
An Optimized Distributed Video-on-Demand Streaming System:
Theory and Design

Kangwook Lee†, Hao Zhang†, Ziyu Shao§, Minghua Chen§, Abhay Parekh† and Kannan Ramchandran†
†Department of EECS

University of California at Berkeley, Berkeley, CA
{kw1jjang, zhanghao, parekh, kannanr}

@eecs.berkeley.edu

§Department of Information Engineering
The Chinese University of Hong Kong, Hong Kong

{zyshao,minghua}
@ie.cuhk.edu.hk

Abstract— We present a general framework for a distributed
VoD content distribution problem by formulating an optimiza-
tion problem yielding a highly distributed implementation that
is highly scalable and resilient to changes in demand. Our
solution takes into account several individual node resource
constraints including disk space, network link bandwidth, and
node-I/O degree bound. First, we present a natural formulation
that is NP-hard. Next, we design a simple fractional storage
architecture based on codes to “fluidify” the content, thereby
yielding a convex content placement problem. Third, we use a
recently developed Markov approximation technique to solve
the NP-hard problem of topology selection under node degree
bound, and propose a simple distributed solution. We prove
analytically that our algorithm achieves close-to-optimal perfor-
mance. We establish via simulations that the system is robust
to changes in user demand or in network condition and churn.

I. INTRODUCTION

The shape of the internet is changing. On the one hand,
large internet exchanges and datacenters have made it pos-
sible to centralize a lot of compute and storage resources.
It is clear that established players such as Netflix, Google
and Amazon are more likely to exploit the reliability and
economies of scale that come from such architectures, and
that is of course what they are doing. On the other hand,
the edge of the internet is growing exponentially. Phones,
tablets, laptops, ebook readers are growing in power and
sophistication to the point that that they resemble the desktop
computers of a few years ago. But fully 50% of the traffic
of the internet does not originate from data centers and
hierarchical CDNs [1]. This traffic consists of applications
such as file sharing and P2P, and relies more heavily on
edge-devices which take on the role of potentially unreliable
servers. As we play out the evolution of content and the
internet it seems clear that both kinds of content distribution
will co-exist. Videos of police action in an oppressive state
are easier to detect and throttle in a centralized architecture
than a distributed one, and there will always be situations in
which small groups of individuals will want to share content
without the “prying eyes” of a media giant.

In this paper we present a highly distributed edge-based
scheme where the content is streamed video and has quality
of service constraints. The demand for these videos is not
specified to the system. Each edge device has limited storage
but can store content from any movie (even ones that the

owner of that device is not watching). The devices are
assumed to have limited connectivity and the network is al-
lowed to be unreliable. As demand and network connectivity
fluctuates so does what is stored at each node. In other words
our goal is to test the limits of how unreliable and distributed
we can make the infrastructure and still meet the stringent
quality of service constraints of streamed video. Central to
our architecture is the existence of a single reliable server
or Seedbox [2], that can fill in the gaps of service when
our distributed algorithms cannot meet QoS constraints and
the objective of our distributed algorithms is to ensure that
for any set of adverse network conditions, the load on the
Seedbox is minimized.

Our approach is the following. First, we formulate the
problem as a static convex optimization problem and then
show that a highly distributed algorithm converges to the
optimal allocation. We then examine, via simulations, the dy-
namic problem in which network conditions change, and the
demand for the underlying content fluctuates significantly.
We find that our scheme is highly resilient to changes in
network and in demand in addition to being near optimal in
a static setting.

More concretely, in formulating the optimization problem
we jointly solve the following problems:

1) Content Placement: What content should be stored at
each device/node given the storage constraints, net-
work capacity and current demand?

2) Overlay Topology: Given that each node can only
support a bounded number of end devices, how should
end devices be matched to nodes?

3) Minimal Server Load: When there is no available node
that can serve an end device to watch a specific piece
of content from, the Seedbox “fills in the gap” by
streaming directly to it. We wish to minimize such
occurrences.

We illustrate these problems further in the example de-
picted in Figure 1. The system has two 1 GB videos, A and
B, which must be delivered at a streaming rate of 1 Mbps.
There are 4 users: two request video A and two request video
B. The three cache nodes are constrained by bandwidth,
maximum degree (a bound on the number of simultaneously
supported streaming connections) and storage. Figure 1(b)

1347

Fiftieth Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
October 1 - 5, 2012

978-1-4673-4539-2/12/$31.00 ©2012 IEEE

users

demands

caches

A B A B

BW

storage

degree

1

1

2

1.5

1

2

1.5

1

3

A

1

B A

1 0

0 0

0 0.5 1

users

demands

caches

A B A B

BW

storage

degree

1

1

2

1.5

1

2

1.5

1

3

0.5

B

1

B A

0 0

0 1

1 0 1

users

demands

caches

A B A B

BW

storage

degree

1

1

2

1.5

1

2

1.5

1

3

B B A

1 0 0.5

1

0 1

users

demands

caches

A B A B

BW

storage

degree

1

1

2

1.5

1

2

1.5

1

3

0.5

0

Fig. 1: A simple example of VoD caching problem. The system has two videos of size 1 GB and rate 1 Mbps and there are
2 users requesting each video. The system employs 3 cache nodes with constraints on storage, bandwidth and out-degree
as shown in (a). The problem is to decide, for each cache, which videos to store, which users to connect to, and how much
bandwidth to allocate for each user. These questions are coupled. The connections between the cache nodes and users in
(b) form a “bad” topology, and the content placement is non-optimal. The content placement in (c) is “good”. In (d), the
topology is “good”, and with the same content placement strategy in (c), only one user is in deficit of half of a video. In
general, finding the “best” storage, bandwidth and topology combination is a combinatorially-hard problem.

