
Online Algorithms for Uploading Deferrable Big
Data to The Cloud

Linquan Zhang∗, Zongpeng Li∗, Chuan Wu†, Minghua Chen‡
∗University of Calgary, {linqzhan,zongpeng}@ucalgary.ca

†The University of Hong Kong, cwu@cs.hku.hk
‡ The Chinese University of Hong Kong, minghua@ie.cuhk.edu.hk

Abstract—This work studies how to minimize the bandwidth
cost for uploading deferral big data to a cloud computing
platform, for processing by a MapReduce framework, assuming
the Internet service provider (ISP) adopts the MAX contract
pricing scheme. We first analyze the single ISP case and then
generalize to the MapReduce framework over a cloud platform.
In the former, we design a Heuristic Smoothing algorithm whose
worst-case competitive ratio is proved to fall between 2−1/(D+1)
and 2(1 − 1/e), where D is the maximum tolerable delay. In
the latter, we employ the Heuristic Smoothing algorithm as a
building block, and design an efficient distributed randomized
online algorithm, achieving a constant expected competitive ratio.
The Heuristic Smoothing algorithm is shown to outperform the
best known algorithm in the literature through both theoretical
analysis and empirical studies. The efficacy of the randomized
online algorithm is also verified through simulation studies.

I. INTRODUCTION

Cloud computing is emerging as a new computing paradigm
that enables prompt and on-demand access to computing
resources. As exemplified in Amazon EC2 [1] and Linode
[2], cloud providers invest substantially into their data centre
infrastructure, providing a virtually unlimited “sea” of CPU,
RAM and bandwidth resources to cloud users, often assisted
by virtualization technologies. The elastic and on-demand
nature of cloud computing assists cloud users to meet their
dynamic and fluctuating demands with minimal management
overhead, while the cloud ecosystem as a whole achieves
economies of scale through cost amortization.

Typical computing jobs hosted in the cloud include large
scale web applications [3] and big data analytics [4]. In such
data-intensive applications, a large volume of information (up
to terabytes or even petabytes) is periodically transmitted
between the user location and the cloud, through the public
Internet. Parallel to utility bill reduction in data centres (com-
putation cost control), bandwidth charge minimization (com-
munication cost control) now represents a major challenge in
the cloud computing paradigm [5], [6], [7], where a small
fraction of improvement in efficiency translates into millions
of dollars in annual savings across the world [8].

Commercial Internet access, particularly the transfer of big
data, is nowadays routinely priced by the Internet service

This work is supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC), and grants from Hong Kong RGC
under the contracts HKU 717812 and HKU 718513.

978-1-4799-3360-0/14/$31.00 ©2014 IEEE

providers (ISPs) through a percentile charge model, a dramatic
departure from the more intuitive total-volume based charge
model as in residential utility billing or the flat-rate charge
model as in personal Internet and telephone billing [5], [9],
[7], [10]. Specifically, in a θ-th percentile charge scheme,
the ISP divides the charge period, e.g., 30 days, into small
intervals of equal fixed length, e.g., 5 minutes. Statistical
logs summarize traffic volumes witnessed in different time
intervals, sorted in ascending order. The traffic volume of
the θ-th percentile interval is chosen as the charge volume.
For example, under the 95th-percentile charge scheme, the
cost is proportional to the traffic volume sent in the 8208-
th (95%× 30× 24× 60/5 = 8208) interval in the sorted list
[9], [7], [10]. The MAX contract model is simply the 100-
th percentile charge scheme. Such percentile charge models
are perhaps less surprising when one considers the fact that
infrastructure provisioning cost is more closely related to peak
instead of average demand.

Due to both its new algorithmic implications and its
economic significance in practice, this interesting percentile
charge model has soon spawned a series of studies. Most
of these endeavours examine cost saving strategies and op-
portunities through careful traffic scheduling, multihoming
(subscribing to multiple ISPs), and inter-ISP traffic shifting.
However, they model the cost minimization problem with a
critical, although sometimes implicit, assumption that all data
generated at the user location have to be uploaded to the cloud
immediately, without any delay [9], [10]. Consequently, the
solution space is restricted to traffic smoothing in the spatial
domain only.

Real-world big data applications reveal a different picture, in
which a reasonable amount of uploading delay (often specified
in service level agreement, or SLA) is tolerable by the cloud
user, providing a golden time window for traffic smoothing in
the temporal domain, which can substantially slash peak traffic
volumes and hence communication cost. An example lies in
astronomical data from observatories, which are periodically
generated at huge volumes but require no urgent attention.
Another well-known example is human genome analyses [4],
where data are also ‘big’ but not time-sensitive.

The main challenge of effective temporal domain smoothing
lies in the uncertainly in future data arrivals. Therefore a
practical cost minimization solution is inherently an online
algorithm, making periodical optimization decisions based on

hitherto input. It is again, surprising, to discover that the on-
line cost minimization for deferrable upload under percentile
charging, even when defined over a single link from one source
to one receiver only, is still highly non-trivial, exhibiting
a rich combinatorial structure, yet never studied before in
the literature of either computer networking or theoretical
computer science (with an only exception below) [5].

The only study of the online cost minimization problem
under percentile charges that we are aware of is a recent work
of Golubchik et al. [5], which focuses exclusively on the single
point-to-point link case. The online algorithm they present,
referred to as Simple Smoothing here, is extremely simple,
and involves evenly smoothing every input across its window
of tolerable delay for upload. Nonetheless, this seemingly
straightforward algorithm is proven to approach the offline
optimum within a small constant under the MAX model. In
this work, we first design our own online algorithm for a single
link, also adopting the MAX model, in preparation for the
MapReduce data processing case. Based on the insight that
Simple Smoothing ignores valuable information including the
maximum volume recorded so far and the current amount of
backlogged data and their deadlines, we tailor a more sophis-
ticated solution, which incorporates a few heuristic smoothing
ideas and is hence referred to as Heuristic Smoothing. We
prove that Heuristic Smoothing always guarantees a compet-
itive ratio no worse than that of Simple Smoothing, under
any possible data arrival pattern. Theoretical analysis shows
that Heuristic Smoothing can achieve a worst-case competitive
ratio between 2− 1

D+1 and 2(1− 1
e), where D is the tolerable

delay.
We further extend the single link case to a cloud scenario

where multiple ISPs are employed to transfer big data dynami-
cally for processing using a MapReduce-like framework. Data
are routed from the cloud user to mappers and then reducers,
both residing in potentially different data centres of the cloud
[6]. We apply Heuristic Smoothing as a plug-in module for
designing a distributed and randomized online algorithm with
very low computational complexity. The competitive ratio
guaranteed by the randomized online algorithm increases from
that of Heuristic Smoothing by a small constant factor.

