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ABSTRACT
By employing local renewable energy sources and power
generation units while connected to the central grid, mi-
crogrid can usher in great benefits in terms of cost effi-
ciency, power reliability, and environmental awareness. Eco-
nomic dispatching is a central problem in microgrid oper-
ation, which aims at effectively scheduling various energy
sources to minimize the operating cost while satisfying the
electricity demand. Designing intelligent economic dispatch-
ing strategies for microgrids, however, is drastically different
from that for conventional central grids, due to two unique
challenges. First, the erratic renewable energy emphasizes
the need for online algorithms. Second, the widely-adopted
peak-based pricing scheme brings out the need for new peak-
aware strategy design. In this paper, we tackle these crit-
ical challenges and devise peak-aware online economic dis-
patching algorithms. For microgrids with fast-responding
generators, we prove that our deterministic and random-
ized algorithms achieve the best possible competitive ratios
2− β and e/(e− 1 + β), respectively, where β ∈ [0, 1] is the
ratio between the minimum grid spot price and the local-
generation price. Our results characterize the fundamental
price of uncertainty of the problem. For microgrids with
slow-responding generators, we first show that a large com-
petitive ratio is inevitable. Then we leverage limited predic-
tion of electricity demand and renewable generation to im-
prove the competitiveness of the algorithms. By extensive
empirical evaluations using real-world traces, we show that
our online algorithms achieve near offline-optimal perfor-
mance. In a representative scenario, our algorithm achieves
23% and 11% cost reduction as compared to the case with-
out local generation units and the case using peak-oblivious
algorithms, respectively.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques; De-
sign studies; F.1.2 [Modes of Computation]: Online com-
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putation; I.2.8 [Problem Solving, Control Methods,
and Search]: Scheduling
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1. INTRODUCTION
Microgrid represents a promising paradigm of future elec-

tric power systems that autonomously coordinate distributed
renewable energy source (e.g., solar PVs), local generation
unit (e.g., gas generators), and the external grid to satisfy
time-varying energy demand of a local community. As com-
pared to traditional grids, microgrid has recognized advan-
tages in cost efficiency, environmental awareness, and power
reliability. Consequently, worldwide installed microgrid ca-
pacity has witnessed a phenomenon growth, reaching 866
MW in 2014, and is expected to reach 4,100 MW by 2020 [4].

Energy generation scheduling in microgrid determines the
power output level of local generation units and power to be
procured from external grid, with the goal of minimizing the
total cost over a pre-determined billing cycle. The schedul-
ing plan should meet the time-varying energy demand and
respect physical constraints of the generation units. Such
problem has been studied extensively in the power system
literature for large-scale traditional grids. Two main vari-
ants are unit commitment [13] and economic dispatching [10]
problems. The unit commitment problem typically opti-
mizes the start-up and the shut-down schedule of power
generation units, whereas the economic dispatching prob-
lem optimally schedules the output levels given the on/off
status as the input parameters. In this paper, we focus on
economic dispatching problem in microgrid scenarios.

At first glance, economic dispatching in microgrid may
appear to be a small-scale version of the classical urban-wide
economic dispatching problem. However, the following two
unprecedented challenges make the problem fundamentally
different, thereby the previous solutions inapplicable.

B Uncontrollable, intermittent, and uncertain en-
ergy sources. Classical scheduling strategies rely on ac-
curate prediction of future demand and dispatch-able sup-
ply [10]. In microgrids, however, the renewable sources are
highly uncontrollable (not available on-demand), intermit-
tent (irregular fluctuations), and uncertain (hard to predict
accurately). Incorporating a large fraction of such renew-
able energy sources makes conventional strategies not ap-
plicable, and calls for new online scheduling strategies that



do not rely on accurate prediction of demand and renewable
generation [14,16].

B Peak-based charging model of the external grid.
The real-world pricing scheme for consumers with large loads
(such as universities or data centers) adopts a hybrid time-
of-use and peak-based charging model where the electricity
bill consists of both the total energy usage and the peak
demand drawn over the billing cycle. The motivation is to
encourage large customers to smooth their demand, thereby
the utility provider can reduce its planned capacity obliga-
tions. The peak price is often more than 100 times higher
than the maximum (on-peak) spot price, e.g., 118 times for
PG&E [5], and 227 times for Duke Energy Kentucky [3] 1.
Consequently, the contribution of peak charge in the electric-
ity bill for a typical costumer can be considerable, e.g., from
20% to 80% for several Google data centers [21]. These ob-
servations suggest that economic dispatching strategies with
peak-based charging model taken into account (referred to
as peak-aware economic dispatching) may substantially re-
duce the total operating costs for microgrids as compared
to economic dispatching strategies oblivious to peak-based
charging (referred to as peak-oblivious economic dispatch-
ing). This is indeed the case as verified by our real-world
trace-driven evaluation in Sec. 5.

All previous researches on microgrid economic dispatch-
ing, that we are aware of and review in Sec. 6, adopt a peak-
oblivious cost model, wherein the costumer bill is computed
by total energy usage following a time-of-use pricing scheme.
To the best of our knowledge, this work is the first that ad-
dresses the peak-aware economic dispatching problem using
competitive online algorithms in microgrid scenario. The
main contributions of the paper are summarized as follows:

B We identify and formulate the peak-aware economic dis-
patching problem of minimizing the operating cost for micro-
grids under the hybrid time-of-use and peak-based pricing
scheme in Sec. 2. Notably, two aforementioned challenges
change the structure of the problem fundamentally (see the
discussions in Sec. 3.4 for an example) and call for different
online algorithm design.

B In Sec. 3, we focus on “fast-responding” generator sce-
nario, where the ramping constraints (i.e., the maximum
change in output level over successive steps) of local gener-
ators are inactive. We follow a divide-and-conquer approach
and decompose the problem into multiple sub-problems, solve
the sub-problems by their “rent-or-buy” nature, and then
combine the solutions to obtain a solution for the origi-
nal problem. We then demonstrate that the competitive
ratios of our algorithms are (2− β) and e/ (e− 1 + β) for
deterministic and randomized versions respectively, where
β ∈ [0, 1] is the ratio between the minimum grid spot price
and the generator price. We prove that the ratios are the
best possible. As such, these results characterize the funda-
mental price of uncertainty for the problem.

