
252 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 1, JANUARY 2017

Sending Perishable Information: Coding Improves
Delay-Constrained Throughput Even

for Single Unicast
Chih-Chun Wang, Senior Member, IEEE, and Minghua Chen, Senior Member, IEEE

Abstract— This paper considers network communications
under a hard timeliness constraint, where a source node streams
perishable information to a destination node over a directed
acyclic graph subject to a hard delay constraint. Transmission
along any edge incurs unit delay, and it is required that every
information bit generated at the source at the beginning of
time t to be received and recovered by the destination at the
end of time t + D − 1, where D > 0 is the maximum allowed
end-to-end delay. We study the corresponding delay-constrained
unicast capacity problem. This paper presents the first example
showing that network coding (NC) can achieve strictly higher
delay-constrained throughput than routing even for the single
unicast setting and the NC gain can be arbitrarily close to
2 in some instances. This is in sharp contrast to the delay-
unconstrained (D = ∞) single-unicast case where the classic
min-cut/max-flow theorem implies that coding cannot improve
throughput over routing. Motivated by the above findings, a series
of investigation on the delay-constrained capacity problem is also
made, including: 1) an equivalent multiple-unicast representation
based on a time-expanded graph approach; 2) a new delay-
constrained capacity upper bound and its connections to the
existing routing-based results [Ying et al. 2011]; 3) an example
showing that the penalty of using random linear NC can be
unbounded; and 4) a counter example of the tree-packing
Edmonds’ theorem in the new delay-constrained setting. Built
upon the time-expanded graph approach, we also discuss how our
results can be readily extended to cyclic networks. Overall, our
results suggest that delay-constrained communication is funda-
mentally different from the well-understood delay-unconstrained
one and call for investigation participation.

Index Terms— Network coding, max-flow/min-cut,
delay-constrained communications, single unicast, network
information theory.

Manuscript received October 20, 2015; accepted September 15, 2016. Date
of publication October 20, 2016; date of current version December 20,
2016. This work was supported in part by NSF under Grant CCF-0845968,
Grant CNS-0905331, Grant ECCS-1407603, Grant CCF-1422997, and
Grant CCF-1618475, in part by the National Basic Research Program of
China under Project 2012CB315904 and Project 2013CB336700, in part by
the University Grants Committee of the Hong Kong Special Administrative
Region, China, (Area of Excellence) under Project AoE/E-02/08, and in part
by the General Research Fund under Project 411011 and Project 14209115.
Part of this paper was presented at the 2014 ISIT.

C.-C. Wang is with the School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47906 USA (e-mail:
chihw@purdue.edu).

M. Chen is with the Department of Information Engineering, The Chinese
University of Hong Kong, Hong Kong (e-mail: minghua@ie.cuhk.edu.hk).

Communicated by M. Langberg, Associate Editor for Coding Theory.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2016.2619717

I. INTRODUCTION

CONSIDER a network modeled as a directed acyclic graph
G, for which each edge has a capacity constraint and

incurs a unit transmission delay. A link with long delay is
modeled as multiple edges in tandem, each with unit delay.
Except when specified otherwise, we consider exclusively
a delay-constrained single-unicast scenario where a single
source node, denoted as s, streams perishable information to
a single destination node, denoted as d , over the graph G.
Every information bit generated at s at the beginning of time
t has to be received and recovered by d by the end of
time t + D − 1. Namely, the maximum allowed end-to-end
communication delay of any packet is (t +D−1)− t +1 = D,
where the value of D is specified by the delay requirement of
the applications. For easier reference, we use “at time t” to
refer to “at the beginning of time t”. Since the end of time
t+D−1 is equivalent to the beginning of time t+D, our setting
simply means that each packet generated at time t needs to
be decoded at time t + D.

In this paper, we formally define and study the delay-
constrained unicast capacity problem, which characterizes the
maximum rate at which s can stream perishable information
to d subject to the delay constraint D.

The problem is important for delay-sensitive multimedia
communication systems, and for delivering real-time control
messages for cyber-physical systems. For example, in video
conferencing, the system designer may want to maximize
video throughput (thus video quality) subject to a video-
delivery delay constraint of 250ms, to ensure interactive con-
ferencing experience [3]. Similarly, in cyber-physical systems,
time-critical applications impose latency constraints within
which data or control messages must reach their targeting
entities [2]. In general, an optimal delay-constrained com-
munication scheme needs to decide the optimal routes of the
information flow in space in order to fully utilize all the link
capacity resources, while simultaneously tracking the delay
of individual packets in time to ensure the packets can arrive
at d and the information can be recovered before expiration.
The design problem becomes even more involved when we
move away from the traditional routing paradigm (also known
as the store-and-forward paradigm) and allow for network
coding (NC) [1], [31] at intermediate nodes that intelligently
mix the information content in the packets before forwarding
them. Such a 3-way coupling among space, time, and NC

0018-9448 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

WANG AND CHEN: SENDING PERISHABLE INFORMATION 253

choices creates a unique challenge and our understanding
of delay-constrained network capacity is still nascent. In the
following, we briefly illustrate some unique phenomena of the
delay-constrained setting.

When D is sufficiently large (e.g., larger than the end-to-end
delay of the longest path between s and d), any communication
scheme can always meet the delay constraint. In this case, the
delay-unconstrained (since D = ∞) single-unicast capacity
can be characterized by the classic max-flow/min-cut theorem,
and an optimal routing solution can be obtained in polynomial
time using the Edmonds-Karp algorithm [7] (an improvement
of the Ford-Fulkerson algorithm [11]), the push-&-relabel
algorithm [13], simple linear programming (LP) solvers
[42], [44], and a network-coding-based sounding
approach [36]. See [12] for further references. Since
optimal routing already achieves the capacity, i.e., the min-cut
value, NC cannot improve throughput over optimal routing
when there is only one unicast flow in the network.

The story changes completely when D is small
(i.e., when the delay constraint is active). For example,
the delay-constrained unicast routing capacity has to be
computed by the concept of soft edge-cuts [24], [45], which
is different from the standard graph-theoretic notion of edge
cuts. Also, as will be illustrated in Section II-C, there are
some simple network instances for which optimal routing
can achieve strictly higher delay-constrained throughput than
random linear network coding (RLNC), a sharp contrast
to the delay-unconstrained case in which both RLNC and
optimal routing can achieve the single-unicast capacity [18].

Overall, we observe that the landscape of delay-
constrained unicast is fundamentally different from the well-
understood delay-unconstrained one. In this paper, we study
the delay-constrained unicast capacity problem and make the
following contributions:

Firstly, the single-unicast delay-constrained network
capacity problem is officially formulated, which allows for
rigorous future investigation. One immediate result of the
delay-constrained single-unicast formulation is an equivalent
delay-unconstrained multiple-unicast time-expanded network
representation.

Secondly, this work shows for the first time in the literature
that for delay-constrained traffic, NC can achieve strictly
higher throughput than optimal routing even for single unicast
and the NC gain1 can be arbitrarily close to 2.

Such a result is interesting in the following sense. Most of
the Internet traffic is unicast. One of the fundamental results in
NC is that routing achieves the single-unicast capacity when
there is no delay constraint. This implies that to capitalize
the NC benefits for delay-tolerant unicast traffic, one has
to perform NC over multiple coexisting flows, the so-called
inter-flow NC. It is known that designing the optimal inter-
flow NC scheme is a notoriously hard problem, see [4],
[16], [20], [22], [26]–[28], [32], [37]–[41] and the references
therein. What exacerbates the problem is that even if we

1Intuitively, the NC gain of a given network instance is defined as the ratio
between the optimal NC capacity and the optimal routing rate. A formal
definition is given later in (12).

can design an optimal inter-flow NC scheme in a theoretic
setting, in practice inter-flow NC requires additional coor-
dinations among participating flows, including the tasks of
hand-shaking, synchronization, joint buffer management, etc.
Our result suggests that one may use NC to improve the
performance of delay-sensitive traffic over optimal routing
without any coordination among coexisting network flows.

Thirdly, based on a time-expanded graph approach, we
propose a new upper bound on the delay-constrained unicast
NC capacity, which provides deeper understanding to the
overall delay-constrained network communication problem
and sheds further insights to the existing routing-based delay-
constrained results in [45] through the concept of integrality
gap.

Fourthly, various aspects of the delay-constrained capacity
are investigated, including the potentially unbounded penalty2

of RLNC over routing; and a revisit of the Edmonds’ tree-
packing results [6] for the delay-constrained setting.

This paper is organized as follows. Section II compares
this work to the existing work on network-coding-based delay
minimization, and summarizes the existing results on routing
(store-and-forward) based solutions. Section III formulates
the delay-constrained capacity problem. Section IV states the
main results of this work, including (i) An equivalent time-
expanded multiple unicast formulation; (ii) The NC gain over
routing; and (iii) A new delay-constrained capacity upper
bound. Section V contains various other results on delay-
constrained capacity, including (iv) The unboundedness of the
penalty of using RLNC; and (v) An example showing that
Edmonds’ tree packing theorem no longer holds for the delay-
constrained setting. Some remarks on generalizing the above
results from acyclic to cyclic networks are also provided in
Section V. Section VI concludes this work. In this paper, we
formally present our discovery in the main body and leave the
majority of the proofs in the appendices so that the logic flow
of the statements is uninterrupted.

II. COMPARISON TO THE EXISTING WORK

A. Existing Results on Delay-Related Network Coding

1) Delay Minimization of Network Coding: Decoding delay
of NC is a very well studied problem, see [5], [9], [10] and
the references therein. Most of the existing works along this
line focus on how to minimize the decoding delay when using
NC to attain the best possible throughput for delay-insensitive
traffic. Namely, attaining the absolute optimal throughput is of
the highest priority, and minimizing the delay is to ensure that
the extra (decoding) delay incurred by NC is not excessive.
Many of the existing results also focus on 1-hop networks with
random packet erasure.

In contrast with the existing throughput-centric delay-
minimization studies [5], [10], this work is delay-centric.
Namely, we consider a hard delay constraint such that any
packets that experience delay longer than D time slots are
deemed useless and discarded. With the highest priority being

2Intuitively, the RLNC penalty of a network instance is defined as the
ratio between the optimal routing rate and the optimal RLNC rate. A formal
definition is given later in (27).

254 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 1, JANUARY 2017

the delay constraint, we focus on maximizing the throughput
over any given error-free multi-hop network. This approach is
a significant departure from the existing works on minimizing
NC decoding delay.

In a way similar to this work, [9] studies the delay-
capacity tradeoff. On the other hand, [9] focuses exclusively
on the single-multicast scenario, assumes there is no link
propagation delay, and studies the decoding delay related to the
(large) underlying finite field size. For comparison, this work
studies the single-unicast setting and focuses exclusively on
the propagation delay of each link.

2) Delay-Aware Network Code Designs: Another line of
network coding studies on delay is the delay-aware network
code design, e.g., [8], [14], [25], [29], [35] and the references
therein. In general, the goal along this line of work is to
develop optimal network codes that maximize the throughput
(achieving the min-cut value) while assuming that packets that
arrive with long delay is as useful as packets with short delay.
The difference is that the optimal code design now has to
take into account the delay incurred in each edge/link in a
way related to the traditional convolutional codes. The ring of
rational power series is often used as the algebraic foundation
of the corresponding network code design and study.

Among them, [14] studies the delay-constrained decodabil-
ity problem, an identical setting as of this work. Specifically,
[14] answers the question that for any given linear network
code (with all the local encoding kernels explicitly specified),
what is the necessary and sufficient algebraic condition that
determines whether a given network code can sustain a delay-
constrained throughput R. Therefore, for any given linear
network code, one can use the results in [14] to verify
whether it can achieve the targeted delay-constrained rate.
For completeness, we will restate this important algebraic
result [14] in Appendix I.

For comparison, instead of passively verifying the delay-
constrained performance of any given linear network code,
our work studies the best possible linear/non-linear network
codes for a given delay constraint and compares it to that of
the existing routing-based solutions, see Section II-B. We are
particularly interested in exploring the graph-theoretic and
information-theoretic connections, which is different from the
algebraic approach in [14].

3) Time-Stamped Communications With Infinite Backlog:
There also exist some works on infinite-backlog but timely
delivery [32], [33]. In those settings, all the packets are
available before the transmission starts and each packet has
a fixed expiration time with uniform spacing. In terms of
practical applications, our setting focuses more on the video
conferencing scenarios where each message packet, once gen-
erated, needs to be delivered within a delay constraint. For
comparison, the results in [32] and [33] are more related to
on-demand movie playback where all packets have already
been stored in the data center and the design goal is to
ensure smooth sequential packet delivery (thus the expiration
time with uniform spacing). The main difference is that the
expiration time of each packet is now predetermined and
does not depend on when the packet is injected into the
network.

For example, under the settings of [32] and [33] it is a viable
strategy to buffer the packets in certain ways to ensure smooth
playback. In contrast, buffering packets is a very poor strategy
in our delay-constrained setting since buffering packets will
significantly increase the end-to-end delay and thus decrease
the delay-constrained throughput.

B. Existing and Some New Results When Only
Store-&-Forward Is Allowed

We model the network as a finite directed acyclic graph
G = (V , E), where V is the node set and E is the edge
set. We use In(v) and Out(v) to denote the collections of
the incoming and outgoing edges of v, respectively. For any

e = (u, v) ∈ E , we define tail(e) �= u and head(e)
�= v.

Each e has a capacity constraint ce and incurs unit delay. Links
with long delay are thus modeled as a path of multiple edges.

Consider the store-and-forward paradigm. With delay con-
straint D, any packet that traverses from s to d through a path
longer than D hops is deemed useless. Without loss of gener-
ality, we assume D ≤ |E |. Otherwise, the problem collapses
back to the classic delay-unconstrained problem since all paths
have length ≤ |E |. We also assume In(s) = ∅ and Out(d) = ∅.

For any integer k, we define [1, k] �= {1, 2, · · · , k} and define
[1,∞) as the set of positive integers.

Let PD denote the collection of all s-to-d paths of length
“≤D hops.” Obviously PD is finite. When only store-and-
forward is allowed, the largest delay-constrained routing
capacity, denoted by R∗

route, can be computed by the following
LP problem3:

R∗
route

�= max
{xP≥0:P∈PD}

∑

P∈PD

x P (1)

subject to ∀e ∈ E,
∑

P:P	e,P∈PD

x P ≤ ce, (2)

which consists of |E | inequalities and |PD| non-negative
variables {xP} indexed by P ∈ PD, where each x P represents
the communication rate assigned to a delay-respecting path P .
The objective (1) is the sum of the throughput sent over the
|PD| paths, and (2) imposes that the sum rate of all paths using
an edge e must not exceed ce. However, since |PD| grows

exponentially with respect to |G| �= |V | + |E |, the above LP
characterization is not easily computable for large networks.
To address the above concern of complexity, [45] proposes an
equivalent alternative LP that can compute the optimal value
of (1)–(2) in polynomial time of |G|. Since the results in [45]
were stated without detailed proofs, we provide the details of
[45] and the corresponding proofs in Appendix A.

By converting (1)–(2) to its dual problem, R∗
route can also

be computed by the following cut-based LP problem.

min{ye≥0:e∈E}
∑

e∈E

yece (3)

subject to ∀P ∈ PD,
∑

e:e∈P

ye ≥ 1. (4)

3It is sometimes called the hop-count-constrained max-flow problem.

WANG AND CHEN: SENDING PERISHABLE INFORMATION 255

Fig. 1. A simple example with D = 3 that demonstrates the key differences of the delay-constrained setting. (a) The network topology. (b) The first pair of
EDPs. (c) The second pair of EDPs. (d) The corresponding RLNC solution.

One way to interpret this dual problem is to treat the variable
ye as the “cut strength” of a given edge e such that the
cumulative cut strength experienced by each path is no less
than 1.

Note that if we replace PD by P∞, the latter of which con-
tains all paths regardless of their lengths, then one can prove,
by the standard proof techniques used in the max-flow/min-
cut theorem, that for any given network instance, one of the
minimizing {y∗

e } of (3)–(4) satisfies y∗
e ∈ {0, 1},∀e ∈ E . As a

result, we can impose the integrality constraint ye ∈ {0, 1} to
the LP problem (3)–(4) without changing the objective value.
Solving (3)–(4) with the integrality constraint is equivalent
to finding the minimum edge cut (those e with y∗

e = 1).
The equivalence between (1)–(2) and (3)–(4) with integrality
constraints is the well-known max-flow/min-cut theorem.

However, with PD for some finite D, the minimizing
{y∗

e } can sometimes be fractional. Therefore, the delay-
constrained R∗

route is now characterized by some kind of soft
min-cut, a unique feature of the delay-constrained setting.
Examples of y∗

e being fractional can be found in the end of
Section IV-B and in [24].

Also observe that there are |PD| inequalities in (4), which
grows exponentially with respect to |G|. In Appendix A, we
have also derived a new polynomial-time version of the dual
problem (3)–(4).

C. A Simple Comparison to RLNC

To illustrate the change of landscape when focusing on a
delay-constrained setting, we provide a simple example for
which the RLNC scheme [18] is no longer throughput optimal4

when there is a hard delay constraint.
Consider the network in Fig. 1(a). The min-cut value

between s and d is 2, which implies the existence of (at least)
one pair of edge-disjoint paths (EDPs). There are actually two
possible pairs of EDPs, see Figs. 1(b) and 1(c), respectively.

Assume each edge incurs a unit delay. If there is no delay
constraint, we can sustain throughput 2 by routing the packets
either through Fig. 1(b) or through Fig. 1(c).

However, with delay constraint D = 3, only the two paths
in Fig. 1(c) can be used to transmit information at rate 2.
For comparison, one path in Fig. 1(b) has 4 hops, and the
information transmitted along that path will expire before
arriving at d .

