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Joint Bidding and Geographical Load Balancing for
Datacenters: Is Uncertainty a Blessing or a Curse?

Ying Zhang, Lei Deng, Minghua Chen, and Peijian Wang

Abstract—We consider the scenario where a cloud service
provider (CSP) operates multiple geo-distributed datacenters
to provide Internet-scale service. Our objective is to minimize
the total electricity and bandwidth cost by jointly optimizing
electricity procurement from wholesale markets and geographical
load balancing (GLB), i.e., dynamically routing workloads to
locations with cheaper electricity. Under the ideal setting where
exact values of market prices and workloads are given, this
problem reduces to a simple LP and is easy to solve. However,
under the realistic setting where only distributions of these
variables are available, the problem unfolds into a non-convex
infinite-dimensional one and is challenging to solve. Our main
contribution is to develop an algorithm that is proven to solve the
challenging problem optimally and efficiently, by exploring the
full design space of strategic bidding. Trace-driven evaluations
corroborate our theoretical results, demonstrate fast convergence
of our algorithm, and show that it can reduce the cost for the CSP
by up to 20% as compared to baseline alternatives. Our study
highlights the intriguing role of uncertainty in workloads and
market prices, measured by their variances. While uncertainty
in workloads deteriorates the cost-saving performance of joint
electricity procurement and GLB, counter-intuitively, uncertainty
in market prices can be exploited to achieve a cost reduction even
larger than the setting without price uncertainty.

I. INTRODUCTION

As cloud computing services become prevalent, the elec-
tricity cost of worldwide datacenters hosting these services
has skyrocketed, reaching $16B in 2010 [20]. Electricity cost
represents a large fraction of the datacenter operating expense
[36], and it is increasing at an alarming rate of 12% annually
[4]. Consequently, reducing electricity cost has become a
critical concern for datacenter operators [28].

There have been substantial research on reducing power
consumption and related cost of datacenters [15], [17], [33],
[35]. Among them, geographical load balancing (GLB) is a
promising technique [28], [29], [32]. By dynamically routing
workloads to locations with cheaper electricity, GLB has been
shown to be effective in reducing electricity cost (e.g., by
2–13% [28]) of geo-distributed datacenters operated by a
CSP. Many existing works explore price diversity across geo-
graphical locations to reduce electricity cost [28], [29], [38].
Some recent studies also advocate additional price diversity
across time at a location, by for example using electricity
storage system and demand response for arbitrage [33] or
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Fig. 1. (a) We fix market prices to their means and increase standard
deviations of workloads. Cost reductions of our solution and baseline decrease
as the standard deviations increase. (b) We fix workloads to their means and
increase standard deviations of prices. Cost reduction of our solution increases
as the standard deviations increase, while that of baseline stays constant. More
details are in Sec. V and Sec.VII-C.

opportunistically optimizing various electricity procurement
options [7], [14], [37].

Inspired by these advances and recent practices that CSPs
moving into electricity markets (e.g., Google Energy LLC
[16]), we consider the scenario where a CSP jointly perform-
ing GLB and electricity procurement from deregulated mar-
kets. The market prices are set by running auction mechanisms
among the electricity suppliers and consumers, cf, [40]. The
goal is to minimize the total electricity and bandwidth cost,
by exploiting price diversity in both geographical locations (by
GLB) and time (by procurement in local sequential markets).

Under the ideal setting where exact values of market prices
and workloads are given, the problem reduces to a simple
LP and is easy to solve, by for example the solution in [28].
In practice, however, the actual values of these variables are
revealed only at the operating time, and only their distributions
are available when procuring electricity by submitting bids to
markets (bidding). Under such realistic settings, the problem
unfolds into a non-convex infinite-dimensional one. Our focus
in this paper is to develop an algorithm to solve the problem
optimally.

Our study highlights the intriguing role of uncertainty in
workloads and market prices, measured by their variances. On
one hand, workload uncertainty undermines the efficiency of
balancing supply and demand (proportional to workload) on
electricity markets. As a result, the cost-saving performance of
joint bidding and GLB deteriorates as workload uncertainty in-
creases, as illustrated in Fig. 1(a). On the other hand, counter-
intuitively, higher uncertainty in market prices allows us to
extract larger coordination gain in sequential procurement in
day-ahead and real-time markets [3], [13], [23]. As shown in
Fig. 1(b), capitalizing such gain leads to a cost reduction even
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larger than the setting without price uncertainty.
In our solution, we explore the full design space of strategic

bidding to simultaneously exploit the price uncertainty and
combat the workload uncertainty, so as to maximize the cost
saving. We make the following contributions.
� We present necessary backgrounds on electricity mar-

kets in Sec. II. Then in Sec. III, we formulate the problem
of cost minimization by joint bidding and GLB, under the
realistic setting where only distributions of market prices and
workloads are available. The problem is a non-convex infinite-
dimensional one and is in general challenging to solve.
� To address the non-convexity challenge, in Sec. IV, we

leverage problem structures to characterize a subregion of the
feasible set so that (i) it contains the optimal solution, and (ii)
the problem over this subregion becomes a convex one. We
then solve the reduced problem by a nested-loop solution.
� In the inner loop, we fix the GLB decision and optimize

bidding strategies for local sequential markets. We derive an
easy-to-compute closed-form optimal solution in Sec. IV-B.
The optimal bidding strategies not only address the infinite-
dimension challenge, but also allow the CSP to simultaneously
exploit price uncertainty and combat workload uncertainty.
� In the outer loop, we solve the remaining GLB problem

given optimal bidding strategies. While the problem is convex
and of finite dimension, its objective function does not admit
an explicit-form expression. Consequently, its gradient cannot
be computed explicitly, and gradient/subgradient-based algo-
rithms cannot be directly applied. In Sec. IV-C, we tackle this
issue by adapting a zero-order optimization algorithm, named
General Pattern Search (GPS) [21], to solve the problem
without knowing the explicit-form expression of the objective
function. Finally, we prove that our nested-loop algorithm
solves the joint bidding and GLB problem optimally. We
discuss the computational complexity and issues related to
practical implementation in Sec. IV-D.
� We analyze the impact of demand and price uncertainties

on the cost-saving performance in Sec. V. Realizing our
optimal bidding curve may require CSP to place an infinite
number of bids in each deregulated electricity market. In
practice, however, market operator may only accept a finite
number of bids from the CSP. In Sec. VI, we carefully quantize
the optimal bidding curve so that it can be realized by using
a finite number of bids. We bound the performance loss due
to such quantization.
� By evaluations based on real-world traces in Sec. VII,

we show that our solution converges fast and reduces the CSP
cost by up to 20% as compared to baseline alternatives.

Our study also adds understanding to energy cost manage-
ment for entities other than datacenters. For example, [27] and
[23] considered similar problems for utilities and microgrids,
without fully exploring the bidding design space or pursing
optimal solution. Results of our study thus can help to optimize
bidding strategy designs under such settings.

We discuss related works in Sec. VIII and conclude the
paper in Sec. IX. Due to space limitation, some proofs are
deferred in our technical report [41].

II. ELECTRICITY MARKET PRELIMINARY

In a region, there are two electricity wholesale markets, day-
ahead market and real-time market, to balance the electricity
supply and demand in two timescales. We show the critical
operations in Fig. 2 and explain the details in the following.

Day-ahead (DA) Market
Real-Time (RT) Market

Timeline

 In a particular hour,RT demand comes;
balance the mismatch in real-time

Hour 1 Hour 2 Hour 24...

Buyers submit bids for every hour without 
knowing DA s MCP, RT price, RT demand

DA market 
opens

DA market 
closes

DA market 
clears at an MCP

RT market 
settles at a RT price

Fig. 2. Operation of day-ahead market and real-time market.

Day-Ahead Market. The day-ahead market is a forward
market to trade the electricity one day before dispatching. The
electricity supply is auctioned in the day-ahead market. The
sellers, i.e., generation companies, submit (hourly) generation
offers, and the buyers, i.e., utilities or CSPs, submit (hourly)
demand bids, all in the format of <marginal price, quantity>,
to the auctioneer, i.e., the Independent System Operator (ISO).

In the offers (resp. bids), the generation companies (resp.
utilities and CSPs) specify the amount of electricity they want
to sell (resp. buy) and at which marginal price. Each seller
(resp. buyer) is allowed to submit multiple offers (resp. bids)
[3] in the same auction with different prices and quantities.
The ISO matches the offers with the bids, typically using a
well-established double auction mechanism [40]. The outcome
of the auction is that it determines a market clearing price
(MCP) for all the traded units. The bids with prices higher
than MCP and the offers with prices lower than MCP will
be accepted, and the electricity will be traded at MCP. Upon
day-ahead market settlement, the generation companies (resp.
utilities and CSPs) will be notified the quantity and MCP of
electricity that they commit to generate (resp. consume).

The actual value of MCP is revealed only after the day-
ahead market is settled/cleared, and they are unknown to
market participants at the time of submitting bids/offers.