Extensive evaluations are conducted to investigate the per-
formance of the proposed online algorithms. The results show
that Heuristic Smoothing performs much better than Immedi-
ate Transfer (ITA), a straightforward algorithm that ignores
temporal smoothing. Meanwhile Heuristic Smoothing also
achieves smaller competitive ratios than Simple Smoothing
does. In most cases tested, the observed competitive ratio
of Heuristic Smoothing is smaller than 1.5, better than the
theoretical upper bound, and relatively close to the offline
optimum. Such superior performance is attributed to less
abrupt responses to highly volatile traffic demand. Empirical
studies for the cloud scenario further verify the efficacy of
the randomized cost reduction algorithm, in terms of both
scalability and competitive ratio.

In the rest of this paper, we discuss related work in Sec. II,
and introduce the system model in Sec. III. Heuristic Smooth-

ing and the randomized algorithm for the cloud scenario are
designed and analyzed in Sec. IV and Sec. V, respectively.
Evaluation results are in Sec. VI. Sec. VII concludes the paper.

II. RELATED WORK

Similar to deferring data upload to minimize the peak band-
width demand, there have been studies on scheduling CPU
tasks to minimize the maximum CPU speed, that is closely
related to the power consumption. Yao et al. [11] initially
provide an optimal offline algorithm, the YDS algorithm, to
optimally minimize power consumption by scaling CPU speed
under the assumption that the former is a convex function
of the latter. Bansal et al. [12] further propose the BKP
algorithm with a competitive ratio of e, for minimizing the
maximum speed when facing arbitrary inputs with different
delay requirements, and arbitrary workload patterns.

Towards new challenges brought by the proliferation of
multi-core processors, Albers et al. [13] design an online
algorithm for multi-processor job scheduling without inter-
process job migration. Bingham et al. [14] and Angel et
al. [15] further propose polynomial-time offline optimal al-
gorithms, with migration of jobs considered. Greiner et al.
[16] generalize a c-competitive online algorithm for a single
processor into a randomized cBα-competitive online algorithm
for multiple processors, where Bα is the α-th Bell number.
Different from the MAX traffic charge model in this work,
they focus on the total volume based energy charges computed
by integrating instantaneous power consumption over time.

In recent years, data centre workload scheduling with dead-
line constraints has been extensively studied in the cloud
computing literature. Gupta et al. [17] analyze the energy
minimization problem in a data center when available dead-
line information of the workload may be used to defer job
execution for reduced energy consumption. Yao et al. [18]
tackle the power reduction problem with deferrable workloads
in date centers using the Lyapunov optimization approach, for
approximate time averaged optimization.

A few studies exist on the transfer of big data to the cloud.
Cho et al. [19] design a static cost-aware planning system for
transferring large amounts of data to the cloud provider via
both the Internet and courier services. Considering a dynamic
transfer scheme where data is produced dynamically, Zhang
et al. [6] propose two online algorithms to minimize the total
transfer cost. Different from this work, they assume mandatory
immediate data upload, and adopt a total volume based charge
model instead of the percentile charge model.

Goldenberg et al. [9] study the multihoming problem under
95-percentile traffic charges. Grothey et al. [10] investigate a
similar problem through a stochastic dynamic programming
approach. They both leverage ISP subscription switching for
traffic engineering, so that the charge volume is minimized.
However, data traffic in their studies cannot be deferred. Adler
et al. [20] focus on careful routing of data traffic between two
types of ISPs (Average contract, Maximum contract) to pursue
the optimal online solution, leading to an online optimization
problem similar to the classic ski-rental problem. Golubchik

et al. [5] study the minimization of transmission cost by
exploiting a small tolerable delay when ISPs adopt a 95-
percentile or MAX charge model, focusing on a single link
only, and proposing the Simple Smoothing algorithm.

III. SYSTEM MODEL

We consider a cloud user who generates large amounts of
data dynamically over time, required for transfer into a cloud
or a federation of clouds for processing using a MapReduce-
like framework. The mappers and reducers may reside in
geographically dispersed data centres. The big data in question
can tolerate bounded upload delays specified in their SLA.

A. The MapReduce Framework

MapReduce, initially unveiled by Dean and Ghemawat [21],
is a programming model targeting at efficiently processing
large datasets in parallel. A typical MapReduce application
includes two functions map and reduce, both written by the
users. Map processes input key/value pairs, and produces a
set of intermediate key/value pairs. The MapReduce library
combines all intermediate values associated with the same
intermediate key I and then passes them to the reduce func-
tion. Reduce then merges these values associated with the
intermediate key I to produce smaller sets of values.

There are four stages in the MapReduce framework: push-
ing, mapping, shuffling, and reducing. The user transfers
workloads to the mappers during the pushing stage. The
mappers process them during the mapping stage, and deliver
the processed data to the reducers during the shuffling stage.
Finally the reducers produce the results in the reducing stage.
In a distributed system, mapping and reducing stages can
happen at different locations. The system will deliver all in-
termediate data from mappers to reducers during the shuffling
stage, and the cloud providers may charge for inter-datacentre
traffic during the shuffling stage. Recent studies [22], [23]
suggest that the relation between intermediate data size and
original data size depends closely on the specific application.
For applications such as n-gram models, intermediate data size
is much bigger, and the bandwidth cost charged by the cloud
provider cannot be neglected. We use β to denote the ratio of
original data size to intermediate data size.

