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ABSTRACT
�is paper studies the problem of utilizing heterogeneous energy

storage systems, including electric vehicles and residential ba�er-

ies, to perform demand-response in microgrids. �e objective is to

minimize the operational cost while ful�lling the demand-response

requirement. �e design space is to select and schedule a subset

of available storage devices that are heterogeneous in operating

cost, capacity, and availability in time. Designing a performance-

optimized solution, however, is challenging due to the combina-

torial nature of the problem with mixed packing and covering

constraints, and the essential need for online solution design in

practical scenarios where both demand-response requirement and

the pro�le of user-owned storage systems arrive online. We tackle

these challenges and design several online algorithms by leverag-

ing a recent theoretical computer science technique which uses

a problem-speci�c exponential potential function to solve online

mixed packing and covering problems. We show that the fractional

version of the algorithm achieves a logarithmic bi-criteria compet-

itive ratio. Empirical trace-driven experiments demonstrate that

our algorithms perform much be�er than the theoretical bounds

and achieve close-to-optimal performance.
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1 INTRODUCTION
Microgrid is a small-scale power system that, by leveraging renew-

able sources, operates autonomously to match the demand and

the supply of a local community [19]. It represents a promising

paradigm to address the economic, reliability, and environmental

concerns encountered by today’s power grids [12, 22, 26]. As re-

ported in [15], the global capacity of microgrids will expand by

more than 5 times in 2015-2024, from 1.4GW to nearly 7.6GW.

Demand-response in smart (micro) grid [30] is regarded as a

potential solution for real-time balancing between supply and de-

mand to boost the reliability of the grid and reduce the operational

costs. In the literature, at least three di�erent approaches towards

demand-response in smart grid have been proposed: (i) demand

reduction through shi�ing the �exible demand, e.g., in data centers,

in temporal domain [21]; (ii) reducing the net grid demand by intel-

ligent scheduling of local generation units [9, 27]; (iii) reducing the

net demand by active participation of user-owned crowd-sourced

storage systems and reducing their charging or even discharging

them and releasing energy back to the grid [30].

Among above approaches, we focus on the third approach of

“crowd-sourced storage-assisted demand-response” in microgrid.

In this approach, hundreds of ba�eries of electric vehicles and

smart homes equipped with residential storages [5], residing in the

microgrid, with huge aggregate capacity can actively participate

in microgrid demand-response through reducing their charging

demand or even discharging and selling electricity to the grid, e.g.,

through vehicle-to-grid scheme [16] for EVs. In this way, not only

the microgrid can reduce its net demand from the main grid, but

also, the customers can bene�t by participating in this scheme.

More speci�cally, we assume the microgrid has a MicroGrid Cen-

tral Controller (MGCC) [23], through which the microgrid operator

can coordinate among the distributed resources. A�er receiving

all the information of the available sources, MGCC selects a subset

of energy storage systems and schedules their output levels, by

either reducing their charging rate or even discharging, so as to

(i) ful�ll the supply shortage of microgrid, for reliable operation

of microgrid, and (ii) minimize total cost of involving the chosen

energy storage systems, for economical operation of the microgrid.

Challenges. It turns out that achieving the above objectives is
a formidable task since it requires solving a joint Source Selection

and Scheduling Problem (S3P), which is uniquely challenging to

solve because of two critical challenges:

�e �rst challenge originates from the heterogeneity of energy

storage systems, in terms of cost, capacity, and availability in time.



e-Energy ’17, May 16-19, 2017, Shatin, Hong Kong Mohammad H. Hajiesmaili, Minghua Chen, Enrique Mallada, and Chi-Kin Chau

�eoretically speaking, heterogeneity in the S3P results in a com-

binatorial problem with both packing constraints, i.e., capacity

constraint of the sources, and covering constraints, i.e., supply

shortage of the microgrid. �e 0/1 decision space in source selec-

tion, together with mixed linear packing and covering constraints

make the problem as one of the mixed packing and covering com-

binatorial problems which is di�cult to tackle in general. A careful

investigation shows that a simpli�ed version of the S3P can be re-

expressed as the spli�able version of Capacitated Facility Location

Problem [20] (CFLP), which is known as a challenging theoretical

CS problem [25]. �e S3P is more challenging than the CFLP, as it
not only inherits all the di�culty of the CFLP, but also involves a

non-trivial “topological” constraint caused by the heterogeneous

availability in time of storage systems.

�e second challenge lies in the essential need for online solu-

tion design. In demand-response, the supply shortage as well as

the availability of energy storage systems reveal online. Due to

long-term availability of storage systems, the decision making is

coupled over time, thereby it is challenging to make online deci-

sions without knowing future input. It turns out that in online

se�ing, even �nding a feasible solution with sound performance

is non-trivial, and to achieve a sound performance against o�ine

optimum, violation of constraints is inevitable.

Solution approach. In this paper, we follow a competitive on-

line algorithm design to jointly minimize both cost and capacity

violation. �en, we aim to analyze the performance of the algo-

rithm using bi-criteria (α , β )-competitive ratio analysis. In context

of our problem, a bi-criteria (α , β )-competitive online algorithm

produces a solution of cost at most α times of the o�ine optimum,

while violating the capacity constraints by no more than a β factor.

We note that demand-response with energy storage management

has been studied in literature using other technical approach such

as Lyapunov optimization [13] and Markov decision process [28].

�ese approaches rely on the underlying stochastic process of the

input parameters. In competitive design approach, however, there

is no assumptions on the stochastic processes of the future input.

Contributions. We �rst focus on designing an online fractional

algorithm for the linear-relaxed version of the S3P. Note that linear
version of the problem is still di�cult to solve in online scenario,

because the input parameters to the time-coupled linear problem

are not known in advance. By adapting a recent framework for

online mixed packing and covering problems [2], we propose an

online fractional algorithm called OnFrc. In the OnFrc at each

slot, a fractional solution for the S3P is obtained by constructing a

potential function that is linear in cost and exponential in violating

the capacity constraint. We demonstrate that the OnFrc is a bi-

criteria O (logn, logn)-competitive online algorithm, where n is

the number of sources. �en, by a simple randomized rounding

algorithm, we obtain an integral solution for the S3P. In addition, we
provide several other heuristics to improve the performance of our

algorithms mainly to minimize violating the capacity constraint.