We show an example in Fig. 3 from the perspective of our
CSP. Suppose that the CSP submits three bids to the day-
ahead market: <30$/MWh, 3MWh>, <51$/MWh, 4MWh>,
<70$/MWh, 5MWh>. Now if ISO announces that the MCP
is 40$/MWh after the auction, then the second and the third
bid will be accepted since their bidding prices are higher
than MCP. Thus the CSP gets 4 + 5 = 9MWh of day-ahead
committed supply at the price of MCP, i.e., 40$/MWh. The
day-ahead trading cost is thus 9× 40 = 360$.

Real-Time Market. The mismatch between day-ahead
committed supply (as discussed above) and real-time demand
is balanced on the real-time market, in a pay-as-you-go
fashion. In particular, the system calls the short-start fast-
responding generating units, which is usually more expensive,
to standby and meet the instantaneous power shortage if any.
The real-time price is set after the real-time dispatching and
are not exactly known a priori.
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The total cost is 360+50=410$ and the effective price is 410/10=41$/MWh, 
both of which depend on the bidding strategy, MCP, RT price, and demand

 The CSP submits three bids 
for Hour 2:

    -Bid 1: (30$/MWh,3MWh)
    -Bid 2: (51$/MWh,4MWh)
    -Bid 3: (70$/MWh,5MWh)
 Note: At this moment, DA s
MCP, RT price and demand 
are unknown

 DA market clears with the 
realized  MCP 40$/MWh 

 Bid 1 fails, Bids 2&3 
succeed

 The DA trading cost is 
(4+5)*40=360$

 The CSP s demand is 
realized as 10 MWh 

 The RT market price is 
realized as 50$/MWh

 The RT trading cost is 
(10-9)*50=50$

Day-ahead (DA) Market
Real-Time (RT) Market

Timeline

Hour 1 Hour 2 Hour 24...

DA market 
opens

DA market 
closes

DA market 
clears at an MCP

RT market 
settles at a RT price

Fig. 3. An illustrating example for the CSP to participate in markets.

• In case that the day-ahead committed supply matches
exactly the actual demand, there is no real-time cost.

• In case of under-supply, (i.e., the committed supply is less
than the real-time demand), the CSP will pay for extra
supply at the real-time price.

• In case of over-supply, the system needs to reduce the
power generation output or pay to schedule elastic load
[25] to balance the supply, both incurring operational
overhead and consequently economic loss. In this case,
the CSP will receive a rebate at price β · MCP for
the unused electricity (recall that the planned supply is
purchased from the day-ahead market at price MCP).
Here β ∈ [0, 1) is a discounting factor capturing the
overhead-induced cost in handling over-supply situation.

The overall electricity cost for the CSP is the sum of day-
ahead procurement cost and the real-time settlement cost,
which can be in the form of extra payment or rebate. This
pricing model can be viewed as a generalization of the classic
Newsvendor problem in operations research [19], and a real-
world market example fitting this model can be found in [18].
We remark that the framework developed in this paper can also
be extended to different pricing models described in [13], [25],
[27] (see our discussions in [41]).

Back to our example for the CSP in Fig. 3, suppose that
the CSP’s real-time demand is 10MWh. Since the day-ahead
committed supply is only 9MWh, i.e., the under-supply case
happens, the CSP needs to buy 1MWh extra electricity from
the real-time market. Now if the real time price is 50$/MWh,
the real-time trading cost of the CSP will be 1 × 50 = 50$.
The total cost is the sum of day-ahead trading cost and real-
time trading cost, which is 360+50=410$.

Cost Structure. An important observation is that the overall
cost depends on not only the actual demand, the day-ahead
MCP and the real-time price, but also the mismatch between
the day-ahead committed supply and the actual demand. As
the day-ahead committed supply depends on day-ahead market
bidding strategy of the CSP, the overall cost is thus also a
function of the bidding strategy. We remark that such cost
structure is unique to electricity procurement in electricity
markets and motivates the bidding strategy design [27].

 Datacenter 1

 Datacenter 2

Users in 
Region 1

Users in 
Region 2

Users in 
Region 3

 Datacenter 3

Market 1

Market 2

Market 3
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Fig. 4. The scenario that we consider in this paper.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the scenario of a CSP providing computing-
intensive services (e.g., Internet search) to users in N regions
by operating N geo-distributed datacenters, one in each region,
as exemplified in Fig. 4. Service workloads from a region
can be served either by the local datacenter or possibly by
datacenters in other regions through GLB. The CSP directly
participates in wholesale electricity markets in each region, to
obtain electricity to serve the local datacenter. Based on (i)
distributions of hourly service workloads and (ii) distributions
of market settlement prices, the CSP aims at minimizing the
expected total operating cost by optimizing GLB and bidding
strategies in the markets. The hourly timescale aligns with
both the settlement timescale in wholesale markets [32] and
the suggested time granularity for performing GLB [28].

Without loss of generality, we focus on minimizing cost of
a particular operation hour of the CSP, as shown in Fig. 3.

A. Workload and Geographical Load Balancing

Workload and Electricity Demand. We assume that each
datacenter is power-proportional, which means that its electric-
ity consumption is proportional to its workload [28]. For ex-
ample, Google reports that each search requires about 0.28Wh
electricity for its datacenters [28]. Without loss of generality,
we assume that the workload-to-electricity coefficients are one
for all datacenters and thus use the workload served by a
datacenter to represent its electricity demand. Our results can
be easily generalized to the case where the coefficients are
different for different datacenters.

We model the workload originated from region i as a ran-
dom variable Ui in the range [ui, ūi], with a probability density
function (PDF) fUi(u) that can be empirically estimated from
historical data. We assume that all Ui’s are independent.

Geographical Load Balancing.1 We denote the GLB deci-

1Under the conventional setting where datacenters obtain electricity from
utilities, GLB is performed in CSP’s real-time operation. Under the setting
we consider in this paper, CSP needs to bid for electricity in the day-ahead
market, where the amount of electricity to bid is a function of GLB decisions.
As such, we consider doing joint GLB and electricity bidding in CSP’s day-
ahead operation, in order to fully explore the new design space enabled by
the setting considered in this paper. It is conceivable to perform GLB in both
day-ahead and real-time operations of CSP to further minimize the energy
cost, which we leave for future study.
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sion by α = [αij : i, j = 1, . . . , N ] ∈ RN×N which satisfies∑
j

αij ≥ 1, ∀i = 1, . . . , N, (1)

αii ≥ λi, ∀i = 1, . . . , N, (2)

v̄j ,
N∑
i=1

αij ūi ≤ Cj , ∀j = 1, . . . , N. (3)

0 ≤ αij ≤ 1, ∀i, j = 1, . . . , N, (4)
αij = 0, ∀(i, j) ∈ G, (5)

where G , {(i, j)| workloads from region i cannot be routed
to datacenter j} captures the topological constraints.

Here αij represents the fraction of the workload originated
from region i that will be routed to datacenter j. Constraints
in (1) mean that all workloads must be served. Constraints in
(2) capture that λi fraction of the workload originated from
region i can only be served locally due to various reasons such
as delay requirements. Constraints in (3) ensure that the total
workload coming into datacenter j can be served even in the
largest realization of workload. Constraints in (5) describe that
the workload cannot be routed to a datacenter that is too far
away from its own region. We define the set of all feasible
GLB decisions as

A , {α ∈ RN×N |α satisfies (1)− (5)}. (6)

Given the GLB decision α, the total workload for datacenter
j is given by Vj =

∑
i αijUi. Since Ui,∀i are random

variables, Vj is also a random variable with a PDF

fVj (v) = fU1j ⊗ fU2j ⊗ . . .⊗ fUNj
(v), (7)

where ⊗ is the convolution operator and the distribution
functions in the convolution are given by

fUij
(u) =

{
1
αij
fUi

(
u
αij

)
, if αij > 0,

δ(u), if αij = 0,
(8)

where δ(·) denotes Dirac delta function.
Bandwidth Cost. Let zij ≥ 0 be the unit bandwidth cost

from region i to datacenter j. The expected network cost of
routing the workload to different datacenters is given by

BCost(α) =

N∑
i=1

N∑
j=1

zij · αij · E(Ui). (9)

B. Electricity Market Price and Bidding Curve

Day-ahead MCP and Real-time Market Price. At the time
of making joint bidding and GLB decisions, MCPs of day-
ahead markets in N regions are unknown. We model them
as N independent random variables Pj (j ∈ [1, N ]), each
with probability distribution fPj

(p) that can be empirically
estimated from historical data [7]. Here we assume that the
CSP has negligible market power and its bidding and GLB
behavior will not affect the dynamics of electricity markets.2

Similarly, the real-time market prices in N regions are
also unknown when making bidding and GLB decisions. We

2The assumption is reasonable as, e.g., datacenters in the US only consume
2% of total electricity [12], and it is usually used in the literature such as [32].

0 20 b
1 =30

40 b
2 =51

60 b
3 =70

80

MCP, p ($/MWh)

0

5

10

Q
ua

nt
ity

, q
(p

) 
(M

W
h)

(70,5)

(51,9)

(30,12)

q3 = 5

q1 = 3

q2 = 4

Fig. 5. An illustrating example for the (step-wise) bidding curve constructed
from the submitted three bids in Fig. 3.

model the price of real-time market j as a random variable
PRT
j whose probability distribution can also be empirically

estimated from historical data [7]. We define µRT
j , E[PRT

j ]

as the expectation of PRT
j . We assume that all day-ahead MCPs

Pj’s and real-time market prices PRT
j ’s are independent.3

Bidding Curve. We explore the full design space of bidding
strategy via bidding curve, which is a well-accepted concept
in the power system community [13], [23]. Bidding curve,
denoted as qj(p), is a function that maps the (realized) day-
ahead market MCP to the amount of electricity the CSP wishes
to obtain from day-ahead market j, by placing multiple bids.
We remark that it is a common practice for one entity (e.g.,
a utility company) to submit multiple bids to one electricity
market.

