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ABSTRACT
In this paper, we present an online energy management
strategy for parallel hybrid electric vehicle equipped with
two power sources. The strategy orchestrates a fuel-based
internal combustion engine and an electric motor to min-
imize total fuel consumption while meeting driving power
demand. A unique feature of our proposed strategy is that
it is proven to achieve near-optimal performance without the
need of knowing any statistical information of the demand.
Simulations based on real-world driving traces corroborate
our theoretical findings.

1. INTRODUCTION
Hybrid Electric Vehicle (HEV) is a vehicle equipped with

two power sources. One is fuel-based internal combustion
engine (ICE) and the other is electric motor (EM) powered
by battery. An important problem is to minimize the overall
fuel consumption by orchestrating power supply from these
two sources to meet the driving power demand, by designing
intelligent energy management strategies [5].

Various strategies have been purposed; see [5] for a re-
cent survey. A-ECMS [4] is arguably the state-of-the-art
strategy that provides an online algorithm achieves decent
performance without requiring any statistical information of
the driving trace. However, it is known that A-ECMS does
not provide any performance guarantee, the overall fuel con-
sumption may be far from the optimal [3]. In this paper, we
apply the Lyapunov drift-plus-penalty method [2] to design
an easy-to-implement online energy management strategy
with provable near-optimal performance and requires no sta-
tistical information of the driving power demand. Our pro-
posed strategy is able to achieve average fuel consumption
within O(1/V ) to the optimal with an O(V ) battery capac-
ity, for any V > 0. In the following, we first formulate the
problem of energy management strategy design and present
our solution. We provide performance guarantee for the pro-
posed solution and carry out simulations based on real-world
traces to compare its performance against A-ECMS and an
offline optimal assuming complete statistical knowledge.
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2. PROBLEM FORMULATION
We consider parallel HEV, in which ICE and EM can op-

erate in parallel to jointly meet the driving power demand.
Internal combustion engine (ICE): ICE can propel

the vehicle and charge battery. Pe(t) denotes the power
to satisfy the driving power demand, and it is limited by its
ramping constraint |Pe(t+1)−Pe(t)| ≤ Pmax

e . Pg(t) denotes
the power to charge the battery. Let the total power output
Pice(t) at time t formulated as Pice(t) = Pg(t) + Pe(t). We
assume Pice(t) ≤ Pmax

ice . Upon generating Pice(t) amount of
power, the ICE consumes f(Pice(t)) amount of fuel, where
f(·) is the fuel consumption function and is assumed to be
convex.

Electric Motor (EM): EM draws bm(t) amount of elec-
tricity from battery and outputs power Pm(t) = g(bm(t))
to meet the driving power demand, where g(·) is a power
efficiency function and is assumed to be convex. Pm(t) is
limited by ramping constraint |Pm(t+ 1)− Pm(t)| ≤ Pmax

m .
We also assume Pm(t) ≤ Pmax

m for all t.
Power Demand and Braking Power: Given any driv-

ing traces, we can obtain the power demand for vehicle ac-
celeration. Let this power demand at time t be Pd(t). It
must be jointly satisfied by ICE and EM at any time t;
that is, Pd(t) ≤ Pe(t) + Pm(t). When the vehicle breaks,
certain amount of braking power, denoted by Pb(t), can be
harvested to charge the battery.

Battery: State-of-charge of the battery at time t is de-
fined as q(t). Battery discharging power bm(t) ≤ bmax

m can
provide power to EM. Battery charging power bg(t) ≤ bmax

g

can charge the battery, which is upper-bounded by the sum
of braking power and power from ICE Pb(t) + Pg(t). Let
the discharging and charging coefficients be ηm and ηg. The
state-of-charge dynamics is then q(t+ 1) = q(t) + ηgbg(t)−
ηmbm(t).

We adopt a discrete-time model where time slot matches
the timescale at which the management decisions can be
updated. Without loss of generality, we assume there are
totally T slots, and each has a unit length. We study the
energy management strategy design problem as follows:

min J̄ =
1

T

T∑
t=1

f (Pice(t)) (1)

s.t. |Pice(t)− Pice(t− 1)| ≤ Pmax
ice (2)

|Pm(t)− Pm(t− 1)| ≤ Pmax
m (3)

bg(t) ≤ Pg(t) + Pb(t) (4)

Pd(t) ≤ Pe(t) + Pm(t) (5)



