρi

)
≤ cue , since otherwise we

can still figure out the possible travel time range which is a
subset of

[
tle, t̂e(ρi)

]
in a polynomial time, due to the strictly

decreasing property of ce (te, ρi).

B. Problem Formulation

In this paper there are two kinds of design variables: binary
variable xei defines a path from σi to σi+1 to fulfill τi,

xei =

{
1, e ∈ E is on the path to fulfill the task τi;
0, otherwise,

and non-negative variable tei represents the specific travel time
for the truck to pass edge e to fulfill the task τi.

By vectoring variables as ~xi , {xei : e ∈ E} and ~ti , {tei :
e ∈ E}, our problem Multi-task Energy-Efficient Trucking,
denoted by MEET, can be formulated as

obj: min
~xi∈Xi,~ti∈Ti

K∑
i=1

∑
e∈E

xei · ce(tei , ρi) (2a)
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s.t. ai = max
{
ai−1, T

out
i

}
+
∑
e∈E

xei · tei ≤ T in
i+1,

a0 = 0, ∀i = 1, 2, ...,K, (2b)

where the set Ti defines the possible road travel time, i.e.,

Ti ,
{
~ti : tle ≤ tei ≤ t̂e(ρi), ∀e ∈ E

}
,

and Xi is the set of all paths from σi to σi+1, i.e.,

Xi ,
{
~xi : xei ∈ {0, 1},∀e ∈ E, and∑

e∈out(v)

xei −
∑

e∈in(v)

xei = 1{v=σi} − 1{v=σi+1},∀v ∈ V
}
,

where 1{·} is the indicator function, in(v) , {(u, v) : (u, v) ∈
E} is the set of incoming edges of node v ∈ V , out(v) ,
{(v, u) : (v, u) ∈ E} is the set of outgoing edges of v ∈ V .

In the formulation in (2), ai is the exact arrival time at
σi+1, which should be no later than the latest allowed arrival
time T in

i+1. The formula max{ai−1, T out
i } guarantees that the

truck cannot leave σi immediately if it arrives at σi before the
earliest allowed leaving time T out

i . Objective (2a) minimizes
the total fuel consumption for fulfilling the task sequence ~τ .

In the paper we denote a solution to MEET as

p = p1 ∪ p2 ∪ ... ∪ pK ,

which is a path from σ1 to σK+1 passing all σi ∈ ~σ, with
each pi being a simple path from σi to σi+1, and with each
edge e ∈ pi assigned a specific travel time tei ∈ [tle, t̂e(ρi)].

We remark that speed planning of each road segment e ∈ E
in MEET is subject to a minimum speed limit (rle) and a
maximum speed limit (rue ) both of which are fixed constants.
We focus on fixed limits instead of variable ones which can
consider the dynamic traffic condition due to the following
concerns: (i) we consider long-haul transportation, where
trucks mostly run on interstate highways. The operation thus is
less affected by the dynamic traffic condition in cities; (ii) we
start with the fundamental problem MEET which has not been
studied in the literature, as shown in Tab. I; (iii) the maximum
traveling speed (rue ) in MEET gives a first-order modeling for
the road congestion. We leave it as a future direction to study
trucking problems considering dynamic traffic conditions, and
we introduce our preliminary results in [29], [30].

An illustrative example of MEET is introduced in Tab. II
with the highway network being Fig. 1a, where there are two
transportation tasks τ1 and τ2. It is clear that there are two
paths to fulfill τ1: one is the path 〈1, 3〉 with a travel time of
1 and a cost4 of 3, while the other is the path 〈1, 2, 3〉 with
a travel time of 2 and a cost of 2. Similarly, there are two
paths to fulfill τ2: one is the path 〈3, 5〉 with a travel time of
1 and a cost of 4, while the other is the path 〈3, 4, 5〉 with
a travel time of 2 and a cost of 2. The most fuel-economic
solution meeting time window constraints is to follow the path
〈1, 3, 4, 5〉, with a total fuel consumption of 5.

4We interchangeably use fuel consumption and cost in this paper.

TABLE II: An illustrative example of problem MEET based
on Fig. 1a, assuming tle = tue = 1 and cle = cue for all e ∈ E.

e (1, 2) (2, 3) (1, 3) (3, 4) (4, 5) (3, 5) (1, 5)
ce 1 1 3 1 1 4 8
σi σ1 = 1 σ2 = 3 σ3 = 5
T out
i T out

1 = 0 T out
2 = 0 T out

3 = 0

T in
i T in

1 = 0 T in
2 = 2 T in

3 = 3

C. It is Challenging to Solve MEET

First, solving MEET is challenging since MEET is a NP-
hard problem: under a single-task setting assuming fixed road
driving speeds, MEET requires the truck to travel from a
source to a destination to minimize the fuel consumption,
with the travel time bounded above by a task execution time
budget, which is exactly the problem RSP. Since RSP has
been proven to be NP-hard [6], [7], MEET is NP-hard.

Theorem 1. MEET is NP-hard.

Proof: MEET is NP-hard because that RSP, which is a
special case of MEET, is NP-hard [6], [7].