We now apply RLNC to Fig. 1(a) while assuming a suffi-
ciently large finite field GF(q) is used, say GF(3). At each

4Since RLNC is a randomized solution, a more rigorous question to ask
is how large is the probability that RLNC achieves the optimal rate. We use
the statement “RLNC is suboptimal” in the sense that Prob(RLNC achieves
optimal rate) is quite small when a large finite field is used.

time t , we send two information packets Xt ∈ GF(q) and
Yt ∈ GF(q) along the edges (s, v2) and (s, v1), respectively.
Due to the unit-delay incurred in edge (s, v1), at time t we can
send Yt−1 along (v1, v2). Node v2 can now perform RLNC.
We can assume, without loss of generality, that at time t node
v2 sends M(t)

v2d = Xt−1+Yt−2 and M(t)
v2v3 = Xt−1+2Yt−2 along

(v2, d) and (v2, v3), respectively. Following similar derivation,
by the end of time t , destination d should have received
M(t)

v3d = Xt−2 + 2Yt−3 and M(t)
v2d = Xt−1 + Yt−2.

Since s starts to send Yt and Xt at time t for all t ≥ 1, we
set Xt = Yt = 0 for all t ≤ 0. From the above derivation, by
the end of time 3, d has received M(3)

v3d = X1 + 2Y0 = X1

and M(3)
v2d = X2 + Y1. Recall that D = 3. Therefore, d is

interested in decoding both X1 and Y1, which were sent by s
at the “beginning” of time 1 (3 slots earlier). One can verify
that knowing M(3)

v3d = X1 and M(3)
v2d = X2 +Y1 is not sufficient

for d to decode the desired X1 and Y1 since the value of Y1

in M(3)
v2d is now “corrupted” by the future packet X2 that has

not been decoded yet. Actually, even when time progresses, d
is not able to decode both Xt and Yt by the end of time slot
(t + D − 1) = t + 2 for any t > 1. One can prove that the
RLNC throughput of this example is 1, which is strictly less
than the routing capacity 2.

The above example shows that even the most basic
result (e.g., RLNC being throughput optimal) in the delay-
unconstrained setting may not hold once we consider delay
constraints. This work aims to re-examine several fundamental
single-unicast capacity problems while taking into account
hard delay constraints.

III. PROBLEM FORMULATION

We follow the network model introduced in Section II-B.
Namely, the network is modeled as a directed acyclic graph
G = (V , E) with each edge e ∈ E having capacity ce

and incurring unit delay. The amount of data is measured
in packets, where each packet is assumed to be chosen from
[0, q − 1], or equivalently each packet has log2(q) bits. We
assume that q is a sufficiently large fixed number and in
the linear network coding literature q is sometimes assumed
to be a power of a prime. We can now define the delay-
constrained capacity of transmitting from a single source s
to a destination d .

Definition 1: Given any network G = (V , E) and any
scalar R > 0, define the message symbol set X and the edge
symbol set Me by

X �=
{

1, · · · ,
⌈

2log2(q)R
⌉}

Me
�=
{

1, · · · ,
⌊

2log2(q)ce
⌋}

.

256 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 1, JANUARY 2017

We say the delay-constrained rate R is feasible,5 if for any
given time span T , we have (i) T message symbols Xt ∈ X ,
∀t ∈ [1, T]; (ii) (T + D − 1) · |E | edge-encoding functions:
For all t ∈ [1, T + D − 1] and e ∈ E , if tail(e) = s then6

M(t)
e = fe,t ({Xτ : τ ∈ [1, t]}) ∈ Me, (5)

and if tail(e)
= s then

M(t)
e = fe,t ({M(τ)

ẽ : ẽ ∈ In(tail(e)), τ ∈ [1, t − 1]}) ∈ Me;
(6)

and (iii) T decoding functions: ∀t ∈ [1, T],
X̂t = fDEC,t ({M(τ)

e : e ∈ In(d), τ ∈ [1, t + D − 1]}) ∈ X ;
(7)

such that Xt = X̂t for all t ∈ [1, T] and for all possible7

realization of Xt = xt ∈ X .
Definition 2: The delay-constrained capacity R∗

NC is the
supremum of all feasible R.

It is worth emphasizing that by the above definitions R∗
NC is

a function of the packet size q . Since routing can be considered
as a special example of network coding, one can easily prove
the following inequality

R∗
route ≤ lim

q→∞ R∗
NC. (8)

where R∗
route is defined in (1). On the other hand, it is possible

to have R∗
NC < R∗

route for some fixed small q . The reason is
as follows. The definition of R∗

route in (1)–(2) is the maximum
routing capacity in a splittable flow setting since the values
{xP : P ∈ PD} are allowed to be fractional. On the other
hand, for finite q , the definition of R∗

NC can be viewed as the
maximum NC capacity in an unsplittable setting where the
size of q controls the granularity of information splitting. Since
splitting the flows can increase the achievable throughput, we
may have R∗

NC < R∗
route when q is small. On the other hand,

when q → ∞, the R∗
NC now corresponds to a splittable setting

and we thus have (8).

IV. MAIN RESULTS

In this section, we state our main results: (i) An equivalent
time-expanded multiple unicast formulation; (ii) The NC gain
over routing; and (iii) A new delay-constrained capacity upper
bound.

5The network model considered herein is noiseless. For noisy networks, the
traditional (ε, n) terminology may be needed to formally define the delay-
constrained capacity.

6Here we use the convention that Xt = 0 for t ∈ [T + 1, T + D − 1].
7The feasibility definition in this work allows the set of encoders and

decoders (5)–(7) to be chosen differently when different T values are con-
sidered. In a broad sense, the role of T is similar to the traditional definition
of block-length n in information theory. One alternative way of defining
feasibility is to fix a set of infinitely many encoders and decoders, such that
under these fixed encoder/decoder choices, any T message symbols can be
extracted perfectly within a delay constraint D. That is, the same (infinite)
set of encoders and decoders have to support T sequential messages for
arbitrary T . We call the latter setting an infinite-horizon setting. It is obvious
that any feasible R under an infinite-horizon setting is is also feasible under
Definition 1. An interesting open question is whether these two definitions
are indeed equivalent.

A. An Equivalent Multiple-Unicast Formulation

For any finite network G = (V , E), the time-expanded
graph over a time horizon [1, τ] can be defined as follows.

Definition 3 ([30, Sec. IV]): For any fixed integer τ ≥ 1
and any fixed network G = (V , E), the time-expanded graph
G

[τ] = (V
[τ]

, E
[τ]

) contains τ · |V | nodes, each node being
labeled by a pair [v, t] for all v ∈ V and t ∈ [1, τ]. The edge
set E

[τ]
can be described/constructed as follows.

1) For each e = (u, v) ∈ E with the corresponding capacity
being ce and for each t ∈ [1, τ − 1], there exists an
edge e[t] ∈ E

[τ]
that connects [u, t] and [v, t + 1]. The

capacity of the edge e[t] is set to ce.
2) For each node u ∈ V and t ∈ [1, τ − 1], there exists an

edge e[t] ∈ E
[τ]

that connects [u, t] and [u, t + 1]. The
capacity of the edge e[t] is set to

t ·
⎛

⎝
∑

ẽ∈In(u)

cẽ

⎞

⎠

if u
= s; and is set to t · logq(�q R
) if u = s. The
capacity of e[t] is to ensure that node [u, t] can pass all
the “external/incoming” information it has accumulated
in the past (i.e., during time [1, t]) directly to [u, t + 1].

With the above definition, we present an equivalent formu-
lation of the delay-constrained capacity.

Proposition 1: A delay-constrained rate R is feasible if and
only if for any T , the time-expanded graph G

[T +D]
can sustain

simultaneously T multiple unicast flows, where each unicast
flow is indexed by t ∈ [1, T], is from node [s, t] to node
[d, t + D], and has zero-error rate R.

Proof: The only if direction “⇒”: If delay-constrained rate
R is feasible in G, then for any given T we can design a
feasible multiple-unicast scheme in G

[T +D]
in the following

way. For any t value, we let the [s, t]-to-[s, t + 1] edge
carry all the symbols {Xτ : τ ∈ [1, t]}, and let the [u, t]-
to-[u, t + 1] edge, u
= s, carry all the symbols {M(τ)

ẽ : ẽ ∈
In(u), τ ∈ [1, t − 1]}. In this way, the [u, t]-to-[v, t + 1] edge
can compute and transmit M(t)

(u,v) described in (5) and (6), and

the destination [d, t+D] can compute X̂t described in (7). The
multiple-unicast zero-error rate R is thus feasible in G

[T +D]
.

The if direction “⇐”: Suppose for any given T we can
design a multiple-unicast scheme in G

[T +D]
with zero-error

rate R. For all (s, u) ∈ E , we then choose the M(t)
(s,u) message

in G to be the message in G
[T +D]

that is sent from [s, t]-to-
[u, t +1]. Since for any given t , the values of {Xτ : τ ∈ [1, t]}
determine uniquely the message along the [s, t]-to-[u, t + 1],
the chosen M(t)

(s,u) must be of the form of (5).
For any t and any (v, u2) ∈ E satisfying v
= s, we choose

the M(t)
(v,u2)

message in G to be the message in G
[T +D]

that
is sent from [v, t]-to-[u2, t + 1]. Since the edge set

{([u1, τ], [v, τ + 1]) : ∀τ ∈ [1, t − 1], (u1, v) ∈ E}
is a cut in G

[T +D]
separating the sources {[s, τ] : τ ∈ [1, T]}

and the node [v, t], the chosen M(t)
(v,u2)

must be of the form
of (6).

WANG AND CHEN: SENDING PERISHABLE INFORMATION 257

Fig. 2. A simple network with NC gain
�= R∗

NC
R∗

route
= 4

3 , where the edge

capacity ce = 1 for all edges e.

For any t , we choose the decoder function fDEC,t in G to be

the decoder function in G
[T +D]

used by destination [d, t + D].
Since the edge set

{([u, τ], [d, τ + 1]) : ∀τ ∈ [1, t + D − 1], (u, d) ∈ E}
is a cut in G

[T +D]
separating the sources {[s, τ] : τ ∈ [1, T]}

from destination [d, t + D], the chosen decoder fDEC,t must
be of the form of (7). Since the chosen encoders/decoders
can support T coexisting unicast traffic in G

[T +D]
with rate

R, the network coding solution in G can support delay-
constrained rate R. The proof is thus complete.

The above connection between the delay-constrained capac-
ity with the multiple-unicast capacity in a time-expanded
network will later be used to derive a new upper bound
on delay-constrained capacity. Also, being equivalent to the
multiple-unicast capacity is the first hint that NC may strictly
outperform routing (the store-and-forward policy) since it
is known that NC can strictly enhance the multiple-unicast
capacity.8

B. A Simple Network Example With NC gain = 4
3

Without a hard delay constraint (D = ∞), one fundamental
result of NC is

R∗
route ≥ R∗

NC for all q; and R∗
route = lim

q→∞ R∗
NC (9)

for any single-unicast flow from s to d . The following example
shows that (9) no longer holds for delay-constrained traffic
(i.e., when D is finite and small).

Consider the network in Fig. 2 with all edges having ce = 1
and the delay constraint D = 6. For ease of exposition,9

we assume q = 3 and all the operations are based on
finite field GF(3). We will show that such a network has
R∗

NC = 2 > R∗
route = 1.5.

We first prove that R∗
NC = 2 by explicit NC construction.

In Fig. 2, two packets Xt and Yt are sent by s at time t and
we assume Xt = Yt = 0 for all t ≤ 0. Since each edge incurs
unit delay, we have M(t)

v1v2 = Xt−1 and M(t)
v6v2 = Yt−2 along

edges (v1, v2) and (v6, v2), respectively. We then let v2 mix
the two incoming packets and send M(t)

v2v3 = Xt−2 + Yt−3
along (v2, v3). By accounting for the delay incurred along the
paths, we have M(t)

v3v4 = Xt−3 + Yt−4, M(t)
v10v4 = Xt−3, and

8In the multiple-unicast setting, NC is known to be beneficial for a general
network. However, since the time-expanded graph is a special class of
network, whether NC is still beneficial for multiple-unicasting in a time-
expanded graph was not clear until the new results in Section IV-B.

9Our construction holds for any q for which there exists a ring of order q.

M(t)
v8d = Xt−5 + Yt−6. Fig. 2 contains the summary of our NC

choices thus far except for the M(t)
v4d message. The remaining

question to be answered is what is the right NC choice at
node v4?

If we perform RLNC at v4, then v4 will simply mix the two
incoming packets together and send

RLNC: M(t)
v4d = M(t−1)

v3v4 + M(t−1)
v10v4 = 2Xt−4 + Yt−5. (10)

Recall that D = 6. Therefore, in the end of time 6, node d
would like to decode both X1 and Y1. One can verify that in
the end of time 6, node d receives M(6)

v8d = X1 + Y0 = X1

and M(6)
v4d = 2X2 + Y1 since we assume Xt = Yt = 0 for all

t ≤ 0. Similar to the example discussed in Section II-C, d
cannot decode Y1 since Y1 is corrupted by X2, which has not
been decoded yet.

The same dilemma happens again when t = 7. In the end
of time 7, node d would like to decode both X2 and Y2 and
has already received M(7)

v8d = X2 + Y1 and M(7)
v4d = 2X3 + Y2.

Then d can use M(6)
v4d = 2X2 + Y1 and M(7)

v8d = X2 + Y1 to
decode both X2 and Y1. However, Y2 still cannot be decided
since M(7)

v4d = 2X3 + Y2 is corrupted by X3, which has not
been decoded yet.

On the other hand, we can perform the following optimal
NC instead of the simple addition in (10). That is, instead of
“adding” the two incoming packets, we now “subtract” M(t−1)

v10v4

from M(t−1)
v3v4 :

Optimal: M(t)
v4d = M(t−1)

v3v4 − M(t−1)
v10v4 = Yt−5. (11)

Destination d can now decode X1 and Y1 from M(6)
v8d = X1 +

Y0 = X1 and M(6)
v4d = Y1 within the delay constraint. An

astute reader may notice that in the end of time 7, d has
received M(7)

v8d = X2 + Y1 and M(7)
v4d = Y2, where X2 in M(7)

v8d
is “corrupted” by Y1. Nonetheless, d can remove Y1 in the end
of time 7 since d has decoded Y1 in the end of time 6. The
above argument can be used to prove that d can decode Xt and
Yt (injected in the beginning of time t) by the end of time t+5,
∀t ≥ 1. The D = 6 constraint is met. Since min-cut(s, d) = 2
in Fig. 2, we have the delay-constrained NC capacity being
R∗

NC = 2 packets per slot.
We then apply (3)–(4) to Fig. 2 and derive R∗

route = 1.5.
The corresponding minimizing y∗

e are: y∗
sv1

= y∗
v2v3

= y∗
v4d =

0.5 and all other y∗
e = 0. The optimal routing solution

in (1)–(2) will assign rate 0.5 to three different paths:
sv5v6v2v3v4d , sv1v2v3v7v8d , and sv1v9v10v4d . This example
shows that NC strictly outperforms optimal routing even for
the single-unicast setting!

C. How Large Can the NC Gain Be?

In the previous example, the NC throughput gain over rout-
ing is

R∗
NC

R∗
route

= 2
1.5 . An interesting open question is what is the

largest NC gain in a single-unicast delay-constrained setting?
Specifically, we are interested in quantifying

sup
G∈Gs-u,D∈[1,∞)

gains-u(G, D) (12)

258 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 1, JANUARY 2017

where Gs-u contains all possible network instances10 with

single-unicast (s-u) traffic, and gains-u(G, D)
�= R∗

NC
R∗

route
is

the single-unicast NC gain over routing in G with delay
constraint D.

For comparison, one can easily prove that the delay-
constrained NC gain can be unbounded for the single-
multicast (s-m) networks and for the multiple-unicast (m-u)
networks, denoted by Gs-m and Gm-u, respectively. Namely,

sup
G∈Gs-m,∀D

gains-m(G, D) ≥ sup
G∈Gs-m

gains-m(G, 2) = ∞
(13)

sup
G∈Gm-u,∀D

gainm-u(G, D) ≥ sup
G∈Gm-u

gainm-u(G, 3) = ∞
(14)

where the equality in (13) follows from the combination
network construction in [34] and the equality in (14) follows
from the extended butterfly construction in [17]. For the

multiple unicast scenarios, we define gainm-u(G, D)
�= R∗

NC
R∗

route
where we slightly abuse the notation and use R∗

NC and R∗
route to

describe the perfectly fair (or equivalently equal-rate) capacity
of all the coexisting flows. Also see the feasible throughput
definition in [15] and the concept of symmetric capacity in
[23].

Nonetheless, the proofs of (13) and (14) cannot be applied to
the single-unicast setting since they rely heavily on the fact that
there are multiple destinations so that different destinations
can either capitalize the diversity gain (for single multicast) or
smartly cancel the interference of the other coexisting flows
(for multiple unicast). These types of gains do not exist when
there is only one destination11 in the network.

Our best understanding of (12) is summarized as follows.
Proposition 2: For any 0 < ε < 1, there exists a network

G ∈ Gs-u and delay constraint D satisfying

R∗
NC

R∗
route

≥ 2 − ε.

Proposition 2 shows that for delay-constrained unicast traf-
fic, NC gain over routing can be arbitrarily close to 2. A proof
of Proposition 2 is provided in Appendix B.

In a broad sense, R∗
route characterizes the maximum number

of EDPs with length ≤D hops, along which we can “squeeze
through” R∗

route packets before expiration. Therefore, at least
heuristically, any additional packets sent over the network
(other than the original R∗

route packets) are either dependent
or experiencing too long delay. Proposition 2 implies a rather
counter-intuitive result:

With carefully-designed NC, those additional “use-
less” packets (either dependent or experiencing too

10More precisely, a network instance should contain a 5-tuple
(G, {ce}, s, d, q) where G is the network topology, {ce} is the edge capacity,
s and d are the source/destination nodes, and q is the alphabet size under
consideration. For notational simplicity, we use “G ∈ Gs-u” as shorthand for
the more precise expression “(G, {ce}, s, d, q) ∈ Gs-u.”

11In the single-unicast setting, one needs to consider a different type of
interference. That is, optimal NC needs to remove the corruption caused
by future, not-yet decoded packets within the same flow. See the detailed
discussion of the suboptimal RLNC choice (10) versus the optimal choice (11).
Such a new notion of interference is strongly coupled with the time-axis and
calls for the development of new analysis tools.

long delay) can sometimes help us double the num-
ber of independent packets that can be decoded by
d within the delay constraint.