Bidding curve is useful in designing bidding strategies in
the following sense. First, any set of bids can be mapped
to a bidding curve. Suppose the CSP submits K bids,
namely

〈
bkj , q

k
j

〉
, k = 1, . . . ,K, to the day-ahead market of

region j, where bkj is the bidding price and qkj is the bidding
quantity of the k-th bid. The corresponding bidding curve is
a step-wise decreasing function as

qj(p) =
∑
k:bkj≥p

qkj , ∀p ∈ R+. (10)

For example, considering the three bids in Fig. 3, we can
construct the corresponding bidding curve as shown in Fig. 5.

Recall that if day-ahead market MCP is p, then all bids
whose bidding prices are higher than p will be accepted. Thus,
the right hand side of (10) represents the total amount of
electricity obtained when the day-ahead MCP is p. Clearly, the
purchased amount will be non-increasing in MCP p. Thus, a
valid bidding curve qj(p) must be a non-increasing function.

Second, any non-increasing function is a valid bidding curve
and can be realized by placing a set of bids. For example, the
bidding curve in (10) can be realized by placing the K bids〈
bkj , q

k
j

〉
, k = 1, . . . ,K stated above.

Based on the above two observations, we design bidding
strategy by choosing a bidding curve from the feasible set

Q ,
{
q(p) | q (p1) ≤ q (p2) ,∀p1 ≥ p2, p1,p2 ∈ R+

}
. (11)

Remark. In this paper, we assume that the CSP is allowed
to submit any number, possibly infinite number, of bids. This

3We remark that this independence assumption may not hold in practice.
But it significantly simplifies our analysis and allows us to reveal some im-
portant insights. A comprehensive study of considering correlations between
day-ahead MCPs and real-time prices would be an interesting future work.
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assumption allows us to significantly simplify the derivation
of optimal solution to the joint bidding and GLB problem
in Sec. IV. In Sec. VI, we discuss how to approximately
realize a continuous bidding curve with a limited number of
bids in the practical implementation. Our simulation results in
Sec. VII (Tab. I) suggest that the performance loss due to the
approximation error is minor.

Electricity Cost. Given the bidding curve qj(p) and
the GLB decision α, we denote the expected electricity
procurement cost of the CSP in electricity market j as
ECostj (qj(p),α), which consists of settlement in both day-
ahead trading and real-time trading.
• In day-ahead trading, suppose that the MCP in the day-

ahead market j is p, the committed supply will be qj(p)
and the day-ahead trading cost is p · qj(p).

• In real-time trading, the day-ahead committed supply
qj(p) may not exactly match the real-time demand Vj .
If Vj = v and v > qj(p), under-supply happens and we
need to buy v − qj(p) amount of electricity at expected
price µRT

j , so the expected cost due to under-supply would
be µRT

j

∫ v̄j
qj(p)

(v − qj(p)) fVj
(v)dv. Similarly, if over-

supply happens, the unused electricity (qj(p)−v) will be
sold back at a discounted price βp and the expected rebate
due to over-supply is βp

∫ qj(p)

0
(qj(p)− v)fVj

(v)dv. The
expected real-time trading cost is simply the under-supply
cost minus the over-supply rebate.

Based on the above analysis, we obtain the expression of
ECostj (qj(p),α) in (12) by applying the total expectation
theorem. Note that ECostj (qj(p),α) is related to the GLB
decision α through the distribution of Vj (the workload of
datacenter j), which is computed by (7) and (8).

C. Problem Formulation

According to our investigations of some real-world pricing
schemes, the bandwidth cost can be comparable to the elec-
tricity cost [41], so our objective is to minimize the summation
of electricity cost and bandwidth cost. We now formulate the
problem of joint bidding and GLB:

P1: min

N∑
j=1

ECostj (qj(p),α) + BCost(α)

var. α ∈ A, qj(p) ∈ Q, j = 1, . . . , N.

where A is the set of all feasible GLB decisions, defined in
(6) and Q is the set of all feasible bidding curves, defined
in (11). It is straightforward to see both A and Q are convex
sets. The objective is to minimize the summation of electricity
cost of N datacenters and network cost, by optimizing bidding
strategies and GLB decisions. The consideration of joint bid-
ding and GLB as well as the market and demand uncertainty
differentiates our work from existing works, e.g., [7], [28],
[29], [36]. We emphasize that it is important to consider input
uncertainty to fully capitalize the economic benefit of joint
bidding and GLB under real-world market mechanisms.

Challenges. There are two challenges in solving problem
P1. First, it can be shown that the objective function of P1 is
non-convex with respective to qj(p) (see our technical report

[41]). Second, the optimization variable qj(p) is a functional
variable with infinite dimensions. Thus it is highly non-
trivial to solve this non-convex infinite-dimensional problem
optimally by existing solvers, without incurring forbidden
complexity.

IV. AN OPTIMAL JOINT BIDDING AND GLB SOLUTION

In this section, we design an algorithm to solve the chal-
lenging problem P1 optimally and efficiently.

A. Reducing P1 to a Convex Problem and Approach Sketch

To begin with, we define a sub-region of Q as follows

Q̂j = {qj(p)|qj(p) ∈ Q, and qj(p) = 0,∀p ≥ µRT
j }. (13)

As compared to Q defined in (11), the new constraint in the
definition of Q̂j , i.e., qj(p) = 0,∀p ≥ µRT

j , means that we do
not submit any bid to day-ahead market j with bidding price
higher than µRT

j , i.e., the expected price of real-time market
j. It is easy to verify that both Q and Q̂j are convex sets.

Theorem 1: The following problem P2 is convex and has
the same optimal solution as P1:

P2: min

N∑
j=1

ECostj (qj(p),α) + BCost(α)

var. α ∈ A, qj(p) ∈ Q̂j , j = 1, . . . , N.

Remarks. (i) Problems P1 and P2 differ only in the feasible
set of bidding curve qj(p). It is Q in P1 but Q̂j in P2. The
objective function is nonconvex over Q but convex over Q̂j ,
as shown in the proof of Theorem 1 in Appendix A; hence,
P1 is a nonconvex problem but P2 now is a convex one. (ii)
Intuitively, the optimal bidding curve for day-ahead market
j must be in Q̂j . This is because the CSP can always buy
electricity from real-time market j at an expected price µRT

j ;
thus it is not economic to submit bids with bidding price higher
than µRT

j to day-ahead market j. Such bidding strategies must
be in set Q̂j , defined in (13).

Theorem 1 allows us to solve P1 by solving the convex
problem P2. However, P2 still suffers the infinite-dimension
challenge, since optimizing bidding curves in general requires
us to specify the value of qj(p) for every p ∈ [0, µRT

j ). To
illustrate our design, we first rewrite problem P2,

min
α∈A

min
qj(p)∈Q̂j ,∀j

{
N∑
j=1

ECostj (qj(p),α) + BCost(α)

}

=min
α∈A


N∑
j=1

[
min

qj(p)∈Q̂j

ECostj (qj(p),α)

]
︸ ︷︷ ︸
Problem EPj(α), solved in Sec. IV-B

+BCost(α)

︸ ︷︷ ︸
Problem P3, solved in Sec. IV-C

(14)

The structure of the expression in (14) suggests a nested-loop
approach to solve problem P2.
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ECostj (qj(p),α) =
∫ +∞

0
fPj

(p) [ pqj(p)︸ ︷︷ ︸
Day-ahead
trading cost

−βp
∫ qj(p)

0

(qj(p)− v)fVj
(v)dv︸ ︷︷ ︸

Rebate of over-supply

+µRT
j

∫ v̄j

qj(p)

(v − qj(p))fVj
(v)dv︸ ︷︷ ︸

Cost of under-supply︸ ︷︷ ︸
Real-time trading cost

]

︸ ︷︷ ︸
Expected electricity cost of datacenter j conditioning on day-ahead market j’s MCP Pj = p

dp. (12)

• Inner Loop: The CSP optimizes its bidding strategies for
each regional day-ahead market with given GLB decision
α, by solving the following problems:

EPj(α) : min
qj(p)∈Q̂j

ECostj (qj(p),α) , j = 1, . . . , N.

• Outer Loop: After solving the inner-loop problems
EPj(α) and obtaining the optimal bidding curves, de-
noted by q∗j (p;α), ∀j = 1, . . . , N , the CSP optimizes
the (finite-dimensional) GLB decision α by solving the
following problem:

P3: min
α∈A

N∑
j=1

ECostj
(
q∗j (p;α),α

)
+ BCost(α).

In our technical report [41], we prove that the inner-loop
problem EPj(α) and outer-loop problem P3 are both convex,
which are perhaps not surprising. In the next two subsections,
we solve EPj(α) and P3 to obtain an optimal joint bidding
and GLB solution to P2, which is also optimal for P1.