Second, solving MEET is challenging because task execu-
tion times optimization, which is the new design space for
saving fuel and differentiates the multi-task problem MEET
from existing single-task ones, is a non-convex puzzle: we
denote Ci(Ti) as the minimal fuel consumption to fulfill
the single task τi with the travel time bounded above by
a task execution time budget of Ti. Then MEET can also
be formulated as follows with an execution time budget Ti
allocated to τi for each i = 1, ...,K:

obj: min
~xi∈Xi,~ti∈Ti

K∑
i=1

Ci(Ti) (3a)

s.t. ai = max
{
ai−1, T

out
i

}
+ Ti ≤ T in

i+1,

a0 = 0, ∀i = 1, 2, ...,K, (3b)∑
e∈E

xei · tei ≤ Ti, ∀i = 1, 2, ...,K. (3c)

If we can find the optimal task execution times allocation
{T ∗i , i = 1, 2, ...K}, we can run existing single-task algorithm
(e.g., the one from by [4]) K times independently and obtain a
high-quality solution. But we argue that it is hard to optimize
task execution times, because Ci(Ti) is non-convex with Ti.

Take the network in Fig. 1a as an example and consider one
task where source is node 1 and destination is node 5. Edge
travel time and edge fuel consumption are the same as defined
in Tab. II. It is clear that in Fig. 1a there are 5 paths from
source to destination. By enumerating them, we have C(T ) =
4 when T = 4 following the path 〈1, 2, 3, 4, 5〉; C(T ) = 5
when T = 3 following the path 〈1, 3, 4, 5〉; C(T ) = 7 when
T = 2 following the path 〈1, 3, 5〉; and C(T ) = 8 when T = 1
following the path 〈1, 5〉. Then it is clear that the minimal fuel
consumption C(T ) is neither convex nor concave in T .

Note that as optimizing task execution times is a new design
space introduced by the multi-task setting and is non-convex,
results from existing single-task studies, e.g., [4], [5], cannot
be adapted to solve our multi-task MEET directly, due to the
lack of an efficient task execution times optimization scheme.
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IV. ALGORITHMS FOR MEET

In this section we develop both an FPTAS and a heuristic
for MEET. The FPTAS optimizes task execution times by
intelligently enumerating possible results without incurring
excessive complexity, and then selecting the best. It obtains
an (1 + ε)-approximate solution for any user-defined ε > 0.
The heuristic, called SPEED, optimizes task execution times
by iteratively allocating execution time budgets for individual
tasks towards the optimal, by following the sub-gradient of
the Lagrangian dual relaxation of MEET. We characterize
conditions under which SPEED generates an optimal solution,
and derive a performance gap comparing the solution of
SPEED with the optimal when the conditions are not satisfied.

A. An FPTAS for MEET

We observe that MEET has optimal substructures, and
hence can be solved by Dynamic Programming (DP). With
the rounding and scaling technique which has been used to
develop DP-based FPTASes for problems RSP [6]–[8] and
PASO [4], [5], we can design an FPTAS for MEET.

We divide MEET to two sub-problems: (i) in the sub-
problem 1 for each single task τi, we enumerate its cost-
bounded minimum-travel-time path for all possible cost of
independently fulfilling τi; (ii) then in the sub-problem 2,
we select exactly one solution per task, with the combined
solution satisfying all time window constraints and minimizing
total cost. We remark that existing single-task problems, e.g.,
RSP [6]–[8] and PASO [4], [5], only solve sub-problem 1;
sub-problem 2 is unique for the multi-task problem MEET,
and it requires to optimally coordinate execution times for
tasks based on input time window constraints and results of the
sub-problem 1. We note that both sub-problems have optimal
substructures, and thus both can be solved by DP.

Although the DP approach can obtain high-quality so-
lutions, it has an exponential time complexity. With the
rounding and scaling technique that has been widely used by
existing studies to develop DP-based FPTASes, e.g., [4]–[7],
[31], [32], we can design an FPTAS to figure out (1 + ε)-
approximate solutions to MEET in a polynomial time, for
any ε > 0. Considering that (i) the used rounding and
scaling technique is standard, and (ii) our FPTAS suffers
from an unacceptably large running time to obtain solutions
practically (more than one hour even for a small instance in
our simulations over real-world traces), we refer the details
of our FPTAS to Part A of our supplementary materials, and
focus on introducing an efficient heuristic to quickly obtain
close-to-optimal solutions of MEET in the following.

B. The Lagrangian Dual Relaxation of MEET

We first give a new formulation of MEET in (4)

obj: min
~xi∈Xi,~ti∈Ti

K∑
i=1

∑
e∈E

xei · ce(tei , ρi) (4a)

s.t.
r∑
j=k

∑
e∈E

xej · tej ≤ T in
r+1 − T out

k ,

∀r = 1, 2, ...,K, ∀k = 1, 2, ..., r. (4b)

Theorem 2. The problems in (2) and (4) are equivalent in
that they share the same objective function and the constraint
sets are equivalent.

Proof: Refer to Part B of supplementary materials.
The constraints in (4b) require that given any r and any

k ≤ r, the total travel time from σk to σr+1, i.e., the
aggregate execution times of tasks {τk, τk+1, ...τr}, should be
bounded above by T in

r+1−T out
k . Now we relax the constraints

in (4b) to the objective function by introducing a non-negative
Lagrangian dual variable λrk ≥ 0 for each (k, r) pair

L
(
~x,~t, ~λ

)
,

K∑
r=1

r∑
k=1

λrk ·

 r∑
j=k

∑
e∈E

xejt
e
j − T in

r+1 + T out
k


+

K∑
i=1

∑
e∈E

xei · ce (tei , ρi)

(a)
=

K∑
i=1

∑
e∈E

xei ·

[
ce(t

e
i , ρi) + tei

K∑
r=i

i∑
k=1

λrk

]

−
K∑
r=1

r∑
k=1

λrk

(
T in
r+1 − T out

k

)
.

where the equality in (a) holds due to the following reasons.
The explanation on the reasons is spanning over the next a
few sentences. It is clear that the specific dual variable λrk
in the aforementioned Lagrangian function is only associated
with the travel time of tasks from τk to τr. To this end we
observe that λrk is associated with τi if and only if k ≤ i ≤
r. Therefore, the set of the dual variables associated with a
specific task τi is {λrk : ∀k ≤ i,∀r ≥ i}. Based on this
observation, we have

K∑
r=1

r∑
k=1

λrk

r∑
j=k

∑
e∈E

xejt
e
j =

K∑
i=1

∑
e∈E

xei t
e
i

K∑
r=i

i∑
k=1

λrk,

since both sides are the sum of the dual variable times the task
fulfilling time over all correlative tasks and dual variables.