B. Cost Minimization for MapReduce Applications

We model a cloud user producing a large volume of data
every hour, as exemplified by astronomical observatories [6].
As shown in Fig. 1, the data location is multi-homed with
multiple ISPs, for communicating with data centers. Through
the infrastructure provided by ISP i, data can be uploaded to
a corresponding data centre DCi. Each ISP has its own traffic
charge model and pricing function.

After arrival at the data centers, the uploaded data will be
processed using a MapReduce-like framework. Intermediate
data need to be transferred among data centers in the shuffling
stage. Towards a general model, we again assume that multiple
ISPs are employed by the cloud to communicate among
its distributed data centers, e.g., ISP A for communicating

between DC1 and DC2, and ISP B for communicating between
DC1 and DC3. If two inter-DC connections are covered by
the same ISP, it can be equivalently viewed as two ISPs with
identical traffic charge models.

User Location

DC 1'

DC 2'

DC 3'

DC 1

DC 2

DC 3

Data Sources Mappers Reducers

Fig. 1. An illustration of the network for deferrable data upload under the
MapReduce framework.

The system runs in a time-slotted fashion. Each time slot
is 5 minutes. The charge period is a month (30 days). M
and R denote the set of mappers and the set of reducers,
respectively. Since each mapper is associated with a unique
ISP in the first stage, we employ m ∈M to represent the ISP
used to connect the user to mapper m. All mappers use the
same hash function to map the intermediate keys to reducers
[23]. The upload delay is defined as the duration between
when data are generated to when they are transmitted to the
mappers. We focus on uniform delays, i.e., all jobs have
the same maximum tolerable delay D, which is reasonable
assuming data generated at the same user location are of
similar nature and importance. We use Wt to represent each
workload released at the user location in time slot t. Let xmd,t
be a decision variable indicating the portion of Wt assigned to
mapper m at time slot t+d. The cost of ISP m is indicated by
fm(Vm), where Vm is the maximum traffic that goes through
ISP m at time slot t.

To ensure all workload is uploaded into the cloud, we have:
0 ≤ xmd,t ≤ 1, ∀m ∈M. (1)

∑
m

D∑
d=0

xmd,t = 1, ∀t. (2)

Given the maximum tolerable uploading delay D, the traffic
V tm between the user and mapper m is:

V tm =

D∑
d=0

Wt−dx
m
d,t−d, ∀m ∈M. (3)

Let Vm be the maximum traffic volume of ISP m, which
will be used in the calculation of bandwidth cost. Vm satisfies:

Vm − V tm ≥ 0, ∀t. (4)

We assume that ISPs in the first stage, connecting user to
mappers, employ the same charging function fm; and ISPs
in the second stage from mappers to reducers use the same
charging function fm,r. Both charging functions fm and fm,r
are non-decreasing and convex. We further assume that the
first stage is non-splittable, i.e., each workload is uploaded

through one ISP only.
The user decides to deliver the workload to mapper m in

time slot t. Assume it takes a unit time to transmit data via
ISPs. Let M t+1

m denote the total data size at mapper m in time
slot t + 1. M t+1

m can be calculated as the summation of all
transmitted workloads at time slot t:

M t+1
m =

D∑
d=0

Wt−dx
m
d,t−d,∀m ∈M.

Assume the mappers take 1 time slot to process a received
workload. Therefore the mappers will transfer data to the
reducer in time slot t+2. Let T t+2

m,r be the traffic from mapper
m to reducer r is in time slot t+ 2:

V t+2
m,r = βM t+1

m yt+2
m,r, ∀m ∈M, r ∈ R. (5)

The maximum traffic volume of the ISP (m, r), Vm,r,
satisfies:

Vm,r − V t+2
m,r ≥ 0, ∀t. (6)

Notice that the MapReduce framework partitions the output
pairs (key/value) of mappers to reducers using hash functions.
All values for the same key are always reduced at the same
reducer no matter which mapper it comes from. Furthermore,
we assume that data generated in the data locations are
uniformly mixed, therefore we have:

yt+2
m,r = zr, ∀m ∈M, r ∈ R. (7)

This equation also implies that the superscript of yt+2
m,r can

be ignored. Now we can formulate the overall traffic cost
minimization problem for the cloud user, under the MAX
contract charge model:

minimize
∑
m

fm(Vm) +
∑
m,r

fm,r(Vm,r) (8)

subject to:

Vm − V tm ≥ 0, ∀t,m (8a)

Vm,r − V tm,r ≥ 0, ∀t,m, r (8b)
D∑
d=0

xd,tm = nm, ∀t,m (8c)∑
m

nm = 1, (8d)

0 ≤ xd,tm ≤ 1, nm ∈ {0, 1}, ∀m (8e).

where V tm and V tm,r are defined in Eqn. (3) and Eqn. (5),
respectively. nm is a binary variable indicating whether ISP
m is employed or not.

For ease of reference, notations are summarized l in Tab. I.

IV. THE SINGLE ISP CASE

We first investigate the basic case that includes one mapper
and one reducer only, co-located in the same data center, with
no bandwidth cost between the pairs. Given a MAX charge
model at the ISP, the algorithm tries to exploit the allowable
delay by scheduling the traffic to the best time slot within
the allowed time window, for reducing the charge volume.
This can be illustrated through a toy example: in t = 1, a

TABLE I
NOTATION

Symbol Definition
D the maximum delay from the time data is generated to the time

the data location begins to transmit it to the mappers.
M the set of mappers.
R the set of reducers. Some mapper and reducer may be in the same

location, i.e., M ∩R 6= ∅.
Wt the workload released in user location at time slot t.
xmd,t the portion of the workload Wt that is assigned to mapper m at

time slot t+ d.
β the ratio of the size of output of a mapper to the size of its input.
ytm,r the portion of the output of mapper m that is transmitted to reducer

r at time slot t.
zr the portion of the key space mapped into reducer r.
V tm the total traffic that goes through ISP m at time slot t.
fm(y) the cost of ISP m for the input y.

job (100MB, max delay = 9 time slots) is released; in the
following time slots, no jobs are released. If the algorithm
smooths the traffic across the 10 time slots, the charge volume
can be reduced to 10MB/5min, from 100MB/5min if
immediate transmission is adopted.