B For“slow-responding”generator scenario in Sec. 4, where
the ramping constraints are active, we firstly show that
a large competitive ratio is inevitable without any future
information. We then design an online algorithm with a
small competitive ratio by taking the advantage of sufficient
looking-ahead information. Our results suggest looking-head

1In practice, the unit of peak price is $/KW while the unit
of spot price is $/KWh. This estimation is obtained by
assuming the peak demand lasts one hour.

as a useful mechanism to neutralize the ramping constraints
in online algorithm design.

B In Sec. 5, by extensive evaluations using real-world
traces, we show that our online algorithms can achieve satis-
factory empirical performance. Furthermore, our peak-aware
online algorithms achieve near offline-optimal performance,
and outperform the peak-oblivious designs [14,16] under var-
ious settings. The substantial cost reduction shows the ben-
efit and necessity of designing peak-aware strategies for eco-
nomic dispatching in microgrids.

Due to the space limitation, all the proofs can be found
in our technical report [23].

2. PROBLEM FORMULATION
In the microgrid economic dispatching problem, the ob-

jective is to orchestrate various energy sources to minimize
the operating cost while satisfying the electricity demand.

We consider one billing cycle, which is a finite time horizon
set T = {1, . . . , T} with T discrete time slots. In practice,
the duration of one cycle is usually one month and the length
of each time slot is 15 minutes [5]. The key notations used
in this paper are defined in Table 1.

Table 1: Key notations
Notation Definition

T The total number of time slots
T The time slot set

e(t) The net electricity demand

u(t)
The electricity level obtained from local
generators

v(t)
The electricity level obtained from
electricity grid

pe(t)
The spot price of the electricity from grid
at time t, pmin

e ≤ pe(t) ≤ pmax
e , ($/KWh)

pg
The unit cost of the electricity by local
generators ($/KWh)

pm
The peak demand price of the electricity
grid ($/KWh)

Ru The maximum ramping up rate of local
generator

Rd The maximum ramping down rate of local
generator

C Local generator capacity

Net electricity demand. We consider arbitrary renew-
able energy generation. Let e(t) be the net electricity de-
mand in time slot t, i.e., the total electricity demand sub-
tracted by the renewable generation. For ease of presenta-
tion and discussion, we assume e(t) only takes nonnegative
integer values. Note that we do not assume any specific
stochastic model of e(t).

Local generation. There are local generators deployed
in the microgrid with C total generation capacity, i.e., they
can jointly satisfy at most C units of electricity demand.
We consider a practical setting where the generator’s in-
cremental power output in two consecutive slots is lim-
ited by the ramping-up and ramping-down constraints Ru

and Rd, respectively. Most microgrids today employ small-
capacity generators that are powered by gas turbines or
diesel engines. These generators are “fast-responding” in the
sense that they have large ramping-up/-down rates. Mean-



while, there are also“slow-responding”generators with small
ramping-up/-down rates. We denote pg as the cost of gen-
erating unit electricity using local generation.

Electricity from the external grid. The microgrid can
also obtain electricity supply from the external grid for un-
balanced electricity demand in an on-demand manner. We
denote the spot price at time t from the external grid as
pe(t). We assume that pe(t) ≥ pmin

e ≥ 0 2. Again, we do not
assume any stochastic model of pe(t). For ease of discus-

sion later, we define β , pmin
e /pg as the ratio between the

minimum grid price and the unit cost of local generation.
Cost model. The microgrid operating cost in T includes

the expense of purchasing electricity from the external grid
and that of local generation. Let v(t) be the amount of
electricity purchased from the external grid and u(t) be the
amount of electricity generated locally.

The cost of grid electricity consists of volume charge and
peak charge. The volume charge is simply the sum of volume
cost in all the time slots, i.e.,

∑
t pe(t)v(t). In practice, the

peak charge is based on the maximum single-slot power and
the peak price unit is $/KW [5], which is different from the
spot price unit $/KWh. Let the peak price in $/KW be p̃m
and the length of one time slot be δ (e.g., 0.25 hour), we con-
vert the peak price to $/KWh as pm = p̃m/δ. Consequently,
the peak charge is pm maxt v(t), i.e., the peak demand over
the billing cycle (in KWh) multiplied by pm (in $/KWh).
This method is similar to the one used in [21]. We remark
that pm is usually more than 100 times larger than pe(t) [5].

For local generation, the cost of a generator to generate
θ amount of electricity is commonly modeled as a quadratic
function [13], i.e., say, aθ2 + bθ + c. The coefficient a is
usually orders of magnitude smaller than b (e.g., for a typical
oil generator with capacity 15MW, a = 0.007, b = 48.5)
3. Consequently, for small-capacity generators employed in
microgrids, the quadratic term aθ2 is usually much smaller
than the linear term bθ and is negligible. Let pg be the unit
generating cost. The total local generation cost is simply∑
t pgu(t). In this study, we focus on the case where pg ≥

pe(t), ∀t ∈ T 4.
Putting together all the components, the microgird total

operating cost over a billing cycle is given by

Cost(u,v) =
∑
t∈T

pe(t)v(t) + pm max
t∈T

v(t)︸ ︷︷ ︸
by external grid

+
∑
t∈T

pgu(t)︸ ︷︷ ︸
by local generators

.