By defining µi as

µi ,
K∑
r=i

i∑
k=1

λrk, (5)

our Lagrangian function is

L
(
~x,~t, ~λ

)
=

K∑
i=1

∑
e∈E

xei · [ce(tei , ρi) + teiµi]

−
K∑
r=1

r∑
k=1

λrk

(
T in
r+1 − T out

k

)
.

The dual problem of MEET is

max
~λ≥0

D
(
~λ
)

: D
(
~λ
)
, min

~x,~t
L
(
~x,~t, ~λ

)
.

Theorem 3.

D
(
~λ
)

= −
K∑
r=1

r∑
k=1

λrk

(
T in
r+1 − T out

k

)
+

K∑
i=1

∑
e∈p(µi)

wei (µi),
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where
wei (µi) , ce (tei (µi), ρi) + µit

e
i (µi), (6)

with

tei (µi) , arg min
tle≤tei≤t̂e(ρi)

(ce(t
e
i , ρi) + µit

e
i ) . (7)

Proof: Refer to Part C of supplementary materials.
In Thm. 3, tei (µi) is the optimal travel time that minimizes

the penalized edge cost with a price µi imposed on the edge
travel time given specific µi, wei (µi) is the optimal penalized
edge cost including the fuel consumption cost and the travel
time cost given the price µi, and we denote the minimal
penalized cost path from σi to σi+1 as p(µi).

According to Thm. 3, given a set of non-negative dual
variables ~λ, we can obtain the value of D(~λ) by solving K
shortest path problems independently. This critical observation
motivates us to obtain close-to-optimal solutions to MEET, by
iteratively updating dual variables ~λ to minimize duality gap.

C. An Efficient Heuristic SPEED for MEET
We further define δ(µi) as the travel time of the path p(µi)

δ(µi) ,
∑

e∈p(µi)

tei (µi). (8)

A key observation of δ(µi) is presented as follows.

Theorem 4. δ(µi) is non-increasing in µi ∈ [0,+∞) for any
i = 1, 2, ...,K.

Proof: Similar to [4, Thm.3] and is skipped.
In the next, we introduce a set of conditions under which

we can construct an optimal solution to MEET.

Theorem 5. Suppose the {λrk ≥ 0,∀r = 1, 2, ...,K, ∀k =
1, 2, ..., r}, the {µi,∀i = 1, 2, ..,K} computed in (5), and the
{δ(µi),∀i = 1, 2, ...,K}) computed in (8) satisfy thatT out

k − T in
r+1 +

r∑
j=k

δ(µj)

+

λr
k

= 0,

∀r = 1, 2, ...,K, ∀k = 1, 2, ..., r, (9)

where the function [f ]+g is defined as

[f ]+g =

{
max{f, 0}, if g ≤ 0;
f, otherwise.

Then each p(µi) specifies a path for fulfilling the task τi with
a travel time of tei (µi) assigned for each edge e ∈ p(µi), and
this solution must be the optimal solution to MEET.

Proof: Refer to Part D of supplementary materials.
Our proposed SPEED uses a sub-gradient based heuristic

scheme in Algorithm 1 to iteratively update dual variables
towards satisfying conditions in (9):

λ̇rk = φ(λrk) ·

T out
k − T in

r+1 +

r∑
j=k

δ(µj)

+

λr
k

,

∀r = 1, 2, ...,K, ∀k = 1, 2, ..., r, (10)

Algorithm 1 SPEED(G,~σ)

1: procedure
2: ite=1, p = NULL, c(p) = +∞, λrk = λ̇rk = λmax

3: while ∃ r, k :
∣∣∣λ̇rk∣∣∣ > tol and ite ≤ ITE do

4: for i = 1, 2, ...,K do
5: Set µi according to equality (5)
6: Obtain tei (µi),∀e ∈ E according to equality (7)
7: Set wei (µi),∀e ∈ E according to equality (6)
8: Get the shortest path p(µi) from σi to σi+1

9: ph = {p(µi), i = 1, 2, ...,K}, ite = ite + 1
10: Set λ̇rk,∀r, ∀k according to equality (10)
11: Set λrk = max{λrk + λ̇rk, 0},∀r, ∀k
12: if λ̇rk = 0,∀r = 1, 2, ...,K, ∀k = 1, 2, ..., r then
13: return p = ph
14: if ph is feasible and c(ph) < c(p) then
15: p = ph
16: if ph is not feasible then
17: λ̇rk = λmax,∀r = 1, 2, ...,K, ∀k = 1, 2, ..., r

18: return p

where φ(λrk) is a positive step size to update λrk. The step is
positive instead of negative due to Thm. 4.