By experiments using real data traces, we investigate the per-

formance of online algorithms. Note that although the proposed

algorithm is logarithmic competitive, this is a worst-case theoretical

bound, and the experimental results signify that the performance

Table 1: Summary of key notations

Notation Description

I
�e set of sources (energy storage systems),

indexed by i , (n , |I |)
T �e set of time slots, indexed by t , (T , |T |)
ci Total available energy of source i

ki Maximum discharge rate of source i at each slot

fi Fixed-cost of source i

ui Unit-cost of source i

Ti
Ti = [ai ,bi ], available interval of source i , where
ai ≤ bi ∈ [1,T ] are arrival and departure slots

dt Supply shortage at t

xi Opt. variable, 1: source i is selected, 0, otherwise

yi (t )
Opt. variable, amount of supply shortage that is

covered by source i at slot t

is much be�er in practical scenario. In a set of representative sce-

narios (in which the number of sources varies from 50 to 150), the

average empirical competitive ratio is 1.7.

�e rest of the paper is organized as follows. Sec. 2 introduces the

model and formulates the problem. �e online solution is explained

in Sec. 3. �e results of trace-driven experiments are given in Sec. 4.

Sec. 5 reviews the literature and Sec. 6 concludes the paper.

2 PROBLEM FORMULATION
2.1 System Model
We assume that the system is time-slo�ed, where each time slot

t ∈ T , (T , |T |) has a �xed length (e.g., 1 hour
1
) that is set by the

microgrid operator. We assume that at each slot t , the microgrid has

a shortage dt ≥ 0 in supply. In the microgrid with high penetration

of renewable, it is highly di�cult to predict total net supply of

renewables in advance. �ereby, we assume that at the beginning

of each slot only the value of dt for the incoming slot is known.

Beyond that, we have no assumptions on the exact or stochastic

modeling of dt . By summarizing the key notations in Table 1, we

proceed to introduce the properties of energy storage systems.

2.1.1 Energy Storage Systems. Let I, (n , |I |), be the set of
energy storage systems, which we call them the “sources” through-

out the paper for brevity, in the microgrid that are available to

contribute in demand-response scheme. By sources we mean any

type of devices like EVs, residential ba�eries, on-site storages for

data centers, etc., that can be connected to the microgrid and partic-

ipate in demand-response by either reducing their charging rate or

discharging back to the microgrid. �e sources are heterogeneous

in terms of availability, capacity, and cost.

Available interval: Source i is available in interval Ti ⊆ T ,

which is Ti = [ai ,bi ], where ai and bi are the arrival and departure
slots respectively. �is captures the availability of sources, e.g., EVs

are available in di�erent intervals in the parking lots, or residential

ba�eries are available during the intervals that their own usage

is low. In our model, we also assume sources arrive online, i.e., at

1
Note that the length of each slot could be arbitrarily small such that the full input

information of the incoming slot could be accurately predicted.
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the beginning of each slot, only the full information of available

sources is known, and we have no exact or stochastic information

of the sources that their arrival is in the future slots.

Capacity: We assume that without participating in demand-

response scheme, each source i is charged at the maximum charging

rate κi during its available interval Ti . Hence, its total state of the
charge at departure time slot would be SoCa

i + κi |Ti |, where SoC
a
i is

the state of charge on arrival.
2
By participating in demand-response,

the charging rate of the sources could be decreased to meet the

supply shortage of the microgrid. In addition, even discharging is

allowed in cases that the supply shortage is large.

�e total aggregate energy that is deducted from each source

during its available window is limited and is set by each source

separately, based on the total capacity of the ba�ery and user pref-

erences. More speci�cally, let SoCd
i be the minimum requirement

of the state of charge at departure for source i . Now, we get ci as
total available energy of source i to participate in demand-response

as follows:

ci = SoCa
i + κi |Ti | − SoC

d
i , (1)

where SoCd
i < SoCa

i + κi |Ti |, hence ci > 0. �is means that source

i has a positive amount of energy to contribute in demand-response.

Each source i has a single-slot capacity ki that is the aggregation
of the charging and discharging rates of source i . �e parameter

ki captures the maximum amount of the energy that source i can
contribute at each slot. Herea�er, with a phrase abuse for brevity,

we call ki as the maximum discharge rate of source i , while in fact

it is the aggregation of the charging and discharging rates.

Cost: Cost model of source i consists of two parts: (i) a �xed

cost fi , which is �xed value regardless of the amount of energy

that is solicited; this could be related to a �xed payment to the

participants or even could be related to physical properties of the

storage systems, and (ii) a unit cost ui which must be multiplied

by the volume of energy that is contributed by source i during its
available interval to compute the volume cost. We assume that

the sources always declare their true cost values. Extension of the

framework into a truthful mechanism, in which truth-telling is the

dominant strategy of the sources is part of the future study.

Illustrative example: In Fig. 1, we use a simple example with

four heterogeneous sources to clarify the design space of the prob-

lem. �e properties of the sources are mentioned in the �gure. Note

that the sources arrive at di�erent slots in online manner. On the

other hand, at each slot, the microgrid encounters di�erent supply

shortage, as shown in the bar plot of Fig. 1. By using each source,

the microgrid is charged a �xed cost regardless of howmuch energy

is covered by the source. Hence, the �rst design space is to select

minimum number of cost-e�ective sources. Furthermore, since the

supply shortages and the availability of sources are di�erent at

di�erent slots, the second design space is to schedule the sources,

i.e., set the amount of deduction in their charging, to compensate

for the supply shortage. In Fig. 1, an optimal solution (in which

sources 1, 3, and 4 with total cost of 20 are selected) along with the

feasible scheduling (which is color-coded in the bar plot) is shown.