(1)
Existing microgrid generation scheduling schemes [14, 16]

did not consider the peak charge term pm maxt v(t); we refer
to these schemes as Peak-Oblivious. In this paper, we con-
sider the Peak-Aware Economic Dispatching (PAED)

2We remark that the electricity spot price can sometime be
negative in practice [8]. We restrict our attention to the case
with pe(t) ≥ 0 in this study and leave the general case with
negative price to future work.
3This can be further verified by more examples from
http://pscal.ece.gatech.edu/archive/testsys/generators.html.
4It means generating one unit of electricity locally is no
cheaper than purchasing it from the external grid. The ap-
proaches and results developed in this paper can be extended
to the general case where pg can be lower than pe(t).

problem as follows

PAED min
u,v

Cost(u,v)

s.t. u(t) + v(t) ≥ e(t), t ∈ T , (2a)

u(t) ≤ C, t ∈ T , (2b)

u(t+ 1)− u(t) ≤ Ru, t ∈ T , (2c)

u(t)− u(t+ 1) ≤ Rd, t ∈ T , (2d)

var. u(t), v(t) ∈ R+, t ∈ T .

The constraint in (2a) ensures that the electricity demand
is satisfied. The constraint in (2b) is due to the generator
capacity limitation. The constraints in (2c)-(2d) reflect the
ramping up/down constraints, respectively.

The objective function Cost(u,v) is convex and all the
constraints are linear; hence PAED is a convex optimization
problem. In the offline setting where the net demand in
the entire time horizon, i.e., e(t) for all t in T , is given
(by for example accurate prediction), problem PAED can
be solved easily using standard solvers. However, the net
demand e(t) in microgrid is hard to predict accurately as it
inherits substantial uncertainty from renewable generation.
This motivates the need of online strategies that do not rely
on accurate net demand prediction to operate [14].

Denote an online algorithm for problem PAED by A, we
use competitive ratio (CR) as the metric to evaluate its
performance. For an online algorithm, its competitive ratio
is defined as the maximum ratio between the cost it incurs
and the offline optimal cost over all inputs, i.e.,

CR(A) , max
all inputs

Cost incurred by A
Offline optimal cost

.

Clearly we have CR ≥ 1. It is desired to design online al-
gorithms with small competitive ratios, since it guarantees
that, for any input, the cost of the online algorithm is close
to the offline optimal. The price of uncertainty (PoU) for
problem PAED is defined as the minimum possible com-
petitive ratio across all online algorithms, i.e.,

PoU , min
all A

CR(A).

3. FAST-RESPONDING GENERATOR
CASE

In this section, we relax the ramping constraints (2c)-(2d)
and consider the fast-responding generator scenario. Most
generators employed in microgrids can ramp up/down very
fast. For example, a diesel-based engine can ramp up/down
40% of its capacity per minute [18]. Considering the time
scale of each slot (e.g., 15 minutes), those generators can
be thought as having no ramping constraints. That is,
Ru = Rd = ∞. We note that even though we relax the
ramping constraints, the relaxed problem, denoted as FS-
PAED, still covers many practical scenarios in the current
microgrids [14]. Moreover, the results in this section serves
a building block for designing online algorithm for the origi-
nal problem PAED with ramping constraints, which we will
present in Sec. 4.

In the following, we first focus on a special version of prob-
lem FS-PAED, named as FS-PAEDk, where the net de-
mand only takes value 0 or 1. We design optimal online
algorithms for problem FS-PAEDk and then extend the
algorithms to solve the general problem FS-PAED.



3.1 Problem FS-PAEDk and An Optimal Of-
fline Solution

We now consider a special version of problem FS-PAED
as follows:

FS-PAEDk : min Cost(uk,vk)

s.t. uk(t) + vk(t) ≥ ek(t), t ∈ T ,
var. uk(t), vk(t) ∈ R+, t ∈ T ,

where ek(t) only takes value 0 or 1.
We first study the offline setting, where the net demand

ek(t), t ∈ T , is given ahead of time. We will reveal a use-
ful structure of the optimal offline solution, which we ex-
ploit to design efficient online algorithms. Note that prob-
lem FS-PAEDk can be solved by dynamic programming,
which however does not seem to bring significant insights
for developing online algorithms. As such, in what follows,
we study the offline optimal solution from another angle to
reveal a useful structure.

Under the setting, the unit cost of local generation is
more expensive than the spot price of the external grid, i.e.,
pe(t) < pg. However, the expensive local generation can be
leveraged to cut off the peak demand satisfied by the ex-
ternal grid and thus the prohibited peak charge from the
external grid. Thus, the key in solving problem FS-PAED
lies in balancing between the cost of using the expensive
local generation and the peak charge of using the external
grid. It turns out the optimal offline solution, as shown in
Lemma 1, is developed by comparing the accumulated cost
of using the local generation and the peak charge and lever-
aging the special structure of ek(t).

Lemma 1. An optimal offline solution of FS-PAEDk,

denoted by
{((

uk(t)
)∗
,
(
vk(t)

)∗)}
T

, only takes value 0 and

1 and is given by
(
uk(t)

)∗
= ek(k)−

(
vk(t)

)∗
and

• if σ > 1, then
(
vk(t)

)∗
= ek(t), for all t in T ,

• otherwise
(
vk(t)

)∗
= 0, for all t in T .

Here σ is a critical peak-demand threshold defined by

σ ,
1

pm

[∑
t∈T

(pg − pe(t)) ek(t)

]
. (3)

Remark: (i) Given that ek(t) is binary, certain math-
ematical derivation shows that it suffices to constrain the
variables uk(t) and vk(t) to be 0 or 1, and there is no need
to consider the cases where they take fractional values. This
greatly simplify the offline solution. (ii) The optimal solu-
tion constructed in Lemma 1 is computed given that the
critical peak-demand threshold σ is determined. Meanwhile,
σ can only be computed in the offline setting where the net
demand in the entire horizon is given, and it turns out it is
the sufficient statistics of the net demand for characterizing
the ratio between the cost of an online algorithm and the
offline optimal cost.