Theorem 6. For any theoretically-feasible MEET instance,
Algorithm 1 must return a feasible solution p meeting all time
window constraints. The optimality gap between the cost of
p, namely c(p), and the optimal cost, namely OPT, must be
bounded above as follows:

c(p)−OPT ≤

{
0,

K2 ·max∀r,k

∣∣∣ ˙̄λrk∣∣∣ ·max∀r,k
{
λ̄rk/φ(λ̄rk)

}
,

where the first case of the zero gap is for p returned in Line 13,
and the second case of the problem-dependent gap is for p
returned in Line 18. {λ̄rk,∀r = 1, ...,K, ∀k = 1, ..., r} is the
set of dual variables corresponding to p.

Proof: Refer to Part E of supplementary materials.
According to Thm. 6, Algorithm 1 always obtains feasible

solutions to MEET with performance guarantee. Moreover,
the obtained solution must be optimal if it is returned in
Line 13. We note that Deng et al. [4], [5] have designed an
efficient heuristic for the single-task problem PASO which
is a special case of our multi-task problem MEET. Although
their heuristic also explores the Lagrangian dual relaxation, it
is fundamentally different from our heuristic SPEED: there
is only one deadline constraint in PASO while the number
of deadline constraints in MEET is O(K2) (see (4b)). Hence
only one dual variable exists in the dual problem to PASO
while there is a set of dual variables in the dual problem to
MEET. The heuristic of PASO uses binary search to find the
optimal dual variable which minimizes the duality gap. It is
not clear how to conduct binary search to obtain the optimal
values of a set of dual variables if we extend their heuristic
to the multi-task setting. Instead of using binary search, our
SPEED iteratively updates a set of dual variables towards the
optimal, by following the sub-gradient of the dual relaxation.
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Finally, note that in SPEED we initialize dual variables by
λmax. Obviously SPEED can converge faster with a better
(smaller) λmax. Considering that the single-task heuristic of
PASO [4], [5] is a special case of our multi-task SPEED
and they both explore the Lagrangian dual relaxation, we
can use the single-task heuristic to solve K PASO problems
independently and obtain a good λmax for SPEED: for each
task, we set the deadline constraint to be its minimum fulfilling
time, and run the single-task heuristic to obtain the dual
variable corresponding to the close-to-optimal solution of
PASO; after solving K PASO problems, we set λmax to be
the largest value of obtained K dual variables.

V. PERFORMANCE EVALUATION

We use real-world traces to evaluate our FPTAS and
SPEED, by comparing them with fastest-/shortest- path base-
lines and a conceivable alternative which directly generalizes
the state-of-the-art algorithm proposed by [4], [5] from their
single-task setting to our multi-task setting. We implement
all algorithms using C++ and run them on a laptop with a
4-core Intel Core-i5-4200M (2.50GHz) processor and 16GB
memory, running 64-bit Ubuntu 16.04 LTS. We use the SNAP
graph structure [33] to construct the US national highway
system from the clinched highway mapping project5 consisting
of 84504 nodes and 178238 directed edges. Road grade is
obtained from the elevations of each node provided by the
elevation point query service6 from the US geological survey.
The maximum speed rue is set to be the historical average
speed by collecting real-time speed data from HERE map7

for 2 weeks, and the minimum speed rle is manually set
to be rle = min{30, rue }. We use ADVISOR simulator [34]
to collect fuel consumption rate data with driving speed for
different road grade and truck load for a class-8 heavy truck
of Kenworth T8008. Then we use the curve fitting toolbox in
MATLAB to learn the fuel consumption rate function fe(re, ρ).

The highway network is preprocessed first: (i) the graph is
cut to the “eastern” part; (ii) non-intersection roads with the
same grade level are merged into a single road segment; and
(iii) the “eastern” part is divided into 22 regions (see Fig. 1b),
where the node nearest to each region’s center is used as the
candidate for the task source node and the task destination
node, same as the experimental setting in [4], [5]. After
preprocessing, the number of nodes is 38213 and the number
of edges is 82781. In our simulations, we set all earliest leaving
time constraints to be 0, i.e., T out

i = 0, i = 1, 2, ...,K. As for
SPEED (i.e., Algorithm 1), we fix φ(·) to be 0.1 for all dual
variables, and fix the algorithm tolerance level tol to be 0.01.
Besides, for the sake of convenience, we denote the minimal
time of independently fulfilling the single task τi as t∗i , i.e.,

t∗i , min
~xi∈Xi

(
xei · tle

)
, i = 1, 2, ...,K. (11)

5Clinched highway mapping, http://cmap.m-plex.com/
6Elevation point query service, http://nationalmap.gov/epqs/
7HERE, https://www.here.com/
8Kenworth T800, https://www.kenworth.com/trucks/t800

(a) Results with different road grade. (b) Results with different truck load.

Fig. 2: Simulated fuel consumption rate with driving speed.

A. Modeling Fuel-Consumption-Rate Function

In our simulations, given a road grade and a truck load, we
model the fuel consumption rate (gph) with speed (mph) for
the T800 truck using the following function

f(r) = a · r3 + b · r2 + c · r + d,

where r is the speed, f(r) is the fuel consumption rate, and
a, b, c, d are parameters learned by MATLAB based on the
simulated fuel consumption rate data using ADVISOR.

In order to obtain the fuel consumption rate data f given a
driving speed r, a road grade θ, and a truck load ρ, we specify
a driving cycle test of 4 hours with a constant-speed of r, a
constant road grade of θ, and a constant truck load of ρ. We
enumerate r from 10 to 70 with a step of 0.2, θ from −10.0◦

to 10.0◦ with a step of 0.1◦, and we set ρ to be 0% (empty
load), 50% (half load), or 100% (full load).