A. The Primal & Dual Cost Minimization LPs

We can drop the location index (m, r) in this basic scenario
of one mapper and one reducer locating in the same data
centre. Note that the charging function f is a non-decreasing
function of the maximum traffic volume. Minimizing the
maximum traffic volume therefore implies minimizing the
bandwidth cost. Consequently, the cost minimization problem
in our basic single ISP scenario can be formulated into the
following (primal) linear program (LP):

minimize V (9)

subject to:
min{D,t−1}∑

d=0

Wt−dxd,t−d ≥ V, ∀t ∈ T (9a)

D∑
d=0

xd,t = 1, ∀t ∈ TD (9b)

xd,t ≥ 0, V ≥ 0, ∀d ∈ D, t ∈ TD, (9c)

where T = [1, T], TD = [1, T −D], D = [0, D] and xd,t =
0,∀t > T −D,∀d ∈ D

Introducing dual variable y and z to constraints (9a) and
(9b) respectively, we formulate the corresponding dual LP:

maximize
T−D∑
t=1

zt (10)

subject to:
T∑
t=1

yt ≤ 1 (10a)

zt −Wtyt+d ≤ 0, ∀t ∈ TD, d ∈ D (10b)

yt ≥ 0, ∀t ∈ T (10c)

zt unconstrainted, ∀t ∈ TD (10d)

The input begins with W1 and ends with WT−D, and
WT−D+1 = 0, ...,WT = 0 is padded to the tail of the input.
We use P and D to denote feasible solutions to the primal
and dual LPs, respectively.

The optimization in (9) is a standard linear program. For
an offline optimal solution, one can simply solve (9) using a
standard LP solution algorithm such as the simplex method or
the interior-point method.

B. Online algorithms

The simplest online solution in the basic one ISP scenario
is the immediate transfer algorithm (ITA). Once a new job
arrives, ITA transfers it to mappers immediately without any
delay. Next we analyze the competitive ratio of ITA, as
compared to the offline optimum.

Theorem 1. ITA is (D + 1)-competitive.

Proof: Consider the following input: (W, 0, 0, 0, 0,). ITA
will process it immediately with bandwidth cost: W . However
the offline optimal algorithm will divide the workload into
small pieces: W/(D+1),W/(D+1), ...W/(D+1), 0, 0, 0, ...),
feasible within the deadline D, with maximum traffic volume
W/(D + 1).

Competitive ratio λ ≥ W

W/(D + 1)
= D + 1

We hence obtain a lower bound on the competitive ratio
of ITA, D+ 1. Next we prove D+ 1 is also an upper-bound.
Without exploiting any delays, ITA provides a feasible solution
to the primal problem, which is denoted as PITA.

PITA = max
t
Wt

Now we design a feasible solution to the dual problem as
follows (assume τ = argmaxtWt):

yt =

{
1/(D + 1) if t = τ, ..., τ +D
0 otherwise

zt =

{
1/(D + 1)Wt if t = τ
0 otherwise

D =
1

D + 1
Wτ

So the competitive ratio is:

Competitive ratio λ =
PITA
OPT

≤ PITAD = D + 1

Remarks: if D = 0, i.e. jobs are not deferrable, the offline op-
timal algorithm degrades into ITA, agreeing with the theorem,
which claims ITA is 1-competitive (D + 1 = 1).

ITA is apparently not ideal, and may lead to high peak
traffic and high bandwidth cost as compared with the offline
optimum. Golubchik et al. [5] design a cost-aware algorithm
that strikes to spread out bandwidth demand by utilizing all
possible delays, referred to as the Simple Smoothing Algo-
rithm. Upon receiving a new workload, Simple Smoothing
evenly divides it into D+ 1 parts, and processes them one by
one in the current time slot and the following D time slots,
as shown in Algorithm 1.

Algorithm 1 The Simple Smoothing Algorithm [5]
1: for τ = 1 to T −D do
2: for d = 0 to D do
3: xd,τ = 1/(D + 1)
4: end for
5: end for

Theorem 2. [5] The competitive ratio of Simple Smoothing
is 2− 1

D+1 .

Theorem 2 can be proven through weak LP duality, i.e.,
using a feasible dual as the lower bound of the offline optimal.

Simple Smoothing is very simple, but guarantees a worst
case competitive ratio smaller than 2. Nonetheless, there is
still room for further improvements, since Simple Smoothing
ignores available information such as the hitherto maximum
traffic volume transmitted, and the current “pressure” from
backlogged traffic and their deadlines. Such an observation
motivated our design of the more sophisticated Heuristic
Smoothing algorithm for the case D ≥ 1, as shown in
Algorithm 2. Here T is the charge period, τ is the current
time slot, and Hd is the total volume of data that have been
buffered for d time slots.

Algorithm 2 The Heuristic Smoothing Algorithm
1: Vmax = 0
2: Wτ = 0,∀τ = T −D + 1, ..., T ;
3: Hd = 0,∀d = 1, ..., D;
4: for τ = 1 to T do
5: Vτ = min

{
Wτ +

∑D
d=1Hd,max{Vmax, Wτ

D+1 +∑D
d=1Hd
D }

}
6: if Vmax < Vτ then
7: Vmax = Vτ ;
8: end if
9: Transfer the traffic following Earliest Deadline First

(EDF) strategy;
10: Update Hd,∀d = 1, ..., D;
11: end for

Theorem 3. The competitive ratio of Heuristic Smoothing is
lower bounded by 2(1− 1

e).