In terms of quantifying the largest possible NC gain in (12),
Proposition 2 proves that

2 ≤ sup
G∈Gs-u,D∈[1,∞)

gains-u(G, D). (15)

In a recent work [19, Th. 1], it has been shown that the NC
gain over routing satisfies that for any fixed D

sup
G∈Gs-u

gains-u(G, D) ≤ 8 loge(D + 1). (16)

The gap between the lower bound (15) and the upper
bound (16) is still substantial. Two observations can be made
regarding the above upper and lower bound pair. Firstly,
(16) goes to infinity when D → ∞. Therefore (16) may not
be suitable to directly upper bound (12).

On the other hand, (16) suggests implicitly that when
searching for network instances of large gains-u(G, D), it is
critical to consider large delay requirement D and even larger
network diameter12 dia(G). This suggestion is consistent
with our findings, for which our construction of (G, D) with
gains-u(G, D) → 2 indeed has large D and large dia(G).
Since the traditional ways of constructing network instances
with large single-multicast and large multiple-unicast gains
[17], [34] all have very short dia(G), it is less likely that those
construction methods can lead to network instances with large
gains-u(G, D).

D. Upper Bounding the NC Capacity

The delay-constrained R∗
route naturally serves as a lower

bound on R∗
NC, assuming the underlying alphabet size q is

sufficiently large. See (8). We now present a new upper bound
on R∗

NC.
Proposition 3: The following integer programming (IP)

problem computes an upper bound UBNC on R∗
NC for any

alphabet size q:

min{ye:e∈E}
∑

e∈E

yece (17)

subject to ∀P ∈ PD,
∑

e:e∈P

ye ≥ 1. (18)

∀e ∈ E, ye ∈ {0, 1}. (19)
Proof: Consider any delay-constrained rate R that is

feasible. By Proposition 1, for any T value, the time expanded

graph G
[T +D]

can sustain T simultaneous unicast flows from
[s, t] to [d, t + D] for all t ∈ [1, T] with individual rate R.

For any given IP solution {ye} satisfying (18)–(19), we
construct an edge set in the time expanded graph G

[T +D]
by

Ecut
�= {([u, τ], [v, τ + 1]) : ∀(u, v) s.t. y(u,v) = 1,

∀τ ∈ [1, T + D − 1]}. (20)

12One can prove that for any fixed G , if D ≥ dia(G), then we always have
gains-u(G, D) = 1. The reason is that dia(G) is an upper bound of all paths
from s to d. Therefore if D ≥ dia(G) then any path will meet the delay
constraint, which is as if D = ∞, and the single-unicast network coding gain
for D = ∞ is known to be 1. This observation shows that a combination of
large D but small dia(G) will not yield large gains-u(G, D).

WANG AND CHEN: SENDING PERISHABLE INFORMATION 259

Fig. 3. Illustration of the upper bounds in Propositions 3 and 4. (a) One
network example with D = 3. (b) Another network example with D = 6. All
edges have ce = 1.

By interpreting (18) in the time expanded graph G
[T +D]

,
one can verify that the above choice of Ecut is an edge
cut separating [s, t] from {[d, τ + D] : ∀τ ∈ [1, t]} for all
t ∈ [1, T]. By the generalized network-sharing bound in [21],
we thus have

T · R ≤
∑

e∈Ecut

ce (21)

= (T + D − 1)
∑

e

yece (22)

where e represents an edge in the time expanded graph G
[T +D]

and ce is the corresponding edge capacity; (21) follows from
that the sum rate of the T coexisting flows is no larger than
the generalized cut set value [21]; and (22) follows from the
definition of Ecut in (20).

Ineq. (22) implies R ≤ T +D−1
T

(∑
e yece

)
for all T .

By letting T → ∞ and by finding an IP solution {ye} that
minimizes (17), the proof is complete.

Comparing Proposition 3 with (3)–(4), we see that adding
the integer condition (19) to the minimization problem turns
R∗

route, a lower bound on R∗
NC, to an upper bound UBNC on

R∗
NC. Proposition 3 also implies that for any network instance,

if the minimizing y∗
e of (3)–(4) is integral, then the lower and

upper bounds match and we have fully characterized the delay-
constrained unicast NC capacity: R∗

route = R∗
NC = UBNC.

On the other hand, for any network instance in which R∗
NC >

R∗
route, e.g., Fig. 2, the y∗

e of (3)–(4) must be fractional, which
is consistent with our observation in the end of Section IV-B.

To illustrate Proposition 3, we apply the upper bound to
three network instances: Fig. 3(a), Fig. 2, and Fig. 3(b),
respectively. We first focus on the IP problem generated by
applying Proposition 3 to Fig. 3(a). Simple counting arguments
can be used to show that the following assignment of y∗

e is
an optimal solution of the corresponding IP problem: y∗

e = 1
if e ∈ {(s, v2), (v2, d)} and y∗

e = 0 for all other e. As a
result, we have R∗

NC ≤ 1 + 1 = 2 for Fig. 3(a). The upper
bound in Proposition 3 thus shows that the high-capacity edges
c(s,v1) = c(v1,v2) = c(v2,v3) = c(v3,d) = 3 do not increase
the delay-constrained capacity regardless how the network

code is designed. Also note that the edge set {(s, v2), (v2, d)}
does not separate s from d since s can still reach d through
sv1v2v3d . On the other hand, the edge set {(s, v2), (v2, d)}
“cuts” all paths of length ≤ D = 3.

We now apply Proposition 3 to Fig. 2 and generate the cor-
responding IP problem. Some simple observation can be used
to show that for this particular IP problem, the minimizing
{y∗

e } is not unique. One minimizing solution is y∗
e = 1 if

e ∈ {(v4, d), (v8, d)} and y∗
e = 0 for all other e. As a result,

we have R∗
NC ≤ 1+1 = 2 for Fig. 2. Proposition 3 is tight for

Fig. 2 since Section IV-B proves that NC can indeed achieve
the delay-constrained capacity 2 packets per time slot.

Unfortunately, Proposition 3 can be loose13 in some scenar-
ios. For example, consider the network in Fig. 3(b). Comparing
Figs. 2 and 3(b), the only difference is that the path v1v9v10v4
in Fig. 2 is now lengthened to v1v9v11v10v4. We apply
Proposition 3 to Fig. 3(b) and generate the corresponding IP
problem. One minimizing solution of the IP problem is y∗

e = 1
if e ∈ {(v4, d), (v8, d)} and y∗

e = 0 for all other e. As a result,
we have R∗

NC ≤ 1 + 1 = 2 for Fig. 3(b). However, as will be
shown later, the network in Fig. 3(b) has R∗

NC = R∗
route = 1.5.

Namely, regardless how the network code is designed, the best
achievable R∗

NC is no larger than R∗
route. The upper bound in

Proposition 3 fails to provide a tight bound and is loose for
the network in Fig. 3(b).

In the following, we provide an improved upper bound
by directly describing the upper bound in the time-expanded
network.

Proposition 4: For any fixed integer L > 0, we define a
binary mapping h : E × [0, L − 1] �→ {0, 1} where E is the
collection of all edges in G. Once the mapping h is fixed, we
define the following edge set

Eh
�= {([u, t], [v, t + 1]) : ∀e = (u, v) ∈ E,

∀t ∈ [1, L + D − 1] s.t. h(e, mod (t, L)) = 1} (23)

in the time expanded graph G
[L+D]

.
If for any t ∈ [1, L] the edge set Eh is always an edge cut

separating [s, t] from [d, t + D], then we have a new upper
bound

R∗
NC ≤

∑

e

(∑L−1
l=0 h(e, l)

L

)
ce. (24)

Remark: An upper bound similar to Proposition 4 is dis-
covered independently in [19, Th. 3].

The following corollary shows that Proposition 4 is a strict
generalization of Proposition 3.

Corollary 1: The upper bound in Proposition 4 with L = 1
is equivalent to the upper bound in Proposition 3.

The proofs of Proposition 4 and Corollary 1 are relegated
to Appendix G.

We now use Proposition 4 to prove that R∗
NC = R∗

route = 1.5
for the network in Fig. 3(b). This shows that Proposition 4
can be strictly tighter than Proposition 3. It also shows that
when the path v1v9v10v4 in Fig. 2 is getting longer, the side
information carried through that path is getting older and thus

13An example in [19] shows that the gap between the upper bound in
Proposition 3 and the lower bound R∗

route can approach infinity.

260 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 1, JANUARY 2017

can no longer be used to remove the interference along the
(v4, d) edge. The R∗

NC capacity will thus reduce from 2 to 1.5
and the NC gain in Fig. 2 disappears.

To apply Proposition 4 to Fig. 3(b), we choose L = 2
and set

h(e, 0) =
{

1 if e ∈ {(s, v1), (v4, d)}
0 for all other e

(25)

h(e, 1) =
{

1 if e = (v2, v3)

0 for all other e.
(26)

In Appendix H, we have proven that for the network in
Fig. 3(b) with the binary mapping h(e, t) given in (25)–(26),
the edge set Eh is always an edge cut in the time expanded
graph G

[L+D]
that separates [s, t] from [d, t + D] for all

t ∈ [1, L]. As a result, by Proposition 4 we have

R∗
NC ≤

∑

e∈{(s,v1),(v4,d),(v2,v3)}

1

2
· ce = 1.5.

V. VARIOUS OTHER RESULTS ON

DELAY-CONSTRAINED CAPACITY

This section contains various other results on delay-
constrained capacity, including the unboundedness of the
penalty of using RLNC and an example showing that
Edmonds’ tree packing theorem no longer holds for the delay-
constrained setting. In the end of this section, we also discuss
how our results can be applied to cyclic networks verbatim.

A. The Penalty of Using RLNC Can Be Unbounded

In Section II-C, we have shown that even when considering
only a single unicast flow, the best RLNC scheme may have
strictly worse performance than R∗

route when the traffic is
delay-constrained. Similar to our investigation in Section IV-C
where we studied the largest possible NC gain

R∗
NC

R∗
route

, in
this section we study the largest possible penalty of using
RLNC when compared to the routing solution. That is, we are
interested in quantifying the following RLNC penalty:

Largest RLNC Penalty
�= sup

G∈Gs-u,D∈[1,∞)

R∗
route

R∗
RLNC

. (27)

By the example in Section II-C, we know that the largest
RLNC penalty is no less than 2.

To quantify the RLNC penalty in (27), we first formally
define the class of RLNC being considered. Specifically,
we focus exclusively on the unit-edge-capacity network,
i.e., ce = 1 for all e ∈ E . All the vectors in our discussion,
unless specified otherwise, are column vectors.

For any given integer rate R, the RLNC scheme is
defined as follows. There are R message symbols in each
time slot, and they are defined as a vector �X(t) =
(X1(t), X2(t), · · · , X R(t))T ∈ (GF(q))R where GF(q) is the
finite field of order q and we assume q is a power of a prime.
The source s is associated with |Out(s)| precoding vectors
�βs,e,∀e ∈ Out(s) and each is of dimension R. Each intermedi-
ate node v ∈ V \{s, d} is associated with |In(v)|·|Out(v)| local

Fig. 4. A straightforward generalization of Fig. 1(a) with D = 4. This
network has R∗

NC = R∗
route = 3 and R∗

RLNC = 2. (a) The topology. (b) The
optimal routes

coding coefficients βe1,e2 ∈ GF(q),∀e1 ∈ In(v), e2 ∈ Out(v).
At every time slot t , source s sends the coded symbols

M(t)
e = �βT

s,e
�X(t) (28)

along all its outgoing edges e ∈ Out(s); and any intermediate
node v ∈ V \{s, d} sends the coded symbols

M(t)
e =

∑

e1∈In(v)

βe1,e M(t−1)
e1

(29)

along all its outgoing edges e ∈ Out(v).
During the design phase, the RLNC scheme chooses the

precoding vectors �βs,e,∀e ∈ Out(s) and the local coding
coefficients βe1,e2,∀e1 ∈ In(v), e2 ∈ Out(v), v ∈ V \{s, d}
independently and uniformly randomly from (GF(q))R and
from GF(q), respectively. We assume that after the design
phase, both �βs,e and βe1,e2 are made known to all network
nodes, including s and d . With that knowledge, the network
can perform RLNC based on (28) and (29). We assume that
the choices of �βs,e and βe1,e2 are fixed after the initial design
phase and they do not change over time t .

Definition 4: We say RLNC can support an integer delay-
constrained rate R if the probability that the random design
phase generates a network code such that destination d can
decode �X(t) by the end of time slot t + D − 1, ∀t ∈
[1,∞), approaches 1 when the underlying finite field size q
is sufficiently large. The largest supportable rate of RLNC is
denoted by R∗

RLNC.
We now have the following result.
Proposition 5: The penalty of using RLNC can be arbitrar-

ily large. That is,

sup
G∈Gs-u,D∈[1,∞)

R∗
route

R∗
RLNC

= ∞.

The detailed proof of Proposition 5 is relegated to
Appendix I, which will be based on explicit network con-
struction. The very first idea of constructing a network with
large penalty (27) is to generalize Fig. 1(a) in a way similar to
Fig. 4(a). Specifically, there are 3 paths in Fig. 4(b) with length
exactly equal to the delay requirement D = 4. Therefore, the
optimal R∗

route = 3. On the other hand, since all 3 paths share a
common node v2, in a similar way as discussed in Section II-C,
the packets along the sv4v5v2d and the sv1v2v3d paths will be
contaminated by some sort of future packets due to random
packet mixing at node v2. Note that the packets along the
sv2v6v7d are contaminated by the past packets, which can be
automatically canceled by the packets decoded in the previous
time slots.

WANG AND CHEN: SENDING PERISHABLE INFORMATION 261

Fig. 5. An illustration that Edmonds’ tree packing theorem does not hold
for delay-constrained traffic. (a) A network instance with D = 2 and all
ce = 1. (b) One possible tree packing solution.

As a result, one might expect that Fig. 4(a) has R∗
RLNC =

1 since only the packets entering d through the (v7, d)
edge will be free from the corruption of the future packets.
In Appendix J, we prove that Fig. 4(a) actually has R∗

RLNC = 2.
As a result the RLNC penalty of Fig. 4(a) is 3

2 , which is even
smaller than the example in Fig. 1(a) where the RLNC penalty
is 2. The reason R∗

RLNC = 2 in Fig. 4(a) is because destination
d can carefully remove some of the “future interference” by
intelligently combining the packets received from the three
edges (v2, d), (v3, d), and (v7, d). The main challenge of
proving Proposition 5 is to construct a network and prove that
even with an optimal decoder at d that can remove the “future
interferences” by intelligently combining different received
packets, the resulting R∗

RLNC is still arbitrarily away from the
routing rate R∗

route. A simple generalization of Fig. 1(a) like
the one described in Fig. 4(a) will not work.

In Appendix I, we show that for any m ≥ 2, one can design
a network for which R∗

route = m and R∗
RLNC = 1 even with

the use of an optimal decoder at destination d .

B. The 1-to-All Scenario

In this section, we consider the 1-to-all broadcast scenario.
Namely, source s would like to send the same information to
all destinations V \s at rate R. The tree-packing theorem in [6]
and [43] proves that the largest possible information-theoretic
capacity R∗ can be achieved by pure routing without the need
of NC. Namely, R∗

NC = R∗
route for the 1-to-all scenario.

In this section, we will prove by an example that such an
elegant result does not hold when the information is delay-
constrained.

Proposition 6: Denote all the 1-to-all network scenarios by
G1-all. We have

sup
G∈G1-all,∀D

R∗
NC

R∗
route

= ∞.

Proof: We first describe an example network with
R∗

NC
R∗

route
=

2
1.5 . Since our construction is based on simple modification of
the

(3
2

)
combination network construction in [34], by the same

analysis on the most general
(n

m

)
combination networks in [34]

one can complete the proof.
Consider the network in Fig. 5(a), for which the edge

capacity ce = 1,∀e ∈ E and there are two parallel
edges connecting s and v0. One can check that the min-
cut values satisfy min-cut(s, vi) = 2 for all vi ∈ V \s.
Edmonds’ tree packing results show that such a network
can support 2 edge-disjoint spanning trees, see Fig. 5(b).

Therefore when there is no delay constraint (D = ∞) we have
R∗

NC = R∗
route = 2.

We now impose a delay requirement D = 2. It is clear that
by sending X (t), Y (t), and X (t)+Y (t) at time t along (s, v1),
(s, v2), and (s, v3), respectively, all three nodes v4 to v6 can
decode both X (t) and Y (t) by the end of time t + 1, provided
v1 to v3 simply forwarding what they have received in the
previous time slot to all its downstream neighbors. Source s
can send both X (t) and Y (t) directly to v0. Node v0 can send
different linear combinations of X (t) and Y (t) to nodes v1 to
v3 so that v1 to v3 can also receive X (t) and Y (t) in time.
Since all 7 nodes v0 to v6 can be satisfied simultaneously, we
have R∗

NC = 2.
To prove that R∗

route = 1.5, we consider how to use
routing to satisfy nodes v4 to v6 and temporarily ignore the
needs of v1 to v3 and v0. We observe that when satisfying
nodes v4 to v6, the routing paths must not use any of
the five edges {(s, v0)×2, (v0, v1), (v0, v2), (v0, v3)}. Other-
wise, the paths will have length ≥ 3, which exceeds the
delay requirement D = 2. However, if we remove edges
{(s, v0)×2, (v0, v1), (v0, v2), (v0, v3)}, then the resulting net-
work is a

(3
2

)
combination network defined in [34]. The results

in [34] show that the largest possible routing rate that satisfies
v4 to v6 simultaneously is 1.5. By revising the scheme in [34]
slightly, we can also satisfy nodes v1 to v3 and v0 with rate
1.5. As a result, Fig. 5(a) has R∗

route = 1.5.

To prove that
R∗

NC
R∗

route
can be unbounded, we start from any

arbitrarily given
(n

m

)
combination network described in [34].

