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Abstract: The objective of this work is to introduce two original flow control
schemes for wireless networks. The mathematical underpinnings lie on the recently-
developed congestion control models for Transmission-Control-Protocol(TCP)-like
schemes; more precisely, the model proposed by Kelly for the wired case is taken
as a template, and properly extended to the more involved wireless setting. We
introduce two ways to modify a part of the model; the first is through a static law,
and the second via a dynamic one. In both cases, we prove the global stability
of the schemes, and present a convergence rate study and a stochastic analysis.
Copyright c©2005 IFAC

Keywords: Communication networks and protocols, flow control, large-scale
systems, stability robustness.

1. INTRODUCTION

Congestion Schemes for Communication Networks
have proven to be of the utmost importance when
applied to key applications such as the Internet;
for instance, the TCP protocol is widely regarded
as the most known and employed scheme for the
exchange of digital information (Jacobson, 1998).

A network is described via two of its entities, the
users and the links. TCP (here we shall focus
on the Reno case) regulates the packets sent by
the users in the network, in order to avoid chan-
nel congestions. This is done by increasing the

1 This work was supported by NSF grant ANI-9905799,
the AFOSR contract F49620-00-1-0327 and the NSF CCR-
0225610 grant.

window size, i.e. the number of packets sent per
unit of time, when no packet is lost during the
previous round trip time, and halving it otherwise;
therefore, it assumes that lost packets are symp-
tomatic of congestion. The number of packets lost
is described via loss functions at the links. The
update mechanisms for both rates and losses are
distributed, i.e. based on local information only.

The analysis of this and other similar protocols
have focused on many issues: modeling (Kelly,
2003)-(Kelly et al., Dec 1999)-(Alpcan and Basar,
Dec 2003)-(Kunniyur and Srikant, Oct 2003), sta-
bility (Kunniyur and Srikant, Oct 2003)-(Johari
and Tan, Dec 2001)-(Paganini et al., to appear)-
(Wang and Paganini, Dec 2003), robustness to de-
lays (Vinnicombe, 2002), assessment of the utility



functions for the underlying optimization problem
(Low and Lapsley, 1999), and its dual interpreta-
tion (Low, Aug 2003). All these efforts have been
focused on the wired case.

Congestion Control over Wireless Networks poses
additional challenges; in this extended framework,
packet loss is due not only to congestion at the
link, but also to physical channel error. As a
consequence, in practice the network could be un-
der utilized. A recent work on MULTFRC, (Chen
and Zakhor, 2004), proposes an original dynamic
scheme to improve the performance over wireless
network. In a paper by the same authors, (Chen et
al., 2005), a static scheme and a dynamic one are
proposed; the global stability of both schemes are
proved in generality, and the study of delay sensi-
tivity of the first one is also tackled. This work
aims at completing the former paper, and will
be presented as follows. First, the mathematical
framework will be introduced and the two models
proposed. We shall then quote the stability results
for both schemes. Then, the rate of convergence of
the two schemes will be derived, and a stochastic
analysis will be developed. Some final considera-
tions on the proposed scheme and the discussion
of future work will close up the paper.

In a companion paper by the same authors,
(Abate et al., 2005), the delay sensitivity of the
static and the dynamic case is analyzed. Sufficient
structural conditions on the dynamic scheme are
introduced to ensure local stability with respect
to the delays in the system; the oscillations of the
solutions are also qualitatively analyzed.

2. PROBLEM SETUP

2.1 The model for the wired case

A network is described via its J resources, its
links, and its R users, i.e. sender-receiver pairs,
which can also be conceived as subsets of J , the
routes. Each link j has a finite capacity Cj . The
connections of the network are described via a
matrix A = (ajr, j ∈ J, r ∈ R), where ajr = 1
if j ∈ r. Every user is endowed with a sending
rate xr ≥ 0 and a utility function Ur(xr), assumed
to be increasingly, strictly concave and C1. Kelly
was the first to interpret the flow control as the
solution of the following concave maximization
problem, dependent on the aggregate utility func-
tions for the rates and on some costs on the links
(Kelly et al., Dec 1999):

max
∑

r∈R

Ur(xr)−
∑

j∈J

Pj

( ∑

s:j∈s

xs

)
, (1)

where the cost functions Pj(·) are defined as:

Pj(y) =
∫ y

0

pj(z) dz. (2)

Here pj(y) is the price at the link j, and is as-
sumed to be non-negative, continuous and increas-
ing function; moreover, it is expected to depend
on the aggregate rate passing through the link.
Throughout this paper we use the following form
for pj(y), which can be interpreted as the “packet
loss rate”,

pj(y) =
(y − Cj)+

y
. (3)

The end-to-end packet loss rate for user r is
then 1 − ∏

j∈r[1 − pj(
∑

s:j∈s xs)], which is ap-
proximately equal to

∑
j∈r pj(

∑
s:j∈s xs) assum-

ing pj(
∑

s:j∈s xs) is small. We consider the fol-
lowing scheme, which is the continuous-time ver-
sion of TCP-like additive increase, multiplicative
decrease algorithm:

d

dt
xr(t) = kr

[
wo

r − xr(t)
∑

j∈r

µj(t)
]
, r ∈ R (4)

with kr being a positive scale factor affecting the
adaptation rate, and wo

r a weight that can be
interpreted as pay per unit time; the congestion
signal is generated at a link j as follows:

µj(t) = pj

( ∑

s:j∈s

xs(t)
)
. (5)

With this primal scheme (4)-(5), the unique, glob-
ally and asymptotically stable point of the net-
work, denoted by xo = (xo

r, r ∈ R) 2 , is given by

xo
r =

wo
r∑

j∈r pj

(∑
s:j∈s xo

s

) , r ∈ R; (6)

This unique solution is also the optimal solution
for the optimization problem in (1). The solution
is desirable in the sense that the network’s bot-
tlenecks are fully utilized, the total net utility is
maximized, and the users are proportionally fair
to each other (Kelly et al., Dec 1999).

2.2 The wireless case

One of the main differences between the wired case
and the wireless one is the presence of physical
channel errors in this latter case; in the setting of
our model, these affect the packet loss rate, which
in the wired case depends only on the congestion
measure. Assume every link j is affected by the

2 In order to keep the notation light, throughout the entire
paper user or link variables with no subscript directly
denote vectorial quantities.
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wireless packet error rate εj , the new price func-
tion νj is:

νj(t) = pj

( ∑

s:j∈s

xs(t)
)

+
(
1− pj

( ∑

s:j∈s

xs(t)
))

εj

, qj

( ∑

s:j∈s

xs(t)
) ≥ pj

( ∑

s:j∈s

xs(t)
)
. (7)

The utility maximization problem for wireless net-
work still has the form in (1), as none of the utility
or the cost is a function of εj , j ∈ J . The primal
scheme (4) will adapt itself according to this new
price functions qj , which have the same structural
properties as the old pj ; the equilibrium point of
the system will therefore change accordingly. From
an optimization prospective, the new equilibrium
is a suboptimal solution for the optimization prob-
lem in (1). Exploiting duality arguments, this also
means that some of the bottleneck links may be
under utilized.

The task of this work is to address and solve this
underutilization problem. Unlike many existing
approaches, which try to provide the user with the
feedback of the exact price

∑
j∈r µj(t), or with an

estimate of it, our approach is to act on the term
wr, which physically corresponds to adjusting
the number of connections the user has to the
network (Chen and Zakhor, 2004) (Chen et al.,
2005). In the first approach, wr is instantaneously
adjusted using a static function with respect to
νj(t) and µj(t); in the second approach, wr is
gradually adjusted by a dynamic update law. Both
of these are end-to-end application layer based
schemes, since changing wr can be implemented
by changing the number of connections opened by
one user. Therefore they require no modification
to either the network infrastructure, e.g. router,
or to the network protocols, e.g. TCP.

3. TWO NEW CONTROL SCHEMES

3.1 Static Update

Assume the term ωr is time dependent, wr(t), and
is adjusted according to the following law:

wr(t) = wo
r

∑
j∈r νj(t)∑
j∈r µj(t)

. (8)

Then, the source rate for user r then is given by:

d

dt
xr(t) = kr

[
wr(t)− xr(t)

∑

j∈r

νj(t)
]
. (9)

A straightforward analysis shows how, under this
change, the equilibrium of this system is again xo.
Intuitively, seen from (8), if the noise is large, i.e.

