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Abstract—Compressive phase retrieval algorithms attempt to
reconstruct a “sparse high-dimensional vector” from its “low-
dimensional intensity measurements”. Suppose x is any length-
n input vector over C with exactly k non-zero entries, and
A is an m × n (k < m � n) phase measurement matrix
over C. The decoder is handed m “intensity measurements”
(|A1x|, . . . , |Amx|) (corresponding to component-wise absolute
values of the linear measurement Ax) – here Ai’s correspond to
the rows of the measurement matrix A. In this work, we present a
class of measurement matrices A, and a corresponding decoding
algorithm that we call SUPER, which can reconstruct x up to a
global phase from intensity measurements. The SUPER algorithm
is the first to simultaneously have the following properties:
(a) it requires only O(k) (order-optimal) measurements, (b)
the computational complexity of decoding is O(k log k) (near
order-optimal) arithmetic operations, (c) it succeeds with high
probability over the design of A. Our results hold for all
k ∈ {1, 2, . . . , n}.

I. INTRODUCTION
Phase Retrieval: In many applications, it’s difficult to mea-
sure the phase information of the underlying signal. Instead,
we recover the signal by its intensity measurements. For
instance, in X-ray crystallography, optics [1] and image re-
construction for astronomy [2], signal/image is reconstructed
from the intensity measurements of its Fourier transform.

Let A ∈ Cm×n be used to denote the phase measurement
matrix, and x ∈ Cn be used to denote the unknown underlying
signal. Instead of linear measurements of the form y = Ax
as in the compressive sensing literature (see, for instance, [3])
in the phase retrieval problem we have m non-linear intensity
measurements of the form bi = |Aix|. Here the index i is an
integer in {1, . . . ,m} (or [m] for short), Ai is the i-th row of
phase measurement matrix A and |·| is the absolute value.

Problems of this kind have been studied over the last
decades. A good survey of some of the algorithms via non-
convex process can be found in [4]. Recently, two convex op-
timization methods, PhaseLift [5] and PhaseCut [6], have been
proposed by Candès et al. and Waldspurger et al.. PhaseLift is
able to reconstruct x with O(n log n) intensity measurements
by solving semidefinite programming with high probability.
The Ai’s are independently sampled on the unit sphere of Cn.
Later, it’s shown that the number of intensity measurements
can be improved to O(n) where Ai’s are independently and
identically distributed with the uniform distribution on the
sphere of radius

√
n, or the complex normal distribution [7].

PhaseCut is inspired by solving max-cut problem via SDP.
The decoding complexity for both PhaseLift and PhaseCut is
O
(
n3
)
, which is still computationally costly when n is large.

Besides SDP-based approach, more computationally ef-
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ficient algorithms are proposed such as [8], [9]. For in-
stance, in [9], the number of intensity measurements re-
quired is O

(
n log3 n

)
. However, the decoding complexity is

O
(
n2 log3 n

)
which is less than that of SDP-based approach.

Compressive Phase Retrieval: Suppose x is “sparse”, i.e.,
the number of non-zero components of x is at most k, which
is much less than the length n of x. This assumption is not
uncommon in many applications like X-ray crystallography.
Then, given A and b, the goal of compressive phrase retrieval
is to reconstruct x as x̂, where x̂ equals x up to a global phase.
That is, x̂ = xeιΘ for some arbitrary fixed Θ ∈ [0, 2π). Here
ι denotes the positive square root of −1. The reason we allow
this degeneracy in x̂, up to a global phase factor, is that all
such x̂’s result in the same measurement vector under intensity
measurements. If x̂ does indeed equal x up to a global phase,
then we denote this “equality” as x̂=̂x.

It is shown that 4k − 1 intensity measurements suffice to
uniquely reconstruct x in [10] (for x ∈ Rn) and [11] (for
x ∈ Cn). However, no efficient algorithms is given. The `1-
regularized PhaseLift method is introduced in the compressive
phase retrieval problem in [12]. In [13], it is shown that if the
number of Gaussian intensity measurements is O

(
k2 log n

)
,

x can be correctly reconstructed via `1-regularized PhaseLift.
The works in [14] and the works by Jaganathan et al. [15],

[16], [17] study the case when the phase measurement matrix
is a Fourier transform matrix. In [18], it is explained that SDP-
based methods can reconstruct x with sparsity up to o (

√
n).