2
We assume that the storage capacity of source i is large enough such that

SoCa
i + κi |Ti | is less than the storage capacity.

available interval

Su
pp

ly
 s

ho
rta

ge

Time

1
2
3

4

3 units covered 
by source 3

c4 = 18, f4 = 5c4 = 18, f4 = 5

c3 = 18, f3 = 10c3 = 18, f3 = 10

c2 = 20, f2 = 50c2 = 20, f2 = 50

c1 = 8, f1 = 5c1 = 8, f1 = 5

Figure 1: An illustration of the system model and source
selection and scheduling problem. A simple example with
T = 10 and 4 di�erent sources with di�erent costs, capacities,
and availabilities. Equal unit cost is assumed for simplicity.
�e problem is to select and schedule the deduction amount
of selected sources such that the supply shortage is ful�lled
at each slot. In this example, the optimal solution is to se-
lect sources 1, 3, and 4. A feasible scheduling is also depicted
by color-coded shading of the shortage bars. Source 2 is not
selected since it is too expensive and by proper scheduling,
all shortages could be covered by the other sources.

We �nally note that joint consideration of source selection and

scheduling makes the problem di�cult. �ere are some studies in

the literature [11, 29] which assume that the scheduling is �xed,

i.e., in the context of our problem the deduction amount is constant

and �xed at each slot, and solve the source selection problem (also

known as winner determination problem in the context of auction

design [30]) in online manner. However, this simpli�cation leads

to sub-optimal solution and reduces the feasibility region of the

problem. For detailed discussion, we refer to Sec. 5.

2.2 Problem Formulation
Given the set of heterogeneous sources, the goal is to use the poten-

tials of the available sources by selecting a subset of them such that

by a proper scheduling, (i) the supply shortage during time horizon

is covered, and (ii) at the same time total cost is minimized. Hence,

the underlying optimization problem is a joint source selection and
scheduling problem (S3P) that is formulated as

S3P : min

∑
i ∈I

(
fixi + ui

∑
t ∈Ti

yi (t )
)

s.t.

∑
t ∈Ti

yi (t ) ≤ cixi , ∀i ∈ I, (2a)

yi (t ) ≤ kixi , ∀i ∈ I, t ∈ Ti , (2b)∑
i ∈I:t ∈Ti

yi (t ) ≥ dt , ∀t ∈ T , (2c)

vars. xi ∈ {0, 1}, ∀i ∈ I,

yi (t ) ≥ 0, ∀i ∈ I, t ∈ Ti ,

where optimization variables are xi and yi (t ). xi = 1, if source

i is selected, 0, otherwise. In addition, yi (t ) denotes the amount
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of energy that is covered by source i at slot t , by decreasing its

charging or discharging. Constraint (2a) is the long-term capacity

(packing) constraint of the sources. Constraint (2b) is about single-

slot capacity of sources that says provided that source i is selected,
the maximum amount of decrease in demand at each slot is limited

to ki . Constraint (2c) is the covering constraint that guarantees that
total acquired energy by the chosen sources covers the shortage

at each slot. Finally, note that the S3P is a mixed-integer linear

programwhich is di�cult to solve, in general, even in o�ine se�ing.

Theorem 2.1. Problem S3P is NP-complete.

Proof. By se�ing T = 1, ui = 0, i ∈ I, the problem is the well-

known minimum knapsack problem [3] which is one of the original

NP-complete problems [17]. �

Wehighlight that a simpli�ed version of the S3P can be translated
to the capacitated facility location problem (CFLP) [25]. In the

CFLP two sets of facilities and clients are given. Each facility has an

opening cost and capacity. �ere is an assignment cost of assigning
each client to each facility. �e problem asks us to open a subset of

facilities and assign the clients to these facilities, while ensuring that

the capacity constraint of all facilities is respected. �e objective

is then to minimize the aggregated �xed and assignment costs. In

particular, by contemplating sources as the facilities and time slots

as the clients, and neglecting the short-term capacity constraint (2b),

i.e., ki = ci ,∀i ∈ I, and assuming complete availability of sources,

i.e., Ti = T ,∀i ∈ I, the S3P is the spli�able version of the CFLP in

which a client can be partially assigned to multiple facilities.

By this mapping, the simpli�ed version S3P inherits all the dif-

�culties of the spli�able CFLP, i.e., combinatorial nature due to

0/1 selection variable, and mixed packing and covering constraints

in a single problem. In addition, the general S3P comes with two

additional unique challenges: (i) single-slot capacity constraint (2b),

and (ii) interval availability that could be translated into a “topo-

logical” constraint that each facility can be served just for a subset

of clients. Pu�ing together these two additional challenges, most

of the previous results for the CFLP [1, 18, 20] cannot be directly

applied to solve the S3P problem.

On the other hand, the S3P requires online solution design. �e

online inputs in our problem are two-fold. First, supply shortage

dt reveals in slot-by-slot fashion, which is natural in microgrid due

to high uncertainty in the renewable output. Second, the sources

arrive online. Recall that each source i has interval availability
Ti = [ai ,bi ], where ai is the arrival time slot, hence, its data reveals

at t = ai . In this way, all the characteristics of available sources
are given at the beginning of each slot. In terms of underlying

optimization problem, both packing and covering constraints arrive

online. Now, we proceed to design an online solution for the S3P.

3 ONLINE SOLUTION
Since the S3P encounters mixed packing and covering constraints,

in online scenario it is straightforward to show that no determinis-

tic competitive algorithm can achieve competitive ratio be�er than

O (n) which is not an interesting result [2]. To achieve be�er analyt-

ical performance, one approach is bi-criteria competitive algorithm

design, where violation of either packing or covering constraint is

allowed, and the design tries to bound the objective value against

optimum and the amount of constraint violation [2].

In demand-response, however, it is critical that the shortage is

ful�lled by the chosen sources. Hence, in our bi-criteria competitive

online algorithm design, we force the covering constraint to be

respected, and as a result, violation of capacity constraints of the

sources is permi�ed. As such, the goal is to minimize the capacity

violation of selected sources, in addition to total cost minimization.