B. Inner Loop: Optimal Bidding Given GLB Decision

The inner-loop problem EPj(α) is concerned about design-
ing optimal bidding strategy for day-ahead market in region
j (by choosing qj(p) ∈ Q̂j) with GLB decision α given,
in face of demand and price uncertainty. Note that EPj(α)
is closely related to the classic Newsvendor problem [19].
In the Newsvendor problem, the market prices are given and
only the buying quantity should be optimized under demand
uncertainty, while in EPj(α) we need to optimize both the
bidding quantities and bidding prices simultaneously under
both price and demand uncertainties.

Let the cumulative distribution function (CDF) of Vj , i.e.,
the demand of datacenter j, be FVj

(x) ,
∫ x

0
fVj

(v)dv, where
fVj

(v) is PDF of Vj given in (7). The following theorem
shows that EPj(α) admits a closed-form solution q∗j (p;α),
addressing the infinite-dimension challenge.

Theorem 2: Given GLB decision α, we assume that FVj
(x)

is strictly increasing; thus its inverse exists and is denoted as
F−1
Vj

(x). The optimal bidding curve for solving EPj(α) is
given by, for j = 1, . . . , N ,

q∗j (p;α) =

F−1
Vj

(
µRT
j −p

µRT
j −βp

)
, if p ∈

[
0, µRT

j

)
;

0, otherwise.
(15)

The proof of Theorem 2 is delegated in Appendix B. The
optimal bidding curve q∗j (p;α) is universal in that it does
not depend on the distribution of day-ahead MCP Pj . This is
because q∗j (p;α) actually minimizes the expected electricity

procurement cost for any p. It is easy to extend this result to
the general non-decreasing FVj

(x) [41].
Remarks. The optimal bidding curve q∗j (p;α) in (15) is

a decreasing function in the day-ahead MCP p. This meets
our intuition that a good bidding strategy should purchase
more electricity when p is low and less electricity when p
is high. Similarly, it also meets our intuition that q∗j (p;α)
increases in the sell-back discounting factor β. A larger β
means less penalty of over-supply, thus the CSP should bid
for more electricity from the day-ahead market to balance
the penalty of under-supply. By taking into account both the
demand statistics (FVj (·)) and market condition (p and β),
q∗j (p;α) achieves the best balance between over-supply and
under-supply to minimize the expected electricity cost, and
allows our overall solution to be robust to demand uncertainty,
as shown in our case study in Fig. 1(a) as well as simulation
results in Sec. V. We provide more insightful discussions in
Sec. V.

C. Outer Loop: Optimal GLB with Optimal Bidding Curve as
a Function of GLB Decision

After obtaining the optimal bidding strategy q∗j (p;α) as a
function of GLB decision α, we now solve the outer-loop
problem P3 for optimizing GLB. While P3 is convex and
of finite dimension, its objective function does not admit an
explicit-form expression since we do not have an explicit
expression of the optimal objective value of EPj(α). Thus,
gradient-based algorithms cannot be directly applied.

We tackle this issue by adapting a zero-order optimization
algorithm, named General Pattern Search (GPS) [21], to solve
the out-loop problem without knowing explicit expression of
the objective function. Zero-order optimization algorithms are
widely used to solve optimization problems without directly
accessing the derivative information. The GPS algorithm in
[21] is a popular zero-order optimization algorithm for solving
problems with linear constraints, which is suitable for P3.

Our adapted GPS algorithm is an iterative algorithm. In
each iteration, the algorithm first creates a set of searching
directions, named “patterns”, which positively spans the entire
feasible set. It then searches the directions one by one in order
to find a direction, along which the objective value decreases.
And we will update to a better solution if we find one. In
each search, the algorithm needs to evaluate the objective
value of EPj(α) given a GLB decision α, which can be
obtained by plugging the optimal solution q∗j (p;α) into the
objective function of EPj(α). In this manner, our adapted GPS
algorithm works like gradient-based algorithms, but without
the need to compute gradient/subgradient. We summarize our
proposed nested-loop algorithm in Algorithm 1.
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Algorithm 1 An Algorithm for Solving P3 Optimally
1: initialize α0 ← IN×N , t← 0
2: while not converge do
3: current_value← P3-Obj(αt)
4: Get αt+1 by invoking P3-Obj and comparing with
current_value at most 2N2 times (see [21, Fig. 3.4])

5: t← t+ 1
6: end while
7: α∗ ← αt

8: Compute q∗j (p;α∗) by (15) for all j ∈ [1, N ]
9: return α∗, q∗j (p;α∗) for all j ∈ [1, N ]

A subroutine to compute the objective value of P3
10: function P3-OBJ(α)
11: initialize j ← 1, val← BCost(α) by (9)
12: while j ≤ N do
13: Compute q∗j (p;α) by (15)
14: val← val + ECostj

(
q∗j (p;α),α

)
by (12)

15: j ← j + 1
16: end while
17: return val
18: end function

In general, GPS algorithm is not guaranteed to converge to
the globally optimal solution [21]. In the following theorem,
we prove that our Algorithm 1 actually converges to the
optimal solution to the convex problem P3, under proper
conditions.

Theorem 3: Assume that fUj (u), j = 1, . . . , N , are
differentiable and their derivatives are continuous. Algorithm 1
converges to a globally optimal solution to P3, which is also
an optimal solution to P1 and P2.

Remarks. Theorem. 3 follows the facts that P3 is convex
and GPS algorithm converges to a point satisfying the KKT
condition [21]. The proof is deferred in [41] due to space
limitation.

D. Complexity and Practical Considerations

In this section, we discuss the computation complexity and
some practical considerations for our solution.

1) Computational Complexity: In our model and analysis,
we assume that both MCP Pj and the demand Uj are contin-
uous random variables. When applying them to practice, we
need to sample a PDF (which is a continuous function) into a
probability mass function (which is a discrete sequence). So
we assume that we sample both the PDF of Pj , i.e., fPj

(p),
and the PDF of Uj , i.e., fUj (v), into sequences with length
m. The value of m depends on both the ranges of MCP
and demand and the accuracy we aim to achieve. Based on
such sampling, we show the computational complexity of our
proposed solution, i.e., Algorithm 1.

Theorem 4: If Algorithm 1 converges in niter iterations, its
time complexity is O(niter((N

5m log(Nm) +N3m2))).
The proof of Theorem 4 is in Appendix C. The complexity

is linear with the number of iterations until convergence.
However, exactly characterizing the convergence rate of GPS
algorithm is still an open problem [10], and thus it is hard

to get sharp bounds for the number of iterations, i.e., niter.
Instead, we empirically evaluate the convergence rate of our
Algorithm 1 in Sec. VII-D. The results show that our Algo-
rithm 1 converges fast – within 30 iterations – for the practical
setting considered (i.e., niter ≤ 30).

The highest-order parameter for the complexity is N , i.e.,
the number of datacenters of the CSP.But in reality N is
usually small: For example, there are only 10 deregulated
electricity markets in US. Thus, Theorem 4 shows that the
complexity of our Algorithm 1 is affordable in practice.

2) Imperfect Probability Distributions.: In our model and
solution, we require perfect probability distributions of day-
ahead MCP Pj and the regional demand Uj . However, in
practice, learning distributions from historical data inevitably
introduces certain estimation error. Thus it is important to
evaluate the robustness of our solution to the estimation error.
In Sec.V, we empirically show that our solution works pretty
well for imperfect probability distributions of the demand Uj
which only use the first-order (expectation) and second-order
(variance) statistic information.

V. IMPACTS OF DEMAND AND PRICE UNCERTAINTY

In this section, we study the impacts of demand and price
uncertainties, to better understand the observations in Fig. 1(a)
and 1(b). We will use the variance of a random variable
to measure its uncertainty.4 Taking normal distribution as an
example, the distribution of a random variable with a larger
variance will be more “stretched” and it is more likely to take
very large or small values.

Unless otherwise specified, our discussions in this section
involve a single datacenter.

A. Impact of Demand Uncertainty

Demand uncertainty is one of the main challenges handled
by this work and it is interesting to ask how the performance
will change with different levels of demand uncertainty. Given
any purchased amount of electricity from the day-ahead mar-
ket, a larger demand uncertainty will increase the possibility of
real-time mismatch. As elaborated in Sec. II, both over-supply
and under-supply will introduce inefficiency to the market and
incur additional cost. Thus, the demand uncertainty is always
an unwished curse to increase the electricity cost, even for our
carefully designed bidding strategy.

Now, we formalize our statement in Lemma 1.
Lemma 1: Assume that the day-ahead MCP is positive

and follows an arbitrary distribution, and that the electricity
demand (proportional to workload) follows Truncated Normal,
Gamma, or Uniform distribution, with a variance σ2

D. The
optimal expected electricity cost, achievable by using the
strategy in (15), is non-decreasing in σ2

D.
The proof of Lemma 1 is in Appendix D. Though q∗j (p;α)

in (15) cannot fully eliminate this curse, it can handle the
demand uncertainty carefully such that the performance will

4We remark that Lemma 1 and 2 developed in this section still hold without
the assumption of specific distributions but using the “increasing convex
ordering” or “variability ordering” defined in [34] to measure the uncertainties.
See our discussions in [41].
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not deteriorate too much, as illustrated in the empirical studies
in Fig. 1(a) and Fig. 10.