In [16], the algorithm based on reweighted `1-minimization
with O

(
k2 log n

)
phaseless Fourier measurements is proposed

to go beyond this bottleneck. When the phase measurement
matrix is allowed to be designed, a combinatorial algorithm
is proposed in [16] such that x is correctly reconstructed with
O(k log n) intensity measurements in O(kn log n) time.

To our best knowledge, in the literature, there is no con-
struction of a measurement matrix A and a corresponding
reconstruction algorithm that correctly reconstructs x with an
order-optimal number of measurements and with near-optimal
decoding complexity simultaneously.
A. Our Contribution

In this work1, we describe a randomized design of the phase
measurement matrix A and a corresponding decoding algo-
rithm achieving the following guarantees:

Theorem 1. (Main theorem) There exists a measurement
ensemble {A} and a corresponding decoding algorithm for

1While in this work we focus on the “sparse regime", k = o(n), our
techniques work for all k ∈ {1, 2, . . . , n}. If k = ω(1), our algorithm
has the same performance stated in Theorem 1. If k is a constant and error
probability of our algorithm is Pe, then the number of measurements required
is f(Pe)k for some function f . We refer the reader to [19] for details.
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compressive phase retrieval with the following performance:

1) For every x ∈ Cn, with probability 1 − o(1) over the
randomized design of A, the algorithm exactly reconstructs x
up to a global phase;

2) The number of measurements m = O(k);
3) The decoding complexity is O(k log k).

II. OVERVIEW/HIGH-LEVEL INTUITION

A. Pieces of the puzzle
We first define some useful terminology.
Singletons: If a measurement bi involves only a single non-
zero component of x, then we say that such a measurement is a
singleton.2 Singletons are important since they can be used to
pin down the magnitude (though not the phase) of components
of x. There are several challenges, however. One lies in even
identifying whether a measurement is a singleton or not. The
second lies in identifying which of the x components being
measured in bi corresponds to the singleton. The third is to
be able to do all this blindingly fast, in fact in constant time
(independent of n and k!). Each of these challenges can be
handled by using ideas from the our prior work on compressive
sensing [21]. For details, see Sections IV and V below.
Doubletons: Similarly, if a measurement bi involves exactly
two non-zero components of x, then we say that such a
measurement is a doubleton. Doubletons, especially double-
tons measuring two non-zero components of x which have
already been measured by singletons (we call such doubletons
resolvable doubletons), are useful since they can be used to
deduce the relative phases of the two non-zero components
of x. For example, if one is given the magnitudes |xi|, |xj |,
and |xi+xj |, then one can determine the angle θ between the
phases of the complex numbers xi and xj (up to degeneracy
of sign of θ). In fact, even this degeneracy can be resolved
by an additional judiciously chosen measurement. Similar
challenges to those mentioned above vis-a-vis singletons (iden-
tifying whether or not a measurement is a doubleton/resolvable
doubleton, identifying which components of x it corresponds
to, and doing so in constant time) also hold for doubletons.
See Sections IV and V for details.
Mutual resolvability: We say our decoding algorithm has thus
far mutually resolved two non-zero components xi and xj of
x if the magnitudes of both xi and xj have been deduced,
and also the relative phase between xi and xj has been
deduced (for instance via resolvable doubleton measurements
roughly described above). Note that mutual resolvability is an
equivalence relation – it is reflexive, symmetric and transitive.
Note therefore that if xi and xi′ have been mutually resolved,
it is not necessary that they even are involved in the same mea-
surement; it is sufficient that xi and xi′ are part of a chain of
non-zero components of x that are pairwise mutually resolved.
Finally, we note that as our decoding algorithm progresses, if
it is successful, in fact all the non-zero components of x are
eventually mutually resolved. Hence this property of mutual
resolvability is perhaps most interesting in the intermediate
stages of our decoding algorithm.
Giant component: We say that a subset of the non-zero com-
ponents of x form a giant component if it is the largest subset
satisfying the two properties: 1) The subset is of size linear in
k. 2) Any pair of components in the subset have been mutually
resolved (thus far) by the decoding algorithm.