νj(t) > µj(t), it can be counterbalanced by an
increase in wr(t).

3.2 Dynamic Update

Rather than using an instantaneous adaptation
rule, we can propose a dynamic update for wr:

d

dt
wr(t) = cr

[
wo

r − wr(t)

∑
j∈r

pj(
∑

s:j∈s
xs(t))∑

j∈r
qj(

∑
s:j∈s

xs(t))

]
. (10)

The equilibrium points of the new, extended sys-
tem are composed of a first part given by the
vector xo and a second part, for the new dynamics,
given by wo

r

∑
j∈r νj(t)/

∑
j∈r µj(t). The system

of coupled equations (4)-(5)-(10) is strongly non-
linear and asymmetric.

4. GLOBAL STABILITY

Stability is the first requirement one needs to
investigate on a dynamical system. In our prob-
lem it also has the property that the rates al-
location among users at equilibrium are fair, all
network bottlenecks are fully utilized, avoiding at
the same time congestion collapse (Section I in
(Jacobson, 1998)). We state here two theorems,
the proofs of which can be found in (Chen et
al., 2005); simulations to verify these theorems are
also discussed there.

4.1 Static Update

Theorem 1. System (4)-(5)-(8) is globally asymp-
totically stable with the following Lyapunov func-
tion:

V (x) =
∑

r∈R

wo
r log xr −

∑

j∈J

∫ ∑
s:j∈s

xs

0

pj(y)dy.

(11)
All trajectories converge to the equilibrium point
xo in (6) that maximizes V (x).

4.2 Dynamic Update

The key assumption that we make in this section
is that the dynamics corresponding to (4)-(5) and
(10) evolve in two different time scales; the first
in a faster one, while the second in a slower one.
These two relations can be vectorized as 3 :

εẋ(t) = kw(t)−diag(kx(t))AT (p◦Ax(t)) , F (x(t));
(12)

3 The vectors kw and kx are built through the componen-
twise products of the vectors k, w and k, x respectively.
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ẇ(t) , G(w(t), x(t)). (13)

The composition operation on p is intended to
be performed componentwise. In this case 4 , the
following holds:

Theorem 2. For the overall system (12)-(13), fea-
turing prices that are functions of only the aggre-
gate rates, e.g. (3), if the following is true:

• Equation (12) has a region of equilibrium
points F (x) = 0 that identifies a manifold
w = h(x);

• Within this manifold, Equation (13), also
known as the reduced system, has a unique
global equilibrium which is the solution of
G(h(x), x) = 0;

• The functions F,G, h and their partial deriv-
atives are bounded near the global equilib-
rium;

• The equilibrium manifold for the boundary-
layer system 5 is exponentially stable;

• The global equilibrium of the reduced system
ẇ = ∂h

∂x ẋ = G(x, h(x)) is asymptotically
stable;

then, there exists an ε∗ such that, ∀ε ≤ ε∗,
the equilibrium point of the composite system is
asymptotically stable 6 .

5. RATE OF CONVERGENCE AND
STOCHASTIC ANALYSIS

Although global stability implies all the trajecto-
ries converges to the unique equilibrium, it does
not indicate how fast they do so and upon what
this depends. The analysis on the rate of conver-
gence gives insights to the latter questions and
hints at designing improved protocols. The real
implementation of the proposed schemes depends
on accurate measure on the packet loss rates.
However, the real network environment always in-
troduces noise to the measurements. By modeling
the effects of all these disturbances as Brownian
motion perturbations on the deterministic system,
an analysis can help to understand robustness of
the schemes to these inevitable disturbances.

5.1 Rate of convergence for the Static Update

To carry out the rate of convergence analysis,
let lr = kr

∑
j∈r qj/

∑
j∈r pj and xr(t) = xo

r +

4 For simplicity, we shall consider the simplified case c = 1.
5 This system is obtained through a rescaling of time,
τ = t/ε and letting ε → 0.
6 Refer to literature on stability for singularly-perturbed,
non-linear systems, like (Sastry, 1999).