3.2 Online Algorithms for Problem FS-PAEDk

The challenge for the online algorithm comes from the fact
that it cannot determine the value of critical peak-demand
threshold σ ahead of time. This brings out a dilemma in
online decision making: to suffer deficit of local generator

and bypass the peak charge or to pay for the peak and en-
joy cheaper electricity from the grid. The most aggressive
strategy acquires electricity from the grid from the very be-
ginning, while the most conservative strategy uses local gen-
eration to satisfy all the net demands in the entire horizon,
to avoid the peak charge.

An important observation in online decision making for
problem FS-PAEDk is that after purchasing electricity
from the grid once, meaning the peak charge has already
been paid (and will not be charged again during the cur-
rent billing cycle), the microgrid should continue to use the
cheap electricity from the grid until the end of the billing cy-
cle. It turns out that the key decision is to determine when
to start to pay the peak-charge premium and buy electricity
from the grid.

To pursue online algorithms with minimum competitive
ratio, it turns out that it suffices to focus on online algo-
rithms that switch from local generation to grid electricity
procurement when the accumulated local generation deficit
exceeds s · pm, where s ∈ [0,∞) is an algorithm-specific pa-
rameter. For deterministic algorithms, these are the ones
switching to grid electricity procurement at time τ that sat-
isfies the following condition for the first time in the entire
horizon:

τ∑
t=1

(pg − pe(t)) ek(t) ≥ s · pm.

The most aggressive strategy discussed above corresponds to
s = 0, and the most conservative one corresponds to s =∞.
Randomized online algorithms can be then characterized by
distributions of s.

3.2.1 An Optimal Deterministic Online Algorithm
For any deterministic online algorithm with parameter s,

denoted by As, the following proposition characterizes the
ratio between its online cost and the offline optimal cost.

Proposition 1. The ratio between the cost of a deter-
ministic online algorithm with parameter s and the offline
optimal cost, denoted by h (As, σ), is given by:
when σ ≤ 1,

h (As, σ) =

{
1, if s > σ,

1 + 1−σ+s
σ

(1− β), otherwise;
(4)

when σ > 1,

h (As, σ) =

{
1 + (σ−1)(1−β)

(σ−1)β+1
, if s > σ,

1 + s(1−β)
(σ−1)β+1

, otherwise.
(5)

The competitive ratio for As is then

CR (As) = max
σ

h (As, σ) . (6)

Based on the above proposition, we can design the best
deterministic online algorithm by solving the following min-
max optimization problem

min
s

max
σ

h (As, σ) . (7)

The problem is non-convex and thus challenging on the first
sight. However, given a deterministic online algorithm As,
it turns out the worst cost ratio is obtained when σ = s,
in which case the online algorithm pays for the peak-charge



Figure 1: Competitive ratio of As as a function of s,
with β = 0.3.

premium but there is no net demand to serve anymore. Thus
we have

max
σ

h (As, σ) = h (As, s) =

{
1 + 1

s
(1− β), if s ≤ 1,

1 + s(1−β)
(s−1)β+1

, otherwise.

Leveraging this observation, the problem in (7) can be solved
easily by studying the extreme points of the two functions
of s, and the optimal value is obtained when s = 1. To
visualize how the competitive ratio varies as s changes, we
plot the competitive ratio for different values of s in Fig. 1
for the case where β = 0.3.

We obtain the optimal deterministic online algorithm by
setting s = 1, named as Break-Even Economic Dispatching
for problem FS-PAEDk (BED-k). The algorithm switches
from local generation to grid electricity procurement when
the accumulated local generation deficit seen so far just
equals the peak charge, thus the name “break-even dispatch-
ing”. We summarize the algorithm BED-k into Algorithm 1,
and characterize its competitive ratio in the following theo-
rem.

Theorem 1. The competitive ratio of BED-k is given by

CR (BED−k) = 2− β.

This also gives the price of uncertainty suffered by all deter-
ministic online algorithms, i.e.,

PoUdet = min
all deterministic As

CR (As) = 2− β.

We remark that the optimal deterministic algorithm is
easy to implement and achieves the minimum possible com-
petitive ratio for problem FS-PAEDk. Next, we proceed
to design optimal randomized algorithm for the problem.

3.2.2 An Optimal Randomized Online Algorithm
Recall that for the purpose of designing randomized online

algorithms with the minimum competitive ratio for problem
FS-PAEDk, it suffices to consider algorithm Af where f
represents the probability distribution by which we generate
the algorithm-specific threshold s. Based on the analysis for
deterministic online algorithms in Sec. 3.2.1, we can find the
competitive ratio ofAf by solving the following optimization
problem:

CR (Af ) = max
σ

Ef [h (Af , σ)] = max
σ

∫
s

h (As, σ) f(s)ds.

(8)

Algorithm 1 BED-k: Optimal deterministic online algo-
rithm for FS-PAEDk

Require: pm,pg,pe(t),e
k(t)

Ensure: uk(t),vk(t)
1: ζ = 0, τ = 1
2: while τ ∈ T do
3: if ∃ι < τ such that vk(ι) = 1 then
4: vk(τ) = ek(τ), uk(τ) = 0
5: else
6: ζ = ζ + (pg − pe(τ))ek(τ)
7: if ζ < pm then
8: uk(τ) = ek(τ), vk(τ) = 0
9: else

10: vk(τ) = ek(τ), uk(τ) = 0
11: end if
12: end if
13: τ = τ + 1
14: end while

In the following, we first design a randomized online al-
gorithm by specifying a particular probability distribution
and compute its competitive ratio. We then leverage Yao’s
Principle [22] to obtain a lower bound of the competitive
ratio of any randomized algorithm. We will see the com-
petitive ratio of our proposed online algorithm matches the
lower bound, establishing its optimality. The result thus
also characterizes the price of uncertainty suffered by all
randomized online algorithms.

We propose a randomized online algorithm by choosing
the distribution for s as

f∗(s) =


es

e−1+β
, when s ∈ [0, 1];

β
e−1+β

δ(0), when s =∞;

0, otherwise.