2We borrow this terminology (of singletons, doubletons, multitons, etc)
from the compressive sensing work of Pawar et al [20].

Essentially, our algorithm proceeds by iteratively enlarging
the giant component until it engorges all the non-zero compo-
nents of x.
Resolvable multiton: We say that a measurement bi is a
resolvable multiton if it is the case that exactly one (say xi) of
the non-zero components of x involved in the measurement bi
is outside the giant component, and at least one of non-zero
components of x is inside the giant component. Such measure-
ments are useful since, in the latter parts of our algorithm, there
are not enough resolvable doubletons. By carefully choosing
the parameters of the algorithm, one can guarantee that a
constant fraction of measurements are resolvable mutitons.

Judiciously designed measurements (see Section IV) enable
one to mutually resolve the component xi that is outside the
giant component, with the components of x inside the giant
component, by solving a quadratic equation. Care is indeed
required in choosing the measurements since the amplitude
measurement process is inherently non-linear, and there may
not be a “clean” manner to mutually resolve xi via arbitrary
measurements – indeed the design of such a measurement
process is also one of the intellectual contributions we wish to
highlight in this work. We call this process “cancelling out”
the already resolved components of x.
B. Putting the pieces together

Seeding phase: In the first phase, called the seeding phase,
there are O(k) “sparse” measurements (each measurement in-
volves, in expectation, O(n/k) components of x). We demon-
strate that by first examining the measurements corresponding
to this phase, the decoding algorithm is already able to decode
a constant fraction (say 1/2)3 of the components of x up to a
global phase. The algorithm is able to do this since we are
able to show that a “significant” fraction of measurements
are singletons and resolvable doubletons. Standard results in
percolation theory [22] then lead one to conclude that the
number of non-zero nodes that are mutually resolvable is linear
in k, i.e., that there is a giant component. Hence this phase is
called the “seeding” phase, since the giant component forms
the nucleus on which the remainder of the algorithm builds
upon.

The key technique used in our work is to segue to a different
sampling process (outlined below) than “coupon collection”
process [23] (wherein one has to collect at least one copy of
each of k coupons by sampling with replacement) in [16],
and using resolvable multitons rather than doubletons. The
challenge is to make the numbers work, not only do we require
only O(k) measurements, but we also require our decoding
complexity to be O(k log(k))4.
Geometric-decay phase: This phase itself comprises of
O(log(log(k))) separate stages. Each stage has half the num-
ber of measurements compared to the previous stage, but
measurements in each stage are twice as “dense” as the
measurements in the previous stage. So, for instance, if in
the first stage of the geometric-decay phase, there are say ck
measurements, with each measurement involving n/k compo-
nents of x, then in the second stage of the geometric-decay
phase, there are ck/2 measurements, but each measurement
involves 2n/k components of x.

3Here, 1/2 is arbitrarily chosen to simplify the presentation of intuition.
The actual fraction of resolved non-zero components in the seeding phase is
different from 1/2. See Section VII for details. Here, the parameter 1/2 for
the geometric-decay phase in this section is due to the same reason.

4In this section, we focus on the number of measurements and decoding
complexity. For the error probability, please refer to Section VII.
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There are two reasons for this choice of parameters. Firstly,
with such a geometric decay in the number of measurements
in each stage, the overall number of measurements in the
geometric-decay phase is still O(k). Secondly, we show that
with the geometric increase in the density of measurements,
a significant fraction of measurements in each stage lead to
resolvable multitons, and use this to show that the number of
unresolved components decays geometrically.