shows that under a certain “bad” topology and a “bad”
content allocation scheme, demand cannot be satisfied. In
Figure 1(c), a “good” content placement strategy is chosen.
In Figure 1(d), a “good” topology is also chosen. As we can
see, the three problems enumerated earlier are closely related.
Further, taken in isolation each problem is hard: there are
an exponential number of possible topologies (from which
we must select in a distributed manner) and as we will see
(although it may be clear to some readers even at this point),
the content selection problem for a fixed topology, is also
NP-hard.

The contributions of this paper are four-fold. To the best of
our knowledge, we are the first to jointly optimize topology
selection, content placement, and link rate allocation in the
design of VoD systems. Second, we design a fractional
coding architecture that allows for “fluidification” of the con-
tent placement problem, thereby converting a combinatorial
VoD content placement problem into a convex problem that
admits a simple distributed algorithm. Third, we overcome
the difficulty of the combinatorial topology graph selection
problem by applying a recently-developed and novel Markov
approximation technique, and design a simple and distributed
“soft-worst-neighbor-choking” algorithm. Fourth, we give a
theoretical proof that our solution is close-to-optimal and
that the optimality gap diminishes when the number of users
becomes large. We validate that our algorithm outperforms
existing results via extensive real world trace simulations.
While our theoretical analysis is based on a “static” setting
where the demand and supply resources are fixed, we also
show in our experiments that our algorithm works well even
for “dynamic” cases. Our strong findings suggest that a
functional implementation of our solution would perform
well in practice, and this is the focus of our future work.

II. RELATED WORK

The optimization of VoD systems has received wide at-
tention [3]–[9]. Almeida et al. [3] studied the delivery cost
minimization problem under a fixed topology by optimizing

over content replication and routing. Boufkhad et al. [4]
investigated the problem of maximizing the number of videos
that can be served by a collection of peers. Zhou et al. [5]
focused on minimizing the load imbalance of video servers
while maximizing the system throughput. Tan and Mas-
soulie [8] studied the problem of optimal content placement
in P2P networks. Their goal is to maximize the utilization of
peer uplink bandwidth resources. Optimal content placement
strategies are identified in a particular scenario of limited
content catalog under the framework of loss networks. Their
work assumes that the peers’ storage capacity grows un-
boundedly with system size. In contrast, our work does not
make any assumption on the storage capacities and also takes
into overlay topology. Applegate et al. [9] formulated the
problem of content placement into a mixed integer program
(MIP) that takes into account constraints such as disk space
and link bandwidth. However, they assume the knowledge
of content popularity under a fixed topology and a video is
either stored in full or not stored. In our work, we use a class
of network codes that enables fractional storage and do not
assume any prior knowledge of demand is given. We also
optimize over the topology graph selections.

With regard to network resource utilization, Borst et
al. [10] solved a link bandwidth utilization problem assuming
a tree structure with limited depth. An LP is formulated, and
under the assumption of symmetric link bandwidth, demand,
and cache size, a simple local greedy algorithm is designed to
find a close-to-optimal solution. Valancius et al. [11] propose
an LP-based heuristic to calculate the number of video copies
placed at customer home gateways. The network topology
in our work is not constrained to be a tree, and the video
request patterns can be arbitrary in different network areas.
Zhou and Xu [12] aimed to minimize the load imbalance
among servers subject to disk space egress link capacity from
servers. In contrast, we consider the link capacity constraints
that may exist anywhere in the network.

Topology building is also an important design dimension
and has been studied in various works [13]–[15]. While

1348

…

physical
network

user

cache

overlay
route

cache’s limited
neighbor set Nh

… capacity cl

storage cap sh

degree
bound Bh

Fig. 2: Caches and users connected by a physical network.
The link capacity constraints can exist arbitrarily anywhere
in the network.

most works focus on enforcing locality-awareness and/or
improving ISP-friendliness, they make the simple assumption
that the graph is fully connected, i.e., no node-degree-bound
is taken into consideration. Zhang et al. solves the problem
of optimal P2P streaming under node degree constraints [16].
However their topology selection algorithm depends on
global statistics which are easily accessible under a live-
streaming scenario. In VoD, directly applying their technique
requires global statistics of all users’ utility functions, which
can create an enormous overhead. Our distributed algorithm
requires knowledge of only local information of neighboring
overlay link rates.

To the best of our knowledge, we are unaware of any
other works to jointly optimize topology graph selection,
content placement and link rate allocation. Our solution is
fully distributed and adapts well to system dynamics as we
will show in the simulations.