B. Impact of Price Uncertainty

The price uncertainty in the day-ahead market is the fun-
damental reason to motivate the continuous bidding curve
design and differentiates EPj(α) in this paper from the classic
Newsvendor problem [19]. Different from demand uncertainty,
uncertainty in MCP of day-ahead market allows the optimal
bidding curve q∗j (p;α) to save cost. In particular, the unique
two-sequential-market structure where the real-time market
serves as a backup for the day-ahead market allows our
bidding strategy q∗j (p;α) to fully explore the benefit of low
MCP values but control the risk of high MCP values. We
elaborate as follows. When MCP fluctuates, its value, denoted
by p, takes small and large values. When p is small, we
can purchase cheap electricity from the day-ahead market and
thus enjoys “gain”. When p is large, we have to purchase
expensive electricity from the day-ahead market and thus
suffers “loss”. However, when p ≥ µRT

j , our optimal bidding
strategy q∗j (p;α) will not purchase any electricity from the
day-ahead market but purchase all electricity from the real-
time market at the expected price µRT

j , bounding the “loss”
due to high MCP values. Overall, the gain out-weights the loss
and we achieve cost saving by leveraging MCP uncertainty.
In fact, the larger the MCP uncertainty, the more significant
the saving, as illustrated in our case study in Fig. 1(b).

Now, we make the above intuitive explanations more rigor-
ous in Lemma 2.

Lemma 2: Assume that the electricity demand (proportional
to workload) is positive and follows an arbitrary distribution,
and that the day-ahead MCP follows Truncated Normal,
Gamma, or Uniform distribution, with a variance σ2

P . The
optimal expected electricity cost, achievable by using the
strategy in (15), is non-inceasing in σ2

P .
The proof for Lemma 2 is in Appendix E. It implies that

a larger price uncertainty in the day-ahead market will bring
more benefit of the two-stage market structure and decrease
the cost expectation.

VI. BIDDING WITH FINITE BIDS

We remark that the previously demonstrated advantages can
only be realized when submitting an infinite number of bids
or a continuous bidding curve is allowed. If not, its feasibility
to solve practical problems can be questioned. In this part, we
want to adapt our previous design to tackle the problem when
only K bids (bk, qk), k = 1, . . . ,K can be submitted.

Recall that the bid (bk, qk) succeeds only when the MCP
of the day-ahead market is lower than or equal to the bidding
price bk. Implicitly, submitting K bids (bk, qk), k = 1, . . . ,K
can be viewed as proposing a step-wise bidding curve

q̄(p) =
∑
k:bk≥p

qk.

Our task in this section is to optimize q̄(p), i.e., the values of
bk, qk,∀k, to minimize the electricity cost expectation.

A. Performance Loss Characterization

Firstly, we characterize the cost difference of two different
bidding curves by the following lemma.

Lemma 3: When the day-ahead MCP distribution for elec-
tricity market is given as fPj (p) and we denote the costs of two
bidding curves q1(p), q2(p) (q1(p) = q2(p) = 0, for p ≥ µRT

j )
as ECostj

(
q1(p)

)
,ECostj

(
q2(p)

)
, 5 respectively, we can

have

|ECostj
(
q1(p)

)
− ECostj

(
q2(p)

)
|2

≤ M ·
∫ µRT

j

0

|q1(p)− q2(p)|2dp,

where M =
∫ µRT

j

0

[
fPj

(p)(2µRT
j − βp− p)

]2
dp is a constant de-

termined by the market condition and irrelevant to the bidding
curves.

Essentially Lemma 3 shows that if two bidding curves are
close in terms of the distance

∫ µRT
j

0
|q1(p) − q2(p)|2dp, their

expected costs are also close, which is quite intuitive. The
proof of Lemma 3 is in Appendix F.

We denote the optimal bidding curve in (15) and its cost
by q∗(p) and C∗. Obviously, C∗ serves as a lower bound for
ECost(q̄(p)).6 By applying Lemma 3, we can have

ECostj(q̄(p))− C∗ ≤

√
M ·

∫ µRT
j

0

|q∗(p)− q̄(p)|2dp. (16)

Remarks. (a) This result guarantees that the performance
loss compared with the optimal bidding curve by submitting
only K bids is upper bounded. And the upper bound is jointly
determined by the market condition (M) and how the bids
are designed (

∫ µRT
j

0
|q∗(p) − q̄(p)|2dp). (b) (16) also suggests

a guideline for designing a “good” step-wise bidding curve:
we seek a q̄(p) with a small value of

∫ µRT
j

0
|q∗(p)− q̄(p)|2dp.

Alternatively speaking, we need to find a stepwise function to
approximate the continuous bidding curve.

B. Step-wise Bidding Curve Design

Without loss of generality, we assume that the bidding prices
are indexed increasingly with bk ≤ bk+1 and b0 = 0, bK+1 =
µRT
j . Thus when p ∈ (bk, bk+1], we have q̄(p) =

∑K
l=k+1 q

l.
To have a good step-wise bidding curve, it is natural to find
a q̄(p) to minimize

∫ µRT
j

0
|q∗(p) − q̄(p)|2dp, i.e., to solve the

following problem,

FB min

K∑
k=0

∫ bk+1

bk

|q∗(p)−
K∑

l=k+1

ql|2dp (17a)

s.t. bk ≤ bk+1 (17b)
qk ≥ 0 (17c)

var. bk, qk, k = 1 . . . ,K. (17d)

According to (16), any algorithm to produce a solution with
a small objective value of FB can produce a set of bids with

5Since we consider only bidding strategy here, the GLB-related parameter
α is ignored to simplify the notation.

6C∗ can be viewed as the optimal value of the cost minimization problem
without the “finite-bid” constraint.
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Algorithm 2 A Heuristic Algorithm for Solving FB
Input: Optimal bidding curve q∗(p), number of bids K.
Output: (bk, qk), k = 1, . . . ,K.

1: initialize (bk, qk), k = 1, . . . ,K.
2: while not converge do
3: for k = 1, . . . ,K do
4: Find a value b̃k that satisfies

2q∗(b̃k)− 1

bk+1−b̃k
∫ bk+1

b̃k
q∗(p)dp− 1

b̃k−bk−1

∫ bk+1

b̃k
q∗(p)dp = 0

by binary search.
5: Update bk = b̃k if b̃k decreases the objective value

of (17a).
6: end for
7: end while
8: sk+1 = 1

bk+1−bk
∫ bk+1

bk
q∗(p)dp, ∀k.

9: qk = sk − sk+1,∀k
10: return (bk, qk), k = 1, . . . ,K.

low cost expectation. But unfortunately, FB is nonconvex and
the global optimal solution is difficult to obtain. Apart from
the off-the-shelf solvers, we provide a heuristic algorithm in
Alg. 2 to solve FB iteratively. The detailed analysis of Alg. 2
is relegated in [41] to due to the space limitation and we only
provide the following proposition on its convergence property.

Proposition 1: The objective value of FB is non-increasing
in each iteration and thus Alg. 2 will converge.

The correctness of Proposition 1 is guaranteed by the facts
that the objective value is non-increasing (Line 5 of Alg. 2)
and that the optimal objective value of FB is lower bounded
by 0. The proof is omitted.

Back to our joint optimization framework to meet the finite-
bid constraint, we can firstly ignore it and adopt Alg. 1 to
produce the optimal, yet possibly continuous, bidding curves
q∗j (p;α∗),∀j. After that, we use Alg. 2 to produce step-wise
bidding curves q̄j(p) to approximate q∗j (p;α∗) for different
datacenters. Obviously the objective value by q∗j (p;α∗) is
a lower bound for the optimal value of the problem with
finite-bid constraints. Then, according to (16), if q̄j(p) is
close to q∗j (p;α∗) for all j, the objective value in terms of
q∗j (p;α∗),∀j is also close to the optimal value.

VII. EMPIRICAL EVALUATIONS

In this section, we use trace-driven simulations to evaluate
the performance of our proposed solution.

A. Dataset and Settings

Network Settings. We consider a CSP operating 3 datacen-
ters in San Diego, Houston, and New York City. We assume
that due to quality of experience consideration, the CSP cannot
balance workloads between datacenters in San Diego and New
York City. We set the unit bandwidth cost of routing workloads
across datacenters as zij = κ ·

(
µRT

1 + µRT
2 + µRT

3

)
/3 if i 6= j,

and zii = 0, i = 1, 2, 3. We let κ = 0.1 as a default setting,
and we vary the values of κ to evaluate the overall cost-saving
performance under different bandwidth-cost settings.
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Workload and Electricity Demand. We get the numbers
of service requests per hour against the Akamai CDN in North
America for 48 days from Akamai’s Internet Observatory
website [1]. By using the conversion ratio claimed by Google
for its datacenters [28], we scale up the request information
to create an electricity demand series with averaged hourly
demand of 125 MWh. The total demand is divided into three
regions according to regional electricity consumptions of the
three locations [41]. We set the ratio of demand of region i to
be served locally, i.e., λi, to be 0.7. We also set datacenter j’s
capacity Cj to be 30% larger than region j’s peak demand,
since it was reported that on average 30% or more of the
capacity of datacenters is idling in operation [7], [12].