The reason we run the geometric-decay phase for only
O(log(log(k))) stages is also two-fold. Firstly, after that many
stages, with the number of unresolved components halving at
every stage, the number of unresolved components of x is, in
expectation, O(k/ log(k)). Hence the concentration inequali-
ties (which depend on the number of unresolved components)
we use to control the probabilities of error get progressively
weaker (though they still result in good concentration at
the last stage of the geometric-decay phase). Secondly, and
more importantly, the number of non-zero components in each
resolvable multiton increases geometrically as the number of
stages increases. This has implications for the time-complexity
of the decoding algorithm, since the time-complexity depends
directly on the number of non-zero components in each
measurement that need to be “cancelled out”. By terminating
the geometric-decay phase after O(log(log(k))) stages ensures
that, in expectation, the number of such “cancellations” is at
most O(log(k)), and hence the overall time-complexity of the
algorithm scales as O(k · log(k)).
Cleaning-up phase: Finally, we segue to what we call the
“cleaning-up” phase. As noted above, after the geometric-
decay phase the number of unresolved components of x is,
in expectation, k′ , O(k/ log(k)). To fit our budget of O(k)
measurements, and O(k log(k)) decoding time, we now segue
to using “coupon collection” as a primitive. This may be
viewed as restarting the seeding (first) phase, but with different
parameters. In particular, the problem dimension has now been
significantly reduced (since there are now only k′ unresolved
components of x). Therefore we can now afford to pay the
coupon collection penalty that we avoided in the seeding phase
by moving to the geometric-decay phase.

Specifically, in this cleaning-up phase we take O(k′ log(k′))
measurements so as to resolve the remaining k′ unresolved
components of x. Note that O(k′ log(k′)) scales as O(k).
Each measurement we take has the same density as the
measurements in the last stage of the geometric decay phase,
and hence the time-complexity of resolving measurements also
scales in the same manner. However, since there are many
more measurements than in the last stage of the geometric-
decay phase, by standard arguments corresponding to the
coupon collection problem we are able to argue that for each
unresolved component of x there is at least one resolvable
multiton that helps resolve it.

III. GRAPH PROPERTIES

We construct a series of bipartite graphs with some desirable
properties outlined in this section. We then use the structure
of the bipartite graphs to generate our measurement matrix
A in Section IV and design the corresponding reconstruction
algorithm in Section V. Each left nodes of a bipartite graph
represents a component of x and each right node represents
a set of intensity measurements. For each edge in a bipartite
graph, it is assigned different weights which are discussed in
Section IV.

A. Seeding Phase
The properties of the bipartite graph, GI , in the first phase
are as follows: 1) There are ck right nodes, where c is a
constant. 2) Each edge in GI appears with probability 1/k. 3)
Many singleton nodes: In expectation, a constant fraction of
right nodes are singleton nodes. 4) Many resolvable doubleton
nodes: In expectation, a constant fraction of right nodes are
resolvable doubleton nodes. For properties 4) and 5), see
Section VI for details.

Another graph H is implied by GI . Each vertex in H
represents a non-zero component of x and there is an edge in
H if and only if two left nodes involved are mutually resolved.
H has the following property: H has a giant connected
component: The connected component, H′ contains a constant
fraction of nodes in H. This property is formally stated in
Section VI.
B. Geometric-decay phase

There are L = O(log log k) separate bipartite graphs/stages
in this phase. The properties of the l-th bipartite graph, GII,l
(l = 1, 2, . . . , L), are as follows: 1) There are cfII,l−1k right
nodes, where fII,l−1 is the expected fraction of unresolved
non-zero components of x after the (l−1)-th stage of decoding
process in the second phase. fII,0 = fI is the expected
fraction of unresolved non-zero components after seeding
phase. The value of fII,l is discussed in Section VI. 2) Each
edges in GII,l appears with probability 1/ (fII,l−1k). 3) Many
resolvable multiton nodes: In expectation, a constant fraction
of right nodes are resolvable multiton nodes. See Section VI
for details.

For a newly resolved non-zero component, the correspond-
ing node in H is appended to the giant connected compo-
nent, H′. In expectation, there are (fII,l−1 − fII,l) k non-
zero components decoded in the l-th stage of decoding. After
O(log log k) stages, there are O(k/ log k) unresolved non-zero
components of x left.
C. Cleaning-up phase

The properties of the bipartite graph, GIII , in the last phase
are as follows: 1) There are c (k/ log k) log (k/ log k) = O(k)
right nodes. 2) Each edges in GIII appears with probability
log k/k. 3) Many resolvable multiton nodes.