Fig. 2 presents a part of the fuel consumption rate results
with different driving speed in our simulations. In Fig. 2a, we
fix the truck to be full-load and assume it drives on a road
with grade of −1◦, 0◦, or 1◦, where we observe that high
speed and large grade result in large fuel consumption rate,
and verify that the fitted function f(r) is strictly convex in
reasonable speed regions. In Fig. 2b, we assume the truck has
a load of 0%, 50%, or 100%, driving on a road with grade
of 0◦. Similar to Fig. 2a, Fig. 2b also verifies the convexity
of the fuel consumption rate function. Besides, it is clear that
the truck load greatly affect the truck fuel consumption rate,
and a heavy load leads to a large fuel consumption.

B. Acceleration/Deceleration Fuel Consumption

As discussed in Sec. III-A, we ignore the fuel consumption
incurred by acceleration/deceleration. As proven by [5, Lem.
1] that following a constant-speed is most fuel-economic when
driving inside a road segment, we do not need to consider
acceleration/deceleration for a truck to traverse each e ∈ E;
and in this section, simulations using ADVISOR further show
that it is fair to neglect acceleration/deceleration for a truck
to switch between different road segments, since the fuel
consumption incurred by acceleration or deceleration during
switching is way smaller as compared to that incurred by
driving at a constant-speed to traverse a road segment.

We first consider an instance of MEET (σ1 = 1, σ2 = 9,
σ3 = 22, T in

2 = 40, T in
3 = 65, ρ1 = ρ2 = 100%). After

running SPEED, we obtain a close-to-optimal solution. Later
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(a) Results of a conventional truck. (b) Results of an electric truck.

Fig. 3: Energy consumption variation results (%) caused by
truck acceleration or deceleration. For the conventional truck,
it consumes fuel; while for the electric truck, it consumes the
energy stored in the battery.

we compare SPEED with other approaches using the same
instance, with the results summarized in Tab IV. Here to
evaluate the acceleration/deceleration, (i) we calculate the gap
of the assigned speeds of two adjacent edges in the path
obtained by this solution. After enumerating a total of 961
speed gap results, the mean is 3.61 mph, the minimum is
0 mph, the first quartile is 0.14 mph, the median is 0.40
mph, the third quartile is 3.09 mph, and the maximum is 34.4
mph; (ii) we further use ADVISOR to simulate our solution
considering two scenarios. In scenario one, the truck follows
the constant-speed assigned by the solution to traverse each
edge. In scenario two when traversing each edge, the truck first
accelerates (or decelerates) under a rate of 1.8 ft/s2 (or −1.8
ft/s2) due to the speed gap of switching, and then follow the
assigned constant-speed. Note that 1.8 ft/s2 is an appropriate
acceleration rate for a heavy truck as suggested by the existing
study [28]. We observe that the fuel consumption of scenario
two differs from that of scenario one only by 0.34%. Overall in
our solution, the fuel consumption of acceleration/deceleration
when switching between edges is way smaller than that of
driving by a constant-speed to traverse an edge.

Next we assume that a Kenworth T800 truck with an empty
load is driving through a road segment with a grade of 0◦ and
a length of 3.26 miles. Here 3.26 miles is the average length of
all 82781 road segments in our simulated US national highway.
We consider three different scenarios of traversing the road
segment: in scenario one, the truck follows a constant-speed
of 55 mph; in scenario two, the truck first accelerates from
x mph to 55 mph under a rate of 1.8 ft/s2, and then follows
a constant-speed of 55 mph; in scenario three, the truck first
follows a constant-speed of 55 mph, and then decelerates from
55 mph to x mph under a rate of −1.8 ft/s2. We enumerate
x from 30 to 54 with a step of 1. Suppose cc (resp. ca,
cd) is the fuel consumption of scenario one (resp. scenario
two, scenario three). We consider the variation comparing ca
(resp. cd) with cc, i.e., |cc− ca|/cc (resp. |cc− cd|/cc), which
estimates the impact of acceleration (resp. deceleration) on fuel
consumption. Simulation results are given in Fig. 3a, where we
observe that the fuel consumption of acceleration/deceleration
when switching between edges is way smaller than that of
driving by a constant-speed to traverse an edge.

Overall, we observe that it is fair to ignore the fuel consump-

TABLE III: Performance comparison of FPTAS (F) with ε =
0.1 and SPEED (S), where the unit of fuel consumption is
gallon and the unit of the running time is second. LB is a lower
bound for the optimal solution and obtained from Thm. 6.

Problem Instance Fuel Consumption Run-Time
(σ1, σ2, σ3, T in

2 , T
in
3 ) LB S F S F

(2, 1, 6, 7, 12) 123.45 125.55 125.9 44 5760
(14, 17, 18, 7, 12) 135.18 137.88 N/A 65 N/A

tion incurred by acceleration/deceleration, which simplifies our
problem without incurring a significant optimality loss.

C. Comparing FPTAS with SPEED
We consider the scenario where the truck fulfills two tasks

both with full load. Results for two small-scale instances are
shown in Tab. III. In both instances, the solutions of SPEED
are close-to-optimal (consume less than 2%-more fuel than
the optimal). FPTAS can only handle the smallest instance
(first instance with n = 1518 and m = 3274) for ε = 0.1.
As compared to SPEED, FPTAS incurs much longer (100×)
running time for the first instance. For the second instance
with n = 6187 and m = 13708, FPTAS fails to output a
solution even after running it for 12 hours.