We then add one auxiliary node v0 and add m + (m − 1) · n
edges: (s, v0)×m and (v0, vi)×m−1 for all i ∈ [1, n]. The nota-
tion (s, v0)×m denotes m parallel edges connecting s and v0,
(see the parallel (s, v0) edges in Fig. 5(a)), and (v0, vi)×m−1
denotes m − 1 parallel edges connecting v0 and vi , (see the
(v0, vi) edges, i = 1, 2, 3, in Fig. 5(a)). Using the same
argument, a routing solution cannot use those new edges when
we set the delay constraint D = 2. Therefore, the 1-to-all net-
work coding gain for the modified network is the same as the
network coding gain for the original

(n
m

)
combination network.

Since the network coding gain can be unbounded for the
(n

m

)

combination network (from [34]), the proof of Proposition 6 is
complete.

C. Remarks on Cyclic Networks

All our results can be applied to cyclic networks verba-
tim. More specifically, Proposition 1 proves the equivalence
between a delay-constrained unicast problem and a multiple-
unicast problem in the corresponding time-expanded graph.
Since the causality in time automatically converts any network
(regardless being cyclic or not) into an acyclic time-expanded
graph, Proposition 1 holds naturally for cyclic networks as
well. Propositions 3 and 4 are proven based on the equivalent
time-expanded graph (Proposition 1). As a result, they hold
for cyclic networks as well. Propositions 2, 5, and 6 are
proven by explicit construction of special acyclic network
instances. Since acyclic networks are a special case of cyclic
ones, Propositions 2, 5, and 6 hold for cyclic networks
as well.

262 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 1, JANUARY 2017

VI. CONCLUSION

This work studies the following problem: Given a hard delay
constraint, how much perishable information one can send
from s to d . We have provided a new formulation that converts
the delay-constrained unicast capacity problem into a delay-
unconstrained multiple unicsat problem. We have then proven
that NC can strictly outperform optimal routing even for the
single-unicast setting and the gain can be arbitrarily close to
2. Based on a time-expanded graph approach, two new delay-
constrained capacity upper bounds have been provided, which
show that the difference between the NC capacity R∗

NC and
the routing capacity R∗

route can be associated to the integrality
gap of the LP-based minimum cut problem. We have also
proven that the penalty of using RLNC versus pure routing
can be unbounded and the classic Edmonds’ tree packing
results no longer hold for the delay-constrained traffic. Over-
all, our results suggest that delay-constrained communication
is fundamentally different from the well-understood delay-
unconstrained one and call for investigation participation.

There are several interesting directions for further investi-
gation. In the current setting, information bits incur a fixed
amount of delay when traversing a link. It is interesting to
extend the study to consider a general setting where the
delay of traversing a link is also a function of the traffic
volume, which better models practical scenarios involving fast-
timescale system/flow dynamics.

APPENDIX A
A LOW-COMPLEXITY COMPUTATION OF THE

DELAY-CONSTRAINED ROUTING CAPACITY

The existing polynomial-complexity computation of the
delay-constrained routing capacity in [45] is restated as
follows.

Proposition 7 ([45, Sec. IV.A]): We can compute R∗
route in

(1)–(2) by the following flow-based LP problem with |E | · D
non-negative variables x (h)

e for all e ∈ E and h ∈ [1, D]:

max
x (h)

e ≥0

∑

e∈In(d)

D∑

h=1

x (h)
e (30)

subject to ∀v ∈ V \{s, d},∀h ∈ [1, D],∑

e∈In(v)

x (h−1)
e =

∑

ẽ∈Out(v)

x (h)
ẽ (31)

∀e ∈ E,

D∑

h=1

x (h)
e ≤ ce. (32)

Here each variable x (h)
e represents the sum of all rates assigned

to paths {P ∈ PD : the h-th hop of P is e}. The objective
in (30) is the aggregate rate of flows that arrive at d within D
hops. The constraints in (31) say that the aggregate incoming
flows to node v with hop count h − 1 must be equal to the
aggregate outgoing flows from node v with hop count h; these
are essentially the flow balance equations with flow travelled-
distance (in hops) taken into account. The constraints in (32)
are link capacity constraints. Note that in (31) we use the
convention that x (0)

e = 0 for all e ∈ E .

Since the proof of Proposition 7 was omitted in [45], we
sketch the proof in the following for completeness.

Proof: We first prove that any solution in the
LP problem (1)–(2) leads to a valid solution for the LP
problem (30)–(32). This is done by setting

x (h)
e =

∑

P∈PD: the h-th hop of P is e

x P .

With the above construction of x (h)
e , one can see that (31) holds

naturally and (1) equals to (30). Also, (2) on xP implies (32).
The forward direction is thus proven.

We now prove that any solution in (30)–(32) leads to a valid
solution in (1)–(2). We prove this by an iterative construction.
Initially, we define P = PD and x (h)

e = x (h)
e for all e and h.

For any P ∈ P , we choose xP = minh∈[1,|P|] x (h)
eP,h where

eP,h is the h-th hop of P . After choosing x P , we decrease
the value of x (h)

eP,h by x P for all h ∈ [1, |P|] and remove P

from P. After decreasing the x (h)
eP,h values and reducing P , we

repeat the construction for another P̃ ∈ P until P = ∅.
We now state and prove three claims regarding the above

construction.
Claim 1: Throughout the process, all the x (h)

e are non-
negative and they satisfy (31). The non-negativity holds since
xP = minh∈[1,|P|] x (h)

eP,h . Equality (31) holds since we subtract

x P from x (h)
eP,h for all h ∈ [1, |P|]. Note that x (h)

e ≥ 0 also
implies that the resulting xP is non-negative.

Claim 2: When the iterative construction finishes, the result-
ing {xP : ∀P ∈ PD} satisfies (2). To prove this claim,
we notice that since xP is deducted from x (h)

eP,h during our
construction, we always have

∀e ∈ E,
∑

P:P	e,P∈PD\P
x P +

D∑

h=1

x (h)
e =

D∑

h=1

x (h)
e (33)

in the end of each iteration, where {xP} are the latest values
assigned to each path P , {x (h)

e } are the original LP variable
values we begin with, and {x (h)

e } are the latest residual values
in our construction. Then by (32) and by the non-negativity
of x (h)

e , the resulting x P in the end (i.e., when P = ∅) must
satisfy (2).

Claim 3: The expression (1) computed from the final xP

equals (30) computed from x (h)
e . To prove this claim, we notice

that by the construction of PD, the last edge of any P ∈ PD
must belong to In(d). Since (33) holds for any edge e ∈ In(d),

we only need to prove that x (h)
e = 0 for all e ∈ In(d) and

h ∈ [1, D] in the end of our construction.
We prove this by contradiction. Suppose not. Then we have

x (ĥ)
ê > 0 for some ê ∈ In(d) and ĥ. Since {x (h)

e } satisfies (31)
for all v ∈ V \{s, d} and h, we can find ĥ edges, denoted by ê1
to êĥ , satisfying simultaneously (i) êĥ = ê; (ii) ê1ê2 · · · êĥ form

a path of length ĥ, which is denoted by P̂ ; and (iii) x (i)
êi

> 0

for i ∈ [1, ĥ]. Since êĥ = ê ∈ In(d), we have head(êĥ) = d .
We now prove tail(ê1) = s by contradiction. Suppose not.
Then we focus on (31) with h = 1 and v = tail(ê1). One can
see that the left-hand side of (31) is zero since x (0)

e = 0 in our
convention but the right-hand side is no less than x (1)

ê1
> 0.

WANG AND CHEN: SENDING PERISHABLE INFORMATION 263

This contradiction implies that tail(ê1) = s. As a result,
P̂ connects s and d using ĥ ≤ D hops. Therefore P̂ ∈ PD.

On the other hand, all the paths in PD must have been
considered in the iterative construction. Consequently, for any
path P ∈ PD, x (h)

eP,h = 0 for at least one h ∈ [1, |P|] since we
subtract xP = minh∈[1,|P|] x (h)

eP,h from all x (h)
eP,h . Property (iii)

of P̂ ∈ PD thus contradicts the fact that we have exhaustively
considered all P ∈ PD. Claim 3 is thus proven.

Jointly, Claims 1 to 3 complete the proof.
Since (30)–(32) is a polynomial-time computable version

of the maximum flow problem (1)–(2), in this work we have
derived the following polynomial-time computable version of
the minimum cut problem (3)–(4).

Corollary 2: We can compute R∗
route by the following LP

problem with |E | non-negative variables ye ≥ 0, ∀e ∈ E ,
and (|V | − 2) · D real-valued variables y(h)

v , ∀v ∈ V \{s, d},
h ∈ [1, D] such that

min
ye≥0,y(h)

v

∑
e∈E yece (34)

s.t. ye + y(h+1)
head(e) − y(h)

tail(e) ≥ 0, ∀e ∈ E,∀h ∈ [1, D] (35)

where in (35) we use the convention y(D+1)
v = 0 for all v ∈ V

and y(h)
s = y(h)

d = 0 for all h ∈ [1, D].
Proof: One can easily verify that Corollary 2 is the dual

of Proposition 7.

APPENDIX B
THE HIGH-LEVEL DESCRIPTION OF THE

PROOF OF PROPOSITION 2

The proof of Proposition 2 contains three major ingredients.
Firstly, we will generalize the example in Section IV-B and
describe a family of network instances {(Gm, Dm) : ∀m ∈ N}
indexed by m such that the corresponding NC gain, denoted by
gainm , is strictly larger than 1 for all m ∈ N. Secondly, we will
provide an iterative genie-aided construction such that with
the help of a genie we can use a network instance of (G, D)
with NC gain to construct another network instance (G′, D′)
with NC gain′ such that gain′ > gain. Furthermore, when
the iteration continues indefinitely the final gain′ approaches 2
asymptotically. The family of network instances {(Gm, Dm) :
∀m ∈ N}, introduced as the first component, is essential in
this iterative construction. Finally, we will describe how the
iterative construction can be implemented without the help of
a genie.

The family of network instances is described in Appen-
dix C. The iterative genie-aided construction is described in
Appendix D. Appendix E describes how to perform iterative
construction without the help of a genie.

APPENDIX C
A FAMILY OF NETWORK INSTANCES WITH gain > 1

In this section, we generalize the result in Section IV-B and
describe a set of network instances {(Gm , Dm) : ∀m ∈ N} such
that the corresponding NC gain, denoted by gainm , is strictly
larger than 1.

Fig. 6. A high-level description of the network instance that was previously
described in Fig. 2.

A. A High-Level Network Description

To that end, we first represent the network in Fig. 2 by
an equivalent but more high-level description in Fig. 6. The
high-level description contains two components. The primary
component is the two triangles (one on the left and one on the
right) plus the straight line from s to d . We use thick lines in
Fig. 6 to represent the primary component. The two triangles
symbolize the two possible detours from the straight line. One
is to use node u1 and the other is to use node w1. Comparing
Figs. 2 and 6, we can view node u1 as a relabeling of node
v5 and node w1 as a relabeling of node v7. Note that each
thick line in Fig. 6 does not correspond to an edge in Fig. 2.
Instead, a thick line in Fig. 6 corresponds to a path in Fig. 2.
For example, since we view u1 as a relabeling of node v5, the
thick line connecting u1 and the tail of e∗ corresponds to the
2-edge path v5v6v2 in Fig. 2 and the thick line connecting s
and u1 corresponds to the 1-edge path sv5 in Fig. 2. Therefore,
the left detour from s along u1 to the tail of e∗ has length 3
even though it is represented by two thick line segments.

We choose the delay requirement D = 6 in a way that if we
detour for exactly once, e.g., the longer path using u1 but not
using w1, then the total length is exactly D. Equivalently, the
choice D = 6 implies that if we detour for two times, using
both u1 and w1, then the resulting path will have length > D.
For example, the path sv5v6v2v3v7v8d in Fig. 2 corresponds
to using both the detour through u1 and the detour through
w1. Such path has 7 hops, which is > D = 6.

The secondary component of the high-level description in
Fig. 6 is a parallel pipe connecting (A1, B1) that does not use
any edges in the primary component. We use a thin curve to
represent this parallel pipe. We require that the delay incurred
by the (A1, B1) parallel pipe is identical to the delay when
traversing from A1 to B1 using the edges in the primary
component. Comparing Figs. 2 and 6, we can view node A1
as a relabeling of node v1 and node B1 as a relabeling of node
v4 in Fig. 2. The parallel pipe in Fig. 2 thus corresponds to the
path v1v9v10v4 in Fig. 2. The delay incurred by the parallel
pipe is 3, which is equal to the delay when traversing through
the path v1v2v3v4 in the primary component.

All edges in our high-level description in Fig. 6 are of
capacity ce = 1.

We can now explain the NC solution using the high-
level description of Fig. 6. Consider sending Xt through
the primary component using the detour of w1 only
(i.e., path sv1v2v3v7v8d in Fig. 2). For easier reference, we
term the above operation “sending Xt through the ‘primary’
path su0w1d” to emphasize that we only use the edges in the
primary component and the notation “u0” indicates that we

264 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 1, JANUARY 2017

do not use the detour corresponding to u1. Similarly, we can
send Yt through the primary path su1w0d , which emphasizes
that we use the detour corresponding to u1 and do not use the
detour corresponding to w1. Recall that the D value equals to
the length of path su0w1d and equals to the length of path
su1w0d . Therefore, the intuition is that by sending Xt and Yt

along paths su0w1d and su1w0d , respectively, our goal is for
d to receive both Xt and Yt before the deadline t +D through
the two primary paths, respectively. For easier reference, we
say that Xt (resp. Yt) is the desired packet along path su0w1d
(resp. su1w0d).

However, the two primary paths su0w1d and su1w0d share
a bottleneck edge e∗ in Fig. 6, or equivalently edge v2v3
in Fig. 2. If we perform NC (i.e., simple packet addition)
at e∗ without using the (A1, B1) parallel pipe, then by the
deadline t + D, d will receive packet [Xt + Yt−δ] through
path su0w1d for some δ > 0 that represents the difference
of the distances between the detour through u1 and the direct
path in the left triangle. Namely, the desired Xt packet will be
corrupted by some old packet Yt−δ since Yt needs to traverse a
longer path (detour through u1) before entering the bottleneck
edge e∗ while Xt traverses to e∗ through a shorter direct
path. Similarly, by the deadline t + D, d will receive packet
[Yt + Xt+δ] through path su1w0d . Namely, the desired Yt

packet will be corrupted by some future packet Xt+δ since
Xt traverses to e∗ through a shorter direct path.

To prevent the desired Yt (along the primary path su1w0d)
from the corruption of the future packet Xt+δ , we use the
(A1, B1) parallel pipe to remove the aforementioned corrup-
tion. Recall that the (A1, B1) parallel pipe incurs the same
amount of delay as the primary path from A1 to B1. As a
result, at node B1 we can subtract the corruption Xt+δ (known
from the information received through the parallel pipe) from
the linear sum [Yt + Xt+δ], which is received through the
downstream path from e∗ to B1 in the primary component.
After subtraction, d will receive pure, uncorrupted Yt through
su1w0d before the deadline t + D.

Note that there is no need to introduce additional parallel
pipe for the task of subtracting the corruption Yt−δ for the
desired Xt along the su0w1d path. The reason is that d has
already decoded the old packet Yt−δ in the previous time slots.
Therefore, d can simply use its own knowledge of Yt−δ to
remove the corruption Yt−δ . In summary, by the deadline t+D,
d can decode Xt from the su0w1d path (with the help of
previously obtained knowledge of Yt−δ) and can receive pure
uncorrupted Yt from the su1w0d path (with the help of the
(A1, B1) parallel pipe).

In contrast with the edge-by-edge analysis in Section IV-B,
this high-level description emphasizes the network topology
and the corresponding network information flow, which will
be useful when describing more complicated examples in the
subsequent discussion.

B. A Family of Network Instances

From the high-level description, one can see that the key
ideas of Fig. 6 are (i) Create two primary paths of length equal
to D (paths su0w1d and su1w0d); (ii) Make sure that the two

Fig. 7. An illustration of the class of network instances with gain > 1. The
illustration is based on m = 4.

paths use the bottleneck edge e∗ in the center; (iii) Make each
path correspond to “a route that detours in only one location”;
(iv) Choose the D value such that detouring in two locations
will violate the delay constraint; and (v) Finally use the parallel
pipe to provide side information so that we can remove the
corruption of “future interference Xt+δ” from the path su1w0d
so that d can receive uncorrupted Yt by the deadline t +D. In a
broad sense, the use of the (A1, B1) parallel pipe alleviates the
bottleneck e∗, which is used by both primary paths.

The following construction demonstrates how we can create
m ≥ 2 primary paths of length equal to D and make sure all the
m paths are using the same bottleneck edge e∗ so that we can
create more “congestion” in e∗, which, heuristically, should
lead to a higher NC gain. Again our construction consists of
the primary and the secondary components.

1) The Primary Component: For any fixed integer m ≥ 2,
the primary component of our construction has 2(m − 1)
triangles; (m − 1) of them are nested on the left-hand side of
the network; (m −1) of them are nested on the right-hand side
of the network; and a straight line from s to d that connects
the two groups of triangles. See Fig. 7 for the illustration of
m = 4, in which the paths of the primary component are
represented by thick lines.

We use the notation suiw j d , where i, j ∈ [0, m − 1], to
denote the path that detours through ui and w j in the left and
the right triangles, respectively. The notation u0 (resp. w0)
means no detour in the left half (resp. the right half) of the
network. We call the path suiwm−1−i d the primary path. The
sizes of the triangles are carefully chosen so that the primary
paths suiwm−1−i d,∀i ∈ [0, m − 1] have the same common
length. Additionally, the sizes of the triangles are chosen in a
way that the larger the triangle, the longer the corresponding
detour will be. Take Fig. 7 for example. All the primary paths
having the same length means

length(su0w3d) = length(su1w2d)

= length(su2w1d) = length(su3w0d).