Proof: Consider the following input: (W,W, ...W, 0, ..., 0)
whose first D + 1 time slots are W .

The traffic demand V increases until time slot D + 1.

VD+1 =
W

D + 1
+

W

D + 1
+

(D − 1)W

(D + 1)D
+ ...+

(D − 1)D−1W

(D + 1)DD−1

=
W

D + 1
(1 +D(1− (1− 1

D
)D))

We can find a feasible primal solution which yields the
charge volume D+1

2D+1W . This primal solution is an upper
bound of the offline optimum. Therefore the lower bound
of the competitive ratio λ ≥ 2D+1

VD+1(D+1) = 2D+1
(D+1)2 (1 +

D(1 − (1 − 1
D)D)) → 2(1 − 1

e) as D → +∞. Notice that

2D+1
(D+1)2 (1 + D(1 − (1 − 1

D)D)) is a decreasing function for
D ∈ [1,+∞), we further have λ ≥ 2(1− 1

e).

Theorem 4. The competitive ratio of Heuristic Smoothing is
upper-bounded by 2− 1

D+1 .

Proof: We take the Simple Smoothing algorithm (Algo-
rithm. 2) as a benchmark, and we prove that Psmooth ≥
Pheuristic, where Pheuristic is the charged volume produced
by Algorithm 3.

Algorithm 3 will only increase the traffic demand when
Wτ

D+1 +
∑D
d=1Hd/D exceeds Vmax. Therefore, we rearrange

Hd to compute the maximum traffic demand. Let

Vt+D =
(Wt+D

D + 1
+
Wt+D−1

D + 1

+
(D − 1)Wt+D−2

(D + 1)D
+ ...+

(D − 1)D−1Wt

(D + 1)DD−1

)
Then Pheuristic = maxt Vt+D . Let τ = arg maxt Vt+D, and

we have

Psmooth = max
t

t+D∑
i=t

Wt

D + 1

≥
τ+D∑
i=τ

Wτ

D + 1

≥ Wτ+D

D + 1
+
Wτ+D−1

D + 1
+

(D − 1)Wτ+D−2

(D + 1)D

+ ...+
(D − 1)D−1Wτ

(D + 1)DD−1

= Pheuristic
Since the simple smoothing algorithm is

2 − 1
D+1−competitive, the competitive ratio of Algorithm 3

cannot be worse than 2− 1
D+1 .

From the proof above, we have following corollary.

Corollary 1. For any given input, the charge volume resulting
from Heuristic Smoothing is always equal to or smaller than
that of Simple Smoothing.

Algorithm Complexity. All three online algorithms discussed
have moderate time complexity, making them light-weight
for practical applications. More specifically, ITA, Simple
Smoothing and Heuristic Smoothing have a time complexity
of O(T −D), O((T −D)D), and O(TD), respectively.

V. CLOUD SCENARIO

In this section, we apply the algorithms designed for
the single ISP case to the cloud scenario, which utilizes a
MapReduce-like framework for processing big data. Define
Cost1 =

∑
m fm(Vm), Cost2 =

∑
m,r fm,r(Vm,r), and adopt

power charge functions by letting fm(x) = fm,r(x) =
xα, α > 1.

A. Algorithm Design

The two-phase MapReduce cost optimization problem is
defined in (8), and is a discrete optimization with integer
variables. Consequently, an offline solution that solves such an

integer program has a high computational complexity, further
motivating the design of an efficient online solution.

A native online algorithm selects a fixed mapper and sched-
ules the traffic on the corresponding ISP using the Simple
Smoothing Algorithm.

Theorem 5. The competitive ratio of the native online algo-
rithm is lower bounded by |M |α−1, where |M | is the number
of mappers.

Proof: Consider the input (W, · · · ,W, 0, · · · , 0) whose first
D + 1 items are W . We can verify that the charge volume is
DW

2D+1 . The corresponding cost is (DW
2D+1)α+

∑
r(βzr

DW
2D+1)α.

Next we consider a more intelligent algorithm that as-
signs the j-th workload to the mapper (j mod |M |). This
algorithm acts as the upper bound of the offline optimum.
Its charge volume is DW

(2D+1)|M | . The corresponding cost is
|M |(DW

(2D+1)|M |)
α + |M |

∑
r(βzr

DW
(2D+1)|M |)

α. Therefore,

Competitive ratio

≥
(DW

2D+1)α +
∑
r(βzr

DW
2D+1)α

|M |(DW
(2D+1)|M |)

α + |M |
∑
r(βzr

DW
(2D+1)|M |)

α

= |M |α−1

We next present a distributed randomized online algorithm
for (8). For each workload, the user chooses ISPs uniformly
at random to transfer the data to a randomly selected mapper.
Formally, let WA be the randomized workload assignment
allocating each workload to mappers. For each selected ISP,
the user runs Heuristic Smoothing to guide one-stage traffic
deferral and transmission, as shown in Algorithm 3.

Algorithm 3 Randomized Uploading Scheme
1: Generate a randomized workload assignment WA which

allocates each workload to a randomly selected mapper.
2: For each ISP m, apply the single ISP algorithm, e.g.,

Algorithm 2 to schedule the traffic.

We analyze Algorithm 3 by building a connection between
the uploading scheme π and the randomized workload as-
signment WA. We combine π and WA to a new uploading
scheme πWA. Let t0 = 1 < t1 · · · < te = T . During each
interval [ti, ti+1), each ISP is employed to transfer at most
one workload in the uploading scheme π. If a workload is
processed in [ti, ti+1), then it cannot be finished before ti+1.
Due to the MAX charge model, the transfer speed for workload
w in [ti, ti+1) is a single speed, say vi,w. If workload w is
not processed in [ti, ti+1), we set vi,w = 0. Therefore, for any
given i, there are at most |M | values of vi,w 6= 0.