D. Comparing SPEED with Other Alternatives for Two Tasks

We compare SPEED with two baselines and a conceivable
alternative approach, for large-scale instances with two tasks:

1) A fastest-path-based baseline without task execution
times optimization: the travel speed re for each e ∈ E
is fixed as the maximum one, i.e., re = rue , and each
task τi is fulfilled using the path with the minimal travel
time from its source σi to its destination σi+1.

2) A shortest-path-based baseline without task execution
times optimization: the travel speed re for each e ∈ E
is fixed as the maximum one, i.e., re = rue , and each τi is
fulfilled using the path with the minimal travel distance
from its source σi to its destination σi+1.

3) A PASO-based approach with greedy task execution
times allocation: we greedily allocate deadlines as large
as possible for individual tasks from the first task to the
last task iteratively one by one. Specifically, in the ith
iteration, we run the heuristic proposed by [4], [5] to
solve problem PASO for the single task τi, minimizing
the fuel consumption from σi to σi+1 with a deadline
of T in

i+1 − max{T out
i , ai−1}, where ai−1 is defined in

formula (2), which is the truck arrival time at σi and can
be achieved since we have solved the PASO problems
for tasks {τ1, τ2, ..., τi−1} before the ith iteration.

We consider two tasks with the first task from 1 to 9 and
the second task from 9 to 22, assuming full load for both tasks
and T in

2 = 40, T in
3 = 65. This MEET instance is denoted as a

tuple of (σ1, σ2, σ3, T
in
2 , T

in
3 ) = (1, 9, 22, 40, 65). We remark

that the instance (1, 9, 22, 40, 65) is representative because
(i) both tasks are heavy-duty (both tasks are assumed with
a full load requirement) and long-haul (both tasks require
the truck to travel across the US); and (ii) the latest arrival
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TABLE IV: Comparison of SPEED and other alternatives for the instance of (1, 9, 22, 40, 65). A lower bound for the optimal
fuel consumption is 478.73 according to Thm. 6. Unit: hour for travel time, mile for distance, and gallon for fuel consumption.

Algorithm First task from 1 to 9 Second task from 9 to 22 Total performance
Time Distance Fuel Time Distance Fuel Time Incre. Distance Incre. Fuel Incre.

Fastest 19.54 1306 276.5 24.48 1613 337.8 44.02 - 2919 0.07 614.3 28.32
Shortest 19.56 1306 276.18 24.58 1611 338.34 44.14 0.27 2917 - 614.52 28.36
PASO 39.93 1307 202.92 25.06 1613 329.94 64.99 47.64 2920 0.1 532.86 11.31

SPEED 29.03 1307 215.25 35.96 1616 264.52 64.99 47.64 2923 0.21 479.77 0.22

time constraints T in
2 and T in

3 are larger than the minimal
task execution times, allowing a large design space for task
execution times optimization for saving fuel.

We give the simulation results in Tab. IV. In the table
we also present the increment (%) of the travel time, travel
distance, and fuel consumption for the four solutions compared
with the respective optimal. As seen in Tab. IV, both the fastest
solution and the shortest solution consumes ∼ 30% more fuel
than SPEED. The PASO solution saves fuel for the individual
task τ1 in the cost of a larger travel time compared with
SPEED. However, its solution is far from optimal, due to its
greedy and non-optimal task execution times allocation (∼ 40
hours for τ1 and ∼ 25 hours for τ2). The solution of SPEED is
close-to-optimal and saves 10% fuel compared with the PASO
solution, with a close-to-optimal execution time allocated for
each task (∼ 29 hours for τ1 and ∼ 36 hours for τ2).

From Tab. IV we also observe that the travel distance of the
four algorithms are similar, in spite of the various travel time
and fuel consumption. This highlights the importance of ex-
ploring speed planning and task execution times optimization,
in addition to path planning, in reducing the fuel consumption
for truck operators under the multi-task setting.

E. Comparing SPEED with Alternatives for Three Tasks

We then simulate MEET instances assuming three tasks.
We assume full load for τ1 and τ3, but an empty load for
τ2, corresponding to a practical scenario where the truck is
required to fulfill two freight transportation requests (τ1 from
σ1 to σ2, and τ3 from σ3 to σ4), and have to travel with an
empty load from the destination (σ2) of the first request to the
source (σ3) of the second request. Such an MEET instance
can be described as a tuple of (σ1, σ2, σ3, σ4, T

in
2 , T

in
3 , T

in
4 ).

We simulate the instance (18, 11, 4, 22, 45, 75, 105) and give
the results in Tab. V, where SPEED obtains a close-to-optimal
solution since a close-to-optimal execution time is allocated to
each task (35.36 hours for τ1, 31.45 hours for τ2, and 38.19
hours for τ3). In sharp contrast, the PASO-based alternative
fails to minimize fuel consumption efficiently due to the non-
optimal execution times allocation for tasks.

F. Impact of Time Windows on the Fuel Consumption

For MEET instances of two tasks each with a full load, in
this section we estimate the effect of time window constraints
on the achieved fuel consumptions of different algorithms.

First, we consider a setting of T in
2 = t∗1 · (1 + x%) and

T in
3 = (t∗1 + t∗2) · (1 + x%). We enumerate x from 20 to 100

with a step of 20. Given a specific x, we run 1000 simulations
where in each simulation, we randomly select σ1, σ2 6= σ1,

(a) We set T in
2 = t∗1 ·(1+x%) and

T in
3 = (t∗1 + t∗2) · (1 + x%).

(b) We set T in
2 = T in

3 = (t∗1+t
∗
2) ·

(1 + x%).