(36)

The assumption “the larger the triangle, the longer the detour”
means

length(su0w0d) < length(su1w0d)

< length(su2w0d) < length(su3w0d)

and length(su0w0d) < length(su0w1d)

< length(su0w2d) < length(su0w3d). (37)

WANG AND CHEN: SENDING PERISHABLE INFORMATION 265

Eqs. (36) and (37) together imply many other inequalities. For
example, we also have

length(su1w3d) > length(su0w3d)

= length(su2w1d) > length(su2w0d).

After fixing the network topology, we choose the delay
requirement Dm value such that

Dm = length(suiwm−1−i d), ∀i = 0, · · · , m − 1, (38)

is the length of all m primary paths.
2) The Secondary Component: The secondary component

contains (m − 1) parallel node-disjoint pipes connecting
(Ai , Bi) for i = 1 to m −1, which do not use any nodes/edges
in the primary component except for the end nodes Ai and Bi .
We use thin curves to represent these parallel node-disjoint
pipes. We now describe the starting and ending nodes of these
m − 1 pipes.

Starting node Ai :

• If i = 1, then we choose A1 to be a node satisfying
simultaneously (i) A1 is an interior node of the direct path
su0w0d; (ii) A1 is strictly upstream of the node where the
direct path su0w0d merges with the detour path su1w0d ,
i.e., A1 is on the left of the merge node. See Fig. 7 for
illustration.

• If i ∈ [2, m − 1], then we choose Ai to be a node
satisfying simultaneously (i) Ai is strictly downstream
of the node where the direct path su0w0d merges with
the detour path sui−1w0d , i.e., Ai is on the right of the
merge node; and (ii) Ai is strictly upstream of the node
where the direct path su0w0d merges with the detour path
suiw0d . See Fig. 7 for illustration.

Ending node Bi :

• If i ∈ [1, m−2], then we choose Bi to be a node satisfying
simultaneously (i) Bi is an interior node of the detour path
su0wm−1−i ; and (ii) Bi is strictly downstream of the node
where the direct path su0w0d diverges from the detour
path su0wm−1−i d . See Fig. 7 for illustration.

• If i = m−1, then we choose Bm−1 to be a node satisfying
simultaneously (i) Bm−1 is an interior node of the direct
path su0w0d; (ii) Bm−1 is strictly downstream of the node
where the direct path su0w0d diverges from the detour
path su0w1d . See Fig. 7 for illustration.

One can clearly see that the choices of Ai and Bi are
not unique. Our construction holds for any arbitrary choices
satisfying the above description.

After fixing the end nodes Ai and Bi , we impose that
the delay incurred by the (Ai , Bi) parallel pipe is identical
to the delay when traversing from Ai to Bi using only the
edges in the primary component. We use (Gm , Dm) to describe
the resulting network instance in the above construction.
We assume that all edges in our construction (Fig. 7) are of
capacity ce = 1. Our construction is now complete.

Intuition: One way to interpret our construction is to view
it (see Fig. 7) as an overlay of m paths of length Dm in
an offset manner so that they form two groups of triangles
(detours), one on the left and one on the right. The overlay is
made so that all m paths share a common bottleneck edge e∗.

Then introduce parallel pipes that can potentially be used to
remove the undesired corruption in the bottleneck edge e∗.
Also see our discussion in Appendix C-A.

Subsequently, we will quantify the NC gain for the network
instance (Gm, Dm) for any given fixed integer m ≥ 2.

C. Quantifying the NC Gain of the Proposed Network Family

Lemma 1: For any given m ≥ 2, the delay-constrained NC
capacity of (Gm, Dm) is R∗

NC = m packets per time slot.
Proof: We prove this lemma by explicit network code

construction. For all i = 0 to m − 1, we send X [i]
t through the

primary path suiwm−1−i d . With (38), we are hoping that d
can receive the desired X [m]

t through path suiwm−1−i d before
the deadline t + Dm . See Fig. 7 for illustration.

Define the “merging nodes” as the nodes for which the
su jw0d path merges with the su j+1w0d paths for all j = 0
to m − 2. If we perform NC (i.e., simple packet addition) on
all the merging nodes while neglecting all parallel pipes in
the secondary component, then by the deadline t + Dm the
packet received by d through path suiwm−1−i d will have the
following form:

⎛

⎝
i−1∑

j=0

X [j]
t+|δ j,i |

⎞

⎠+ X [i]
t +

⎛

⎝
m−1∑

j=i+1

X [j]
t−|δ j,i |

⎞

⎠ (39)

where

|δ j,i | �= |length(su j w0d) − length(suiw0d)|
is the absolute value of the difference between the distance
from s to e∗ using detour u j and the distance from s to e∗
using detour ui . By our assumption in (37), for those j < i
the packet X [j]

t sent through the primary path su j wm−1− j d
will arrive at e∗ earlier than X [i]

t does. This is why when
focusing on X [i]

t the corruption from those j < i is of the
form X [j]

t+|δ j,i |. Namely, those j values correspond to corruption
from the “future packets.” Similarly, for those j > i the packet
X [j]

t sent through the primary path su jwm−1− j d will arrive
at e∗ later than X [i]

t does. The corruption is thus of the form
X [j]

t−|δ j,i |, which corresponds to the corruption from the “old
packets.”

We now discuss how to use the {(Al, Bl) : l ∈ [1, m − 1]}
parallel pipes. Again, we consider a fixed i value and the
packet received by d through path suiwm−1−i d . Without loss
of generality, we assume i ≥ 1 and the scenario of i = 0 is a
degenerate case. Recall that by our construction Ai is located
in paths su jwm−1− j d for all j ∈ [0, i−1] but not in the path of
interest suiwm−1−i d . Namely, the location of Ai allows node
Ai to observe the interference term

(∑i−1
j=0 X [j]

t+|δ j,i |
)

before

the interference corrupts the desired X [i]
t term.

Also recall that by our construction Bi is located in the path
suiwm−1−i and the (Ai , Bi) parallel pipe in the secondary
component incurs the same amount of delay as the path from
Ai to Bi in the primary component. As a result, node Ai can
transmit the interference term

(∑i−1
j=0 X [j]

t+|δ j,i |
)

to node Bi

through the parallel pipe and node Bi can use this information

266 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 1, JANUARY 2017

to subtract the corruption from the linear sum in (39). After
the subtraction performed by Bi , d will receive

X [i]
t +

⎛

⎝
m−1∑

j=i+1

X [j]
t−|δ j,i |

⎞

⎠ .

through the primary path suiwm−1−i d by the deadline t +Dm .
Since the remaining corruption term

(∑m−1
j=i+1 X [j]

t−|δ j,i |
)

is
resulted from the “old packets”, d can use its existing knowl-
edge about the previously decoded packets to subtract the
corruption and decode the desired X [i]

t along the primary path
suiwm−1−i d . Since d can decode X [i]

t through suiwm−1−i d
for all i ∈ [0, m − 1], the delay-constrained NC throughput
is m packets per time slot. Since the min-cut value from s to
d is also m, the above scheme is throughput optimal and the
delay-constrained NC capacity R∗

NC is indeed m packets per
time slot.

We now quantify the routing-based capacity R∗
route.

Lemma 2: For any given m ≥ 2, the delay-constrained rout-
ing capacity of (Gm, Dm) is R∗

route = m −1+2−(m−1) packets
per time slot.

Proof: We prove this lemma by providing a primal and
a dual solutions for (1)–(2) and for (3)–(4), respectively, and
then show that the duality gap is zero.

For the primal variables xP , we define 2m−1 paths, denoted
by {Pi , i ∈ [0, m −1]} and {Q j : j ∈ [1, m −1]}, respectively.
They are

Pi
�= suiwm−1−i d (40)

Q j
�= su j−1 A j B jwm−1− j d. (41)

Namely, Pi is one of the primary paths. Path Q j is a path that
uses the (A j , B j) pipe in the secondary component and before
using (A j , B j) the path Q j uses the detour corresponding to
u j−1. Then we set the primal variables as

x P0 = 2−(m−1),

∀i ∈ {1, · · · , m − 1}, x Pi = 2−(m−i),

∀ j ∈ {1, · · · , m − 1}, xQ j = 1 − 2−(m− j),

and all other xP = 0. (42)

One can verify that the above xP assignment is a feasi-
ble primal solution with the objective value being

∑
P∈PDm

x P = m − 1 + 2−(m−1).
For the dual variables ye, we consider 2m − 1 edges: For

all i ∈ [1, m − 1], we define eAi as the unique edge satisfying
head(eAi) = Ai and eBi as the unique edge satisfying
tail(eBi) = Bi . Namely, eAi is the edge that is the direct
upstream of node Ai and eBi is the edge that is the direct
downstream of node Bi . Recall that e∗ is the bottleneck edge
in the center. Then we set the dual variables as

ye∗ = 2−(m−1),

∀i ∈ {1, · · · , m − 1}, yeAi
= 2−i , yeBi

= 1 − 2−i ,

and all other ye = 0.

One can verify that the above ye assignment is a feasible dual
solution with the objective value being

∑
e yece = m − 1 +

2−(m−1). The proof is thus complete.

In sum, the NC gainm = m
m−1+2−(m−1) for the

m-th network instance (Gm, Dm). One can easily verify that
maxm≥2 gainm = 4

3 , which is attained by either m = 2 or
m = 3.

Remark: From the surface, the above construction should
yield high NC gain since all m primary paths suiwm−1−i d
use the same bottleneck edge e∗. However, detailed analysis
in Lemmas 1 and 2 shows that even if we create a highly-
congested bottleneck e∗, the NC gain does not increase any
further14 and is still upper bounded by 4

3 . The reason is that in
the proposed optimal NC solution, the parallel pipes are used
to carry the side information that will be used for subtracting
the “corruption caused by the future packets”. However, for
a routing solution, we can directly use those parallel pipes to
carry the uncoded information, see (41) and (42). As a result,
simply increasing the congestion level at e∗ does not lead to
a network instance with a larger NC gain, and the simplest
example with m = 2 still admits the largest NC gain 4

3 we
have found thus far. In the next sections, we will demonstrate
how to take advantage of the special structure of (Gm, Dm)
for large m and use it to design a network instance with NC
gain arbitrarily close to 2.

APPENDIX D
A GENIE-AIDED ITERATIVE CONSTRUCTION

In this section, we will present the main principles of our
iterative construction, which will be based on the new concepts
of throughput/delay (T/D) spectrum and T/D spread.

A. The Throughput/Delay (T/D) Spectrum and Spread

Given any network instance, the delay-constrained NC
capacity can be written as a function RNC(D) of the delay
requirement D. Here we use the calligraphic R to emphasize
that it is a function of D. Obviously RNC(D) is non-decreasing
with respect to D. Similarly, the delay-constrained routing
capacity can be defined as Rroute(D). We call this pair of
functions (RNC(D),Rroute(D)) the throughput/delay (T/D)
spectrum of the network. For example, by simple computation
one can show that the network in Fig. 2 has

RNC(D) =

⎧
⎪⎨

⎪⎩

0 if D ≤ 4

1 if D = 5

2 if D ≥ 6

Rroute(D) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if D ≤ 4

1 if D = 5

1.5 if D = 6

2 if D ≥ 7

Although the T/D spectrum (RNC(D),Rroute(D)) is well-
defined, it may be difficult to compute for a general
network topology. On the other hand, the T/D spectrum
(RNC(D),Rroute(D)) can be used to compute a simpler con-
cept called the T/D spread.

Definition 5: For any network with T/D spectrum
(RNC(D),Rroute(D)), the T/D spread around a given D is a

14gainm = m
m−1+2−(m−1) actually decreases monotonically with respect

to m.

WANG AND CHEN: SENDING PERISHABLE INFORMATION 267

tuple (gain,�L ,�H)D, where gain �= RNC(D)
Rroute(D)

and

�L
�= sup{x ∈ N : RNC(D − x) > 0}; (43)

and �H
�= inf{x ∈ N : Rroute(D + x) > Rroute(D)}. (44)

Namely, whenever the delay requirement satisfies D′ < D −
�L , we will have RNC(D′) = Rroute(D′) = 0. Whenever
the delay requirement satisfies D ≤ D′ < D + �H , we
have Rroute(D′) = Rroute(D). Intuitively, �L describes the
lower spread around D before the throughput RNC(D′) and
Rroute(D′) drop completely to zero, and �H describes the
upper spread before the routing-based throughput Rroute(D′)
increases.

For example, with D = 6 the network in Fig. 2 has
(gain,�L ,�H)D=6 = (4

3 , 1, 1). We sometimes slightly abuse
the notation and refer the pair (�L,�H) as the T/D spread. It
should be clear from the context whether the term T/D spread
is referring to a tuple or a pair.

B. Illustration of a Genie-Aided Construction

The example in Fig. 2 has T/D spread being
(gain,�L ,�H)D=6 = (4

3 , 1, 1). For easier reference,
we denote the network in Fig. 2 by G̃. In this subsection, we
assume that there is a genie that can convert the network G̃
to another finite network G◦ such that G◦ has T/D spread
being (gain◦,�◦

L ,�◦
H)D◦ = (4

3 , 0,∞) around a new delay
constraint D◦ that may be different from D = 6. Namely,
the resulting G◦ has the same NC gain as the original G̃ but
has a different T/D spread. In general, such a conversion is
impossible since one can prove that any finite network (G, D)
with gain > 1 must have �L > 0 and �H < ∞. However,
for sake of discussion, we assume such a genie exists and call
the resulting network G◦ a fictitious network to distinguish it
from an actual network instance.

We now demonstrate how the fictitious15 network G◦ can
be used to construct a network instance of (G, D) with gain =
16
11 > 4

3 .
Without loss of generality we assume that RNC(D◦) = 1

and Rroute(D◦) = 3
4 for the fictitious network G◦ since the

corresponding gain is 4
3 . This can be achieved by scaling the

capacity of each edge of G◦ proportionally until RNC(D◦) = 1
and Rroute(D◦) = 3

4 . Our construction will combine the
original network in Fig. 2 with the new fictitious network G◦.
Specifically, we replace each of the two edges (v4, d) and
(v8, d) of Fig. 2 by a copy of the G◦ network, respectively.16

The description of the topology of the new network G is now
complete and the resulting graph is illustrated in Fig. 8(a).

Recall that the NC gain of G◦ is 4
3 at some fixed delay

constraint D◦. For the new network in Fig. 8(a), we set the
new delay requirement to be D = 5 + D◦. The description of
the network instance (G, D) is now complete. What remains
to prove is that the new G in Fig. 8(a) has gain = 16

11 when
D = 5 + D◦.

15In Appendix E, we will provide a construction that directly uses G̃ ,
without using the fictitious network G◦.

16Our construction treats G◦ as a black box and does not depend on the
actual topology of G◦.

Fig. 8. Three closely related network instances with the same delay
requirement D = 5 + D◦. The fictitious network G◦ has T/D spread
(gain◦, �◦

L ,�◦
H) = (4

3 , 0, ∞). (a) A new network instance G based on the
fictitious network G◦. (b) The equivalent network from an NC’s perspective.
(c) The equivalent network from a routing’s perspective.

We now argue that the delay-constrained NC capacity is still
2 packets per time slot. The reason is that since RNC(D◦) = 1,
we can always send 1 packet per time slot through the input
terminal of G◦, perform NC in the interior of G◦, and extract
the information packets from the output terminal of G◦ after
D◦ slots. Therefore, from a NC’s perspective, the network in
Fig. 8(a) is no different than replacing the (v4, d) and (v8, d)
edges by two paths of capacity 1 and length D◦, respectively.
See Fig. 8(b). Since we set the new delay requirement to be
D = 5 + D◦, we can use the same analysis as in Section IV-
B to prove that the NC capacity is 2 packets per time slot.
The subtle difference herein is that the achievability scheme
for Fig. 2 simply forwards the coded packets along the (v4, d)
and (v8, d) edges. The achievability scheme for Fig. 8(a) needs
to perform the optimal NC solution associated with G◦ when
sending packets along the copies of G◦ that connect v4 and
v8 to the destination d .

We now argue that the delay-constrained routing capacity
of Fig. 8(a) is 11

8 packets per time. To that end, the following
Lemma 3 first proves that the network in Fig. 8(a) has the
same delay-constrained routing capacity as the network in
Fig. 8(c), which replaces the (v4, d) and (v8, d) edges by paths
of capacity 3

4 and length D◦. Using Lemma 3 we can then
compute the delay-constrained routing capacity of Fig. 8(a)
by applying the LP computation (1)–(2) to Fig. 8(c). The end
result shows that R∗

route = 11
8 for both Figs. 8(a) and 8(c).

268 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 1, JANUARY 2017

The overall NC gain for the network in Fig. 8(a) is thus
gain = 2

11/8 = 16
11 .

Lemma 3: The networks in Figs. 8(a) and 8(c) have the
same routing-based capacity R∗

route.
Proof: For easier reference, we call the network in

Fig. 8(a) a G◦-compound network and the network in Fig. 8(c)
a routing-equivalent network.

It is easy to see that the delay-constrained routing capacity
of the routing-equivalent network (Fig. 8(c)) is always no
larger than that of the G◦-compound network (Fig. 8(a)). The
reason is that for whatever routing solution of the routing-
equivalent network, we can always adapt it and find a routing
solution for the G◦-compound network since by our construc-
tion the constituent subnetwork G◦ is capable of supporting
routing rate 3

4 within a hard delay requirement D◦.
We now argue that the delay-constrained routing capacity

of the G◦-compound network (Fig. 8(a)) is no larger than that
of the routing-equivalent network (Fig. 8(c)). This direction
is non-trivial since we do not know the underlying topology
of the subnetwork G◦ and the proof needs to hold for any
G◦ with T/D spread (gain◦,�◦

L ,�◦
H) = (4

3 , 0,∞). Our proof
consists of the following three observations.

Observation 1: Any path P̃ in the G◦-compound
network can be mapped to a path P in the routing-
equivalent network by tracing the corresponding
routes.

Observation 1 is self-explanatory. For example,
sv1v2v3v7v8G◦d in Fig. 8(a) can be mapped to the
path sv1v2v3v7v8d in Fig. 8(c).

We now make the second observation:
Observation 2: For any path P̃ in the G◦-compound
network, denote its image path in the routing-
equivalent network by P. If length(P) > D, then
we must also have length(P̃) > D.