(9)

We summarize the resulting randomized online algorithm in
to Algorithm 2, named as Randomized Economic Dispatch-
ing for problem FS-PAEDk (RED-k). Its competitive ra-
tio is characterized in the following theorem.

Theorem 2. With the distribution given by f∗(s) in (9),
the competitive ratio of RED-k is given by

CR (RED−k) =
e

e− 1 + β
.

Now we leverage Yao’s Principle [22] to obtain a lower
bound for the competitive ratio of any randomized online
algorithm. The idea is to choose a probability distribution
for σ, denoted by g(σ), and compute the competitive ratio of
the best deterministic online algorithm for this input. Yao’s
Principle says that the computed ratio is a lower bound for
any randomized online algorithm. The particular distribu-
tion we use is given by

g∗(σ) =

{
e

e−1+β
σe−σ, when σ ∈ [0, 1],

e
e−1+β

[(σ − 1)β + 1]e−σ, otherwise.
(10)

The lower bound is characterized in the following lemma.

Theorem 3. For any randomized online algorithm Af
for problem FS-PAEDk, we have

CR (Af ) ≥ e

e− 1 + β
.



Algorithm 2 RED-k: Optimal randomized online algo-
rithm for FS-PAEDk

Require: pm,pg,pe(t),e
k(t)

Ensure: uk(t),vk(t)
1: generate s according to the probability distribution spec-

ified in (9)
2: ζ = 0, τ = 1
3: while τ ∈ T do
4: if ∃ι < τ such that vk(ι) = 1 then
5: vk(τ) = ek(τ), uk(τ) = 0
6: else
7: ζ = ζ + (pg − pe(τ))ek(τ)
8: if ζ < s · pm then
9: uk(τ) = ek(τ), vk(τ) = 0

10: else
11: vk(τ) = ek(τ), uk(τ) = 0
12: end if
13: end if
14: τ = τ + 1
15: end while

The competitive ratio of algorithm RED-k achieves this
lower bound and thus is optimal. Consequently, the price
of uncertainty suffered by all randomized online algorithms
is given by

PoUran = min
all randomized Af

CR (Af ) =
e

e− 1 + β
.

Remark: (i) In the deterministic online algorithm, set-
ting s = 1 means that the microgrid will start to buy elec-
tricity from the grid until the break-even condition is met.
Similar to the ski rental problem [12], the break-even point
turns out to be the best balance between being aggressive
and conservative. (ii) The vigilant readers may notice that
f∗(s) is the same distribution that was adopted in solving
the classic Bahncard problem [9], which is indeed similar
to problem FS-PAEDk we study in this section. The ba-
sic version of FS-PAEDk, however, is different from Bah-
ncard problem in the sense that the discounted price (pe(t)
in this paper) is time varying. (iii) Different from the neat
tricks used in [9] to prove the optimality of the proposed ran-
domized online algorithm [9], we leverage Yao’s Principle to
prove the optimality of our proposed algorithm RED-k for
problem FS-PAEDk. Exploiting the similarity of the two
problems, our approach can also be applied to establish opti-
mality of the proposed algorithm for the Bahncard problem
in [9].

3.3 From Problem FS-PAEDk to Problem
FS-PAED

In this section, we design online deterministic and ran-
domized algorithms for FS-PAED based on those of
FS-PAEDk.

3.3.1 Net Demand Layering
For each time slot t, we divide the demand e(t) into multi-

ple layers such that the demand of each layer is either 1 or 0,
as shown in Fig. 2. Recall that e(t) is assumed to take non-
negative integer values. We denote the sub-problem of satis-
fying the demand of each layer as FS-PAEDk, k = 1, 2, ...,
and we can apply the online algorithms BED-k and RED-k
for each sub-problem.

...
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Figure 2: An example of decomposing the demand
into multiple layers and a microscopic view of layer
3

3.3.2 Optimal Online Algorithms for FS-PAED

After layering, a bunch of sub-problems FS-PAEDk are
obtained. However, unlike FS-PAEDk, the net demand of
FS-PAED in some time slots can exceed the capacity of lo-
cal generation, which makes it infeasible to ignore the whole
picture when conquering each layer independently. For ex-
ample, suppose the generation capacity is 4 for the case
shown in Fig. 2. Even though the break even points are
not reached for all the layers in time slot 2, it is infeasible to
set uk(2) = 1 for all the layers (A capacity of 5 is needed to
do so). Thus by taking into account the capacity constraint,
we need to determine for which layers the demand should be
satisfied by the grid while still keeping the algorithm com-
petitive.

An obvious but critical observation is that the demands
in the lower layers are denser than those in the upper lay-
ers. In addition, after being charged for the peak, we expect
more demands to come to enjoy the cheap grid electricity.
Consequently, it is always more economic to use the grid
electricity to satisfy the denser demands, i.e., the lower lay-
ers. In other words, in the proper algorithm design, the
layers below (e(t) − C)+ should always be satisfied by the
grid. Meanwhile, for the layers above (e(t)−C)+, if the de-
mand is already satisfied by the grid, the online algorithm
continues to acquire the electricity from the grid; otherwise,
Algorithm BED-k or RED-k is applied with the same value
s for all layers to obtain the sub-solutions. The solution is
finally obtained by combining the sub-solutions. We sum-
marize the resulting deterministic an randomized online al-
gorithms, named as BED and RED, in Algorithm 3 and 4,
respectively.