III. PROBLEM FORMULATION

In this section, we define the VoD optimization problem.
Our formulation assumes a static setting: the video catalog,
the set of users and subscriptions, and the set of caches are
fixed. In section IV and section V, we find a fully distributed
algorithm and prove it achieves near-optimal performance.
In section VI, we apply the proposed algorithm to dynamic
setting and show its performance through simulations.

As illustrated in Figure 2, a set of caches(H) and a
set of users(U) are connected by a fixed physical network
which consists of links with capacity. Caches and users are
connected by a overlay graph configuration, g, which is
expressed by the set of overlay links R and the corresponding
routing matrix A. We denote the set of overlay links and the
routing matrix by Rg and Ag under a graph configuration
g. Each overlay link r 2 R, consists of a set of underlay
links, Lr ⇢ L and we say l 2 r if l 2 Lr. An overlay link
r = (h, u) enables cache node h to send data to node u
in the overlay graph by setting up TCP/UDP connections.
The routing matrix A := (Alr, (l, r) 2 L⇥R) is defined as
usual where Alr = 1 if l 2 r and 0 otherwise, We denote
the connected neighbor of node v by Ng

v . Node v cannot
connect to more than Bv users, which leads the node-I/O
constraints. Let G = {8g||Ng

v |  Bv 8v 2 H [U} be the
set of possible overlay graphs. Let link l 2 L have a capacity
cl, and let xr be the rate on the overlay link r. This leads to

TABLE I: Key Notations

Parameters Definition
H , U , M set of caches / users / movies
Um set of users watching video m
�m, �m video m’s streaming rate and size
sh storage capacity of cache h
G, Bv set of feasible overlay graphs / I/O constraints
L, cl set of underlay links / link capacity
Auxiliary Variables Definition
✓l, qr shadow price of link l / route r
qr qr =

P
l2r ✓l is the shadow price of route r

�r,⌃h,m demand index of route r / movie m at cache h
!h storage price of cache h
Decision Variables Definition
xr route rate of r
Whm storage of video m on cache h
g,Ag, Rg overlay graph / routing matrix / overlay links
Ng

v connected neighborhood of v under g
pg probability of each topology graph g

natural routing constraints as follows: Ax  c, where x is
the column vector of the overlay rates xr and c is the column
vector of link capacity constraints cl.

The video catalog consists of videos in the set M . Each
video m has size �m and is streamed at a constant rate of
�m. Since we assume a fixed demand in this model, we
denote the set of users watching m as Um. To model the
storage constraints, let sh be the storage capacity of cache
node h, and denote by s := (sh, h 2 H) the column vector
of the storage capacities. Let W := (Whm, h 2 H,m 2
M) be the storage matrix where Whm 2 {0, 1} indicates
if video m is stored on cache node h (Whm = 1) or not
(Whm = 0). Denote by � := (�m,m 2 M) the vector of
the sizes (in MB) of all videos. The storage constraints can
then be expressed by W�  s. Availability constraints are
also modeled : caches can only serve stored movies. From
cache h to user u, the streaming rate can be only 0 if cache
does not store the movie m which is being viewed by the
user. If the cache stores the movie, the streaming rate can be
anything no greater than �m. It can be equivalently expressed
as xr:=(h,u)  Whm�m.

Let zu =

P
r=(h,u):h2Ng

u
xr be the total received rate of

user u, and V u
(z) be a concave function that represents the

utility of user u when the received rate is z. Table I lists all
relevant notations.

Now, we have the following optimization problem. The
objective is to find a graph g, content placement W , and
rate allocation x, which jointly maximize the sum of user
utilities under constraints.

max

g2G
xr�0,Whm2{0,1}

X

u2U

V u
(zu)

s.t. xr:=(h,u)  Whm�m,

Agx  c, W�  s.

The above optimization is highly difficult to solve due
to the exponentially large size of the feasible graph set G
and integer constraints of storage matrix W . Our approach
to solve the problem is following. First, we decompose the
problem into two parts: graph selection part and resource
allocation which consists of content placement and rate
allocation. In section IV, we first solve the optimal rate

1349

allocation algorithm under a fixed graph. In the following
section V, we propose an algorithm to find the near-optimal
overlay graph.

IV. RESOURCE ALLOCATION

The sub-optimization problem under a fixed g is still
difficult to solve because of the integer constraints of storage
matrix W . In order to overcome this challenge, we allow
caches to store videos in parts and to serve fractional
streams.

A. Fractional Storage and Streams with Coding

We first define fractional streams.
Definition 1: Given a data stream S

0

with rate x
0

, S
0

(x
0

),
a fractional stream S of rate x, S(x), is defined as a data
stream which satisfies the following conditions.
1. Additivity : S(x) can be generated by S(x

1

) and S(x
2

)

if x
1

+ x
2

� x.
2. Recovery : S

0

(x
0

) can be generated by any S(x) if x �
x
0

.
In our techincal report [17], we propose a novel way

of storing videos and generating fractional streams. In a
nutshell, a fractional stream can be realized through the use
of MDS codes or rateless fountain codes. The minimum
storage to serve a fractional stream is found as following.