Fig. 4: Fuel saving achieved by SPEED with the time window
constraints, as compared to the fastest-path-based baseline.
Here t∗i is defined in the equation in (11).

Fig. 5: Fuel saving of SPEED as compared to the PASO-
based approach. We set T in

2 = t∗1 · (1 + x%) and T in
3 = (t∗1 +

t∗2) · (1 + x%), where t∗i is defined in the equation in (11).

and σ3 6= σ2. We give the fuel consumption reduction results
comparing our SPEED to the fastest-path-based approach in
Fig. 4a, according to which it is clear that larger time windows
can lead to more fuel consumption reduction.

We compare SPEED with the fastest-path baseline in
Fig. 4a. The shortest-path baseline performs almost same as
the fastest-path baseline in all problem instances. We present
the fuel consumption reduction results comparing SPEED
with the PASO-based alternative in Fig. 5. We observe that
the fuel consumption performance of SPEED is just slightly
better than that of the PASO-based alternative (SPEED saves
less than 1% fuel for most instances). This is because under
the setting of T in

2 = t∗1 ·(1+x%) and T in
3 = (t∗1+t∗2)·(1+x%),

the greedy task execution times allocation of the PASO-based
approach is close-to-optimal.

Next we consider a different setting of T in
2 = T in

3 = (t∗1 +
t∗2) · (1+x%). We give the fuel consumption reduction results
comparing our SPEED to the fastest-path baseline in Fig. 4b.
Similar to Fig. 4a, from Fig. 4b we observe that larger time
window constraints lead to more fuel consumption reduction
of our SPEED. Moreover, we observe that the fuel saving of
Fig. 4b is more than that of Fig. 4a. This is because that we set



10

TABLE V: Comparison of SPEED and other alternatives for the instance of (18, 11, 4, 22, 45, 75, 105), where a lower bound
for the optimal total fuel consumption is 664.77 according to Thm. 6.

Algorithm First task from 18 to 11, Second task from 11 to 4 Third task from 4 to 22 Total performance
Time Distance Fuel Time Distance Fuel Time Distance Fuel Time Distance Fuel Fuel-Incre.

Fastest 24.5 1616 341.38 20.02 1401 183.57 26.52 1744 366.21 71.04 4761 891.16 34.06
Shortest 24.5 1616 341.39 20.02 1401 183.57 26.59 1743 366.25 71.11 4760 891.21 34.06
PASO 44.97 1616 254.18 30.02 1401 112.15 29.79 1746 330.72 104.78 4763 697.05 4.86

SPEED 35.36 1616 269.11 31.45 1401 107.71 38.19 1747 288.62 105 4764 665.44 0.1

TABLE VI: Fuel consumption reduction of SPEED as com-
pared to the PASO-based alternative. We set T in

2 = T in
3 =

(t∗1 + t∗2) · (1 + x%), where t∗i is defined in the equation (11).

Time window constraints
increment x% 20% 40% 60% 80% 100%

Ratio of solvable instances
of the PASO alternative 1% 13% 68% 92% 100%

Fuel saving of SPEED
on average? 9.2% 8.6% 5.9% 2.8% 0.3%

?: Because the PASO-based alternative only solves part of the theoretically
feasible instances, here the fuel saving of SPEED is calculated only for

those solvable instances instead of all the 1000 instances.

(a) Simulations for x = 25. (b) Simulations for x = 50.

Fig. 6: The fuel reduction of SPEED as compared to the
fastest-path baseline, as a function of K. All latest arrival time
constraints are set to be (1 + x%) ·

∑K
i=1 t

∗
i .

T in
2 = (t∗1+t∗2)·(1+x%) in Fig. 4b, but set T in

2 = t∗1 ·(1+x%)
in Fig. 4a. Therefore, MEET instances in Fig. 4b admit larger
design spaces for minimizing the total fuel consumption.

Recall that the PASO alternative obtains close-to-optimal
solutions meeting time window constraints (see Fig. 5) in the
first setting. In sharp contrast, in the second setting where
T in
2 = T in

3 = (t∗1 + t∗2) · (1 + x%), the PASO-based approach
cannot even obtain feasible solutions for many instances (see
Tab. VI). According to Tab. VI, overall the PASO alternative
fails to output solutions that can meet time window constraints
for 45% of the instances. This is due to the non-optimal
greedy task execution times allocation scheme: (i) the achieved
task execution time of the first task τ1 is way too large in
order to minimize the fuel consumption of fulfilling τ1, after
solving the problem PASO for τ1 subject to a deadline of
T in
2 = (t∗1 + t∗2) · (1 + x%); (ii) then the remaining deadline

for fulfilling the task τ2 is smaller than t∗2 in many instances,
and thus no feasible solutions can be obtained. Note that our
SPEED always achieves close-to-optimal solutions meeting
time window constraints in all instances, by jointly allocating
task execution times for the two tasks towards the optimal.

G. Fuel Consumption of SPEED with the Number of Tasks

Finally, we carry out simulations with randomly generated
inputs to evaluate SPEED with different number of tasks.

For each experimental case characterized by a specific K ∈
{2, 3, ..., 6} and an x ∈ {25, 50}, we run 1000 simulations
each with K full-load tasks defined by randomly selected
source/destination nodes {σ1, ..., σK+1}. Latest arrival time
constraints are same for any σi, i = 2, ...,K + 1 : T in

i =
t∗ · (1 + x%), where t∗ =

∑K
i=1 t

∗
i is the minimal time to

fulfill those K tasks. Fig. 6 shows the fuel reduction results
of SPEED compared with the fastest-path baseline, which
suggests that the fuel saving of SPEED is robust to the
number of tasks (∼ 16% for x = 25 and ∼ 22% for x = 50).