As characterized in Eq. (1), the capacity of each source i is related

to the desired state of the charge SoCd
i at departure. Capacity

violation in this context means the state of the charge is lower than

the desired value. One can imagine several ways to compensate

for this violation. �e �rst solution is to make additional higher

payment to the sources beyond their capacity. Another solution

is to acquire the energy beyond the capacity from the main grid,

or on-site back-up generator owned by the microgrid, which are

usually muchmore expensive than using the crowd-sourced storage

systems. Finally, note that in Sec. 3.3, we propose heuristics to

minimize the capacity violation as much as possible.

In this section, we devise three algorithms in order. First, inspired
by the recent result [2], we propose a fractional algorithm called

OnFrc for the linear-relaxed version of the S3P without single-slot

capacity constraint (2b) (Sec. 3.1). Second, through a randomized

rounding algorithm called OnInt we obtain an integer solution

(Sec. 3.2). In Sec. 3.3, we propose several heuristics to improve

the performance of both OnFrc and OnInt. �ird, in Sec. 3.4, we

extend theOnInt and propose kOnIntwhich respects the single-slot
capacity constraint (2b), as well.

3.1 Online Competitive Fractional Algorithm
First, in Sec. 3.1.1 we reformulate the relaxed linear problem and

perform some scaling procedures such that the new problem is

equivalent to the (relaxed) original S3P (without single-slot ca-

pacity constraint (2b)) and is more convenient for our analysis.

Second, in Sec. 3.1.2, we propose the fractional algorithm OnFrc
that fractionally chooses and schedules the available sources at

the beginning of each time slot. We also analyze the bi-criteria

competitive ratio of the proposed algorithm and �nd bounds for

both the cost ratio and packing constraint violation.

3.1.1 Linear Relaxation Problem Formulation. We assume that

the number of time horizon (T ) is known in advance and also the

optimal o�ine cost Opt is given.
3
Without loss of generality, we

assume that fi ≤ Opt,∀i ∈ I, otherwise, we exclude the sources

with �xed cost greater than Opt. Now, we introduce
ˆfi as the scaled

�xed-cost of source i as

ˆfi = max

{
fin

Opt

, 1

}
, (3)

and ûi (t ) as the time-dependent normalized unit cost of the source

i at time t as

ûi (t ) =
uidtn

Opt

.

3
�ese assumptions are reasonable since T is �xed usually. �e optimal o�ine cost

also can be estimated based on historical data. Nevertheless, the algorithm can be

extended to the case that the optimal o�ine cost is not known at the expense of adding

a multiplicative logarithmic order in competitive ratio [2].
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Algorithm 1: OnFrc- Online Fractional Algorithm, at time t

1 It ← an ordering of sources that are available in t in
ascending order of vi (t ) in Eq. (5)

2 Pt ← the maximal subset of It such that

∑
i ∈Pt xi < 1

3 lt ← the �rst source in It that is not in Pt

4 while
∑
i ∈Pt∪{lt } zi (t ) < 1 do

5 foreach i ∈ Pt ∪ {lt } do
6 if i ∈ Pt OR (i = lt AND xi < 1) then
7 xi ← min

{
xi + xi/ ˆfiT , 1

}

8 zi (t ) ← min

{
2xi ,

xi−1/n
di (t )+ûi (t )/ ˆfi

}
9 end

10 if i = lt AND xi = 1 then
11 zi (t ) ← zi (t ) + 1/vi (t )T

12 end
13 end
14 end

Finally, we de�ne di (t ) = dt /ci . Note that by multiplying �xed and

unit cost parameters by n/Opt, the optimal value of the problem

changes to n. In addition, se�ing the minimum �xed cost of the

sources to 1 will increase the optimal cost to at most 2n. �e goal

of these scaling procedures is to facilitate our competitive analysis.

Let xi ≥ 0 be the relaxed integer source selection variable. More-

over, zi (t ) ∈ [0, 1] is the portion of supply shortage dt that is ful-
�lled by source i . Indeed, yi (t ) = dtzi (t ), where yi (t ) is the sched-
uling variable in the S3P in Sec. 2. With these modi�cations and

de�nitions, we formulate the following linear-relaxed problem:

S3P-LP : min

∑
i ∈I

ˆfixi +
∑
i ∈I

∑
t ∈Ti

ûi (t )zi (t )

s.t.

∑
t ∈Ti

di (t )zi (t ) ≤ xi , ∀i ∈ I, (4a)

∑
i ∈I:t ∈Ti

zi (t ) ≥ 1, ∀t ∈ T , (4b)

vars. xi ≥ 0, ∀i ∈ I, zi (t ) ≥ 0 ∀i ∈ I, t ∈ Ti .

We note that in the S3P-LP in addition to linear relaxation, the

single-slot capacity constraint (2b) is also neglected. In Sec. 3.4, we

explain how to modify the algorithms to consider this constraint.

3.1.2 Online Fractional Algorithm. Virtual cost of sources.
Our online competitive algorithm accomplishes source selection

and scheduling by providing an ascending ordering among the

available sources at each slot. Hence, the main goal is to construct a

metric for sorting of the sources. �e sorting metricvi (t ) which we

refer to it as virtual cost of source i at time t is de�ned as follows.

De�nition 3.1. �e virtual cost of source i at time t is de�ned as:

vi (t ) =



ˆfiθ
γi (t )−1di (t ) + ûi (t ), if xi = 1,

ˆfidi (t ) + ûi (t ), otherwise,
(5)

where θ > 1 is a constant factor and γi (t ) =
∑
τ ∈Ti :τ ≤t di (τ )zi (τ )

is the current congestion level of source i .