Algorithm 3 BED: Optimal deterministic online algo-
rithm for FS-PAED
Require: C,pm,pg,pe(t),e(t)
Ensure: u(t),v(t)
1: while τ ∈ T do
2: A threshold: ς = (e(τ)− C)+.
3: For the layers below ς, vk(τ) = 1, uk(τ) = 0
4: For the layers above ς, run BED-k to obtain uk(τ)

and vk(τ).
5: u(τ) =

∑
k u

k(τ), v(τ) =
∑
k v

k(τ)
6: τ = τ + 1
7: end while

We demonstrate a toy example of the solution given by
BED in Fig. 3. For simplicity, we assume the break-even
condition is firstly met when the third nonzero demands
comes for all the layers, and the local capacity is 4. We



Algorithm 4 RED: Optimal randomized online algorithm
for FS-PAED
Require: C,pm,pg,pe(t),e(t)
Ensure: u(t),v(t)
1: while τ ∈ T do
2: A threshold: ς = (e(τ)− C)+.
3: For the layers below ς, vk(τ) = 1, uk(τ) = 0
4: For the layers above ς, run RED-k with the same

randomized parameter s to obtain uk(τ) and vk(τ).
5: u(τ) =

∑
k u

k(τ), v(τ) =
∑
k v

k(τ)
6: τ = τ + 1
7: end while

...
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Figure 3: Demonstration of BED with C = 4, differ-
ent colors denoting different strategies of the algo-
rithm.

use different colors to demonstrate by which source and for
what reason one unit of demand is satisfied. Even though
the example is simple, it demonstrates two important and
provable properties of BED: (i) For each layer, it will con-
tinue to use the grid after it uses it once, and (ii) when
one layer uses the grid, all the layers below it use the grid
too. The first property makes the solution and cost struc-
ture similar to that of BED-k, while the second property
makes the peak of v(t) equal to the sum of the peaks of
vk(t), i.e., maxt

∑
k v

k(t) =
∑
k maxt v

k(t). The two prop-
erties allow us to leverage the results in Sec. 3.2 to establish
the competitive ratios of BED and RED.

Theorem 4. The competitive ratios of BED and RED
are given by

CR (RED) = 2− β, and CR (RED) =
e

e− 1 + β
.

Further, no other deterministic and randomized online algo-
rithm can achieve a smaller competitive ratio.

In the next subsection, we discuss an intriguing conse-
quence of local generation capacity on the online algorithms’
performance.

3.4 Critical Local Generation Capacity
The peak-aware economic dispatching aims at minimizing

the sum of the peak charge (the term pm maxt∈T v(t) in (1))
and the volume charge (as the remaining part in (1)). The
local generator provides the microgrid an option to use more
expensive electricity (increase the volume charge) to reduce
the peak (decrease the peak charge). An optimal solution
is achieved with the best tradeoff between the two. Given

an input, there is a threshold C̃, the demand below which
should be satisfied by the grid and above which by the lo-
cal generator. C̃ can be obtained by solving FS-PAED in
an offline fashion without considering capacity constraint.
It means that the optimal offline solution will not use the
additional capacity even if it is larger than C̃.

We now discuss the impact of increasing local generation
capacity C on the performance of offline and online algo-
rithms. The offline algorithm will use full local capacity
until C reaches C̃, and it will not use local capacity further
beyond C̃. As such, one can expect that the operating cost of
the offline algorithm is non-increasing as C increases. Mean-
while, the online algorithm, without knowing C̃ and with the
tendency of reducing the peak with more expensive electric-
ity, will try to exploit the whole capacity until it finds the
break even point, which turns out to be less economic and
deviates more from the optimal solution. As a result, for the
online algorithm, larger capacity may incur higher operating
cost. We provide a concrete case-study by real world traces
to confirm the above observation in Sec. 5.

Overall, we believe the above insights are important for
microgrid operators to (a) determine the amount of lo-
cal generation to invest in order to maximize the eco-
nomic benefit, and (b) understand the importance of de-
mand/generation prediction when performing peak-aware
economic dispatching in microgrids.

4. SLOW-RESPONDING GENERATOR
CASE

This section considers the slow-responding generator sce-
nario, in which the ramping up/down constraints in (2c)-
(2d) are non-negligible. We remark that we can still opti-
mally solve the problem PAED with these constraints in
the offline manner by convex optimization techniques.

In the following analysis, we assume Ru = Rd = R and
define Γ = dC

R
e. Then, it takes Γ time slots for the local

generator’s output to ramp up from zero to full capacity or
down from full capacity to zero. Considering the time scale
of our problem (say, 15 minutes for each time slot) and the
microgrid scenario (high efficiency of local generators), Γ is
conceivable to be small. We assume Γ is no larger than 5,
meaning it roughly takes no more than 75 minutes for local
generator to fully ramp up.

We first show a result highlighting the difficulty intro-
duced by the ramping constraints in designing competitive
online economic dispatching algorithms.

Proposition 2. Any online algorithm for problem
PAED without future information, i.e., at time t the algo-
rithm only have knowledge of {e(τ), pe(τ)}tτ=1, has a com-

petitive ratio at least
pm(C−R)+pgR

pg(RΓ(Γ−1)+C)
.

When Γ is 5 and pm is 100 times of pg, a back-of-envelop
calculation reveals that the lower bound of the competitive
ratio can be as large as 20. This result shows that the ramp-
ing constraints will make any online algorithm design less
attractive as the worst performance can be rather bad. The
conventional method to address this problem is to put ad-
ditional constraints on the input to obtain algorithms with
reasonable performance guarantee [16]. In this paper, we
propose to handle the challenge incurred by ramping con-
straints by a different approach; that is to empower the al-
gorithm with a limited looking ahead window.



4.1 An Effective Online Algorithm by a Lim-
ited Looking-ahead Window

Motivated by the development of prediction algorithms
[17,25], we assume that a limited looking ahead window with
size of ∆ = Γ − 1 is available, which means that at time t
we can know the input from t + 1 to t + ∆ in advance. In
this section, we devise an online algorithm by leveraging such
looking ahead information as well as the results in Sec 3. We
name the proposed algorithm as NRBF (Neutralize Ramping
constraint By Future information). We denote the online
solutions we obtain for PAED by NRBF as ũ(t), ṽ(t).

In NRBF , we first solve problem FS-PAED by relaxing
the ramping constraints from problem PAED and denote
the solutions obtained by algorithms BED or RED as u(t)
and v(t). We then adjust them to obtain online solutions for
PAED that satisfy the ramping constraints. Specifically, we
compute ũ(t) as

ũ(t) = max{ũ(t− 1)−R, u(t+ i)− iR|i = 0, 1, ..,∆},

and ṽ(t) = max (e(t)− ũ(t), 0).
The following lemma shows that the ramping constraints

are respected by NRBF.