Electricity Prices in Day-ahead and Real-time Markets.
We obtain the electricity prices (MCP of day-ahead market
and real-time market price) from three regional ISO websites
which serve the customers in San Diego, Houston, and New
York, respectively [6] [11] [26]. The discounting factor β
of selling back unused electricity is set as 0.5, which means
that the CSP suffers half loss in case of over-supply.

Evaluation and Comparison. We test our design on 24
instances, each corresponding to one hour of the day. For
each hour, the distributions of electricity demand, day-ahead
MCP and real-time prices are learned from our dataset, and the
real-time price expectation is computed from the distribution
accordingly. For illustration purpose, we plot the empirical
distributions of MCPs and demands for 2pm in Fig. 6 and
Fig. 7, respectively. We denote our solution as OptBidding-
OptGLB, in which the GPS part is based on an implementation
used in [8], [9]. We test the following four baseline alter-
natives. (i) NoBidding-NoGLB: it represents the strategy of
buying all electricity in real-time markets without doing GLB.
It serves as the benchmark to compute cost reduction for other
algorithms. (ii) OptBidding-NoGLB: it represents the strategy
of optimally bidding in day-ahead markets but without doing
GLB. (iii) NoBidding-OptGLB: it represents the strategy of
doing no bidding in the day-ahead markets but purchasing
all electricity in real-time markets and doing optimal GLB
(adapted from the solution in [32]). (iv) SimpleBidding-
OptGLB: it represents a joint bidding and GLB strategy
proposed in [7], in which the CSP only submits one bid to
each day-ahead market j with bidding price being µRT

j and
the GLB strategy is optimized by a Matlab solver fmincon.

B. Performance Comparison and Impact of Finite Bids

We compare the performance of different solutions in terms
of the expected daily cost in Tab. I. Further, we also evaluate
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TABLE I
Cost-saving performance of different schemes.

Solution Daily Cost (k$) Reduction (%)

NoBidding-NoGLB 161.9 -
NoBidding-OptGLB (adapted from [32]) 154.5 4.6
SimpleBidding-OptGLB [7] 155.8 3.8
OptBidding-NoGLB 135.4 16.4
OptBidding-OptGLB (Our solution) 128.2 20.8
OptBidding-OptGLB (1 bid) 133.3 17.7
OptBidding-OptGLB (3 bids) 128.6 20.5

the performance loss due to that we approximate the optimal
bidding curve (which may require the CSP to submit infinite
number of bids) by using only 1 and 3 bids in our solution.
We show the cost reduction of using infinite number of bids,
1 bid, and 3 bids in the last three rows of Tab. I, respectively.

We have the following observations. First of all, as seen
from Tab. I, we can see that our proposed solution outperforms
all other alternatives and reduces the CSP’s operating cost by
20.8% as compared to the benchmark NoBidding-NoGLB.
Meanwhile, we observe that SimpleBidding-OptGLB only
reduces the cost by 3.8%, which is much less than that
achieved by our solution OptBidding-OptGLB. Moreover, the
cost reduction (3.8%) is even less than NoBidding-OptGLB
(4.6%), which does not perform bidding in the day-ahead
markets but purchases all electricity from the real-time mar-
kets. This highlights the importance of designing intelligent
strategies for bidding on the day-ahead markets.

In addition to intelligent bidding strategy design, we observe
that GLB also brings extra cost saving for CSP. For example,
NoBidding-OptGLB reduces the cost by 4.6% as compared
to NoBidding-NoGLB, and OptBidding-OptGLB achieves
4.4% extra reduction as compared to OptBidding-NoGLB.

Here, we use the simple method explained in Sec. VI to
approximate the optimal bidding curve with a finite number
of bids (in particular, 1 and 3 bids in this experiment). From
the last two rows in Tab. I, we observe that submitting 1 bid
can achieve reasonably good performance (17.7% vs 20.8%).
Submitting 3 bids can almost achieve the same performance
as submitting infinite number of bids (20.5% vs 20.8%).
This observation suggests that our solution performs well in
practice even if the CSP is only allowed to submit a small
number of bids to a day-ahead market. To understand this
observation, we visualize the optimal bidding curves of three
datacenters for one optimization instance (4pm) in Fig. 8. We
can see that all three bidding curves are “flat” and thus can be
accurately approximated by step-wise functions corresponding
to submitting only a small number of bids.

C. Impact of Market Price Uncertainty and Demand Uncer-
tainty

In Sec. I, we provide two experiments related to the
electricity demand uncertainty and market price uncertainty
(Fig. 1(a) and Fig. 1(b)) to motivate the study in this paper
and we describe the details here. Our Solution denotes the
strategy by OptBidding-OptGLB and Baseline denotes a
simple strategy: in each region, we pick only one market
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with cheaper electricity, day-ahead market or real-time market
depending on the price expectations, and buy the expected
amount of electricity demand in the picked market (If picking
the real-time market, we submit no bid in the day-ahead
market; if picking the day-ahead market, we submit one bid
with the bidding price infinity and the bidding quantity as the
expected electricity demand). To understand their individual
impact separately, we construct two experiments.

In Fig. 1(a), we set the day-ahead MCP and real-time price
to be constant (their sample means), and test the performance
of our solution and the baseline with different levels of
demand uncertainty (we manipulate the data such that the
demand expectations stay the same and their sample STDs
increase from 0 to 4.2, where 0 STD represents the scenario
without demand uncertainty.). As we can observe, the cost
reduction ratio of our solution decreases from 7% to 6.7%
while that of the baseline solution decreases from 7% to
5.5%, which fits our analysis in Sec. V-A. It also means that
even though the demand uncertainty curses the performance
of both two schemes, our solution behaves more robustly. In
Fig. 1(b), we set the electricity demand to be constant (its
sample mean), and test the performance with different levels
of market price uncertainty (similarly, we keep the day-ahead
MCP expectation the same and increase its sample STD from
0 to 30.). In this case, the performance of the baseline solution
stays the same. This observation is not surprising because the
baseline’s decision will be the same for any level of market
price uncertainty and we also only care about the expected
cost. On the other hand, the cost reduction ratio of our solution
increases from 7% to 21%. Also, this result should not be
surprising based on our analysis in Sec. V-B.

D. Convergence Rate of the Joint Bidding and GLB Algorithm

In this subsection, we empirically evaluate the convergence
rate of our proposed Algorithm 1. We run our algorithm for
two instances with workload/price distribution of 10am and
2pm, respectively. From Fig. 9, we can see that our algorithm
converges rather fast – within 30 iterations. The computation
complexity of each iteration is polynomial in the problem size
(Theorem 4). The main efforts in each iteration are just put
to evaluate the objective values by a given set of candidate
solutions, and the number of such candidate solutions is less
than 18 (2 times the dimensions of α).
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E. Impact of Inaccurate Demand Distribution Estimation
We properly scale the electricity demand of all three regions

such that the demand expectations stay the same and the
average of the normalized sample standard deviations among
all three regions changes from 0.02 to 0.13, to mimic low to
high uncertainty in workloads and hence electricity demand.
Here normalized sample standard deviation is defined as the
ratio of the sample standard deviation to the sample mean.
We apply our solution OptBidding-OptGLB to the set of
scaled demands and plot the cost reduction in Fig. 10. From
Fig. 10, similar to the observations obtained in Sec. VII-C
but using real-world data traces, we can see that the cost
reduction decreases as the demand uncertainty increases, but
the performance loss is minor, suggesting that our solution
OptBidding-OptGLB is robust to demand uncertainty.

The main purpose of the experiments in this subsection is
to study the impact of imperfect distribution estimation. In
our solution OptBidding-OptGLB, we use the distribution of
the demand Uj for region j as input. In practice, however,
the CSP may not have the exact demand distributions, but just
their estimates based on historical data. It is common for these
estimated distributions to have the same mean and variance
as the actual demand distributions, but it is difficult, if not
impossible, for the estimated distribution to match the actual
distribution exactly. A central question is then how sensitive
is the performance of our solution OptBidding-OptGLB to
the accuracy of the distribution estimation, given that we have
obtained an accurate estimate of the mean and variance?

We explore answers to this question by comparing the
performance achieved by our solution OptBidding-OptGLB
based on the following distributions for demand with the same
mean and variance: actual distribution, normal distribution,
and uniform distribution. We compare their cost reductions
in Fig. 10. As seen, the performance loss is minor, implying
that accurate first and second order statistics of the demand
distribution may be enough to determine the performance
of our solution OptBidding-OptGLB. This observation also
suggests an interesting direction for future work.

F. Impact of Local Service Requirement and Bandwidth Cost
We investigate the impact of local service requirement,

where we changes the percentage of demand that must be
served locally, i.e., λi, from 0.5 to 1.0. The simulation results
are in Fig. 11, where we can see the cost reduction of our
solution OptBidding-OptGLB decreases as λi increases. This
matches our intuition that larger λi means that the CSP has
less room to do GLB. When λi = 1, i.e., all demand should
be served locally, our solution OptBidding-OptGLB coincides
with OptBidding-NoGLB.