The proof of Observation 2 is as follows. Consider any P̃
in the G◦-compound network, of which the image path P in
the routing-equivalent network satisfies length(P) > D. Since
the only deadline-violating path (those with length > D) in
the routing-equivalent network (Fig. 8(c)) is sv5v6v2v3v7v8d ,
we must have P = sv5v6v2v3v7v8d and P̃ must be of the
form P̃ = sv5v6v2v3v7v8G◦d . By the definition of the T/D
spread in (43), G◦ cannot carry any positive routing rate from
the input terminal of G◦ to the output terminal of G◦ in less
than D◦ − �◦

L time slots. It means that any path connecting
the input/output nodes of G◦ must have length no less than
D◦ − �◦

L hops. Therefore, the path P̃ = sv5v6v2v3v7v8G◦d
in Fig. 8(a) must have at least 6 + (D◦ − �◦

L) hops. Since
�◦

L = 0, we have length(P̃) > D = 5 + D◦. The proof of
Observation 2 is complete.

Observations 1 and 2 lead to the following results. If we
use P̃D to denote the set of all deadline-respecting paths (those
with length ≤ D) in the G◦-compound network (Fig. 8(a)) and
use PD = {P1, P2, · · · , P|PD|} to denote the set of all deadline-
respecting paths in the routing-equivalent network (Fig. 8(c)),
then we can partition P̃D into

P̃D =
|PD|⋃

i=1

P̃i (45)

where each disjoint subset P̃i in the G◦-compound network
corresponds to a deadline-respecting path Pi in the routing-
equivalent network. The reason is as follows. By Observation 1
every deadline-respecting path P̃ ∈ P̃D can be mapped to a
path in the routing-equivalent network. By Observation 2 the
image path (after the mapping) must be deadline respecting as
well. As a result, we can partition P̃D based on their image
paths being P1 to P|PD|. We thus have (45).

We now make the final observation.

Observation 3: Any deadline-respecting path in the
G◦-compound network must go through one and
only one G◦ network. Furthermore, the correspond-
ing sub-path inside G◦ must have length < (D◦ +
�◦

H).

The proof of this observation is almost self-explanatory since
(i) The collection of the two G◦ in Fig. 8(a) form a cut;
(ii) The two G◦ cannot reach each other; and (iii) In this proof
we assume the fictitious network G◦ has �◦

H = ∞. However,
the importance of this observation is significant. As will be
proven in the next paragraph, Observation 3 implies that from
a routing perspective, each of the two G◦ subnetworks in the
compound network is no different than a pipe of length D◦
that supports rate Rroute(D◦).

The reason is as follows. Consider any arbitrary G◦ sub-
network in the compound network. We are interested in the
deadline-respecting paths (those having length ≤ D = 5+D◦)
that go through the G◦ of interest. Observation 3 implies
that each of those deadline-respecting paths in the compound
network uses a sub-path of length ≤ D◦+�◦

H −1 in G◦. There-
fore, the sum of all rates assigned to those deadline-respecting
paths must be upper bounded by Rroute(D◦ + �◦

H − 1),
the largest supportable rate when performing routing over
(sub-)paths of length ≤ D◦ + �◦

H − 1 in G◦. At the same
time, by our T/D spread definition we have Rroute(D◦) =
Rroute(D◦ +�◦

H − 1). Therefore, the sum-rate of all deadline-
respecting paths in the overall compound network that use G◦
must be upper bounded by Rroute(D◦). The G◦ subnetwork
is thus no different than a pipe of length D◦ and capacity
Rroute(D◦) from the routing’s perspective.

With Observations 1 to 3, we are ready to complete
the proof that the delay-constrained routing capacity of the
G◦-compound network (Fig. 8(a)) is no larger than the
delay-constrained capacity of the routing-equivalent network
(Fig. 8(c)).

Denote the two G◦ subnetworks in the G◦-compound net-
work (Fig. 8(a)) by G◦

k , where k = 1 or 2 depending on which
G◦ we choose. For any LP solution {x P̃ : P̃ ∈ P̃D} of the G◦-
compound network and for any k ∈ {1, 2}, we have

∑

i:Pi uses P(G◦
k)

⎛

⎝
∑

P̃∈P̃i

x P̃

⎞

⎠ =
∑

P̃∈P̃D using G◦
k

x P̃ (46)

≤ Rroute(D◦) = 3

4
= cP(G◦

k)
(47)

where P(G◦
k) denotes the special sub-path in the routing-

equivalent network (Fig. 8(c)) that corresponds to the G◦
k

sub-network of interest, and cP(G◦
k)

is the capacity of the

WANG AND CHEN: SENDING PERISHABLE INFORMATION 269

path P(G◦
k) in the routing-equivalent network, which equals

cP(G◦
k)

= 1
gain◦ = 3

4 . The equality in (46) follows from
Observation 2 and (45). The inequality in (47) follows from
our discussion of Observation 3, i.e., the sum of routing rates
of all paths using G◦

k is upper bounded by Rroute(D◦).
In addition to (46)–(47), the LP solution {x P̃ : P̃ ∈ P̃D} of

the compound network (Fig. 8(a)) also satisfies that for any e
that is not inside any G◦

k , we have

ce = 1 ≥
∑

P̃∈P̃D using e

x P̃ =
∑

i:Pi uses e

⎛

⎝
∑

P̃∈P̃i

x P̃

⎞

⎠ (48)

where ce = 1 follows from our compound-network con-
struction; the inequality is the edge capacity constraint for
any routing solution of the compound network; and the final
equality follows from (45). Furthermore, the overall delay-
constrained routing capacity of the compound network can be
written as

max
xP̃

∑

P̃∈P̃D

x P̃ = max
xP̃

|PD|∑

i=1

⎛

⎝
∑

P̃∈P̃i

x P̃

⎞

⎠ (49)

where the equality follows from (45).
We now prove that any feasible LP solution {x P̃ : P̃ ∈ P̃D}

for the G◦-compound network can be used to construct another
feasible LP solution {x [pure]

Pi
: i = 1, · · · , |PD|} for the routing-

equivalent network, and the resulting {x [pure]
Pi

} has the same
objective value as the original {x P̃}. To that end, we simply

set each x [pure]
Pi

�= ∑
P̃∈P̃i

x P̃ for all i . The resulting {x [pure]
Pi

}
is feasible since (46) and (48) for the original {x P̃} ensure that
the new {x [pure]

Pi
} will satisfy the edge-capacity constraints for

the routing-equivalent network. The new construction {x [pure]
Pi

}
also has the same objective value as that of {x P̃} since the
objective (49) for the compound network can be transcribed
as the objective for the routing-equivalent network.

The above argument shows that any feasible routing solution
{x P̃} of the G◦-compound network can be used to construct
another feasible routing solution {x [pure]

Pi
} of the routing-

equivalent network with the same end-to-end throughput. As
a result, we have proven that the delay-constrained routing
capacity of the compound network (Fig. 8(a)) is no larger than
that of the routing-equivalent network (Fig. 8(c)).

C. An Iterative Genie-Aided Construction of Network
Instances With gain > 2 − ε

Thus far, we have demonstrated how to find a network
instance with gain = 16

11 when assuming there is a genie
who can convert Fig. 2 with (gain,�L , δH) = (4

3 , 1, 1) to
a fictitious network G◦ with (gain◦,�◦

L , δ◦
H)D◦ = (4

3 , 0,∞).
The resulting graph is depicted in Fig. 8(a).

Suppose the same genie is very powerful and can convert
any given network with T/D spread (gain,�L , δH) to a
fictitious network G◦ with (gain◦,�◦

L , δ◦
H)D◦ = (gain, 0,∞),

i.e., keeping the same gain but with the new �◦
L = 0 and new

�◦
H = ∞. Then we can iteratively use the construction in

Appendix D-B to further improve the NC gain.

Fig. 9. The routing-equivalent network when the fictitious network G◦ has
T/D spread (gain◦,�◦

L ,�◦
H) = (16

11 , 0, ∞).

That is, we use the genie to convert the network in Fig. 8(a)
to another fictitious network G◦ with (gain◦,�◦

L , δ◦
H)D◦ =

(16
11 , 0,∞). Without loss of generality, we assume the NC

capacity and the routing capacity of the new G◦ are
RNC(D◦) = 1 and Rroute(D◦) = 11

16 , respectively, since
gain◦ = 16

11 . Then we use the new G◦ and plug it into
Fig. 8(a) again. By the same argument as used in Appendix D-
B, the NC capacity of the new Fig. 8(a) (with the new G◦) is
still 2 packets per slot. Also, by the same argument as used
in the proof of Lemma 3, the routing capacity of the new
Fig. 8(a) is equal to the delay-constrained routing capacity
of Fig. 9.

Using the LP formulation (1)–(2), one can prove that the
routing capacity of Fig. 9 is 43

32 . The new NC gain over
routing thus becomes gain = 2

43/32 = 64
43 > 16

11 . We can
then repeat the above process to continuously improve the
NC gain.

By similar analysis, one can prove that if we start from
any network with gainold ≤ 1.5, then after converting it to a
fictitious network G◦ with T/D spread (gain◦,�◦

L , δ◦
H)D◦ =

(gainold, 0,∞) and using it to construct Fig. 8(a), the new
network has NC gain being

gainnew = 2 · gainold

0.5 + gainold
. (50)

Since we assume that we have gainold ≤ 1.5 to begin with,
one can prove that gainnew ≤ 1.5 as well. Furthermore,
by solving the fixed point equation of (50), one can prove
that the above construction can generate network instances
with NC gains arbitrarily close to 1.5 after a sufficiently
large number of iterations. Although gain = 1.5 is 12.5%
improvement over the original gain 4

3 , the gain is still
strictly bounded away from 2 when using the above iterative
construction.

In the following, we demonstrate how to modify the
above procedure and generate network instances with
NC gains > 2 − ε for any arbitrarily given ε > 0.

Step 1: For any given ε > 0, we find an m value such that
2−(m−1) < ε and fix that m value throughout our construction.

Step 2: For any arbitrarily given network with NC gain
satisfying 1 ≤ gainold ≤ 2 − 2−(m−1), we use the genie to
convert it to a fictitious network with (gain◦,�◦

L , δ◦
H)D◦ =

(gainold, 0,∞). Without loss of generality, we assume
the delay-constrained NC capacity of G◦ is RNC(D◦) =
1 and the delay-constrained routing capacity of G◦ is
Rroute(D◦) = 1

gainold
.

270 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 1, JANUARY 2017

Fig. 10. An illustration of the iterative genie-aided construction.
(a) A new network instance G based on the fictitious network G◦. (b) The
corresponding routing-equivalent network. Each special sub-path is of length
D◦ and Rate = 1

gainold
.

Step 3: For the given m, we construct the network instance
(Gm, Dm) that was previously described in Appendix C-B.
For example, Fig. 7 is the high-level description of (Gm, Dm)
when m = 4.

Step 4: For the constructed network Gm , there are m edges
that enter the destination d . We replace each of the m edges
by a copy of the previously created fictitious network G◦.
The description of the topology of the new network G is now
complete. An example of the resulting graph for m = 4 is
illustrated in Fig. 10(a).

Step 5: Recall that the delay requirement of the orig-
inal Gm is denoted by Dm . For the new network in
Fig. 10(a), we set the new delay requirement to be D =
Dm + D◦ − 1. With the topology described in Step 4 and
the delay requirement value D described in Step 5, the
description of the new network instance (G, D) is now
complete.

In the following Lemma 4, we will prove that the new
(G, D) has the NC gain being

gainnew = m · gainold

(m − 2 + 2−(m−1)) + gainold
. (51)

Since we assume that we have 1 ≤ gainold ≤ 2 − 2−(m−1)

to begin with, one can prove that 1 ≤ gainold ≤ gainnew ≤
2 − 2−(m−1) as well. We can then apply the genie to the new
G and generate another fictitious network G◦ that can be used
in Step 2 and the subsequent Steps 3 to 5. By iteratively
repeating the above process, one can continuously improve
the NC gain. By solving the fixed point equation of (51), one
can prove that the above construction can generate network
instances with NC gains arbitrarily close to 2−2−(m−1). Since
we choose the m value that satisfies 2−(m−1) < ε, after a

sufficiently large but finite number of iterations, the final
resulting network instance will have gain > 2 − ε for the
arbitrarily given ε > 0.

Lemma 4: The new (G, D) generated in Steps 1–5 has NC
gain equal to (51).

Proof: We first notice that the new (G, D) has delay-
constrained NC capacity being m packets per second since
we can reuse the NC strategy described in Lemma 1. The
only change that needs to be made is the following. In the
achievability scheme described in the proof of Lemma 1, we
simply forward the coded packets along the edges entering d .
In contrast, the achievability scheme of the new network
(G, D) needs to perform the optimal NC solution associated
with G◦ when sending packets along the copies of G◦ that
enter the destination d .

We now prove that the new (G, D) has delay-
constrained routing capacity being

R∗
route =

(
m − 2 + 2−(m−1)

gainold
+ 1

)
packets per slot. (52)

To that end, we first notice that all arguments in the proof of
Lemma 3 can be applied verbatim to our new construction.
Therefore, the routing capacity of the new Fig. 10(a) is equal
to the delay-constrained routing capacity of Fig. 10(b), where
Fig. 10(b) is the corresponding routing-equivalent network that
replaces the G◦ subnetworks in Fig. 10(a) by paths of length
D◦ and capacity 1

gainold
. To compute the routing capacity of

Fig. 10(b), we follow the same approach as used in the proof
of Lemma 2 by presenting a primal and a dual solution with
zero duality gap.

For the primal variables x P , we define 2m−1 paths, denoted
by {Pi , i ∈ [0, m − 1]} and {Q j : j ∈ [1, m − 1]}, in the same
way as in (40) and (41). Then we set the primal variables to be

x P0 = 1 − 1

gainold
(1 − 2−(m−1)),

∀i ∈ {1, · · · , m − 1}, x Pi = 1

gainold
2−(m−i),

∀ j ∈ {1, · · · , m − 1}, xQ j = 1

gainold
(1 − 2−(m− j)),

and all other xP = 0.

One can verify that with the assumption of gainold ≤ 2 −
2−(m−1), the above {xP} assignment is a feasible primal solu-
tion with the objective value being

∑
P x P = m−2+2−(m−1)

gainold
+1.

For the dual variables ye, we consider 2m − 1 edges:
For all i ∈ [1, m − 1], we define eAi as the unique edge
satisfying head(eAi) = Ai and eBi as the edge in In(d) that
is downstream of Bi . Namely, eAi is the edge that is the direct
upstream of node Ai and has ceAi

= 1, and eBi is the edge
that has capacity ce = 1

gainold
and is a downstream edge of

node Bi . Recall that e∗ is the bottleneck edge in the center.
Then we set the dual variables to be

ye∗ = 2−(m−1),

∀i ∈ {1, · · · , m − 1}, yeAi
= 2−i , yeBi

= 1 − 2−i ,

and all other ye = 0.

WANG AND CHEN: SENDING PERISHABLE INFORMATION 271

One can verify that the above {ye} assignment is a feasible
dual solution with the objective value being

∑

e

yece =
(

ye∗ +
m−1∑

i=1

yeAi

)
· 1 +

(
m−1∑

i=1

yeBi

)
· 1

gainold

= 1 + m − 2 + 2−(m−1)

gainold
.

The proof is thus complete.
In summary, we have provided a genie-aided iterative

construction that leads to network instances with NC gain
arbitrarily close to 2.

APPENDIX E
AN ITERATIVE CONSTRUCTION WITHOUT

USING ANY GENIE

In this section, we first demonstrate our proposed construc-
tion on the simplest example, which is in parallel with our
discussion in Appendix D-B. Then we describe our proposed
construction for the most general setting, which is in parallel
with our discussion in Appendix D-C.

A. An Iterative Construction Without Using Any
Fictitious Networks

In this subsection, we will describe a compound network
construction that uses any arbitrarily given network instance
(G◦, D◦) with (gain◦,�◦

L ,�◦
H)D◦ = (4

3 , 1, 1) to construct
a network instance with gain = 16

11 . Such a construction is
in parallel to the discussion in Appendix D-B except that
our construction is without the aid of a genie. Since our
construction can be easily generalized to any 1 ≤ gain◦ ≤ 1.5,
�◦

L > 0, and �◦
H < ∞, we will simply use the tuple

(gain◦,�◦
L,�◦

H)D◦ when describing our scheme, instead of
the actual numbers (4

3 , 1, 1). Without loss of generality, we
also assume that for this G◦ we have RNC(D◦) = 1 and
Rroute(D◦) = 1

gain◦ .
Our construction needs the following definition.
Definition 6: For any given graph G and any positive

integer α, the α-elongated version of G, denoted by α · G
or simply αG for brevity, is obtained by replacing every edge
in G by a path of length α. The capacity of the new path in
αG is set to be the same as the capacity ce of the edge e in
G it replaces.

Remark: It is self-explanatory that if the original graph G
has the T/D spread being (gain,�L ,�H)D at some D, then the
new graph αG has the T/D spread being (gain, α�L , α�H)αD
at a new delay point αD.

Given any (G◦, D◦) with (gain◦,�◦
L ,�◦

H)D◦ , we start from
the high-level description in Fig. 6. For any given four
strictly positive integer values α1, α0, δ1, and Right.Half, we
can modify Fig. 6 and construct the network in Fig. 11(a).
Specifically, the length of the detour using u1 (the left triangle)
is set to 2 + δ1. The length of the detour using w1 (the right
triangle) is set to Right.Half+δ1. The delay requirement value

is set to D
�= 2 + 1 + Right.Half + δ1. One can easily check

that such a D value will ensure that any deadline-respecting
path can detour at most once. We also require that the last

Fig. 11. An illustration of the iterative genie-free construction for the simple
example. (a) A modified version of the high-level description. D = 2 + 1 +
Right.Half + δ1. (b) The corresponding compound network.

D1
�= α1 · D◦ unit-capacity edges of the route from w1 to

d is replaced by a path with length D1 and capacity 1
gain◦ .