Lemma 2. The solutions by NRBF satisfy the genera-
tor’s ramping constraints, i.e.,

|ũ(t+ 1)− ũ(t)| ≤ R.

Meanwhile, we can have ṽ(t) ≤ v(t), meaning the peak
charge is upper bounded by that of the fast responding sce-
nario. We leverage this observation to show the competi-
tiveness of NRBF, as shown in Theorem 5.

Theorem 5. The competitive ratio of NRBF satisfies

CR (NRBF ) ≤

{
Γ (2− β) , if u(t), v(t) are obtained by BED;

Γ e
e−1+β

, if u(t), v(t) are obtained by RED.

Remark: Small values of Γ, which mean the ramping
constraints are less strict, will lead to a small bound on
the competitive ratio. Moreover, Γ = 1 indicates that the
generator output can ramp up to its full capacity in one time
slot and the ramping constraints vanish, thereby we do not
need any future information (∆ = 0) and the competitive
ratio is exactly the same with that of the fast-responding
generator scenario.

5. EXPERIMENTAL RESULTS
We carry out numerical experiments using real-world

traces to scrutinize the performance of our online algorithms
under various practical settings. Our purpose is to investi-
gate (i) the competitiveness of online algorithms in com-
parison with the optimal offline one, (ii) the necessity of
peak-awareness in economic dispatching of microgrids, and
(iii) the performance of online algorithms under various pa-
rameter settings.

5.1 Experimental Setup
Electricity demand and renewable generation

traces. We set the length of one billing circle as one month.
We use the actual electricity demand of a college in San
Francisco; its yearly demand is about 154GWh [1]. We in-
ject renewable energy supply sources by a wind power trace
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Figure 5: Cost reduction
vs pm

of a nearby offshore wind station outside San Francisco with
a total installed capacity of 12MW [2]. We then construct
the net demand by subtracting the output level of the wind
from the college electricity demand.

Energy source parameters. The electricity price pe(t)
and peak price pm are set based on the tariffs from PG&E [5]
and pm = 17.56$/KWh while the electricity rate pe(t) varies
from 0.056$/KWh to 0.232$/KWh for off-, mid-, and on-
peak periods in different seasons. We set the unit cost of
local generation pg according to the monthly price of natu-
ral gas. Notably, the value of pg could be less than pe(t) for
some on-peak intervals. In such situations, generator plays
its role not only by cutting off the peak but also by provid-
ing cheaper electricity as well. Finally, if not specified, the
capacity of the local generator is set to be C = 15MWh,
which is around 60% of the peak net demand.

Cost benchmark. We use the cost incurred by only
procuring electricity from the external grid, i.e., v(t) = e(t),
as the benchmark. We demonstrate cost reduction to show
the benefit of employing local generation units and the effec-
tiveness of algorithms. The cost reduction originates from
the cheaper electricity (in some on-peak intervals) and peak
cut-off by local generators.

Comparison of algorithms. We compare our pro-
posed peak-aware online economic dispatching (PA-Online)
algorithms with (i) the optimal peak-aware offline solu-
tion (OFFLINE) to evaluate the performance of the on-
line algorithms, and (ii) the peak-oblivious online algo-
rithms (PO-Online) in [14] and online convex optimization
approach (OCO) in [16] to investigate the importance of
peak-awareness.5 We remark that both schemes in [14, 16]
are peak-oblivious as they only consider volume charge but
ignore peak charge.

The results reported in Secs. 5.2- 5.4 cover the fast-
responding generator scenarios and Sec. 5.5 is devoted to
the slow-responding generator scenario.

5.2 Benefits of Employing Local Generators
Purpose. The purpose of this experiment is two-fold.

First, compare the potential savings of microgrid in differ-
ent seasons, in which the demand pattern, the wind output,
and the cost parameters differ. Second, compare the cost

5We remark that in [14], the joint unit commitment and eco-
nomic dispatching problem in peak-oblivious manner is ad-
dressed and in this paper we compare the economic dispatch-
ing part with our algorithms. OCO in [16] (without consid-
ering the peak charge) is designed deliberately to tackle the
ramping constraints and may suffer performance loss in the
fast responding generator scenario.
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reduction of peak-aware algorithms against peak-oblivious
ones. The results are shown in Fig. 4.

Observations. The most notable observations from
Fig. 4 are the following. First of all, the cost reduction
varies over seasons and the most significant one occurs in
the summer. This is because the gas price is lower and the
grid electricity price is higher in the summer than those of
the other seasons, thus employing local generators brings
more benefit. Second, the performance of our proposed PA-
Online is superior than PO-Online algorithm. In particular,
PO-Online cannot reduce the cost in the winter, but our algo-
rithm PA-Online can still achieve cost reduction. The reason
is that, as pg > pe(t) always holds in the winter, PO-Online
algorithm always purchases cheaper electricity from the gird,
which gives no cost reduction as compare to the benchmark
strategy. In contrast, our PA-Online algorithm reduces the
cost by exploiting (the expensive) local generation to reduce
the peak demand served by the external grid, and conse-
quently our algorithm can save operating cost. On average,
PA-Online reduces the annual cost by 15.7%, while PO-Online
reduces the cost only by 8.17%. Third, the performance of
PA-Online in practice is close to that of the offline optimal.

5.3 The Performance of PA-Online under Differ-
ent Peak Prices

Purpose. To validate the peak charge is non-negligible
which motivates our study, we evaluate the performance of
our peak-aware algorithm and that of the peak-oblivious one
under different peak prices. In particular, in Fig. 5, we de-
pict the cost reduction of different algorithms with the peak
price pm varying from 12.29$/KWh to 21.07$/KWh.