By this de�nition, when source i is not fully chosen (xi < 1), the

cost is linear in both normalized �xed and unit cost. On the other

hand, if source i is already fully chosen (xi = 1) in the fractional

solution due to the scheduling in the previous time slots, the virtual

cost is linear in �xed cost, however exponential in the congestion

level γi (t ). In this way, there is an exponential penalty in capacity

violation of the sources. Parameter θ > 1 can be interpreted as the

design parameter to provide trade-o� between total cost against

capacity violation, i.e., the larger the value of θ , the higher the im-

portance of congestion level in virtual cost. In Sec. 4, we investigate

the impact of θ on the performance of online algorithms.

Online fractional algorithm. �e detailed description of the

proposed online algorithm OnFrc that summarized in Alg. 1 is

as follows. �e OnFrc runs at the beginning of each slot and its

goal is to cover the shortage dt . Note that at t = 1 we initialize

xi = 1/n, so we get

∑
i ∈I xi = 1 at initialization. First, it sorts the

available sources at slot t in non-decreasing order of their virtual

cost (Line 1). �en, by picking the most cost e�ective ones with

aggregate selection variable less than 1, it constructs the set Pt
(Line 2). Additionally, let lt be the �rst source that is not in Pt ,
but in It . Note that since by initialization we get

∑
i ∈I xi = 1,

lt is always non-empty. In last step, we cover shortage dt in an

iterative procedure (Lines 4-14) by a scheduling among the sources

in Pt ∪ {lt }. �e scheduling is as follows. If the current source is

not fully chosen (either in previous time slots or in the previous

iterations of the current time slots), it sets its zi (t ) according to

Line 8. Otherwise, it increases zi (t ) by 1/vi (t )T (Line 11). �is

scheduling procedure continues until dt is covered. �e following

theorem characterizes the competitive ratio of the OnFrc.

Theorem 3.2. Given 1<θ <1.5, OnFrc generates a fractional
schedule that is O (logn, logn)-competitive.

See [10] for the proof. �is means that the cost of OnFrc is at
most O (logn) times than the o�ine optimum, while the packing

violation is no more than O (logn).

3.2 Randomized Rounding Algorithm
In this section, we devise a simple randomized rounding procedure

OnInt to obtain an integral solution from the fractional algorithm

OnFrc to the original problem. Note that designing more e�cient

rounding algorithms with guaranteed performance against frac-

tional solution is part of future study.

�e OnInt is summarized in Alg. 2. Our randomized rounding

algorithm must produce integral values for xi s at any time slot

t . First, we notice that due to executing the rounding algorithm

in the previous slots, some values of xi are already set to 1, i.e.,

the corresponding sources are chosen. Hence, our algorithm �rst

constructs the chosen available sources Iselt at the previous time

slots (Line 4). �en, in the main body of the algorithm (Lines 6-14),

among the set of sources that are fractionally chosen (xi < 1), and

actively participate in the current time slot (xi (t ) > xi (t − 1)), it
randomly sets them to 1 with probability xi (t ). Due to rounding,

some sources that already contribute in theOnFrc to cover a portion
of supply shortage might be rounded to 0. We accumulate the

covering amount of those sources in Line 11 and then in Lines 15-

17, equally schedule this amount between all fully chosen sources.
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Algorithm 2: OnInt- Randomized Rounding Alg., at time t

1 pi ← RAND(0, 1),∀i ∈ I

2 xi (t ) ← the value of xi by executing the OnFrc at t
3 xi (t − 1) ← the value of xi by executing the OnFrc at t − 1
4 Iselt ← {i ∈ I : xi = 1, t ∈ Ti }

5 ync ← 0

6 foreach i ∈ I do
7 if xi < 1 AND xi (t ) > pi AND xi (t ) > xi (t − 1) then
8 xi ← 1

9 Iselt ← Iselt ∪ {i}

10 else
11 ync ← ync + dtzi (t )

12 zi (t ) ← 0

13 end
14 end
15 foreach i ∈ Iselt do
16 yi (t ) ← yi (t ) + y

nc/|Iselt |

17 end

Note that the OnInt comes with an additional performance loss

due to rounding fractional solution to integral solution. Our ex-

periments (Sec. 4) show that this loss is not signi�cant. Analytical

study of the worst-case bound due to randomized rounding is part

of the future work. Finally, we remark that the algorithms OnFrc
and OnInt are obtained by neglecting the single-slot capacity con-

straint (2b). We extend the OnInt in Sec. 3.4 and propose another

algorithm to respect this constraint.

3.3 Heuristics to Improve the Algorithms
In this section, we propose several other heuristics to improve the

performance of both fractional algorithm OnFrc and integral algo-

rithm OnInt in practice. Our focus in this section is to mainly tailor

the algorithms to be more conservative in violating the capacity

constraint. �e heuristic in Sec. 3.3.1 modi�es the OnFrc, and the

heuristics in Sec.3.3.2 modi�es the OnInt.

3.3.1 Heuristics Applied to the OnFrc. In this heuristic, we

change the update equation for zi (t ) in Line 8 of the OnFrc to

zi (t ) = min



2xi ,

xi − 1/n

di (t ) + ûi (t )/ ˆfi
,



ci −
∑t−1
τ=ai d (τ )zi (τ )

d (t )



+

.

As compared to the update equation in Line 8 of the OnFrc, the
update equation above has an additional third term to enforce re-

specting capacity constraint of each source. In addition, by the end

of running theOnFrc at slot t , we set xi = 1, for sources that their to-

tal congestion exceeds the capacity, i.e., {xi = 1 : ci ≤
∑t
τ=ai yi (t )}.

In this way, for the forthcoming slots, we calculate the virtual cost

of these sources according to the �rst line in Eq. (5), in which there

is an exponential penalty for further usage of these sources. Last

but not the least, we break the update equations in the body of

foreach loop in Lines 5-13 of theOnFrc immediately a�er ful�lling

the supply shortage, without going over the remaining sources. In

this way, we prevent over-coverage of the supply shortage.