Similarly, the last D0
�= α0 · D◦ unit-capacity edges of the

route from w0 to d is replaced by a path with length D0 and
capacity 1

gain◦ . See Fig. 11(a) for detailed illustration.
We now describe how to choose the four parameter values

α1, α0, δ1, and Right.Half. In particular, we require them
to satisfy the following conditions, for which the integer

constants D �= 2 + 1 + Right.Half + δ1, D0
�= α0D◦, and

D1
�= α1D◦ have been defined previously.

• The Feasibility Condition:

Right.Half + δ1 ≥ D1 + 1 (53)

Right.Half ≥ D0 + 2. (54)

• Condition 2:

(2 + δ1) + 1 + (Right.Half + δ1) − D1

+(D1 − α1�
◦
L) > D. (55)

• Condition 3:

D − (2 + 1 + (Right.Half + δ1) − D1)

< D1 + α1�
◦
H (56)

D − (2 + 1 + Right.Half − D0) < D0 + α0�
◦
H . (57)

The feasibility conditions in (53)–(54) are to ensure that the
path length values in Fig. 11(a) are consistent. Specifically, the
detour using w1 has length Right.Half + δ1. We need it to be
strictly larger than D1 so that after replacing the last D1 unit-
capacity edges of the route from w1 to d by the special path
with length D1 and capacity 1

gain◦ , we still have part of the w1-
detour being the regular unit-capacity edges (the thick lines in
Fig. 11(a)). Similarly, when not detouring in the right triangle,

272 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 1, JANUARY 2017

we need to have the direct path length Right.Half to be strictly
larger than D0 +1 so that even after replacing the last D0 unit-
capacity edges of the route from B1 to d , part of the B1-to-d
path still has some regular unit-capacity edges (the thick lines
in Fig. 11(a)). In our construction, we implicitly assume that
node B1 is the immediate downstream neighbor of the node
where paths su0w0d and su0w1d diverges. The constant 2
in (54) takes into account the edge from the diverging node
to B1 and the edge following B1. Note that in (53), we only
require that that the length from the diverging node through
w1 to the starting node of the special path with length D1
and capacity 1

gain◦ to be at least 1. The reason is that the
detour using node w1 does not have the intermediate node B1
and thus the feasibility condition (53), which aims to preserve
the topology of the original network, can be slightly looser
for the upper detour in the right triangle. More specifically,
to preserve the topology of Fig. 11(a) (and also Fig. 11(b))
the starting node of the upper special path can coincide with
node w1 but the starting node of the lower special path cannot
coincide with node B1.

The intuition behind Conditions 2 and 3 will be explained
shortly after.

In Appendix F, we will prove that for any given T/D spread
(gain◦,�◦

L,�◦
H)D◦ value, we can always find four strictly

positive integer parameter values α1, α0, δ1, and Right.Half
satisfying (53) to (57). For example, if (gain◦,�◦

L ,�◦
H)D◦ =

(4
3 , 1, 1), then we can choose α1 = 1, α0 = 3, δ1 = 2, and

Right.Half = 20, which satisfy (53) to (57).
After fixing the α1, α0, δ1, and Right.Half values, the

routing-equivalent network (Fig. 11(a)) is uniquely deter-
mined. We now convert the routing-equivalent network to a
compound network by replacing each special path of length
Di = αi D◦ by an αi -elongated version of G◦ for all i ∈ {0, 1}.
See Fig. 11(b) for illustration. We now have the following
lemma.

Lemma 5: The compound network Fig. 11(b) has delay-
constrained NC capacity 2 packets per time slot, and its delay-
constrained routing capacity is equal to that of Fig. 11(a).

Using this lemma, we can compute the delay-
constrained routing capacity of Fig. 11(b) by solving
the delay-constrained routing capacity of Fig. 11(a). By (52)
with the value of m = 2, one can prove that, assuming
gain◦ ≤ 1.5, the routing capacity of Fig. 11(a) is 0.5

gain◦ + 1.

The new NC gain is gain = 2gain◦
0.5+gain◦ . Our construction

without the genie has the same NC gain as the genie-aided
construction in Appendix D-B.

Proof: Proof of Lemma 5: The first half of Lemma 5
can be proven by the same NC scheme as discussed in
Appendix D-B. Namely, we perform the NC scheme previ-
ously described in Section IV-B and then when traversing over
the α0G◦ and α1G◦ subnetworks, instead of forwarding the
packets, we perform the optimal NC solution associated to the
constituent G◦.

For the second half of Lemma 5, we will prove that
Lemma 3 holds for our new construction as well. To that
end, we notice that as long as Observations 1 to 3 in the
proof of Lemma 3 hold, then Lemma 3 holds. One can easily

see that Observation 1 holds naturally. In the following we
prove that Observations 2 and 3 hold for Figs. 11(b) and 11(a)
as well.

To prove Observation 2, we notice that the only deadline-
violating path in the routing-equivalent network Fig. 11(a)
is the path corresponding to su1w1d . Therefore, we need to
prove that in the compound network Fig. 11(b), any path of the
form su1w1(α1G◦)d must have length > D. By the definition

of �◦
L in (43) and D1

�= α1D◦, any path connecting the
input/output nodes of α1G◦ must have length no less than D1−
α1�

◦
L hops. Therefore, any path of the form su1w1(α1G◦)d in

Fig. 11(b) must have at least (2+δ1+1+Right.Half+δ1−D1)+
(D1 −α1�

◦
L) hops where (2 + δ1 + 1 + Right.Half + δ1 − D1)

is the number of hops from s to the input node of α1G◦
using the path su1w1(α1G◦)d . Since (55) in Condition 2 is
true, all those paths have length > D. Observation 2 is thus
proven.

We now prove Observation 3. The first half of Observation 3
is straightforward since the two subnetworks α0G◦ and α1G◦
form a cut. To prove the second half, we first consider all
the deadline-respecting paths (length ≤ D) in the compound
network (Fig. 11(b)) that use the α1G◦ network. Those paths
must be of the form su0w1(α1G◦)d according to Observa-
tion 2. Since the partial path from s to the input node of
α1G◦ via su0w1d has (2+1+(Right.Half+δ1)−D1) number
of hops, it implies that the sub-path within α1G◦ must have
length ≤ D− (2 +1+ (Right.Half+ δ1)−D1). Since our con-
struction satisfies (56), Observation 3 holds for all deadline-
respecting paths in the compound network that use α1G◦.

Let us now consider all the deadline-respecting paths
(length ≤ D) in the compound network (Fig. 11(b)) that use the
α0G◦ network. We first quantify the shortest possible distance
from s to the input terminal of α0G◦ as follows. Since the
(A1, B1) pipe has the same length as the distance from A1
to B1 in the primary component, we only need to consider
the shortest path from s to the input terminal of α0G◦ in the
primary component without using the (A1, B1) pipe. One can
easily see that such a shortest path must use the su0w0d path.
As a result, the shortest possible distance from s to the input
terminal of α0G◦ is (2 + 1 + Right.Half − D0) hops. This
implies that for any deadline-respecting path in the compound
network, the corresponding sub-path within α0G◦ must have
length ≤ D−(2+1+Right.Half−D0). Since our construction
satisfies (57), Observation 3 holds for all deadline-respecting
paths in the compound network that use α0G◦.

Since Observations 1 to 3 hold for our new construction,
the second half of Lemma 5 is proven.

B. The Generalized Iterative Construction Without the
Help of a Genie

Appendix E-A is a parallel version of Appendix D-B, where
the latter is based on the help of a genie and the former
is not. Similarly, Appendix E-B generalizes Appendix D-C
in the sense that even without the help of a genie, we
can still use some construction similar to the one in
Appendix D-C to find a network instance with NC gain
arbitrarily close to 2.

WANG AND CHEN: SENDING PERISHABLE INFORMATION 273

Fig. 12. An illustration of the iterative genie-free construction for the general
example with an arbitrarily given m value. (a) A modified version of the high-
level description. D = 2(m−1)+1+Right.Half+δm−1. (b) The corresponding
compound network.

Our new construction is as follows.
Step 1: For any given ε > 0, we find an m value such that

2−(m−1) < ε and fix that m value throughout our construction.
Step 2: Consider any arbitrarily given network with T/D

spread (gain◦,�◦
L ,�◦

H), which satisfies gain◦ ≤ 2−2−(m−2),
�◦

L ≥ 1 and �◦
H < ∞. Without loss of generality, we

also assume that for this G◦ we have RNC(D◦) = 1 and
Rroute(D◦) = 1

gain◦ . Using G◦, we will construct a routing-
equivalent network as follows.

We start from the high-level description for the m-th mem-
ber (Gm , Dm) of the family described in Appendix C-B. Also
see Fig. 7 for an illustration of m = 4. For any given 2m
strictly positive integer values denoted by αi , i ∈ [0, m − 1],
δ j , j ∈ [1, m − 1], and Right.Half, we can modify Fig. 7 in a
similar way as described in Fig. 11(a) and the resulting graph
is described in Fig. 12(a).

Specifically, we set the length of the base of the left triangles
to be 2(m −1). The reason is that the base of the left triangles
contains (m − 1) segments, each is occupied by node Ai for
i ∈ [1, m − 1]. Assuming each segment is of 2 edges with
Ai being the center node, the base of the left triangles is of
length 2(m − 1), see Fig. 12(a). The length of the base of the
right triangles is set to Right.Half.

The distance of the detour using wi (the right triangle) is set
to Right.Half + δi for i ∈ {1, · · · , m −1}, where we count the
detour distance as the length from the head of bottleneck edge
e∗ to destination d using node wi . For example, if i = m − 1,
then the length of the path along the upper edges of the biggest
right triangle is Right.Half + δm−1. If i = m − 2, then the
detour path starts from the head of e∗, continues along the

straight path to the first branching point, then diverts to wm−2,
and finally arrives at d . Our construction requires that such a
detour path has length Right.Half + δm−2.

Because our construction has to satisfy
length(suiwm−1−i d) being the same for all i ∈ [0, m − 1],
see (36), we set the length of the left detour using ui to

be 2(m − 1) + δm−1 − δm−1−i , where we define δ0
�= 0

and we count the detour distance as the length from the
source s to the tail of the bottleneck edge e∗ using node ui .
For example, if i = m − 3, then the detour path starts
from s, uses the path corresponding to um−3, merges with
the straight line su0w0d , and finally arrives at the tail of e∗.
Our construction requires that such a detour path has length
2(m − 1) + δm−1 − δm−1−i = 2(m − 1) + δm−1 − δ2.

The delay requirement value is set to be

D
�= length(suiwm−1−i d)

= (2(m − 1) + δm−1 − δm−1−i) + 1

+(Right.Half + δm−1−i)

= 2(m − 1) + 1 + (Right.Half + δm−1). (58)

See the high-level network description in (38) and see
Fig. 12(a) for illustration.

Once the basic topology of the network is fixed, we also

require that for all i ∈ [1, m − 1], the last Di
�= αi D◦ unit-

capacity edges of the route from wi to d are replaced by a

path with length Di and capacity 1
gain◦ . Similarly, the last D0

�=
α0D◦ unit-capacity edges of the straight route (directly from
head(e∗) to d without using any detour) is replaced by a path
with length D0 and rate 1

gain◦ . See Fig. 12(a) for illustration.
One can clearly see that the above construction is uniquely

determined once the 2m integer values: {αi > 0 : i ∈ [0, m −
1]}, {δ j > 0 : j ∈ [1, m − 1]}, and Right.Half > 0 are fixed.
We now describe how to choose these parameter values. In
particular, we require them to satisfy the following conditions,

for which the integer constant D is defined in (58) and Di
�=

αi D◦,∀i ∈ [0, m − 1].
• The Feasibility Condition:

δm−1 > δm−2 > · · · > δ1 > δ0 = 0 (59)

Right.Half + δm−1 ≥ Dm−1 + 1 (60)

Right.Half + δi ≥ Di + (m − i) + 1, ∀i ∈ [1, m − 2]
(61)

Right.Half ≥ D0 + (m − 1) + 1. (62)

• Condition 2: For all j ∈ [1, m − 1],
(2(m−1)+δm−1−δ j−1) + 1 + (Right.Half+δ j − D j)

+ (D j − α j �
◦
L) > D (63)

⇐⇒ δ j−1 < δ j − α j �
◦
L (64)

where (64) follows from (63) by replacing D and Di with their
respective definitions.

• Condition 3: For all i ∈ [0, m − 1],
D − (2(m − 1) + 1 + (Right.Half + δi − Di))

< Di + αi�
◦
H (65)

⇐⇒ δm−1 − αi�
◦
H < δi . (66)

274 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 1, JANUARY 2017

where (66) follows from (65) by replacing D and Di with their
respective definitions.

The feasibility conditions are to ensure that the path length
values in Fig. 12(a) are consistent. Specifically, (59) ensures
that the larger the triangle in the illustration, the longer the
detour length. To explain (60), we consider the detour using
wm−1, which is of length Right.Half + δm−1. The feasibility
condition (60) ensures after replacing the last Dm−1 unit-
capacity edges of the detour by a special path with length
Dm−1 and capacity 1

gain◦ , we still have part of the wm−1

detour being the regular unit-capacity edges (the thick lines
in Fig. 12(a)). Similarly, for all i = m − 2, m − 3, · · · , 1, the
detour using wi has length Right.Half + δi . We then note that
the path from the head of e∗ to node Bm−1−i has (m−i) hops.
The feasibility condition (61) ensures that after replacing the
last Di unit-capacity edges of the route from wi to d by a
special path with length Di and capacity 1

gain◦ , we still have
at least one edge after node Bm−1−i being the regular unit-
capacity edges (the thick lines in Fig. 12(a)).

When not detouring at all in the right triangles, the direct
path from head(e∗) to d has length Right.Half. We also
note that the path from the head of e∗ to node Bm−1 has
(m − 1) hops. The feasibility condition (62) then ensures that
after replacing the last D0 unit-capacity edges of the route from
Bm−1 to d by a special path with length D0 and capacity 1

gain◦ ,
the Bm−1-to-d path still has at least one regular unit-capacity
edge (the thick lines in Fig. 12(a)). Conditions 2 and 3 will
be explained shortly after.

In Appendix F, we will prove that for any given T/D spread
(gain◦,�◦

L,�◦
H)D◦ value, we can always find 2m parameter

values {αi > 0 : i = 0, · · · , m −1}, {δ j > 0 : j = 1, · · · , m −
1}, and Right.Half > 0 satisfying (59) to (66). Therefore, the
construction of the routing-equivalent network (Fig. 12(a)) in
Step 2 is always feasible.

Step 3: After constructing the routing-equivalent network
(Fig. 12(a)) described in Step 2, we convert it to a com-
pound network (Fig. 12(b)) by replacing each special path
of length Di = αi D◦ by an αi -elongated version of G◦ for all
i ∈ [0, m−1] and keep the same delay requirement D value
defined in (58). The description of the new compound network
instance (G, D) is now complete.

The two networks constructed in Steps 1 to 3 satisfy the
following lemma.

Lemma 6: The compound network Fig. 12(b) has delay-
constrained NC capacity m packets per time slot, and its delay-
constrained routing capacity is equal to that of Fig. 12(a).

Using this lemma, we can compute the delay-
constrained routing capacity of Fig. 12(b) by solving
the delay-constrained routing capacity of Fig. 12(a). By (52),
one can prove that, assuming gain◦ ≤ 2 − 2−(m−1), the
routing capacity is m−2+2−(m−1)

gain◦ + 1. The new NC gain is

gain = m·gain◦
m−2+2−(m−1)+gain◦ . Our construction without the

genie has the same NC gain as the genie-aided construction
in Appendix D-C. By iteratively applying Steps 2 to 3
in this section, we can design a network with NC gain
> 2 − ε for any given ε > 0. Our construction is
complete.

Proof: Proof of Lemma 6: The first half of Lemma 6
can be proven by the same NC scheme as discussed in
Appendix D-C. Namely, we perform the NC scheme previ-
ously described in Appendix C-B and then when traversing
over the αi G◦ subnetworks, instead of forwarding the pack-
ets, we perform the optimal NC solution associated to the
constituent G◦.

For the second half of Lemma 6, we will prove that
Lemma 3 holds for our new construction as well. To that end,
we notice that as long as Observations 1 to 3 in the proof of
Lemma 3 hold, then Lemma 3 holds. One can easily see that
Observation 1 holds naturally. In the following we prove that
for any arbitrarily given m ≥ 2, Observations 2 and 3 hold in
our new genie-free construction. See Figs. 12(b) and 12(a) for
illustration.

To prove Observation 2, we notice that a deadline-violating
path in the routing-equivalent network Fig. 12(a) must be
of the form suiw j d with i + j ≥ m. As a result, we
need to prove that any path of the form suiw j (α j G◦)d ,
i + j ≥ m, in the compound network must have
length > D. Since the larger the triangle the longer the detour
distance, we only need to prove that any path of the form
sum− j w j (α j G◦)d, j ∈ [1, m − 1] in the compound network
must have length > D.

By the definition of �◦
L in (43) and D j

�= α j D◦, any path
connecting the input/output nodes of α j G◦ must have length
no less than D j −α j �

◦
L hops. Therefore, any path of the form

sum− j w j (α j G◦)d in Fig. 12(b) must have at least (2(m−1)+
δm−1 −δ j−1)+1+(Right.Half+δ j −D j)+(D j −α j �

◦
L) hops

where (2(m − 1)+ δm−1 − δ j−1)+ 1 + (Right.Half + δ j −D j)
is the number of hops from s to the input node of α j G◦ using
the path sum− j w j (α j G◦)d . Since (63) in Condition 2 is true,
all those paths have length > D. Observation 2 is thus proven.