Assume there are n workloads, forming a set W. Let
Ωm = {w|all workloads assigned to ISP m} ∈W. In scheme
πWA, the user transfers data at speed of

∑
w∈Ωm

vi,w in time
interval [ti, ti+1). Let φn(Ωm) be the probability that exactly
the workloads Ωm are allocated to ISP m.

φn(Ωm) = (
1

|M |)
|Ωm|(1− 1

|M |)
n−|Ωm|

We next define function Λn(x) where x ∈ Rn \ {0}:

Λn(x) = |M |
∑

Ωm∈W

φn(Ωm)(
∑
w∈Ωm

xw)α/

n∑
w=1

xαw

Lemma 1. Given any uploading scheme π and a randomized
workload assignment WA, we have a randomized uploading
scheme πWA, which satisfies:

E(Cost1(πWA) + Cost2(πWA))

≤ max
x

Λ|M|(x)(Cost2(π) + Cost1(π))

Proof: Since the traffic pattern in ISP (m, r),∀r is exactly
the same as ISP m, we only consider one stage. Let us consider
scheme π first. In the first stage, the cost is:

Cost1(π) =
∑
m∈M

max
i,w

(vmi,w)α ≥ max
i

Σ∗|M|(v
α
i,w)

where vmi,w indicates the transfer speed in ISP m during
[ti, ti+1) for workload w. Σ∗|M |(v

α
i,w) is the sum of the largest

|M | values of vαi,w when given i. The inequality holds because
there are at most |M | non-zero speeds for any given duration
[ti, ti+1). We next have the cost of the second stage:

Cost2(π) =
∑
m

∑
r

max
i,w

(βzrv
m
i,w)α

= βα
∑
r

zαr
∑
m

max
i,w

(vmi,w)α

≥ βα
∑
r

zαr max
i

Σ∗|M|(v
α
i,w)

The cost of the first stage in πWA is:

E(Cost1(πWA)) =
∑
m∈M

∑
ΩWA
m ∈W

φn(ΩWA
m) max

i
(
∑

w∈ΩWA
m

vi,w)α

= |M |max
i

∑
ΩWA
m ∈W

φn(ΩWA
m)(

∑
w∈ΩWA

m

vi,w)α

The second equality above holds because the assignment is
uniformly random. Similarly, The cost of the second stage in
πWA is:

E(Cost2(πWA))

= |M |
∑

ΩWA
m ∈P

φn(ΩWA
m)

∑
r

max
i

(zr
∑

w∈ΩWA
m

βvi,w)α

= |M |βα
∑
r

zαr max
i

∑
ΩWA
m ∈W

φn(ΩWA
m)(

∑
w∈ΩWA

m

vi,w)α

Again because for any [ti, ti+1), there are at most |M |
values of vi,w 6= 0. We have

|M |
∑

ΩWA
m ∈W φn(ΩWA

m)(
∑
w∈ΩWA

m
vi,w)α

Σ∗|M |(v
α
i,w)

=
|M |

∑
ΩWA
m ∈W φn(ΩWA

m)(
∑
w∈ΩWA

m
vi,w)α∑n

w=1(vαi,w)

= Λn(v) = Λ|M |(v
′)

where v′ is an |M |-dimensional subvector of v ∈ Rn \ {0},
which contains all non-zero transfer speeds in [ti, ti+1).

Therefore, the ratio for the first stage is:

E(Cost1(πWA))

Cost1(π)

≤
|M |

∑
ΩWA
m ∈W φ(ΩWA

m) maxi(
∑
w∈ΩWA

m
vi,w)α

maxi Σ∗|M|(v
α
i,w)

≤
|M |

∑
ΩWA
m ∈W φ(ΩWA

m)(
∑
w∈ΩWA

m
vi∗,w)α

Σ∗|M|(v
α
i∗,w)

≤ max
x

Λ|M|(x)

where i∗ = arg maxi(
∑
w∈ΩWA

m
vi,w)α. Similarly, the ratio

for the second stage is also bounded by maxx Λ|M |(x), i.e.,
E(Cost2(πWA))

Cost2(π) ≤ maxx Λ|M |(x). This proves Lemma 1.

Let S(α, j) be the j-th Stirling number for α elements,
defined as the number of partitions of a set of size α into j
subsets [24]. Let Bα be the α-th Bell number, defined as the
number of partitions of a set of size α [24]. The Bell number
is relatively small when α is small: B1 = 1, B2 = 2, B3 =
5, B4 = 15. The definitions also imply:

α∑
j

S(α, j) = Bα

The following lemma is proven by Greiner et al. [16].

Lemma 2. [16] ∀α ∈ N and α ≤ |M |, maxx Λ|M |(x) =∑α
j=1 S(α, j) |M |!

|M |j(|M |−j)! .

Theorem 6. Given a λ-competitive algorithm with respect
to cost for the single ISP case, then the randomized online
algorithm is λBdαe-competitive in expectation.

Proof: Let π∗ be the optimal uploading scheme, the cor-
responding randomized uploading scheme is π∗WA. The algo-
rithm we use is πWA. Since the workloads in π∗WA and πWA

are the same, we have:

E(Cost1(πWA)) ≤ λE(Cost1(π∗WA)) (11)

since the algorithm is λ-competitive. Similarly,

E(Cost2(πWA)) ≤ λE(Cost2(π∗WA)) (12)

since the traffic pattern in ISP (m, r),∀r is exactly the same
as in ISP m.