Proposition 2: Given a data stream S
0

(x
0

), a cache can
generate a fractional stream S(x) if and only if the cache
stores no less than x

x
0

fraction of the source file of the stream.
By using the concept of fractional storage and streams

and the proposition 2, the sub-optimization problem can be
reformulated. Caches can store movies in parts and upload
fractional streams to users. Users receive multiple fractional
streams from caches and add them. If they received enough
fractional streams, they can recover the original stream. If
not, they will request a fractional stream with the deficit
rate at user and recover the original stream. The integer
constraints are replaced with box constraints and the avail-
ability constraints remain as same by the proposition. The
reformulated optimization problem is following.

max

x�0,0Whm1

X

u2U

V u
(zu) (1)

s.t. xr:=(h,u)  Whm�m,

Agx  c, W�  s.

Note that our approach completely differs from the well-
known class of relaxations to hard mixed-integer problems in
the optimization literature, in which the relaxation is done
to convert the problem to a computationally tractable one
whose solution is then quantized back to enforce feasibility
with the discrete-valued constraints of the original problem.
In other words, our approach increases performance because
using fractional streams expands the design space. Figure 3
shows an example where resource allocation with fractional
streams outperforms one without them.

There is an added complication if we are interested in
distributed operation and for the ability to have cache nodes

B B A

1 0 0.5

1

0 1

users

demands

caches

A B A B

BW

storage

degree

1

1

2

1.5

1

2

1.5

1

3

0.5

0

(a)

1 0.5

0.5 0.5

0.5 0.5

users

demands

caches

A B A B

BW

storage

degree

1

1

2

1.5

1

2

1.5

1

3

0.5

0.5A

0.5B 0.5B

0.5A

0.5A

(b)

Fig. 3: A simple example demonstrating the usefulness of
fractional storage. The system has the same setup as that in
Figure 1. In (a), the videos are stored in full. Even with the
optimal topology, the oracle server still needs to fill in the
gap of half of a video. In (b), with fractional storage and
streams, caches can fully serve users even with less storage.

populated in a distributed way with content (e.g. from a
distributed server system or from other cache nodes): this
requires the notion of network coding which can attain the
abstraction of distributed MDS codes. We use a specific class
of such codes, dubbed DRESS codes [18], in our system.

B. Distributed Solution

We present the following theorem.
Theorem 3: The problem (1) is convex and can be solved

by the following three-step primal dual algorithm that con-
verges to the optimal solution
1) Step 1: Update the upload rate.

ẋr = [�r(Vxr (zu)� �r � qr)]
+

xr
(2)

where V u
xr
(zu) is the derivative of function V u

(zu) with
regard to xr. qr =

P
l:l2r ✓l is the aggregate route price,

where ✓l is the single link price on link l which is updated
by:

˙✓l = [⌘l(
X

r:l2r

xr � cl)]
+

✓l
. (3)

where �r, ⌘l > 0 are adaptation parameters. �r is explained
in the following.

2) Step 2: Update the demand index. The parameter �r is
updated via:

˙�r = [r(xr �Whm�m)]

+

�r
(4)

where step size r is a positive constant, and m is the video
user u watches. This parameter captures the relative demand,
i.e., absolute demand minus supply, of the video delivered
on route r, hence its name demand index.

3) Step 3: Update cache storage
⇢

˙Whm = [◆hm(⇤hm � �m!h)]
[0,1]
Whm

!̇h = [⌫h(
P

m2M Whm�m � sh)]
+

!h

(5)

where the Lagrangian variable !h is interpreted as the
storage price for the storage constraint, and ⇤hm = �m ·
(

P
r=(h,u):u2Um,h2Ng

u
�r) is the aggregate demand index

and �m the size of video m.
1350

The proof is relegated to our technical report [17]. The
above algorithms can be implemented in a fully distributed
way. The update equations are intuitive. The upload rate
increases linearly with the marginal utility function and
decreases with the demand index and link shadow price.
The demand index increases if the desired link rate exceeds
what the stored video can offer, and vice versa. Cache node
h increases storage of video m if there is more demand
than supply, i.e., when the popularity index is larger than
the storage price; and vice versa.

As a special case, if our goal is to minimize the server
load, the following utility function V u

(z) = min (�m, z)
can be used, where m is s.t. u 2 Um. Maximizing such
an objective function is equivalent to minimizing the server
load. Thus, with the Theorem 3, we now have a fully
distirbuted algorithm to find the optimal resource allocation
which minimizes the server load under a fixed topology.

V. TOPOLOGY BUILDING

Given the bounded degree of each cache node, the topol-
ogy selection problem is NP-hard. We apply a Markov
approximation technique to establish that it is indeed a close-
to-optimal solution of the general problem.

A. Problem Formulation

Let �g be the optimal objective value to (1) under a fixed
graph g, which we can solve using the algorithms shown in
Section IV. Our goal is to maximize the overall system utility
by choosing the best graph in the feasible set of graphs.

max

g2G
�g (6)

Directly solving for (6) is challenging. Even for the small
example in Figure 1(a), the total number of topology graphs
is 6 ⇥ 6 ⇥ 4 = 144. In fact, we can show that in general,
it is NP-complete and APX-hard (no effective centralized
polynomial-time approximate solution) [17]. To convert the
problem into a solvable one with distributed solutions, we
design a Markov approximation technique introduced in [19].