TABLE VII: Ratio of solvable MEET instances of the PASO-
based alternative, with the number of tasks (i.e., with K). All
latest arrival time constraints are set to be (1+x%) ·

∑K
i=1 t

∗
i .

K = 2 K = 3 K = 4 K = 5 K = 6
x = 25 1% 0% 0% 0% 0%
x = 50 27% 2% 0% 0% 0%

We give the number of solvable simulated instances of the
PASO-based alternative in Tab. VII. We remark again that
in contrast to the results of PASO shown in Tab. VII, our
SPEED always obtains close-to-optimal solutions meeting
time window constraints for all simulated instances.

VI. DISCUSSIONS AND FUTURE DIRECTIONS

A. Generalizing SPEED to Optimize Resting Times

In order to guarantee a safe driving, truck drivers in the
US are subject to hours-of-service regulations9 which regulate
the minimum amount of resting time. SPEED can figure out
resting time for fulfilling each task, and leave the decision of
when and where to rest to be made by drivers. We observe
that the amount of resting time tr can be modeled as a linear
function tr = h · t, where h ≥ 0 is a constant and t is the
driving time. In this case, the time window constraints in (2b)
of MEET shall include the resting time requirement as follows

ai = max
{
ai−1, T

out
i

}
+ (1 + hi) ·

∑
e∈E

xei t
e
i ≤ T in

i+1. (12)

As compared to the constraints in (2b), the constraints in (12)
does not change the structure of MEET. Our SPEED thus can
solve the corresponding problem. It is clear that if Ti is the
execution time of τi allocated by the solution of SPEED,
hi · Ti will be the resting time when the truck fulfills τi
following the solution. Note that SPEED only outputs a

9Wikipedia, https://en.wikipedia.org/wiki/Hour
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minimum amount of resting time, but cannot optimize the
selection of when/where to rest. We leave it as an important
future direction beyond the study in this paper.

B. Generalizing SPEED to Problems with Electric Trucks

Now let us consider a new trucking scenario, where an
electric truck timely delivers ρ freight from a source s to a
destination d over a highway network G(V,E). The battery
capacity is small and hence cannot support the truck to travel
from s to d without charging. We assume that the truck can
charge at an intermediate node (a charging station) u with
a charging rate of R watt and a charging expense of P
dollars per hour. The problem requires to find a solution of
path planning, speed planning, and charging time assignment,
for the electric truck to minimize the charging expense while
successfully delivering freight under time window constraints.

According to [35], it is reasonable to assume that the energy
consumption for an electric truck to pass an edge e ∈ E is
a strictly convex function ce(te, ρ) of the edge travel time te.
Now we expand the charging node u to two nodes u1 and u2,
and add a directed link ê = (u1, u2) with a cost function of
cê(tê, ρ) = −R · tê. Consider three tasks with the first task
from s to u1, the second task from u1 to u2, and the third task
from u2 to d. Then the problem requires the truck to timely
fulfill the three tasks to minimize the charging expense P · tê.

Here we remark that although the deceleration of an electric
truck is very different from that of a gasoline truck due to re-
generative braking, it is fair to ignore the energy consumption
incurred by acceleration/deceleration of an electric truck, due
to the same motivation introduced in Sec. III-A. In Fig. 3b,
we also use ADVISOR to empirically verify that the energy
consumption of acceleration/deceleration of switching between
edges is way smaller than that of traversing an edge by a
constant-speed, from the perspective of an electric truck.

The aforementioned problem is similar to our MEET, but
with extra capacity constraints which limit the cost (i.e., energy
consumption) of fulfilling each task due to the truck battery
capacity concern. We remark that we can follow the same ap-
proach used to develop SPEED to design an efficient heuristic
to solve the transportation problem of electric trucks: we relax
deadline constraints as well as capacity constraints to the
objective function by introducing Lagrangian dual variables
and obtain the dual problem; then we can update dual variables
iteratively by following the dual sub-gradient to minimize the
duality gap and hence obtain close-to-optimal solutions. Note
that we do not consider problems which optimize the selection
of charging stations to save fuel. We leave it as a possible
future direction beyond the study in this paper.

VII. CONCLUSION

We consider a truck driving across a national highway
system to fulfill multiple tasks in a specific order. We formulate
a problem MEET, which minimizes the total fuel consumption
subject to the pickup and delivery time window constraints of
individual tasks. We observe that optimizing task execution
times is a new challenging design space for saving fuel
introduced by the multi-task setting, and it differentiates our

multi-task study from existing ones that are under the single-
task setting. We show that MEET is NP-hard, and optimizing
task execution times is a non-convex puzzle. We then exploit
the problem structure to develop an FPTAS and an efficient
heuristic SPEED. We characterize sufficient conditions under
which SPEED generates an optimal solution, and derive a
performance gap comparing the solution of SPEED with the
optimal when the conditions are not satisfied. We evaluate our
solutions using real-world traces over the US national highway
system. Our solutions can save up to 22% fuel as compared
to fastest-/shortest- path baselines, and up to 10% fuel than
a conceivable alternative generalized from the state-of-the-art
single-task algorithm. Moreover, our algorithms always obtain
close-to-optimal solutions meeting all time window constraints
for all feasible instances, while the conceivable alternative fails
to meet time window constraints for up to 45% of the instances
in our simulations. In addition, the fuel saving of our solutions
is robust to the number of tasks to be fulfilled.
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