Lemma 1 implies:

E(Cost1(π∗WA) + Cost2(π∗WA))

≤ max
x

Λ|M|(x)(Cost1(π∗) + Cost2(π∗))
(13)

Since Λ|M |(x) is a monotonically increasing function of
α, we use dαe as an upper bound of α > 1, obtaining a
corresponding upper bound of Λ|M |(x). Combining Eqn. (11)
(12) and (13) as well as Lemma 2, we have the following
expected cost of the randomized online algorithm:

E(Cost1(πWA) + Cost2(πWA))

≤ λE(Cost1(π∗WA) + Cost2(π∗WA))

≤ λmax
x

Λ|M|(x)(Cost1(π∗) + Cost2(π∗))

= λ

dαe∑
j=1

S(dαe, j) |M |!
|M |j(|M | − j)! (Cost1(π∗) + Cost2(π∗))

≤ λ
dαe∑
j=1

S(dαe, j)(Cost1(π∗) + Cost2(π∗))

≤ λBdαeOPT

Remark: For a single link, we can employ Heuristic Smooth-
ing, whose competitive ratio is smaller than 2 with respect
to maximum traffic volume. Then the competitive ratio of
Algorithm 2 is 2α in cost. Thus Algorithm 3 is 2αBα-
competitive in expectation. When α = 2, the competitive ratio
is 8, a constant regardless of the number of mappers.

VI. PERFORMANCE EVALUATION

We have implemented Simple Smoothing, Heuristic
Smoothing, as well as the randomized online algorithm, for
performance evaluation through simulation studies. The de-
fault input Wt is generated uniformly at random, as shown
in Fig. 2, where all data are normalized, i.e., scaled down
by maxtWt. We assume there are 5 mappers at different
locations, and 5 reducers at different locations. We choose
α = 2, thus the charge function fm(x) = fm,r(x) = x2.
A. The Single ISP Case

First we compare Heuristic Smoothing with Simple Smooth-
ing. The two algorithms are executed under a delay require-
ment D = 5. Fig. 3 illustrates the traffic volume scheduled at
each time slot. Compared with Simple Smoothing, Heuristic
Smoothing results in a maximum traffic volume this is about
28% smaller. Heuristic Smoothing tries to exploit the available
delay to average the traffic and is less sensitive to the fluctua-
tion of traffic demand, as compared with Simple Smoothing.
For example, at around t = 10, the traffic of Simple Smoothing
increases abruptly due to high traffic demand in the input;
around t = 40, it goes down due to low traffic demand. In
comparison, Heuristic Smoothing results in more even traffic
distributions around t = 10 and t = 40.

Next we examine how the tolerable delay affects the perfor-
mance of the proposed online algorithms. We execute Simple
Smoothing, Heuristic Smoothing and ITA against a variety of
delays ranging from D = 0 to D = 24. We also compute the
offline optimum as a benchmark. The observed competitive
ratios are shown in Fig. 4. The results suggest that both Simple
Smoothing and Heuristic Smoothing perform much better than
ITA. Heuristic Smoothing also beats Simple Smoothing, by a
smaller margin. Heuristic Smoothing approaches the offline
optimum rather closely; the observed competitive ratios are
always below 1.5 and usually around 1.2, much better than
the theoretically proven upper bound in Theorem 4.

Heuristic Smoothing is further evaluated under other ran-
dom inputs, including Poisson distribution in Fig. 5, Gaussian

distribution in Fig. 6 and a specifically designed random input
in Fig. 7. All results verify that Heuristic Smoothing works
best among the three online cost minimization algorithms.
B. The Cloud Scenario

We implemented the randomized algorithm in Algorithm 3
and the native algorithm in Sec. V-A. They are evaluated under
three types of inputs: uniform distribution, Poisson distribution
and Gaussian distribution. We compare the costs of the two
algorithms using these inputs, as shown in Fig. 8, Fig. 9
and Fig. 10, respectively. We observe that the randomized
algorithm achieves much lower cost than the native algorithm,
in particular with longer tolerable delays. For example, Fig. 8
shows that the randomized algorithm saves approximately 45%
cost as compared with the native algorithm when D = 5, and it
saves more than 68% when D = 10. This suggests that longer
tolerable delays provide the randomized algorithm more space
of maneuver, leading to more evident cost reduce.

We further investigate the influence of β, the ratio of original
data size to the intermediate data size. Results are shown in
Fig. 11. When D is small, a large β causes a rather high cost.
However when a large D is used, e.g., D = 40, even a large
β only produces a relatively small cost.

0

5

10

15

20 0

10

20

30

40

0

0.2

0.4

0.6

0.8

Delay window size
β

N
o
rm

a
liz

e
 C

o
s
t

Fig. 11. Relationship between traffic cost and parameters D, β.

VII. CONCLUSION

ISPs now charge big data applications with a new, interest-
ing percentile based model, leading to new online algorithm
design problems for minimizing the traffic cost paid for
uploading big data to the cloud. We studied two scenarios
for such online algorithm design in this work. A Heuristic
Smoothing algorithm is proposed in the single link case, with
proven better performance than the best alternative in the liter-
ature, and a smaller competitive ratio below 2. A randomized
online algorithm is designed for the MapReduce framework,
achieving a constant competitive ratio by employing Heuristic
Smoothing as a building module. We have focused on MAX
charge rules, and leave similar online algorithm design for
95-percentile charge rules as future work.

REFERENCES

[1] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/.
[2] Linode, https://www.linode.com/speedtest/.
[3] Amazon EC2 Case-studies, http://aws.amazon.com/solutions/case-

studies.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Time

N
o
rm

a
liz

e
d
 D

a
ta

 T
ra

ff
ic

Uniform Input

Fig. 2. Uniformly Random Input.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

Time

N
o
rm

a
liz

e
d
 S

c
h
e
d
u
le

d
 T

ra
ff
ic

Simple Smoothing

Heuristic Smoothing

Fig. 3. Simple Smoothing vs. Heuristic Smoothing,
D = 10

0 5 10 15 20 25
1

1.5

2

2.5

3

Delay window size

C
o
m

p
e
ti
ti
v
e
 R

a
ti
o

ITA

Simple Smoothing

Heuristic Smoothing

Fig. 4. Competitive ratio over various delay win-
dow sizes under input of uniform distribution.

0 5 10 15 20 25
1

1.5

2

2.5

Delay window size

C
o
m

p
e
ti
ti
v
e
 R

a
ti
o

ITA

Simple Smoothing

Heuristic Smoothing

Fig. 5. Competitive ratio over various delay win-
dow sizes under input of Poisson distribution.