In this stage, all the resolved non-zero components of size
O(k/ log k) are finally recovered using resolvable multiton
nodes by “Cancelling out” process and a Coupon Collection
argument.

IV. MEASUREMENT DESIGN
For a bipartite graph G (G is one of the GI , GII,l’s and GIII ),
there are n nodes on the left and m′G nodes on the right .
A(G)′ is the dimension-m′G × n adjacent matrix of G where
the entry at i-th row and j-th column equals to 1 if and only
if i-th right node connects to the j-th left node for j ∈ [n]
and i ∈

[
m′G
]
. The dimension-mG × n phase measurement

matrix A(G) is designed based on A(G)′ where mG = 5m′G .
By appending all the matrix A(G) sequentially, we get the
actual m× n measurement matrix A where m = ΣGmG . For
i-th row A(G)′i of A(G)′, a set of rows (of size 5) of A(G) are
designed for i ∈

[
m′G
]
. If the j-th entry of A(G)′i is zero, then

corresponding set of entries of A(G) are all zero for all j ∈ [n].
In the following measurement matrix design, we design the
entries corresponding to non-zero entries in A(G)′. See Section
V for how these measurements are used for decoding.
1) Trigonometric entries: The j-th entries of the (5i − 4)-th
and (5i−3)-th rows of A(G) are denoted by a(G,1)

i,j and a(G,2)
i,j .
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The values are set to be cos (jπ/(2n)) and ι sin (jπ/(2n)),
respectively. Here ι denotes the positive square root of −1 and
π/(2n) can be treated as the unit phase of the entry design.
2) Structured unit complex entries: The j-th entry of the (5i−
2)-th row of A(G) is denoted by a(G,3)

i,j . The value is set to be
exp (ιjπ/(2n)).
3) Unit entries: The j-th entry of the (5i− 1)-th row of A is
denoted by a(G,4)

i,j . The value is set to be 1.
4) Random unit complex entries: The j-th entry of the 5i-
th row of A is denoted by a

(G,5)
i,j used for verification and

resolving degeneracy in the decoding process. The value is
set to be a(G,5)

i,(j) = exp(ιφi,j), where φi,j is chosen uniformly
at random from [0, π/2]5.

V. RECONSTRUCTION ALGORITHM

Let b(G,q)i denote the [5 (i− 1) + q]-th measurement generated
by A(G). Here, G is one of the GI , GII,l’s and GIII , i ∈ [mG ],
and q ∈ [5].

A. Seeding phase
Initialization: We initialize by setting the signal estimate
vector x̂ to all-zero vector 0n. Each right node i ∈

[
m′GI

]
attaches an empty neighbor list N (i). let D denote a list of
the resolvable doubletons. Initially, D is empty. Set i = 1.
Singleton Identification, Verification and Magnitude Re-
covery: Compute si = arctan

(
b
(GI ,2)
i /b

(GI ,1)
i

)
/ (π/(2n)).

Check whether si is an integer. If si is not an integer,
increment i by 1 and start a new iteration. If si is an integer,
we do the following steps:
1) Singleton Identification: We tentatively identify that i is a
singleton.
2) Magnitude Estimation: Assume that si-th entry of x is non-
zero and |x̂si | = ιb

(GI ,2)
i /a

(GI ,2)
i,si

.

3) Verification: If |x̂si | 6=
∣∣∣b(GI ,5)
i

∣∣∣, the verification fails and
increment i by 1 and start a new iteration. If verification
passes, we do the following steps:

a) Updating Neighbor List: si is appended to the neighbor
lists of all its neighbors. For i ∈

[
m′GI

]
, it is no longer

considered in the later process if |N (i)| ≥ 3 since in the
next step we only care about doubleton whose neighbor list
size equals 2.

b) Increment i by 1 and start a new iteration.
Doubleton Identification: For each i whose neighbor list is
of size 2, it is appended to the resolvable doubleton list D
where N (i)[1] and N (i)[2] (or i1 and i2 for short) are the
two indices of non-zero components whose magnitudes have
been recovered.
Relative Phase Recovery: To compute connected component
of H, Depth first search (DFS) [24] for adjacent list repre-
sentation of H is applied in this step. For each i ∈ D, the
elements in N (i) tell which two vertices in H are connected.
DFS outputs connected components of graph H. For the first
node in a connected component, its phase is set to be zero.
We run the DFS, for each edge in H, with additional steps
stated below:
1) Relative Phase Estimation: We know that i’s two neighbors
are i1 and i2. The fourth measurement is used to derive