Observations. When pm increases, the cost reduction of
our PA-Online algorithm increases and is close to the offline
optimal, while the reductions of the two peak oblivious algo-
rithms decrease. This observation shows that our PA-Online
algorithm is more effective and the cost reduction is more
significant for microgrids with high peak prices.

5.4 The Performance of PA-Online under Differ-
ent Local Generation Capacities

Purpose. At first glance, one may imagine that larger
local generator leads to larger design space and thus larger
cost reduction is expected. However, as discussed in Sec. 3.4,
this is not the case for online algorithms that do not have
the complete future knowledge of price and demand. We
carry out an experiment to verify and elaborate the obser-
vation. For convenience, we define ρ = C/max e(t) as the
ratio of local generation capacity over the peak net demand
and change ρ from 20% to 100%. The result is shown in
Fig. 6.

Observations. The results for OFFLINE and PO-Online
algorithms follow the intuition that more local capacity
brings more cost reduction. For PA-Online, however, we ob-
serve that the cost reduction increases when ρ increases from
20% to 60%, and degrades as ρ continues to increase from
60% to 100%. As we discussed in Sec. 3.4, there exists a
critical local generation capacity C̃ beyond which the peak
charge and the overall cost will not decrease further. In
Fig. 7, we report the peak grid demand max v(t) versus ρ
just for OFFLINE algorithm. Results show that the peak
value of v(t) does not decrease as ρ increases from 60% to

100%, evincing that C̃ is about 60% of the maximum de-
mand in this case. The online algorithm, however, is un-
aware of C̃. As discussed in Sec. 3.4, C̃ can be computed by
solving problem FS-PAED in an offline manner.

The online algorithm, without knowing C̃ and with the
tendency of reducing the peak charge by using more ex-
pensive local generation, will try to exploit the entire local
generation capacity until the cost-benefit break even point
is reached, which turns out to be less economic and deviate
from the offline optimal. As a result, for the online algo-
rithm, larger capacity may incur higher operating cost, as
shown in Fig. 6.

This experiment, together with the discussions in Sec. 3.4,
show that it is important for the microgrid operator to set
the local generation capacity right at C̃ to cope with online
algorithms to achieve maximum cost reduction. A possible
way to set C̃ is to use the historical data as the input to the
offline algorithm and obtain the critical capacity.

5.5 The Impact of Ramping Constraints
Purpose. The experiment is devoted to explore the per-

formance of our algorithm NRBF for slow-responding gener-
ators. We firstly change the ramping constraint such that Γ
increases from 2 to 5 and evaluate the performance of the
algorithms. We recall the meaning of Γ, as defined in Sec. 4,
is that it takes Γ slots for local generators to ramp up from
zero to full capacity or down from full capacity to zero. The
result is demonstrated in Fig. 8.

Secondly, we relax the assumption that we can perfectly
predict near future information. We add a zero mean gaus-
sian noise to the net demand as the predicted input for our
algorithm. Note that we can always satisfy unexpected de-
mand by purchasing electricity from the external grid. We
evaluate the performance of NRBF with standard deviation
of the gaussian noise increasing from 0% to 10% of the ac-
tual demand. We use Γ = 4 for the experiment and NRBF
utilizes 3-slot looking ahead demand and price information.
The simulation results are shown in Fig. 9.

Observations. From Fig. 8, we observe that all cost re-
ductions decrease as ramping constraints are more strict,



while the performance of NRBF is always close to the of-
fline optimal. This shows the effectiveness of using limited
prediction in combating the difficulty in online scheduling
caused by ramping constraints. Moreover, Fig. 9 shows that
the prediction error will degrade the performance of NRBF
. However, the performance is still significantly better than
the peak-oblivious scheduling.

6. RELATED WORK
Microgrid is attracting substantial attention from both

academic and industrial communities due to its economic
and environmental benefits, evidenced by a number of real-
world pilot microgrid projects [7].

With the penetration of renewable energy in microgrids,
conventional economic dispatching approaches based on ac-
curate demand prediction for power grid [10] are not ap-
plicable as the net demand inherits substantial uncertainty
from the renewable generation and is hard to predict accu-
rately. Online algorithm design is advocated by researchers
to offer a paradigm-shrift alternative. Online convex opti-
mization [16], Lyapunov optimization [11], and competitive
analysis [14] are the main approaches adopted for online en-
ergy generation scheduling in microgrid. The authors in [14]
study the unit commitment and economic dispatching prob-
lems of microgrid under the volume charging model. Our
work considers economic dispatching under both the peak
charging and volume charging model.

The cost minimization problem based on real-world peak
charging scheme has been considered for microgird scenario
in [15], by utilizing Energy Storage Systems to cut off the
peak. In contrast, our work tackles the problem using local
generators to shave the peak. The cost minimization with
the same pricing mechanism taken into account is also stud-
ied for data centers in [19, 21], for EV charging in [24], and
for content delivery in [6]. For fast-responding generator
scenario, the economic dispatching problem we study in this
paper can be considered as a generalization of the classic
Bahncard problem [9]. The Bahncard problem and its solu-
tions have also found application in the instance acquisition
problem of cloud computing [20].

7. CONCLUSION AND FUTURE WORK
In this paper, we devised peak-aware online economic

dispatching algorithms for microgrids, with peak charging
model taken into account. In the fast-responding generator
scenario, we developed both deterministic and randomized
online algorithms with best possible competitive ratios fol-
lowing a divide-and-conquer approach. Our results not only
characterized the fundamental price of uncertainty for the
problem, but also served as a building block for designing on-
line algorithms for the slow-responding generator scenario,
where we proposed to tackle the ramping constraints using a
limited look-ahead window. In addition to sound theoretical
performance guarantees, the empirical evaluations based on
real-world traces also corroborated our claim on the impor-
tance of peak-awareness in scheduling.

An interesting future direction is to study the microgrid
economic dispatching problem under accurate or noisy pre-
diction of future demand and renewable generation within a
limited look-ahead window.
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