Algorithm 3: kOnInt- OnFrc with Discharge Rate, at time t

1 Iselt ← the set of selected sources by executing OnInt at slot t

2 Iunselt ←
{
i ∈ I : i < Iselt and t ∈ Ti

}

3 ybk ← 0

4 foreach i ∈ Iselt do
5 ybk ← ybk + [yi (t ) − ki ]

+

6 yi (t ) ← min

{
ki ,yi (t )

}

7 end
8 sort Iunselt in descending order of xi obtained by OnFrc
9 while ybk > 0 do

10 i ← the next source in sorted set of Iunselt
11 yi (t ) ← min

{
ki , ci −

∑t−1
τ=ai yi (τ ),y

bk
}

12 ybk ← ybk − yi (t )

13 xi ← 1

14 Iselt ← Iselt ∪ {i}

15 end

3.3.2 Heuristics Applied to theOnInt. In this section, we propose
three additional heuristics for the OnInt.

(1) Time-aware Randomized Rounding. �e main intuition

behind this heuristic is to select sources more aggressively at the

initial slots, and as time goes ahead, select the new sources more

conservatively. More speci�cally, at the initial slots, usually the

number of selected sources are not large enough to cover the de-

mand that may lead to higher capacity violation. Hence, we tune

our rounding to pick the sources more aggressively. On the other

hand, when enough number of slots has been passed, potentially

su�cient number of sources are already selected in the previous

slots, hence, we select new sources more conservatively. Toward

this, we modify the random generation in Line 1 of the OnInt as an
increasing function of time, e.g., pi = β (t × RAND(0, 1))/T , where
β is a constant factor. In this way, the sources are selected in Line 7

more conservatively with large values of t .
(2) Congestion-aware Source Selection. �is heuristic runs

a�er the source selection phase in Lines 6-14 of the OnInt. �e idea

is to measure the current congestion of the selected sources and

if a pre-determined portion of them are fully congested, select a

new source. In our experiments, at each slot we select a new source

given that at least 25% of selected sources are fully-congested. �e

new selected source is the one with the largest xi in the OnFrc that
already is not chosen, and is available at the current slot.

(3) Water Filling-based Uncovered Demand Scheduling.
�e last heuristic changes the re-scheduling approach of the OnInt
in Lines 15-17. �e high-level idea is to ful�ll the uncovered de-

mand ync following a water-�lling approach. Toward this, we sort

the selected sources according to their unused capacity, and start

covering ync with the one with the highest unused capacity, and

proceed to the others accordingly.

3.4 Extension to the Maximum Discharge Rate
In this section, we extend the OnInt to consider the case that the
maximum discharge rate is limited, i.e., yi (t ) ≤ ki ,∀i, t . In other

words, in this se�ing the single-slot capacity constraint in Eq. (2b)
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of the S3P is taken into account. �e procedure of the algorithm is

summarized in Alg. 3 and called the kOnInt. �e algorithm works

in two successive steps. In the �rst step as listed in Lines 4-7, we

add the surplus amount, i.e., [yi (t ) − ki ]
+
, to ybk which contains

the aggregate amount of shortage that is beyond the maximum

discharge rate of the selected sources. Note that [a]+ = max{0,a}.
�en, we project the deduction amount of the selected sources to

at most ki , i.e., yi (t ) = min

{
ki ,yi (t )

}
. In the second step, we select

more sources in the set of sources that are available at slot t and are
not selected by executing theOnInt (Iunselt in Line 2). Our selection

criterion is to sort the unselected available sources in descending

order of their highest fractional values xi in algorithm theOnFrc (as
shown in Line 8). Recall that according to the OnFrc, the higher the
value of xi , the lower the cost of the corresponding source. �en,

in an iterative procedure, we select the sources in the ordered set

one-by-one and set the yi (t ) values according to Line 11, which is

the minimum amount between the maximum discharge rate, the

residual capacity of the current selected source, and the remaining

uncovered shortage. We proceed this procedure until the uncovered

shortage is ful�lled. We �nally note that in the kOnInt, we assume

that the su�cient sources to cover the supply shortage. In Sec. 4.2.5,

we investigate the performance of the kOnInt as a function of the

ratio ρi = ki/ci , where lower value of ρi corresponds that the
maximum discharge rate restricts the scheduling, while ρi = 1

relaxes the maximum discharge rate, i.e., it is possible to consume

all the capacity of any selected sources at single slot.

4 PERFORMANCE EVALUATIONS
In this section, we use real-world date traces to evaluate the perfor-

mance of the online fractional and integral algorithms OnFrc and
OnInt and the extended algorithm kOnInt in di�erent scenarios.

4.1 Experimental Setup and Overview
4.1.1 Parameter Se�ings and Data Traces. �e electricity data

are obtained from [6] which is the demand of a college in California.

To inject the uncertainty in demand, the renewable energy supply

is injected by a wind power trace from [14]. Finally, we assume that

on average 10% of the demand is regarded as supply shortage at

each slot. Unless otherwise speci�ed, the unit cost for each source

follows a uniform distribution over [$0, $1]. �e �xed cost is chosen

in order of ×20 of the unit costs, which is roughly around 1/3 of

the volume cost. �e available capacity ci is randomly generated

in [10, 70]kWh which includes typical sizes for Tesla EV [24] and

SolarCity Powerwall ba�eries (10kWh for approximately 1 bedroom

home, and 70kWh for approximately 6 bedrooms home). We setT =
12 and the length of each slot to 1 hour, and randomly generate the

available interval Tj for sources. �e value of congestion parameter

θ in the OnFrc is set to 1.2.