5If φi,j is chosen with Ω(log(k)) bits of precision, the error probability
of verification and resolving degeneracy (see relative phase recovery part in
Section V) in a single step is at most O(1/poly(k)). Since the total number
of times one needs to verify and resolve degeneracy is O(k), by applying
Union bound over the decoding process, the probability of incorrect decoding
is upper bounded by O(1/poly(k)).

the phase between i1-th and i2-th components of x, θ =
|θi1 − θi2 |, by Law of Cosines6.
2) Resolving Degeneracy and Verification: The verification
measurement helps to resolve the degeneracy of sign
of θ (i.e., whether θ or −θ is the actual phase
difference we are interested in) by checking whether
||x̂i1 | exp (ιφi,i1) + |x̂i2 | exp (ι (φi,i2 + θ))| =

∣∣∣b(GI ,5)
i

∣∣∣, or

||x̂i1 | exp (ιφi,i1) + |x̂i2 | exp (ι (φi,i2 − θ))| =
∣∣∣b(GI ,5)
i

∣∣∣. If
neither of the above equations holds, then i is not a resolvable
doubleton. Namely, there is no edge between N (i)[1]-th and
N (i)[2]-th components of x.

When the DFS terminates, we can find the largest connected
component of H, H′.

B. Geometric-decay and Cleaning-up phases
Claim 2. (“Cancelling out” Process) For a bipartite graph
G in geometric-decay phase or cleaning-up phase, if a right
node i is a resolvable multiton node, it involves exactly one
(unknown) undecoded non-zero component, xj , and at least
one (known) resolved non-zero components. Then, we are able
to find the location of xj , j, and resolve xj (both magnitude
and relative phase).

We omit the proof here and refer the reader to [19, Claim
2] for a detailed proof. In each stage at geometric-decay phase
and cleaning-up phase, we go through all the right nodes, find
resolvable multitons and use them to recover unresolved non-
zero components by the “cancelling out” process. For a newly
resolved component of x, the corresponding node in H is
appended to H′. In the end, the size of the node set of H′
should be k.

VI. PARAMETERS DESIGN
All the parameters designed in this section are calculated based
on expectation. The actual performance of our algorithm will
be discussed in Section VII. We refer the reader to [19, Section
VI] for detailed calculation.
A. Seeding phase

1) Magnitude Recovery by singletons
The probability of a right node being a singleton node, PS ,

equals
(
k
1

)
(1/k) (1− 1/k)

k−1 which converges to e−1 as k
goes to infinity. The expected number of singletons is ck×PS .
Thus, the expected number of different non-zero components
whose magnitudes are recovered is k (1− exp (−cPS)) by
[19, Lemma 3].

2) Relative Phase Recovery by resolvable doubletons
The probability of a right node being doubleton, PD,

equals
(
k
2

)
(1/k)

2
(1− 1/k)

k−2. The expected number of
doubletons is = ck × PD. The expected number of re-
solvable doubletons is

[(
k(1−exp(−cPS))

2

)
/
(
k
2

)]
· ckPD which

converges to (1− exp (−cPS))
2
cke−1/2 as k goes to infinity.

So, the expected number of different pairs of components
whose relative phase is recovered by resolvable doubletons
is (1 +O(1/k)) (1− exp (−cPS))

2
ckPD by [19, Lemma 3].