(lrxo
r)

1/2
yr(t); we linearize the static system (9)

around the equilibrium point xo = [xo
r, r ∈ R]:

ẏr(t) =−(
lryr(t)

∑

j∈r

pj + (14)

(lrxo
r)

1/2
∑

j∈r

p′j
∑

s:j∈s

ys(t) (lsxo
s)

1/2 )
.

We may write it in matrix form as:

Ẏ (t) = −ΓT ΦΓ Y (t), (15)

where Γ is an orthogonal matrix, ΓT Γ = I, and
Φ = diag(φr, r ∈ R) is the matrix of eigenvalues,
necessarily positive, of the following real, symmet-
ric, positive definite matrix

ΓT ΦΓ = diag{
∑

j∈r

pj}L +

L1/2X1/2AT P ′AX1/2L1/2, (16)

where X = diag{xo
r, r ∈ R}, P ′ = diag{p′j , j ∈

J}, L = diag{lr}.
Hence the rate of convergence to the equilibrium
point is determined by the smallest eigenvalue,
φr, r ∈ R, of the matrix (16).

5.2 Stochastic analysis for the Static Update

Here we consider the stochastic perturbation of
the linearized equation (15). The perturbations
can be caused by the random nature of packet
loss. Let

dY (t) = −ΓT ΦΓY (t)dt− FdB(t), (17)

where F is an arbitrary R× I matrix and B(t) =
(Bi(t), i ∈ I) is a collection of independent stan-
dard Brownian motions, extended to −∞ < t <
∞. Following the similar procedure for the sto-
chastic analysis (Kelly et al., Dec 1999), we con-
clude that the stationary solution to the sys-
tem (17) has a multivariate normal distribution,
Y (t) ∼ N(0, Σ), where

Σ = E[Y (t)Y (t)T ] = ΓT [ΓF ; Φ]Γ,

where the symmetric matrix [ΓF ; Φ] is given by
[ΓF ; Φ]rs =

[∫ 0

−∞ eτΦΓFFT ΓT eτΦ
]

rs
=

[ΓFFT ΓT ]rs/(φr + φs).

5.3 Rate of convergence for the Dynamic Update

Let xr(t) = xo
r + (xo

r)1/2yr(t), and wr(t) = wr +
(xo

r)1/2zr(t). Linearizing the system (4)-(5)-(10)
around equilibrium point (xo, w) results in

4



ẏr(t) = kr

(
zr(t)− yr(t)

∑

j∈r

qj −

(xo
r)

1/2
∑

j∈r

q′j
∑

s:j∈s

ys(t)(xo
s)

1/2
)
, (18)

and

żr(t) =−cr

(
zr(t)

∑
j∈r pj∑
j∈r qj

+ (xo
r)

1/2
∑

j∈r

p′j
∑

s:j∈s

ys(t)(xo
s)

1/2 (19)

− (xo
r)

1/2

∑
j∈r pj∑
j∈r qj

∑

j∈r

q′j
∑

s:j∈s

ys(t)(xo
s)

1/2
)
.

This is a coupled, multivariate linear system; we
apply two timescale decomposition to decouple
the system into boundary system and reduced
system to carry out analysis under the classical
singular perturbation framework, as we did in the
global asymptotic convergence analysis.

The boundary system is described by (18) with
zr(t) to be fixed. We may write boundary system
in matrix form as

Ẏ (t) = −KB Y (t) + KZ, (20)

where

B = diag{
∑

j∈r

qj}+ X1/2AT Q′AX1/2

is a symmetric, positive definite matrix, Q′ =
diag{q′j , j ∈ J}, and K = diag{kr, r ∈ R}. The
product KB is a diagonalizable matrix with all
eigenvalues to be positive (Horn and Johnson,
1985); hence, the linearized system (20) converges
to a manifold, i.e. its equilibrium Y (t) = B−1Z,
with the rate of convergence determined by the
smallest eigenvalue of matrix KB.