4.1.2 Performance Metrics. We compare the result of both on-

line fractional (OnFrc) and integral algorithms (OnInt) to the o�ine

optimum which is calculated by Gurobi solver [8]. �e di�erence

between the result of the OnFrc and the OnInt is the integrality
gap, i.e., the performance loss due to the randomized rounding

to integral solution. In our experiments, we report four metrics:

(i) total cost, we report this value for o�ine optimum, the OnFrc,
and the OnInt; (ii) average percentage of capacity violation for

the OnFrc and OnInt; note that o�ine optimum �nds the feasible

solution without capacity violation so in corresponding �gures,

there is no capacity violation for the o�ine optimum. (iii) empirical

cost ratio which is de�ned as the ratio between obtained cost of

our algorithms over the optimum. �is metric is reported for both

OnFrc andOnInt; and �nally (iv) the average percentage of selected
sources for o�ine optimum and the OnInt. Note that this measure

is not reported for the OnFrc because it partially selects the sources.
We report the above performance metrics under four di�erent sce-

narios and investigate the impact of (i) the number of sources; (ii)

the number of time slots; (iii) the capacity of sources; and �nally

(iv) the congestion parameter θ in OnFrc algorithm. Note that each

data point of the �gures demonstrates average value of 100 runs,

each of which is a di�erent randomly generated scenario.

4.2 Results of the Online Algorithms
4.2.1 Impacts of the Number of Sources. In this experiment,

we change the number of users from 50 to 150 with step 10. �e

results are shown in Fig. 2 and we report the following observations:

(i) As the number of sources increases, total cost (Fig. 2(a)) and

average percentage of selected sources decreases (Fig. 2(b)). Both

are reasonable since with the increase in the number of sources,

there is more freedom to pick cost-e�ective sources. In addition,

since the supply shortage is �xed in this scenario, the average

percentage of selected sources decreases. (ii) �e average cost

ratios for the fractional algorithm OnFrc and the integral algorithm
OnInt are 1.56 and 1.71, respectively (Fig. 2(c)) which demonstrate

sound performance of our algorithms. In addition, the performance

loss in terms of total cost due to randomized rounding is 9.6%, on

average. (iii) Another observation is that as the number of sources

increases the cost ratio also increases (from 1.53 when n = 50 to

1.93 when n = 150 in the OnInt). �is justi�es the competitive

ratio analysis since it increases as the number of sources increases.

Finally, we note that the obtained empirical cost ratios demonstrate

that our algorithms can achieve much be�er results than those

obtained in theoretical analysis. (iv) �e average capacity violation

in OnFrc and OnInt are 3.7% and 12.2%, respectively (Fig. 2(d)).

�e la�er says that on average the OnInt goes 12.2% beyond the

announced capacity of selected sources. As mentioned in Sec. 3, this

capacity violation could be compensated by using external sources

such as on-site microgrid generation or acquiring the energy from

grid. Another approach, perhaps, is to intelligently scale down the

capacities, such that the violation in scaled-down version of the

problem is roughly equal to the amount that is reserved due to

scaling down the capacity.

4.2.2 Impacts of the Number of Time Slots. In this scenario, the

number of time slots changes from 10 to 30 with step 2. �e results

are shown in Fig. 3 and we report the following observations: (i) As

shown in Figs. 3(a) and 3(b), as the number of time slots increases,

total cost and the average percentage of selected sources increase

for the o�ine optimum and also for our online algorithms. �is

is reasonable since with �xed number of sources, as the number

of slots increases, more demand must be covered and hence total

cost and the number of selected sources increase. (ii) �e second

interesting observation is shown in Fig. 3(c), where as the number

of slot increases, the cost ratio decreases (from 2.11 when T = 10
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Figure 2: Impact of number of sources
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Figure 3: Impact of number of slots
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Figure 4: Impact of capacity scaling
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Figure 5: Impact of congestion parameter θ

to 1.83 when T = 30 for the OnInt). �e justi�cation is that as the

number of time slot increases the unit (volume) cost dominates the

�xed cost, so, the cost ratio decreases. Recall that �xed-cost and

time availability are two main issues that make the online decision

making important and not-trivial. And, as time horizon increases,

it means that the importance of �xed cost becomes lower, which

lead to lower cost ratio. (iii) �e last observation in Fig. 3(d) shows

that with the increase in the number of slots, the capacity violation

decreases, on average (from 15.25% to 3.26%). �at is, with the
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increase in slots, more sources are selected (Fig. 3(b)), hence, there

is more room to schedule the sources without capacity violation.

4.2.3 Impacts of the Capacity of Sources. In this experiment, we

scale the capacity of the sources from×1 to×2 of the original values,

and plot the results in Fig. 4. We report the following observations:

(i) As shown in Fig. 4(a), as the capacity scales, total cost decreases

since each source can cover more supply shortage. Apparently,

the percentage of selected sources also decreases with the same

reason (Fig. 4(b)). (ii) As the results show in Fig. 4(c), the empirical

cost ratio, increases with scaling up the capacity, which is counter-

intuitive. �is is due to the fact that when we increase the capacity

of the sources, optimal o�ine has more �exibility in scheduling

to reduce total cost. �is observation, indeed, calls for further

investigation on providing more intelligent scheduling policies for

the online scenarios. (iii) As expected in Fig. 4(d), the capacity

violation reduces signi�cantly for OnInt with scaling the capacity

(from 10.1% to 3.4%), since there is enough capacity to ful�ll the

shortage by the selected set of sources.

4.2.4 Impacts of the Congestion Parameter θ . An important pa-

rameter in online algorithm OnFrc is the congestion parameter θ
which is used in Eq. (5) to incorporate the importance of capacity

violation on the online algorithm. In general, the higher the value

of θ , the more the importance of respecting the capacity constraint.

Toward investigating the impacts of θ , we change the value of θ
from 1.1 to 2 with step 0.1. (i) �e results in Figs. 5(a) and 5(b)

demonstrate almost smooth values for total cost and percentage

of selected sources, which are reasonable due to no change on the

parameters that can potentially impact these values. (ii) �e re-

sults in Fig. 5(c) demonstrate a gentle increase in cost ratios for

both OnFrc and OnInt. Ideally, we would expect increase in cost

ratio when the congestion parameter θ increases, since by doing

so, we lean toward respecting violation as compared to reducing

the cost. However, the performance of OnFrc is already promising

in respecting the capacity constraints (the capacity violation of

OnFrc is always less than 2% in this scenario as shown in Fig. 5(d)).