0 ≤ Pice(t) ≤ P ice
ice , 0 ≤ Pm(t) ≤ Pmax

m

0 ≤ bm(t) ≤ bmax
m , 0 ≤ bg(t) ≤ bmax

g

(6)

q(t+ 1) = q(t) + ηgbg(t)− ηmbm(t) (7)

var Pice(t), Pm(t), bg(t), bm(t), t ∈ [1, T ]

The objective function in (1) represents the average fuel
consumption in [1, T ]. Constraints (2)-(3) capture the con-
straints of maximum changing rate. Constraint (4) states
the maximum of battery charging power. Constraint (5) en-
sures driving power demand must be satisfied. Constraint
(6) captures the upper and lower bounds of the power flow
variables. Constraint (7) captures the state-of-charge dy-
namics. The goal is to minimize average fuel consump-
tion, by controlling total ICE power output Pice(t), EM
power output Pm(t), battery charging power bg(t) and bat-
tery discharging power bm(t) to satisfy the driving power de-
mand Pd(t) in every time slot t, given driving power demand
Pd(t) and braking power Pb(t) as inputs. We do not specify
any battery constraints as our proposed strategy provides
a safety value for battery capacity and ensures the battery
will not underflow/overflow.

3. ALGORITHM DESIGN
To construct the energy management strategy, we adapt

the Lyapunov drift-plus-penalty approach expounded in [2].
We first define two control parameters θ > 0 and V > 0.
V controls the performance optimality gap. θ will be speci-
fied later. We construct our energy management algorithm
using the “min-drift” principle of Lyapunov optimization:
at each time slot, choose a pair of feasible battery charg-
ing/discharging actions to minimize the cost. Our proposed
Energy Management Strategy is as follows: at every
time slot t,

1. Observe the state-of-charge q(t) and power demand
Pd(t). Define the following weights:

Wg(t) = ηg(q(t)− θ) + V f(Pice(t))

Wm(t) = ηm(q(t)− θ) + V f(Pice(t))g(bm(t))

2. Solve min
bg(t),bm(t)

bg(t)Wg(t)− bm(t)Wm(t) subject to the

constraints (2) - (6).
3. Update the battery according to (7) with the chosen

bg(t), bm(t), and calculate the corresponding fuel usage.
In the algorithm, we only have to solve a linear program

with four variables, and it does not require any statistical
knowledge of driving power demand. Hence, the algorithm
can be easily implemented and the complexity is low.

4. PERFORMANCE ANALYSIS
We now provide performance guarantee for our proposed

energy management strategy. Parameter θ is defined as:

θ , ηm min [Pmax
d , bmax

m ] +
V fmaxgmax

ηg

where Pmax
d , fmax and gmax are defined as the maximum

driving power demand, maximum fuel consumption rate and
maximum EM efficiency, respectively.

Theorem 1. (Determine Battery Capacity) Under our
proposed energy management strategy, the battery state-of-
charge is bounded by:

0 ≤ q(t) ≤ θ + ηgb
max
g .

Theorem 1 shows the state-of-charge never go underflow and
is upper bounded; thus we can size the battery capacity
accordingly. Combining Theorem 1 and the definition of θ,
we can see that a battery capacity of size O(V ) is sufficient.

We have the following performance guarantee on the av-
erage fuel consumption.

Theorem 2. (Performance guarantee) Let J̄ be the av-
erage fuel consumption achieved by our strategy, and J∗ be
the optimal average fuel consumption by solving the problem
with full statistical knowledge. We have

J̄ ≤ B

V
+ J∗

where B is a constant.

Theorem 2 guarantees that the fuel consumption is within
O(1/V ) to the optimal. As we increase the value of V , the
battery size increases and the gap to optimal decreases. It
shows this strategy forms an [O(1/V ), O(V )] optimality gap-
battery capacity tradeoff with performance guarantee.

5. SIMULATIONS
Using a real-world driving trace UDDS [1], we evaluate the

performance of different algorithms under a reasonable range
of battery sizes (0 to 2 kWh) in Fig. 1. We measure the per-
formance of Dynamic Programming (DP), A-ECMS [4] and
our proposed strategy. The DP solution with full driving de-
mand knowledge achieve the optimal and serves as a bench-
mark. The results show that (i) our strategy saves more
fuel as battery capacity increases, and (ii) it saves significant
amount of fuel even when battery capacity is small. With
one kWh battery capacity, our strategy saves about 10% fuel
as compared to the state-of-the-art solution A-ECMS.
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Figure 1: Fuel Efficiency vs. Battery Capacity.
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