0 5 10 15 20 25
1

2

3

4

5

Delay window size

C
o

m
p

e
ti
ti
v
e

 R
a

ti
o

ITA

Simple Smoothing

Heuristic Smoothing

Fig. 6. Competitive ratio over various delay win-
dow sizes under input of Gaussian distribution.

0 5 10 15 20 25
1

2

3

4

5

6

7

8

Delay window size

C
o

m
p

e
ti
ti
v
e

 R
a

ti
o

ITA

Simple Smoothing

Heuristic Smoothing

Fig. 7. Competitive ratio over various delay win-
dow sizes under a specifically designed input.

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Delay window size

N
o

rm
a

liz
e

 C
o

s
t

Randomized Algorithm

Native Algorithm

Fig. 8. Comparison between the proposed random-
ized algorithm and the native algorithm under input
of uniform distribution and β = 2.

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Delay window size

N
o

rm
a

liz
e

 C
o

s
t

Randomized Algorithm

Native Algorithm

Fig. 9. Comparison between the proposed random-
ized algorithm and the native algorithm under input
of Poisson distribution and β = 2.

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Delay window size
N

o
rm

a
liz

e
 C

o
s
t

Randomized Algorithm

Native Algorithm

Fig. 10. Comparison between the proposed ran-
domized algorithm and the native algorithm under
input of Gaussian distribution and β = 2.

[4] E. E. Schadt, M. D. Linderman, J. Sorenson, L. Lee, and G. P.
Nolan, “Computational Solutions to Large-scale Data Management and
Analysis,” Nat Rev Genet, vol. 11, no. 9, pp. 647–657, Sep. 2010.

[5] L. Golubchik, S. Khuller, K. Mukherjee, and Y. Yao, “To Send or not
to Send: Reducing the Cost of Data Transmission,” in Proc. of IEEE
INFOCOM, 2013.

[6] L. Zhang, C. Wu, Z. Li, C. Guo, M. Chen, and F. Lau, “Moving Big Data
to The Cloud: An Online Cost-Minimizing Approach,” IEEE Journal
on Selected Areas in Communications, vol. 31, no. 12, pp. 2710–2721,
2013.

[7] H. Wang, H. Xie, L. Qiu, A. Silberschatz, and Y. Yang, “Optimal
ISP Subscription for Internet Multihoming: Algorithm Design and
Implication Analysis,” in Proc. of IEEE INFOCOM, 2005.

[8] S. Peak, “Beyond Bandwidth: The Business Case For Data Accelera-
tion,” White Paper, 2013.

[9] D. K. Goldenberg, L. Qiuy, H. Xie, Y. R. Yang, and Y. Zhang,
“Optimizing Cost and Performance for Multihoming,” in Proc. of ACM
SIGCOMM, 2004.

[10] A. Grothey and X. Yang, “Top-percentile Traffic Routing Problem by
Dynamic Programming,” Optimization and Engineering, vol. 12, pp.
631–655, 2011.

[11] F. Yao, A. Demers, and S. Shenker, “A Scheduling Model for Reduced
CPU Energy,” in Proc. of IEEE FOCS, 1995.

[12] N. Bansal, T. Kimbrel, and K. Pruhs, “Speed Scaling to Manage Energy
and Temperature,” J. ACM, vol. 54, no. 1, pp. 3:1–3:39, Mar. 2007.

[13] S. Albers, F. Müller, and S. Schmelzer, “Speed Scaling on Parallel
Processors,” in Proc. of ACM SPAA, 2007.

[14] B. Bingham and M. Greenstreet, “Energy Optimal Scheduling on
Multiprocessors with Migration,” in Proc. of IEEE ISPA, 2008.

[15] E. Angel, E. Bampis, F. Kacem, and D. Letsios, “Speed Scaling
on Parallel Processors with Migration,” in Euro-Par 2012 Parallel
Processing, ser. Lecture Notes in Computer Science, C. Kaklamanis,
T. Papatheodorou, and P. Spirakis, Eds. Springer Berlin Heidelberg,
2012, vol. 7484, pp. 128–140.

[16] G. Greiner, T. Nonner, and A. Souza, “The Bell is Ringing in Speed-
scaled Multiprocessor Scheduling,” in Proc. of ACM SPAA, 2009.

[17] M. A. Adnan, Y. Ma, R. Sugihara, and R. Gupta, “Dynamic De-
ferral of Workload for Capacity Provisioning in Data Centers,”
http://arxiv.org/abs/1109.3839.

[18] Y. Yao, L. Huang, A. Sharma, L. Golubchik, and M. Neely, “Data
Centers Power Reduction: A Two Time Scale Approach for Delay
Tolerant Workloads,” in Proc. of IEEE INFOCOM, 2012.

[19] B. Cho and I. Gupta, “New Algorithms for Planning Bulk Transfer via
Internet and Shipping Networks,” in Proc. of IEEE ICDCS, 2010.

[20] M. Adler, R. K. Sitaraman, and H. Venkataramani, “Algorithms for
Optimizing the Bandwidth Cost of Content Delivery,” Comput. Netw.,
vol. 55, no. 18, pp. 4007–4020, Dec. 2011.

[21] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[22] S. Rao, R. Ramakrishnan, A. Silberstein, M. Ovsiannikov, and
D. Reeves, “Sailfish: A Framework for Large Scale Data Processing,”
Yahoo!Labs, Tech. Rep., 2012.

[23] B. Heintz, A. Chandra, and R. K. Sitaraman, “Optimizing MapReduce
for Highly Distributed Environments,” Department of Computer Science
and Engineering, University of Minnesota, Tech. Rep., 2012.

[24] H. Becker and J. Riordan, “The Arithmetic of Bell and Stirling num-
bers,” American journal of Mathematics, vol. 70, no. 2, pp. 385–394,
1948.