Hence, the increase in cost ratio is not signi�cant (from 1.38 to

1.51 in OnFrc and from 1.58 to 1.76 in OnInt). (iii) Results for the
the OnFrc in Fig. 5(d) demonstrate that capacity violation drops

with increase in congestion parameter (from 2.52% to 0.57%). �e

capacity violation behavior for OnInt is ad-hoc in Fig. 5(d), which

mainly demonstrate that the capacity violation due to ful�lling the

uncovered demand of rounding procedure (as shown is Lines 15-17

of OnInt algorithm) dominates the capacity violation due to OnFrc.

4.2.5 The Performance of the kOnInt . In this section, we evalu-

ate the algorithm proposed in Sec. 3.4 that takes into account the

maximum discharge rate of each source at each slot. Toward this,

we change the ratio ρi = ki/ci as an indicator on how much the

maximum discharge rate is restrictive. For example, ρi = 0.1 mean

that at each slot, we can use at most 0.1 of the capacity of source

i . On the other extreme, ρi = 1 means that there is no maximum

discharge limit and it is possible to use the entire capacity in one

slot. In this experiment, we change the value of ρi form 0.1 to 1

with step 0.1, and the results are shown in Fig. 6.

�e �rst observation in Fig. 6(a) is that as ρi increases, total cost
of both optimal solution (from 104 to 87) and the kOnInt (from 184
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Figure 6: Impact of the ratio ki/ci

to 106) decreases. �e reason is that with the increase in ρi there is
more �exibility in scheduling that leads to lower cost. �e second

observation in Fig. 6(b) demonstrates that the cost ratio decreases

as ρi increases. �e reason is that with lower values of ρi , the
scheduling is more complicated and the optimal can �nd it, while

our algorithm kOnInt is not able to �nd the proper scheduling, and
instead selects more sources which increases the cost.

5 RELATEDWORK
�e S3P is mainly related to the CFLP [20]. While all challenges in

the CFLP exist in our problem, there are some unique challenges

raised by special constraint in our problem. �ere are some existing

o�ine results for CFLP [18, 20], but, none of them provide constant

approximation ratios for the general case. Recently, An et al. in [1]

proposed a 288-approximation o�ine algorithm for the CFLP that

is, to the best of our knowledge, the �rst constant factor algorithm

for the CFLP based on LP relaxation. �e result in [1] cannot be

directly applied to the S3P because of the unique challenges in our

problem, mainly interval availability and short-term capacity. In

addition, the result in [1] works for the o�ine scenarios, while the

problem of study in this paper emphasizes online algorithm design.

�e second category of related problems in the literature is called

interval cover [4, 7], which is the time-expanded version of the

minimum knapsack without considering capacity constraints and
unit cost. �e capacity constraint in the S3P turns the problem

into a mixed packing and covering one which is fundamentally

di�erent and more challenging than the interval cover as a covering

problem. �e most promising result of interval cover problem has

been presented in [4], that is a 4-approximation o�ine algorithm.

�e last category is the problem that can be contemplated as the

S3P with a �xed scheduling as input. �is problem has appeared

in di�erent application scenarios such as device-to-device load

balancing in cellular networks [11] and client-assisted cloud stor-

age systems [29]. �e se�ing considers a time-decoupled problem

where at each slot a sub-problem must be solved by just selecting

the winning sources. In this way, the design space by proper sched-

uling is overlooked, by considering �xed scheduling at each slot.

�is apparently leads to a sub-optimal scenario. In addition, �xed

scheduling may lead to infeasible cases for scheduling. For example,

in the simple scenario of Fig. 1, the only available source at the last

slot is source 3. �e total capacity of this source is 18 and since this

source is available at 9 slots, by �xed scheduling, there would be

18/9 = 2 units available for each slot. On the other hand, at the last
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slot in which source 3 is the only available source, the amount of

supply shortage is 3, hence, it is not possible to cover this shortage

with �xed scheduling of 2 units at each slot. �is example shows

that scheduling plays an important role in our problem.

We note that several related problems with di�erent solution ap-

proaches have been studied in the literature. We refer to [13] with

the Lyapunov optimization and [28] with Markov decision process

as examples. Overall, these approaches rely on the stochastic pro-

cess of the inputs. Instead, we follow competitive design approach,

in which there is no assumptions on the stochastic process of the

input. As in competitive analysis there is no assumptions on the

stochastic modeling of future input, the online algorithm tries to

compete against an adversarial input. In competitive design the goal

is to compete against the adversarial input, hence, the competitive

algorithm might be conservative, and it cannot provide satisfactory

results in practical scenarios in some cases. On the other hand,

stochastic optimization approaches rely on the distribution of the

input sequence. However, learning the potentially time-varying

distribution in real inputs can be a formidable task.

Finally, we remark that our basic online fractional algorithm

OnFrc leverages the ideas in [2]. More speci�cally, we tailor the

algorithm in [2] to our problemwhich is di�erent from the one in [2]

mainly because of di�erent availability of sources. Our integral

algorithm OnInt is entirely di�erent from the approach in [2] and

as explained in Sec. 3.3, we propose several heuristics to improve

the performance of our algorithms in practice.

6 CONCLUSION AND FUTUREWORK
In this paper, we advocate the idea of using the potentials of existing

energy storage systems in a microgrid to accomplish crowd-sourced

storage-assisted demand-response. We formulate the joint problem

of source selection and scheduling with the goal of minimizing the

cost, while respecting mixed packing and covering constraints. We

devise online algorithms that are built upon a recent results for

online problems with mixed packing and covering constraints. We

also analyze the analytical performance of our online algorithms

in bi-criteria competitive approach. �e trace-driven experimen-

tal results demonstrate that the proposed algorithms work well

in practice. Obtained analytical and experimental results open a

number of further research directions. First, an interesting line is to

study the problem through mechanism design to see whether the

proposed algorithms are dominant strategy incentive compatible

or not. Second, providing lower bound for fractional algorithm to

characterize the fundamental price-of-uncertainty of the problem

and characterizing the integrality gap due to randomized rounding

are two important open questions.
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