The topology building problem can be re-written in the
following way:

max

pg�0P
pg=1

X

g2G

pg�g. (7)

where pg is the probability associated with topology graph
g 2 G. Its optimal solution is maxg2G �g , and is obtained by
setting the probability corresponding to (one of) the “best”
topology graphs to be 1 and the rest probabilities to be 0.

To mitigate the problem of exponentially large number of
graphs, consider using

1

µ
log(

X

g2G

exp(µ�g)) (8)

to approximate maxg2G �g . The reason is that while solving
for maxg2G is difficult, solving for (8) can be made much
easier as we will explain later on. We present the following
theorem adapted from [19].

Theorem 4: (8) is the optimal value to the following
convex optimization problem:

max

pg�0P
pg=1

X

g2G

pg�g �
1

µ

X

g2G

pg log pg. (9)

where µ is a positive constant. The optimal solution is given
by:

p⇤g =

exp(µ�g)P
g02G exp(µ�g0

)

, 8g 2 G. (10)

Moreover, the gap between its optimal value (8) and the
optimal value of the original problem in (7) is given by:

0  1

µ
log(

X

g2G

exp(µ�g))�max

g2G
�g  1

µ
log |G|, (11)

where |G| is the size of G.
Note that

P
g2G pg log pg is also the entropy H(p) of the

distribution p := (pg, g 2 G), and we call this is an “entropy-
approximated” formulation. The only difference between the
objective function in (9) and that in (7) is the addition of
the weighted entropy term. As µ ! +1, p⇤g⇤ ! 1 where
g⇤ = argmaxg2G �g and p⇤g ! 0 otherwise. Therefore,
the optimal value in the entropy-approximated formulation
approaches that of the original problem as µ becomes large.

Intuitively, one can see that 1

µ log(

P
g2G exp(µ�g)) is a

good approximation of maxg2G �g when µ is large. This
is because the term exp(µ�g⇤

) will dominate the sum of
exponentials

P
g2G exp(µ�g). When this happens, we have:

1

µ
log(

X

g2G

exp(µ�g)) !
1

µ
log(exp(µ�g⇤

)) = �g⇤ (12)

Recall that our goal is to solve for problem (7), and we
know that one approximation is given by (9), but why is this
approximation useful? Given the vast number of possibilities,
how would we design a distributed algorithm to achieve
the optimal topology graph? The key idea is to construct
a Markov chain (MC) on the topology graphs, and design its
transition rates that can be implemented in a distributed way.
Equation (10) is of a product form, and can be the stationary
distribution of some time-reversible MC with state space the
set of all the topology graphs G. When the MC is in its
stationary status, the topology graphs g 2 G are time-shared
according to the distribution p⇤g in (10). As µ becomes large,
the system spends most of the time in the optimal topology
graph and the gap between the approximated solution and
the optimal solution approaches zero. It was shown in [16],
[19] that it is possible to design such Markov chain to guide
distributed algorithm designs in various domains, including
wireless scheduling, channel assignment and etc. However,
in our problem, directly applying these known design options
in [16], [19] does not result in Markov chains that are
implementable in a distributed fashion.

B. Markov Chain Design

To design the Markov chain for our topology selection, we
focus on the design of transition rates qg,g0 between states g

1351

and g0. With slight abuse of notation, we use g and the set
of the corresponding overlay routes R interchangeably. We
begin by constructing a Markov chain that solves (9) exactly.
This Markov chain does not lead to a fully distributed
solution, but serves as a seed to our extended discussions
in later parts of the paper.

To simplify the design, we allow non-zero transition rates
from topology graph g to graph g0 if and only if they
satisfy the following set of conditions, which we name as the
“direct-transition condition”. Specifically for any topology
graphs (or set of overlay routes) g and g0, qg,g0 is non-zero
if and only if for the union of their routes g̃ = g [g0:

• |g̃ \ g| = 1 and |g̃ \ g0| = 1;
• the only overlay route in g̃ \ g and that in g̃ \ g0 should

originate from the same node denoted by v(g, g0).
In other words, we allow transitions to happen only when

a single node adds a not-in-use neighbor and then drops one
active neighbor. g̃ = g [g0 is a transient state where a node
has just added a new neighbor before choking one of the old
neighbors 1. We have the following proposition.

Proposition 5: The following transition rates ensures that
the MC over the topology graph will reach the stationary
distribution in (10).

qg,g0
= ⌧�1 · exp(µ(�g0 � �g̃))

1 +

P
g002Av(g,g0),g̃

exp(µ(�g00 � �g̃))
, (13)

if g and g0 satisfy the direct-transition condition, and qg,g0
=

0 otherwise, where g̃ = g [g0 is the transient state, ⌧ > 0

is a constant, Av,g̃ is the set of topology graphs derived by
node v dropping one of its active neighbors under graph g̃,
i.e.,

Av,g̃ =

�
ĝ 2 G | ĝ = g̃\ {(v, u)} , 8u 2 N g̃

v

, (14)

where (v, u) is a directed link from node v to node u, and
v(g, g0) is the node defined in direct-transition condition.