On the larger timescale, we analyze the rate of
convergence for the reduced system, described by
(19) on the manifold Y (t) = B−1Z(t). We may
write the reduced system in matrix form as

Ż(t) = −C D Y (t) = −C D B−1Z(t), (21)

where C = diag{cr, r ∈ R} and

D = diag{
∑

j∈r

pj}+ X1/2AT P ′AX1/2,

Hence, in the case where cr = c, r ∈ R 7 , the
linearized reduced system (21) converges to the
equilibrium point (xo, w), with the rate of con-

7 In the general case with different values for cr, r ∈ R,
we expect the eigenvalues of the product CDB−1 to be all
positive to ensure the system is stable. However, at this
moment, this is nothing more than a conjecture.

vergence determined by the smallest eigenvalue of
matrix DB−1.

In summary, the rate of convergence of the entire
system depends on how it converges on large
timescale, i.e. of the reduced system, and hence
is determined by the smallest eigenvalue of the
matrix DB−1.

5.4 Stochastic analysis for the Dynamic Update

The effects of stochastic disturbance on the dy-
namic update scheme, modeled as a singular per-
turbation nonlinear system, is more subtle than
the static update case. According to (Sastry,
1983), the correct procedure is to first get the
stationary distribution of x in boundary system;
then investigate behavior of reduced system based
on an modified version of nonlinear differential
equations that is averaged over the stationary dis-
tribution of x. The analysis can be hard. However,
as we only investigate the linearization system
around the equilibrium, it turns out the averaged
linear differential equations are exactly the same
as the original ones.

Therefore, to analyze the effects of stochastic dis-
turbance on the dynamic update scheme locally,
is equivalent to investigate the effects on both
boundary system and reduced system using a
standard procedure similar to the one in Section
5.2, i.e. the boundary system is investigated in
the way as if x is converged to the equilibrium
manifold rather than the stationary distribution.

5.4.1. Boundary layer system Here we first con-
sider the stochastic perturbations of the linearized
equation (20) as follows:

dY (t) = −KB Y (t) + KZ − F1dG(t), (22)

where F1 is an arbitrary R× I matrix and G(t) =
(Gi(t), i ∈ I) is a collection of independent stan-
dard Brownian motions, extended to −∞ < t <
∞. Following the similar procedure of stochastic
analysis part in Section 5.2, we conclude that in
the stationary stage, Y (t) ∼ N(B−1Z, Σ1). Let
the diagonalizable matrix B K = S−1

1 ΦS1, then

Σ1 = KS−1
1 [S1F1; Φ]S1K. (23)

where matrix [S1F1; Φ] is given by [S1F1; Φ]rs =
[S1F1F T

1 S−1
1 ]rs

φr+φs
.

5.4.2. Reduced system Next we start to con-
sider the stochastic perturbations of the linearized
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equation (21), under the assumption cr = c, r ∈
R, as follows:

dZ(t) = −cD B−1Z(t)− F2dE(t), (24)

where F2 is an arbitrary R× I matrix and E(t) =
(Ei(t), i ∈ I) is a collection of independent stan-
dard Brownian motions, extended to −∞ < t <
∞. Following the similar procedure of stochastic
analysis part in Section 5.2, Z(t) again has sta-
tionary distribution N(0,Σ2). Let the diagonaliz-
able matrix DB−1 = S−1

2 ΦS2, then

Σ2 = S−1
2 [S2F2; Φ]S2, (25)

where matrix [S2F2; Φ] is given by [S2F2; Φ]rs =
[S2F2F T

2 S−1
2 ]rs

φr+φs
.

In summary, stochastic perturbations introduce
additive multivariate normal distributions with
zero mean and variances given in (23) and (25) to
the equilibrium solutions in boundary system and
reduced system. Since both systems are robust to
stochastic perturbations around the equilibrium
point (xo, w), the entire system is robust to sto-
chastic perturbations around (xo, w) according to
the arguments at the beginning of this section.

6. CONCLUSIONS

In this paper we proposed two new flow control
schemes over wireless networks, a static and a
dynamic one. We continued the analysis of the
structural properties of the schemes started in
(Chen et al., 2005), and focused on the stochastic
study of stability, and on the computation of
the rate of convergence of the proposed schemes.
The study of delay sensitivity and of the quality
of the oscillations due to delays in the system
has been investigated in (Abate et al., 2005);
this second work also contains simulations. This
complete study advocated the applicability of the
algorithms in real wireless networks.
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