We also study the impact of bandwidth cost, where we
choose two different values (0.1 and 0.4) for the bandwidth
cost factor κ. We show the cost reduction in Fig. 11. As seen,
a larger κ, meaning higher bandwidth cost, leads to smaller
reduction, which matches out intuition.

VIII. RELATED WORK

The seminal works [28], [29] propose the idea of GLB to
effectively reduce electricity cost of datacenter operators. Later
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on many works [22], [24], [32], [38] have broadened the land-
scape of GLB with more practical considerations and design
spaces. Instead of studying the benefit of GLB, several works
[7], [36] study the impact of GLB on the electricity supply
chain and electricity markets. Several works investigate how
GLB should be operated in the presence of demand uncertainty
and/or market price uncertainty. Both [30] and [39] utilize the
long-term forward contracts to reduce operation risk. Similar
to our work, [7], [14], [15], [37] deal with uncertainty by
bidding in the day-ahead market. However, [14], [15] do not
fully exploit the bidding design space, and [7], [37] do not
consider demand uncertainty. Instead, our work fully exploits
the bidding design space and simultaneously considers the
demand and market uncertainty. Note that the problem of
designing the optimal bids/offers has also been considered in
[2], [3], [13], [23], [27] etc., under various pricing models,
but for a single-regional-market scenario. In particular, the
authors in [2] design the optimal offer strategies for renewable
generation company with given day-ahead market prices but
uncertain wind generation.

IX. CONCLUDING REMARKS

We develop an algorithm that is proven to minimize the total
electricity and bandwidth cost of a CSP in face of workload
and price uncertainties, by jointly optimizing strategic bidding
in wholesale markets and GLB. Evaluations based on real-
world traces show that our algorithm can reduce the CSP’s cost
by up to 20%. We show that, interestingly, while uncertainty
in workloads deteriorates cost saving, uncertainty in day-ahead
market prices allows us to achieve a cost reduction even larger
than the setting without price uncertainty. Our work has several
limitations. First, we assume that all the day-ahead market’s
MCPs and real-time market prices are mutually independent,
which may not hold in practice. Second, we assume that the
CSP has negligible market power, which may not hold for
local markets even though globally datacenters today only
consume less than 2% of the total electricity [12]. Finally, we
do not model possible strategic behaviours of other market
participants. Addressing these limitations is an interesting
research direction.
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APPENDIX

A. Proof of Theorem 1

Proof: To prove Theorem 1, we firstly provide Proposi-
tion 2 and 3 to aid our analysis.

The discussions in Proposition 2 and 3 only involve one
datacenter, so we hide the GLB decision α and abuse the
notations a little bit to lighten the formula. We will denote
Costj(q(p), fV (v)) as the electricity cost of datacenter j when
its demand follows fV (v) and it submits a bidding curve q(p).

Proposition 2: Given two feasible7 demands Ṽ and V with
Ṽ = δV , where δ ∈ (0, 1) is a constant, we can have

Costj(δq(p), fṼ (v)) = δCostj(q(p), fV (v)), (18)

for any q(p) ∈ Q.
Proposition 3: Given two feasible demands V 1 and V 2 with

PDF fV 1(v) and fV 2(v), if q1(p), q2(p) ∈ Q̂j and V 1 + V 2

is also feasible, we can have

Costj(q1(p) + q2(p), fV 1+V 2(v)) ≤
Costj(q1(p), fV 1(v)) + Costj(q2(p), fV 2(v)). (19)

The proofs of Proposition 2 and Proposition 3 involve
tedious technical analysis and are deferred in [41].

Now we are ready to prove Theorem 1 by following steps,
To prove P2 is convex, it is enough to show that its objective

function is convex over its feasible region. And we only need
to show that ECostj (qj(p), α) is convex in (qj(p), α).

Let V 1 = (α1D)i, V 2 = (α2D)i and α = δα1 +(1−δ)α2,
we have V = (αD)i = δV 1+(1−δ)V 2. If the distributions for
V 1 and V 2 are f1(y) and f2(y), the distribution for Y is given

7Demand V is feasible means that the maximum value of V is less than
or equal to the datacenter’s capacity.

http://www.caiso.com
http://www.ercot.com
http://energy.gov
http://en.wikipedia.org/wiki/Google_Energy
http://www.nyiso.com
https://staff.ie.cuhk.edu.hk/%7Emhchen/papers/BGLBInfocomTech.pdf
https://staff.ie.cuhk.edu.hk/%7Emhchen/papers/BGLBInfocomTech.pdf
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by f̃1 � f̃2(y), where f̃1(y) and f̃2(y) are the distributions
for δV 1 and (1− δ)V 2. Then,

δECostj
(
q1
j (p), α1

)
+ (1− δ)ECostj

(
q2
j (p), α2

)
=δCostj(q1(p), f1(v)) + (1− δ)Costj(q2(p), f2(v)),

(Ea)
= Costj(δq1

j (p), f̃1(v)) + Costj(q2
j (p), f̃2(v)),

(Eb)

≥ Costj(δq1(p) + (1− δ)q2(p), fδV 1+(1−δ)V 2(v)),

=ECostj
(
δq1
j (p) + (1− δ)q2

j (p), δα1 + (1− δ)α2
)
.

(Ea) and (Eb) are established by Proposition 2 and Proposi-
tion 3, respectively.

Moreover, to prove that P1 and P2 have the same optimal
solution, we only need to show that, with any α, the optimal
bidding curve of datacenter j belongs to Q̂j , which is true by
Theorem 2.The proof is complete.

B. Proof of Theorem 2

Proof: To solve EPj(α), we need to assign a value qj(p)
for each p, to specify how much electricity to buy for any
realization of MCP.

The sketch of the proof is as follows: We note that there
is a constraint that qj(p) ∈ Q̂j . In the following, we first
ignore this constraint and solve the relaxed problem optimally.
Then we will show that the optimal solution of the relaxed
problem actually satisfies this constraint and thus is optimal
to the original problem EPj(α). We minimize the objective of
unconstraint EPj(α) by minimizing the function value inside
the integral for each p.

Now, let c(q) = pq− βp
∫ q

0
(q− v)fVj

(v)dv+ µRT
j

∫ v̄j
q

(v−
q)fVj

(v)dv, we can have

dc(q)

dq
= p− µRT

j

∫ v̄j

q

fVj
(v)dv − βp

∫ q

0

fVj
(v)dv

= p− µRT
j + (µRT

j − βp)
∫ q

0

fVj
(v)dv.

We discuss the form of the optimal solution as follows,
• If p ≤ µRT

j , µRT
j ≥ βp and dc(q)

dq increases with q. The
optimal solution can be obtained by solving dc(q)

dq = 0

and the solution is q∗j (p) = F−1
Vj

(
µRT
j −p

µRT
j −βp

)
.

• If p ∈
(
µRT
j , µ

RT
j /β

)
, p−µRT

j ≥ 0 and µRT
j − βp ≥ 0, we

have dc(q)
dq ≥ 0. The optimal solution is q∗j (p) = 0.

• If p ≥ µRT
j /β, µRT

j − βp ≤ 0 and we can observe that
dc(q)
dq ≥ p − µRT

j + (µRT
j − βp) ≥ 0. Then the optimal

solution is q∗j (p) = 0.
The we can get that the optimal solution to the relaxed problem
is

q∗j (p;α) =

F−1
Vj

(
µRT
j −p

µRT
j −βp

)
, if p ∈

[
0, µRT

j

)
;

0, otherwise.

Note that
µRT
j −p

µRT
j −βp

∈ (0, 1) decreases with p and F−1
Vj

(·) is an

increasing function, so q∗j (p;α) ∈ Q̂j . Also, in the processing
of obtaining q∗j (p;α), we do not restrict our attention to Q̂j ,

instead we search the entire bidding curve design space Q,
which meas that q∗j (p;α) is also the optimal bidding curve
for P1. The proof is complete.

C. Proof of Theorem 4

Proof: We first describe the complexity to solve our inner-
loop problem EPj(α), i.e., compute the optimal datacenter j’s
bidding curve q∗j (p;α) through (15) when the GLB decision
is given by α. We need five steps to obtain q∗j (p;α). (i) We
obtain the PDF of Uij , i.e., fUij

(v), for all i ∈ [1, N ]. Through
(8), we can obtain fUij (v) in O(m) for each i, and thus get
all fUij (u)’s (∀i ∈ [1, N ]) in O(Nm). (ii) We obtain the PDF
of datacenter j’s allocated demand Vi, i.e., fVj

(v). We can
obtain fVj

(v) through (7) by doing convolution N − 1 times
in O(N2m log(Nm)) [5]. Note that fVj

(v) could take values
at Nm different points. (iii) We obtain the CDF of Vj , i.e.,
FVj (v). We can iteratively do summation to obtain FVj (v) in
O(Nm). (iv) We obtain the inverse function of the CDF of Vj ,
i.e., F−1

Vj
(v). We only need to inverse all Nm points of FVj

(v),
which requires O(Nm) complexity. (v) We obtain the optimal
bidding curve q∗j (p;α). Since we have sampled fPj

(p) into a
length-m sequence, we only need to get q∗j (p;α) for at most
m different values for p. Thus we can construct q∗j (p;α) in
O(m) steps. Therefore, the total complexity is the sum of (i)-
(v), i.e., O(Nm)+O(N2m log(Nm))+O(Nm)+O(Nm)+
O(Nm) +O(m) = O(N2m log(Nm)).