We call this MC an exact MC. The above transition rates
achieve the optimal value of (9). The proof and an exemplar
implementation are given in our technical report [17]. The
algorithm however, requires every node v to know global
statistics �g0��g̃ for all g0 2 Av,g̃ , which makes distributed
implementation difficult.

In the following, we modify the exact MC to a per-
turbed MC which yields a distributed “soft-worst-neighbor-
choking” algorithm.

C. Soft Worst Neighbor Choking

Let g denote the current topology graph. Each cache node
v 2 H (and similarly for user node u 2 U) implements the
soft-worst-neighbor-choking algorithm as follows:

• Initialization: It randomly selects and builds connec-
tions with Bv (which is its maximum degree) number
of neighbors from its neighbor list Qv . Denote by Ng

v

the connected neighbors.

1The node can temporarily violate the node degree bound, but the process
happens instantaneously and the transient state is almost non-existent. We
use it only to simplify our theoretical discussions.

• Step 1: It counts down to zero from a timer T =

⌧/(|Qv| � |Ng
v |), where ⌧ > 0 is a constant2.

• Step 2: When the count-down expires, it randomly
chooses a new inactive neighbor w from Qv \ Ng

v ,
and requests to connect to it. If the node degree bound
of neither node w nor v is violated, the connection is
established; otherwise, no new connection is made. The
system transits to a temporary topology graph g̃.

• Step 3: Node v measures the overlay link rate x̄
(v,u)

from every neighbor u 2 N g̃
v (including the newly

added neighbor w if there is any), and then chokes an
in-use neighbor u with probability

exp(� 1

2

µx̄g̃\g0
)

1 +

P
g002Av,g̃

exp(� 1

2

µx̄g̃\g00
)

, g0 = g̃\ {(v, u)} .

(15)
Afterwards, node v repeats Step 1.

The above algorithm is fully distributed – each node uses
the overlay link rates from his neighbors as the only metric
to perform the topology selection. Note that the worst link is
dropped with high probability, hence the term “soft-worst”
choking. This algorithm results in the following perturbed
MC.

Proposition 6: The soft-worst-neighbor-choking
algorithm induces the following transition rates for the
perturbed Markov chain: for any two topology graphs
g, g0 2 G satisfying direct-transition condition:

qg,g0
= ⌧�1 ·

exp(� 1

2

µx̄g̃\g0
)

1 +

P
g002Av(g,g0),g̃

exp(� 1

2

µx̄g̃\g00
)

, (16)

where x̄g̃\g0 is the rate of the only overlay link in g̃\g0 under
topology graph g̃; and qg,g0

= 0 otherwise.
Comparing (16) with (13), we can see that the global quantity
�g0 � �g̃ , which is the overall utility difference between
‘after’ and ‘before’ the node drops the overlay link g̃\g0, is
replaced by � 1

2

x̄g̃\g0 which is a locally measurable quan-
tity. Fortunately, we can show that under some reasonable
assumptions, the perturbed MC can still achieve close-to-
optimal system performance, as we show as follows.

D. Performance Guarantee

Theorem 7: Denote by �

O
= maxg2G �g the optimal

system utility, �

E
=

P
g2G p⇤g · �g the expected system

utility of the exact Markov chain, and �

P
=

P
g2G p

0

g · �g

the expected system utility of perturbed Markov chain, where
p⇤g and p

0

g are the stationary distributions of the exact and
perturbed MC respectively. Let ¯

�

O
=

1

|U |�
O, ¯

�

E
=

1

|U |�
E

and ¯

�

P
=

1

|U |�
P be the corresponding system utilities

averaged among the users. When the users’ utility function
V (zu) = min (�m,

P
xr), u 2 Um, the optimality gaps with

2⌧ is a tuning parameter which affects the count-down time and the
algorithm’s mixing time. Details will be given in the subsequent section.
One example is to set ⌧ such that the count down time is one minute,
which BitTorrent uses [20].

1352

and without perturbation errors are shown as follows:

0  ¯

�

O � ¯

�

E  1

µBmax

logN
max

(17)

0  ¯

�

O � ¯

�

P  1

µBmax

logN
max

+

1

2|U |cmax

(18)

where B
max

is the maximum degree bound over all users,
N

max

is the max neighbor size over all users, c
max

is the
maximum underlay link capacity, and |U | is the total number
of users.

The proof is given in our technical report [17]. We make
the following observations:

• The upper bound on the optimality gap per user of the
perturbed Markov chain is c

max

2|U | away from that of the
exact Markov chain, which we call “the price of local
perturbation”.

• When we formulated the topology selection algorithm,
we made the assumption that the underlying content
placement and link rate allocation algorithms have fully
converged. When this is not the case however, we obtain
inaccurate values of the link rates xuv and therefore
�g, g 2 G. We can treat this inaccuracy as a one-
dimension perturbation error to exact system utilities
�g, g 2 G. Following the same method to the proof of
Theorem 7, we can still obtain bounds on utility gap
similar to those in (17)-(18).

• While larger µ reduces the optimality gap, it may
also increase the mixing time of the Markov chain
and consequently the convergence rate of the worst-
neighbor-choking algorithm. We omit the relationship
between µ and the mixing time, and refer interested
readers to our technical report [17].