3) The giant connected components
We need to find the size of giant connected compo-

nent of a random graph with k (1− exp (−cPS)) nodes and
(1 +O(1/k)) (1− exp (−cPS))

2
ckPD distinct edges. Let’s

say the size is (1− fI) k where fI is the function of c. By
6Given the lengths of two complex number A and B, we can de-

duce the phase between A and B, ∆, by Law of Cosines if we
also know the length of A + B. To be more explicit, − cos ∆ =(
|A|2 + |B|2 − |A+B|2

)
/ (2|A||B|).
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[19, Theorem 4], when 2 (1− exp (−cPS)) cPD > 1, the
giant connected component exists (this inequality holds when
constant c is large enough) and the size of the giant component
is (1− fI) k = βck (1− exp (−cPS)) where βc is the unique
solution to β + exp [−β · 2 (1− exp (−cPS)) cPD] = 1.

B. Geometric-decay phase
In the (l + 1)-th stage (0 ≤ l ≤ L − 1), the probability
that a right node being a resolvable multiton, P (II,l+1)

M ,
equals (1− 1/ (fII,lk))

fII,lk−1 − (1− 1/ (fII,lk))
k−1 which

converges to e−1 − exp (−1/fII,l) as k goes to infinity. The
expected number of resolvable multitons is cfII,lkP

(II,l+1)
M .

The expected number of non-zero components which are
resolved (both magnitude and phase), (fII,l − fII,l+1) k,
equals fII,l

(
1− e−cP

(II,l+1)
M

)
by [19, Lemma 3]. Therefore,

fII,l+1 = exp
(
−cP (II,l+1)

M

)
fII,l. We can compute the value

of fII,l recursively. Note that P (II,l)
M increases as l increases.

C. Cleaning-up phase
Recall that, in this phase, each edges appears with probability
log k/k and there are c (k/ log k) log (k/ log k) = O(k) right
nodes in GIII .

VII. PERFORMANCE OF ALGORITHM
For completeness, the reader is refered to [19, Section VII]
for a detailed proof.

A. Number of measurements
The number of measurements in the seeding phase and
cleaning-up phase is O(k). For geometric-decay phase, we
show that fII,l+1 = exp

(
−cP (II,l+1)

M

)
fII,l, and P

(II,l)
M

increases as l increases in Section VI. So, fII,l+1 ≤
exp

(
−c(l + 1)P

(II,1)
M

)
fI holds for all 0 ≤ l ≤ L− 1. Thus,

the number of measurement in the geometric-decay phase is
O(k). Then, the total number of measurements is O(k).

B. Decoding complexity
Almost all the operations take constant time except for DFS
in the seeding phase and “Cancelling out” process in the
geometric-decay and cleaning-up phases. For DFS, the time
complexity is linear in the size of node set and edge set.
Since there are k nodes and O(k) edges involved in the
seeding phase, the time complexity is O(k). For “Cancelling
out” process, the time complexity depends on the number
of resolved non-zero components which corresponds to a
resolvable multiton. In the later stage/phase, more non-zero
components are associated with a measurement. Since the
number of measurements is O(k), it suffices to show that each
measurement involves at most O(log k) non-zero components
(even if they are unresolved) in the cleaning-up phase with
probability at least 1− o(1/k). In fact, this can be shown by
Chernoff bound. Thus, we know that the decoding complexity
is at most O(k log k) with probability at least 1−k ·o(1/k) =
1− o(1) by Union bound.
C. Correctness

The actual number of resolved non-zero components in each
phase/stage deviates from the expected value but it can be
concentrated around expectation with high probability. Let
gI denote the actual fraction of unresolved non-zero compo-
nents after seeding phase. Let gII,l denote the actual fraction
of unresolved non-zero components after the l-th stage in
geometric-decay phase. Let gII,0 = gI .

After the seeding phase, we show that (1− εI) fI ≤ gI ≤
(1 + εI) fI holds with probability 1 − O

(
k−1/3

)
, and εI

scales as O
(
k−1/3

)
. In the end of geometric-decay phase, we

show that (1− εII,L) fII,L ≤ gII,L ≤ (1 + εII,L) fII,L holds
with probability 1−O

(
log log k · k−1/3

)
, and εII,L scales as

O
(
log k · k−1/3

)
. Finally, when the cleaning-up phase ends,

all the remaining non-zero components are resolved with
probability 1−O(log k/k) given the concentration results in
the previous phases are correct by [19, Theorem 5]. Therefore,
by Union bound, SUPER algorithm resolves all the non-zero
components with probability 1− o(1).
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