We then analyze the computation complexity of the subrou-
tine P3-OBJ(α), i.e., evaluating the objective value of P3 for
any given GLB decision α. Step 13 needs O(N2) from (9).
Steps 15 is the complexity to compute q∗j (p;α), which requires
O(N2m log(Nm). Step 16 is the complexity to compute
ECostj

(
q∗j (p;α),α

)
by (12). For any Pj = p, the day-ahead

trading cost part can be computed in O(1); the rebate of over-
supply can be computed in O(Nm); the cost of under-supply
can be computed in O(Nm); thus the total complexity for
given Pj = p is O(Nm). Since we have sampled fPj

(p)
into a length-m sequence, the total complexity to compute
ECostj

(
q∗j (p;α),α

)
will be O(Nm2). Since P3-OBJ(α)

should do N iterations for all datacenters, the total complex-
ity to evaluate P3-OBJ(α) is O(N2 + N(N2m log(Nm) +
Nm2)) = O(N3m log(Nm) +N2m2).

Finally we come to analyze the computational complexity
of our global solution, i.e., Algorithm 1. During the while
loop, each iteration requires at most (2N + 1) invokes for
the subroutine P3-OBJ(α), and thus incurs O((2N + 1) ×
(N3m log(Nm) +N2m2)) = O((N4m log(Nm) +N3m2)).
Suppose that our Algorithm 1 converges in niter iterations.
Then the computational complexity of our Algorithm 1 is
O(niter((N

4m log(Nm) +N3m2))).

D. Proof of Lemma 1

Proof: To aid our analysis, we introduce two stochas-
tic orderings called “increasing convex ordering” (≥ic) and
“variability ordering” (≥var), the definitions of which are
presented below. And an important property is presented in
Proposition 4.
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Definition 1: ( [34, Definition 4.1]) For two random vari-
ables X and Y , X ≥ic Y if and only if E[f(X)] ≥ E[f(Y )]
for all nondecreasing convex functions f .

Definition 2: ( [34, Definition 4.8]) Consider two random
variables X and Y with the same mean E[X] = E[Y ], having
distribution functions f and g. Suppose X and Y are either
both continuous or discrete. We say X is more variable than
Y , denoted as X ≥var Y , if the sign of f − g changes exactly
twice with sign sequence +,−,+.

Proposition 4: ( [34, Lemma 4.9]) X ≥var Y implies that
X ≥ic Y .

We consider two electricity demands V1 and V2 with the
same expectations and V1 has a larger variance. According to
the definition of “variability ordering” and the properties of
involved unimodal distributions, V1 ≥var V2. We denote C1

and C2 as the cost of V1 and V2 by the optimal bidding curve
in (15). Our purpose is to show that C1 ≥ C2.

Let C1(p) and C2(p) be the cost expectation conditioning
on that the day-ahead MCP is realized as p, and C1 =∫ +∞

0
C1(p)fPi(p)dp, C2 =

∫ +∞
0

C2(p)fPi(p)dp. It would be
sufficient if we can show that C1(p) ≥ C2(p),∀p.

Also, note that when the day-ahead MCP is fixed as p, the
problem EPj(α) will reduce to the classic Newsvendor prob-
lem and (15) is the corresponding optimal solution. According
to Proposition 4, we can have V1 ≥ic V2. By the following
proposition, we can immediately have C1(p) ≥ C2(p),∀p.

Proposition 5: [34, Proposition 4.3] For the Newsvendor
problem, given two future demands D1, D2, if D1 ≥ic D2,
E[D1] = E[D2], then the optimal cost of D1 is not less than
that of D2.

The proof is complete.

E. Proof of Lemma 2

Proof: We first define Copt(p) as the expected cost under
the optimal bidding strategy when the day-ahead MCP is
realized as p. And the total cost expectation by (15) can be
expressed as EP [Copt(p)], where the expectation is taken with
respected to the distribution of day-ahead MCP. We consider
two stochastic day-ahead MCP denoted by P 1 and P 2 with
E[P 1] = E[P 2] and P 1 having a larger variance. According
to the definition of “variability ordering” and the properties of
involved unimodal distributions, P 1 ≥var P

2. Our goal is to
show that EP 1 [Copt(p)] ≤ EP 2 [Copt(p)].

Since P 1 ≥var P
2 implies P 1 ≥ic P

2 (by Proposition 4),
according to the following lemma, it will be sufficient to show
that Copt(p) is a concave function of p. (A more direct result is
that EP 1 [−Copt(p)] ≥ EP 2 [−Copt(p)] if −Copt(p) is convex.)

Lemma 4: ( [31]) If X and Y are nonnegative random
variables with E[X] = E[Y ], then X ≥ic Y if and only if
E[f(X)] ≥ E[f(Y )] for all convex functions f .

Let α ∈ (0, 1) and p0 = αp1 + (1 − α)p2. We will show
that Copt(p

0) ≥ αCopt(p
1) + (1− α)Copt(p

2).

Recall that Copt(p) = pq∗j (p) − βp
∫ q∗j (p)

0
(q∗j (p) −

v)fVj (v)dv + µRT
j

∫ v̄j
q∗j (p)

(v − q∗j (p))fVj (v)dv. To lighten the

formula, we further denote Qover(q
∗
j (p)) =

∫ q∗j (p)

0
(q∗j (p) −

v)fVj
(v)dv and Qunder(q

∗
j (p)) =

∫ v̄j
q∗j (p)

(v−q∗j (p))fVj
(v)dv as

the expected over-supply and under-supply, respectively. Then
our proof will proceed as follows,

Copt(p
0)

=p0q∗j (p0)− βp0Qover(q
∗
j (p0)) + µRT

j Qunder(q
∗
j (p0))

(Ea)
= α

(
p1q∗j (p0)− βp1Qover(q

∗
j (p0)) + µRT

j Qunder(q
∗
j (p0))

)
+

(1− α)
(
p2q∗j (p0)− βp2Qover(q

∗
j (p0)) + µRT

j Qunder(q
∗
j (p0))

)
(Eb)

≥ α
(
p1q∗j (p1)− βp1Qover(q

∗
j (p1)) + µRT

j Qunder(q
∗
j (p1))

)
+

(1− α)
(
p2q∗j (p2)− βp2Qover(q

∗
j (p2)) + µRT

j Qunder(q
∗
j (p2))

)
=αCopt(p

1) + (1− α)Copt(p
2).

We get step (Ea) by replacing the p0 outside q∗j (·) with
αp1 + (1− α)p2 and rearranging the terms. And (Eb) is due
to the fact that q∗j (p1) and q∗j (p2) are the optimal electricity
procurement. (remember that we obtain q∗j (p1), q∗j (p2) by
minimizing pq∗j (p) − βpQover(q

∗
j (p)) + µRT

j Qunder(q
∗
j (p)) for

p1, p2). The proof is completed.

F. Proof of Lemma 3
Proof: We firstly reformulate the cost function from (12)

to the following one,

ECostj(q(p))

=
∫ +∞

0
fP (p)

[
(µRT
j − βp)

∫ q(p)
0

(q(p)− v)fV (v)dv − (µRT
j − p)q(p)

]
dp

+ µRT
j E [V ]

(Ea)
=

∫ µRT
j

0

fP (p)

[
(µRT
j − βp)

∫ q(p)

0

FV (v)dv − (µRT
j − p)q(p)

]
dp

+ µRT
j E [V ] .

(Ea) comes from the facts that q(p) = 0 for p ≥ µRT
j and∫ q(p)

0

(q(p)− v)fV (v)dv =

∫ q(p)

0

(q(p)− v)dFV (v)

=(q(p)− v)FV (v)|q(p)0 −
∫ q(p)

0

FV (v)d(q(p)− v)

=

∫ q(p)

0

FV (v)dv.

We will prove the inequality in the following steps.

|ECostj(q1(p))− ECostj(q2(p))|2

=|
∫ µRT

j

0
fP (p)

[
(µRT
j − βp)

∫ q1(p)

q2(p)
FV (v)dv − (µRT

j − p)(q1(p)− q2(p))
]
dp|2

(Eb)

≤ |
∫ µRT

j

0
fP (p)

[
(µRT
j − βp)|

∫ q1(p)

q2(p)
FV (v)dv|+ (µRT

j − p)|q1(p)− q2(p)|
]
dp|2

(Ec)

≤ |
∫ µRT

j

0
fP (p)

[
(µRT
j − βp)|q1(p)− q2(p)|+ (µRT

j − p)|q1(p)− q2(p)|
]
dp|2

=|
∫ µRT

j

0
fP (p)

[
(2µRT

j − βp− p)|q1(p)− q2(p)|
]
dp|2

(Ed)

≤
∫ µRT

j

0

[
fP (p)(2µRT

j − βp− p)
]2
dp
∫ µRT

j

0
|q1(p)− q2(p)|2dp.

Step (Eb) is obtained by replacing the two terms in the
integral by their absolute values, which is similar to |a+ b| ≤
||a|+ |b||. Step (Ec) is due to the fact that F (v) ≤ 1 and (Ed)
is the application of Cauchy-Schwarz inequality.
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