VI. SIMULATION RESULTS

In this section, we evaluate the overall system performance
with realistic setting. By allowing users to join and leave the
system and to change their subscription, we also empirically
show that our system works well with dynamic setting. We
show that our algorithm implicitly learns the video demand,
and yields high bandwidth utilization.

A. Setup

We assumed there exist a media server which hosts 2000

videos. Each video is 20 minutes long and has a streaming
rate of 2 Mbps. Users join the system with varying arrival
rate and the maximum number of users is 40000 and leave
the system after they finished watching the video. When a
user joins, it randomly chooses a video from the catalog
following a heavy-tailed distribution. There are 50 caches
with uniform storage capacity, with a total storage capacity
of 2.5 times the entire video catalog. The bandwidth of cache
nodes follow a bi-modal distribution with means 1.2Gbps
and 2Gbps. The aggregate bandwidth among all caches is
just enough to cover all users. The node degree bound on
each cache is 3200, i.e., each user can be potentially served
by 4 caches. We compare our results with LRU, LFU, top
videos (local), top videos (global) and MIP. The methods
and parameters used in the comparing schemes are:

• MIP: on each cache, the fractional storage allocation
algorithm [9] is used, and then the entire video with the
largest converged fraction of storage is stored, followed
by the video with the second largest converged value,
and so on and so forth, until the storage capacity is
reached.

• LRU(LFU): every cache replaces least
recently(frequently) used videos by the most popular
videos.

• Top videos (local, global): cache nodes store the most
locally(globally) popular videos of the period.

B. Performance

Figure 4(a) shows the percentage non-cache traffic, i.e.,
the fraction of the total realtime demand that is not covered
by the caches, for each method and the total demand versus
time. We observe that for the same amount of system
resources, our scheme allows the maximum support of the
caches, thanks to our theoretical guarantee of optimal perfor-
mance. Specifically during peak hours where the arrival rate
of users is the highest, the corresponding non-cache traffic
for our scheme was 24.1% while it is 44.0%, 50.2%, 50.0%,
50.9% and 56.4% for MIP, LRU, LFU, top videos (local)
and top videos (global). It is worth noting that even our
scheme does not achieve 0% of non-cache traffic although
the total aggregate bandwidth is enough to cover the demand
in a static setup. This happens because there will always be
new users joining the system who need to be fed-up directly
by the server. From the results, we can see that storing
the globally popular videos, as is done in most practical
cases, performs the worst. This is because the video demand
distribution is so heavy-tailed that caching of the vast number
of unpopular videos becomes unavoidable. MIP performs the
closest in performance to our scheme but is still significantly
inferior. This corroborates our previous observations in the
toy examples that fractional storage provides much flexibility
to the caching service.

In order to better understand the performance of our
algorithm, we also find the utility efficiency for video m

on each cache node h as
P

u2Um,h
xhm

Whm�m|Um,h| which is the ratio
between the total upload rate to users watching video m
and the total available rate given the storage of video m.
It quantifies the utility of any stored faction of a video on
each cache. The efficiency factor for each video is averaged
across all the caches which store that video. We observe that
with our scheme, most of the efficiency factors are greater
than 80% uniformly across the videos. On the other hand,
the efficiency factors are around 50% with other schemes.

C. Scalability, Robustness, and Learning

In this subsection, we show the proposed system is scal-
able, robust and able to learn the demand via simulation
results. In the first experiment, we increase the video catalog
size and investigate how the system responds. In Figure 4(b),
we plot the average server traffic for different catalog sizes.
It can be seen that although the catalog sizes vary from 2000

to 10000, the non-cache traffic only increases slightly. The
1353

0 24 48 720

20

40

60

80

100

Time (Hours)

N
on

-c
ac

he
 tr

af
fic

 (%
)

Non-cache traffic vs Time

Our scheme
MIP
LRU
LFU
Top videos (local)
Top videos (global)

(a)

2000 4000 6000 8000 100000

5

10

15

20

Total catalog size (# of videos)

N
on

-c
ac

he
 tr

af
fic

 (%
)

Non-cache traffic vs Total catalog size

(b)

0 5000 100000

20

40

60

80

100

Time (simulation steps)

N
on

-c
ac

he
 tr

af
fic

 (%
)

Non-cache traffic vs Time

(c)

0 20 40 60 80 1000

20

40

60

80

100

120

140

video index

N
um

be
r o

f v
ie

w
s

/

Ag

gr
eg

at
e

st
or

ag
e

(#
 o

f d
up

lic
at

io
ns

)

Number of views and Aggregate storage

Aggregate storage
Number of views

(d)

Fig. 4: (a) Performance comparison of our scheme with LRU, LFU, top videos (local), top videos (global) and MIP. (b)
Average non-cache traffic varying catalog size. (c) New popular videos are added and1 unpopular movies are removed in
the middle of the simulation. (d) Total storage of videos in the cache nodes and the appropriately scaled actual demand
distributions.

robustness of the performance to the changes in the catalog
size is especially useful when a sudden flash crowd of new
videos appear and the system does not have ample time to
call for more resources.

In the second experiment, we test the robustness of the
system. In Figure 4(c), the server load is shown when new
popular movies are suddenly added in the middle of the
simulation. More specifically, we inject 10% of new most
popular movies and remove 10% of least popular movies.
Other 90% old movies become slightly less popular than
before. The server load experiences a negligible jump when
new movies are added, but quickly goes back to normal. In
practice, we expect that the changes in demand to be much
slower and that the system can easily adapt to such changes.
Due to space limit, we omit other results which show that
the system is robust to network collapses or cache collapses.

In Figure 4(d), we break up the total storage of entire
caches by the videos and compare it with the demand
distribution. We can see that despite running in a fully
distributed manner, the system is able to implicitly learn the
demand distribution, with the aggregate storage distribution
similar to that of the demand. This is a useful property of the
algorithm, because separately estimating the demand in prac-
tice can induce large overhead. Our scheme is thus demand-
agnostic, i.e., it does not require any prior knowledge of the
demand, automatically learning the demand distribution in a
distributed way.

VII. CONCLUSION

In this paper, we formulate a general framework for a
distributed VoD streaming system considering storage, band-
width, and node degree bound. We propose a fully-distributed
solution and prove that it achieves close-to-optimal perfor-
mance. We present detailed simulation results and show its
performance, scalability and robustness. We show that our
proposed scheme maximizes the video traffic supported by
cache and minimizes the server load. We are actively building
a prototype system and deploying it on Amazon servers to
further validate its usefulness and efficiency.

REFERENCES

[1] C. Labovitz, “The Other 50% of Internet Traffic,” in Proc. of North
American Network Operators Group Meeting, NANOG 54, 2012.

[2] Wikipedia, “Seedbox — Wikipedia, the free encyclopedia,” 2012.
[Online; accessed 7-October-2012].

[3] J. Almeida, D. Eager, M. Vernon, and S. Wright, “Minimizing de-
livery cost in scalable streaming content distribution systems,” IEEE
Transactions on Multimedia, vol. 6, no. 2, pp. 356–365, 2004.

[4] Y. Boufkhad, F. Mathieu, F. de Montgolfier, D. Perino, and L. Viennot,
“Achievable catalog size in peer-to-peer video-on-demand systems,”
in Proc. of IPTPS, 2008.

[5] X. Zhou and C. Xu, “Efficient algorithms of video replication and
placement on a cluster of streaming servers,” Journal of Network and
Computer Applications, vol. 30, no. 2, pp. 515–540, 2007.

[6] N. Laoutaris, V. Zissimopoulos, and I. Stavrakakis, “On the optimiza-
tion of storage capacity allocation for content distribution,” Computer
Networks, vol. 47, no. 3, pp. 409–428, 2005.

[7] J. Wu and B. Li, “Keep cache replacement simple in peer-assisted vod
systems,” in Proc. of IEEE INFOCOM, 2009.

[8] B. Tan and L. Massoulié, “Brief announcement: adaptive content
placement for peer-to-peer video-on-demand systems,” in Proc. of
ACM PODC, 2010.

[9] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. Ramakr-
ishnan, “Optimal content placement for a large-scale vod system,” in
Proceedings of the 6th International COnference, p. 4, ACM, 2010.

[10] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms
for content distribution networks,” in INFOCOM, 2010 Proceedings
IEEE, pp. 1–9, IEEE, 2010.

[11] V. Valancius, N. Laoutaris, L. Massoulié, C. Diot, and P. Rodriguez,
“Greening the internet with nano data centers,” in Proceedings of the
5th international conference on Emerging networking experiments and
technologies, pp. 37–48, ACM, 2009.

[12] X. Zhou and C. Xu, “Optimal video replication and placement on
a cluster of video-on-demand servers,” in Parallel Processing, 2002.
Proceedings. International Conference on, pp. 547–555, IEEE, 2002.

[13] Y. Liu, X. Liu, L. Xiao, L. Ni, and X. Zhang, “Location-aware
topology matching in p2p systems,” in proc. of IEEE INFOCOM,
2004.

[14] N. Laoutaris, D. Carra, and P. Michiardi, “Uplink allocation beyond
choke/unchoke,” in Proc. of ACM CoNEXT, 2008.

[15] V. Aggarwal, O. Akonjang, and A. Feldmann, “Improving user and
isp experience through isp-aided p2p locality,” in proc.of IEEE INFO-
COM, 2008.

[16] S. Zhang, Z. Shao, and M. Chen, “Optimal distributed p2p streaming
under node degree bounds,” in Proc. of IEEE ICNP, 2010.

[17] H. Zhang, M. Chen, A. Parekh, and K. Ramchandran, “An Adaptive
Multi-channel P2P Video-on-Demand System using Plug-and-Play
Helpers,” in UC Berkeley Technical Report, 2010.

[18] S. Pawar, S. Rouayheb, H. Zhang, K. Lee, and K. Ramchandran,
“Codes for a distributed caching based video-on-demand system,” in
Asilomar Conference on Signals, Systems, and Computers, 2011.

[19] M. Chen, S. Liew, Z. Shao, and C. Kai, “Markov approximation for
combinatorial network optimization,” in Proc. of IEEE INFOCOM,
2010.

[20] B. Cohen, “Incentives build robustness in BitTorrent,” in Proc. of
IPTPS, 2003.

1354