We now prove Observation 3. The first half of Observation 3
is straightforward since the subnetworks α j G◦, j ∈ [0, m − 1]
form a cut. To prove the second half, we first consider all
the deadline-respecting paths (length ≤ D) in the compound
network (Fig. 12(b)) that use the αi G◦ network for some i ∈
[0, m − 2]. (The case in which i = m − 1 is a degenerate case
and follows similarly.) We first quantify the shortest possible
distance from s to the input terminal of αi G◦ as follows.
Since the (Am−1−i , Bm−1−i) pipe has the same length as the
distance from Am−1−i to Bm−1−i in the primary component,
we only need to consider the shortest path from s to the
input terminal of αi G◦ in the primary component without
using the (Am−1−i , Bm−1−i) pipe. One can easily see that
such a shortest path must use the su0wi d path. As a result,
the shortest possible distance from s to the input terminal of
αi G◦ is (2(m − 1) + 1 + (Right.Half + δi) − Di) hops. This
implies that for any deadline-respecting path in the compound
network, the corresponding sub-path within αi G◦ must have
length ≤ D − (2(m − 1) + 1 + (Right.Half + δi) − Di). Since
our construction satisfies (65), Observation 3 holds for all
deadline-respecting paths in the compound network that use
αi G◦.

Since Observations 1 to 3 hold for our new construction,
the second half of Lemma 6 is proven.

WANG AND CHEN: SENDING PERISHABLE INFORMATION 275

APPENDIX F
THE FEASIBILITY OF THE GENERAL COMPOUND

NETWORK CONSTRUCTION IN APPENDIX E-B

In this section, we will prove that we can always find 2m
integer values {αi > 0 : i ∈ [0, m − 1]}, {δ j > 0 : j ∈ [1, m −
1]}, and Right.Half > 0 satisfying (59) to (66). We notice that
(64) automatically implies (59) and we will thus focus only
on (60) to (66) subsequently.

To that end, we first notice that Right.Half appears only on
the left-hand sides of (60) to (62), not in (64) nor in (66).
Therefore, whenever we have finished choosing the {αi }
and {δ j } values, we can always choose a sufficiently large
Right.Half to satisfy (60) to (62).

Before describing how to choose 2m−1 integer values {αi >
0 : i ∈ [0, m − 1]} and {δ j > 0 : j ∈ [1, m − 1]}, we relax the
problem a bit and focus on finding 2m integer values {αi >
0 : i ∈ [0, m − 1]} and {δ j : j ∈ [0, m − 1]} that satisfy (64)
and (66). Namely, instead of focusing on finding δ1 to δm−1
with the value of the dummy variable δ0 hardwired to 0, we
are now allowed to choose the δ0 value as well. Furthermore,
previously all δ j values have to be strictly positive. In our
relaxed problem, we allow negative δ j . We will first prove
that with such a relaxation, finding those {αi } and {δ j } values
is always possible.

We prove the above claim by explicit construction. We first
set δm−1 = 0 and αm−1 = 1. Then for i = m − 2 back to
0, we set the δi and αi in the following sequential way. For
any given i , we choose δi as an integer satisfying (64). This
is always possible since we have already fixed our choices of
δi+1 and αi+1 in the previous round and we allow δi to take
a negative value. After deciding the δi value, we choose the
αi value as a strictly positive integer satisfying (66). Again,
this is always possible since δi has been decided already and
by our definition of �◦

H in (44) we always have �◦
H ≥ 1.

The above procedure is repeated for all i = m − 2 back
to 0 and we have thus found the desired {αi > 0 : i ∈
[0, m − 1]} and {δ j : j ∈ [0, m − 1]} satisfying (64) and (66)
simultaneously.

Now we describe how to incorporate the positivity con-
straint on δ j and the dummy constant constraint δ0 = 0. To that
end, we first use δ j,old to denote the δ j value we found in

the previous construction. Define x
�= δ0,old. Then we keep

the same {αi > 0 : i ∈ [0, m − 1]} values of our previous
construction but choose the new δ j,new by δ j,new = δ j,old − x
for all j ∈ [0, m − 1].

It is clear that δ0,new = 0 satisfies the dummy constant
constraint. Also, the new δ j,new and the previously constructed
{αi > 0 : i ∈ [0, m − 1]} must satisfy both (64) and (66)
since we now shift all the δ j values by the same x amount.
Finally, since the new δ j,new satisfy (64), they are strictly
increasing with respect to j . Therefore, δ j,new > δ0,new = 0
for all j ∈ [1, m − 1]. The positivity condition on δ j also
holds.

The above explicit construction shows that we can always
find integer values {αi > 0 : i ∈ [0, m − 1]}, {δ j > 0 : j ∈
[1, m − 1]}, and Right.Half > 0 satisfying (60) to (66). The
proof is complete.

APPENDIX G
PROOFS OF PROPOSITION 4 AND COROLLARY 1

Proof of Proposition 4: Consider any delay-constrained
rate R that is feasible. By Proposition 1, for any arbitrary
T value, the time expanded graph G

[T +D]
can sustain T

simultaneous unicast flows from [s, t] to [d, t + D] for all
t ∈ [1, T] with individual rate R.

Consider any arbitrary T satisfying T > L. We define

Eh,T
�= {([u, t], [v, t + 1]) : ∀e = (u, v) ∈ E,

∀t ∈ [1, T + D − 1] s.t. h(e, mod (t, L)) = 1}
(67)

in the time expanded graph G
[T +D]

, where h(·, ·) is a function
satisfying the statements in Proposition 4. The difference
between Eh,T and the previously defined Eh in (23) is that
Eh,T is defined for arbitrarily large T while Eh is defined for
a given L.

We now prove that Eh,T in (67) is an edge-cut in G
[T +D]

that separates [s, t] from {[d, τ + D] : ∀τ ∈ [1, t]} for all
t ∈ [1, T]. Suppose not. Then there exists t1 ≤ T and t2 ≤
t1 + D such that there exists a path from [s, t1] to [d, t2] in
G

[T +D]
without using any edge in Eh,T . Note that by the

“causality” used in the construction of G
[T +D]

, this implicitly
implies t1 < t2.

We now argue that if such a path exists, there exists a
path from [s, t̃1] to [d, t̃2] in G

[L+D]
without using Eh where

t̃1
�= mod (t1 − 1, L) + 1 and t̃2

�= t̃1 + t2 − t1. The reason
is that whatever the path form [s, t1] to [d, t2] in G

[T +D]

is, we can transcribe it to a path from [s, t̃1] to [d, t̃2] in
G

[T +D]
by shifting the time indices of the intermediate nodes

by (t1 − t̃1). The time-shifted new path does not use any
edge in Eh,T since the shift amount t1 − t̃1 is a multiple
of L and Eh,T includes edges “periodically with period L.”

See (67). Furthermore, such a path is not only in G
[T +D]

but also in G
[L+D]

since by our construction t̃1 ≤ L and
t̃2 ≤ L + D. By noting that Eh,T in (67) is a superset
of Eh in (23), the time-shifted new path does not use Eh ,
either.

However, the existence of such a path contradicts the state-
ment in Proposition 4 that Eh forms an edge-cut separating
[s, t] from [d, t + D] for all t ∈ [1, L] since one can
now traverse from [s, t̃1] to [d, t̃2] and then traverse through
[d, t̃2] → [d, t̃2 + 1] → · · · → [d, t̃1 + D] without using Eh .
This contradiction proves that Eh,T in (67) is an edge-cut in

G
[T +D]

that separates [s, t] from {[d, τ + D] : ∀τ ∈ [1, t]} for
all t ∈ [1, T].

Since Eh,T is an edge cut separating [s, t] from {[d, τ +D] :
∀τ ∈ [1, t]} for all t ∈ [1, T], by the generalized network-
sharing bound in [21], we have

T · R ≤
∑

e∈Eh,T

ce (68)

≤
⌈

T + D − 1

L

⌉∑

e

(
L−1∑

l=0

h(e, l)

)
ce (69)

276 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 1, JANUARY 2017

where (68) follows from that the sum rate of the T coexisting
flows is no larger than the generalized cut set value [21]; and
(69) follows from the definition of Eh,T in (67) and from
over-counting one extra time period of L time slots.

Ineq. (69) implies

R ≤ L

T

⌈
T + D − 1

L

⌉∑

e

(∑L−1
l=0 h(e, l)

L

)
ce, ∀T .

By letting T → ∞, we have proven (24).
Proof of Corollary 1: Specifically, consider any IP solution

{y∗
e } that leads to an upper bound in Proposition 3. By setting

L = 1 and the binary mapping to be h(e, 0) = y∗
e for all e,

one can verify that the Eh in (23) is an edge-cut in G
[1+D]

that
separates [s, 1] from [d, 1+D] since {y∗

e } corresponds to a cut
in G severing all paths of length ≤ D. One can easily verify
that the resulting upper bound in (24) for this particular choice
of L = 1 and h(e, 0) = y∗

e is identical to (17). As a result,
any upper bound in Proposition 3 can be used to construct an
upper bound in Proposition 4 with the same value.

Conversely, for L = 1 and any binary mapping h(e, 0), if
Eh in (23) is an edge cut separating [s, 1] from [d, 1 + D],
then the choice of y∗

e = h(e, 0) will be a cut severing all paths
of length ≤ D. As a result, any upper bound in Proposition 4
can be used to construct an upper bound in Proposition 3 with
the same value. The equivalence is thus proven.

APPENDIX H
THE GENERALIZED CUT SET VERIFICATION

This section considers exclusively Fig. 3(b). To show that
the Eh in (23) generated by L = 2 and the h(e, t) in
(25)–(26) is an edge cut separating [s, t] from [d, t + D]
for all t ∈ [1, 2], we notice that there are only 4 types
of paths that connect [s, t] to [d, t + D], where D = 6.
They are

Type 1: The path [s, t]→[v1, t + 1]→[v2, t + 2]→[v3, t +
3]→ [v7, t +4]→[v8, t +5]→[d, t +6]. If t = 2, then the edge
[s, t]→[v1, t + 1] will be included in Eh by (25). If t = 1,
then the edge [v2, t + 2]→[v3, t + 3] will be included in Eh

by (26).
Type 2: The path [s, t]→[v5, t + 1]→[v6, t + 2]→[v2, t +

3]→ [v3, t + 4]→[v4, t + 5]→[d, t + 6]. If t = 2, then the
edge [v2, t + 3]→[v3, t + 4] will be included in Eh by (26).
If t = 1, then the edge [v4, t + 5]→[d, t + 6] will be included
in Eh by (25).

Type 3: The path [s, t]→[v1, t + 1]→[v9, t + 2]→[v11, t +
3]→ [v10, t + 4]→[v4, t + 5]→[d, t + 6]. If t = 2, then the
edge [s, t]→[v1, t+1] will be included in Eh by (25). If t = 1,
then the edge [v4, t + 5]→[d, t + 6] will be included in Eh

by (25).
Type 4: Type 4 corresponds to the paths of the form

sv1v2v3v4d . Since the path sv1v2v3v4d in the original graph
G has length 5, it means that if we go directly from [s, t] to
[d, t + 6] in the time expanded graph G

[L+D]
, the packet will

arrive in 5 time slots rather than 6. Therefore, we can “wait”
and stay idle in one of the six nodes {s, v1, v2, v3, v4, d}. For
example, if we stay in v1, then the corresponding path in
G

[L+D]
becomes [s, t]→[v1, t +1]→[v1, t +2]→[v2, t +3]→

Fig. 13. An illustration of the proposed construction with m = 4 and
D = 2m − 1 = 7.

[v3, t + 4]→[v4, t + 5]→[d, t + 6]. If we stay in d , then
the corresponding path in G

[L+D]
becomes [s, t]→[v1, t +

1]→[v2, t+2]→[v3, t+3]→ [v4, t+4]→[d, t+5]→[d, t+6].
Totally there are 6 paths of type-4, each corresponding to stay-
ing in one of the six nodes {s, v1, v2, v3, v4, d}, respectively.

We now consider two cases. Case 1: If we stay idle in
one of {v3, v4, d}, then the first 3 edges of the paths must
be [s, t]→[v1, t + 1]→[v2, t + 2]→[v3, t + 3]. If t = 2, then
the edge [s, t]→[v1, t + 1] will be included in Eh by (25). If
t = 1, then the edge [v2, t + 2]→[v3, t + 3] will be included
in Eh by (26).

Case 2: If we stay idle in one of {s, v1, v2}, then the last 3
edges of the paths must be [v2, t + 3]→[v3, t + 4]→[v4, t +
5]→[d, t + 6]. If t = 2, then the edge [v2, t + 3]→[v3, t + 4]
will be included in Eh by (26). If t = 1, then the edge [v4, t +
5]→[d, t + 6] will be included in Eh by (25).

The above analysis shows that Eh separates [s, t] from
[d, t + 6] for all t ∈ [1, 2]. Our proof is thus complete.

APPENDIX I
A PROOF OF PROPOSITION 5

For any m ≥ 2, we construct a network instance as follows.
See Fig. 13 for illustration. The network contains three major
components.

Component 1: A direct path of length m connecting s to d .
We denote the intermediate nodes by vi ,∀i ∈ [1, m − 1].

Component 2: A set of m − 1 paths connecting s and vi

for i ∈ [1, m − 1]. Each path is of length 2i . Component 2
is illustrated by the paths in the upper half of Fig. 13. For
future references, the path connecting s and vi is denoted by
Ui . Namely, the i -th Upper path.

Component 3: A set of m −1 paths connecting vi and d for
i ∈ [1, m − 1]. Each path is of length 2(m − i). Component
3 is illustrated by the paths in the lower half of Fig. 13. For
future references, the path connecting vi and d is denoted by
Li . Namely, the i -th Lower path.

All edges/paths are of unit capacity, i.e., ce = 1,∀e ∈ E .
The delay requirement is set to D = 2m − 1.

We first show that R∗
route = m for the above network. The

reason is that the following m paths

sv1 L1d

sUivivi+1 Li+1d,∀i ∈ [1, m − 2]
sUm−1vm−1d

WANG AND CHEN: SENDING PERISHABLE INFORMATION 277

all have length 2m − 1 and are edge-disjoint. As a result, we
have R∗

route = m since the min-cut value from s to d is m.
We now prove that R∗

RLNC = 1. To that end, we first
consider the transfer function of the network, which takes into
account the local coding coefficients in (29), but omits the
impact of the precoding operations in (28). More specifically,
suppose at time t source s sends a coded symbol W1(t) directly
to v1 and sends coded symbols Wi+1(t) through the path Ui for
i ∈ [1, m−1]. And also suppose in the end of time t destination
d receives Ym(t) directly from vm−1 and receives Yi (t) through
the path Li for i ∈ [1, m − 1]. Then the transfer function
between the input vector �W (t) = (W1(t), · · · , Wm(t))T and
the output vector �Y (t) = (Y1(t), · · · , Ym(t))T can be written as

�Y (t) =
t∑

τ=1

Ft,τ · �W (τ)

where Ft,τ is the transfer matrix from �W (τ) to �Y (t), which
is a function of the local coding coefficients of the network
nodes. Since we assume that the local coding coefficients are
fixed and do not change over time, Ft,τ is a function of the
time difference � = t − τ . We can thus define F� = Fτ+�,τ .

Using the above notation of the transfer matrix F�,
[14] proves the following results regarding the delay-
constrained throughput.

Proposition 8 ([14, Th. 2]): For any given set of local
coding coefficients, we consider its transfer matrix F�. For
any given integer x ∈ [0,∞), define the following matrix

F x
�=

⎡

⎢⎢⎢⎢⎢⎣

F0 0 · · · · · · 0
F1 F0 0 · · · 0
F2 F1 F0 · · · 0
...

...
...

...
...

Fx Fx−1 Fx−2 · · · F0

⎤

⎥⎥⎥⎥⎥⎦
. (70)

Then the largest supportable rate under the delay constraint D,
assuming both the precoding vectors (how we generate �W (t))
and the decoding operations at d are chosen in the optimal
way, is characterized by

R∗ = Rank(FD−1) − Rank(FD−2). (71)
We will use Proposition 8 to prove that R∗

RLNC = 1 in
Fig. 13. To that end, we first assume that all the interior
nodes of paths Ui and Li only perform pure relaying. Such
an assumption is without loss of generality since with a
sufficiently large finite field GF(q), the RLNC performed
by any node u with |In(u)| = 1 is equivalent to “relaying”
with close-to-one probability. And we denote the local coding
coefficients of node vi , i ∈ [1, m − 1], by

β[i]
H,H , β[i]

U,H , β[i]
H,L, and β[i]

U,L . (72)

Namely, β[i]
H,H is the coding coefficient used by vi when going

from the Horizontal input edge to the Horizontal output edge
of vi ; β

[i]
U,H is the coding coefficient used by vi when going

from the Upper path Ui to the Horizontal output edge; β[i]
H,L

is the coding coefficient used by vi when going from the
Horizontal input edge to the Lower path Li ; and β

[i]
U,L is the

coding coefficient used by vi when going from the Upper path
Ui to the Lower path Li .

Using the local coding coefficients in (72), we will char-
acterize the expressions of F� in Fig. 13. We first notice
that since the shortest path from s to d is of length m, we
have F� = 0 if � ≤ m − 2. We now characterize F� when
� ∈ [m − 1, D − 1] = [m − 1, 2m − 2]. Specifically, we can
write down the transfer matrix F� by

F�
�=
(

f (�)
i, j

)

where f (�)
i, j denotes the entry at the intersection of the i -th

row and the j -th column. By tracing the impact of each local
coding coefficients in (72), we have that for any i, j ∈ [1, m]
and any � ∈ [m − 1, 2m − 2],
f (�)
i, j

=
{

β
[j−1]
U,H

(∏i−1
l= j β[l]

H,H

)
β[i]

H,L if i − j = 2m − 2 − �

0 otherwise
.

(73)

Here we use the convention that β[0]
U,H = 1 = β[m]

H,L since the
coding coefficients in (72) are defined only for i ∈ [1, m − 1].

Define

∀ j ∈ [1, m − 1], γ [j] �= β
[j]
U,H

β
[j−1]
U,H β

[j]
H,H

and

	
�=

⎡

⎢⎢⎢⎣

γ [1] 0 · · · 0
0 γ [2] · · · 0
...

...
... 0

0 0 0 γ [m−1]

⎤

⎥⎥⎥⎦ .

Since all the coding coefficients in (72) are chosen randomly,
γ [i] and 	 are well-defined with close-to-one probability when
the underlying finite field GF(q) is sufficiently large.

By (73), one can easily verify that
⎡

⎢⎢⎢⎢⎢⎣

Fm−1
Fm

Fm+1
...

F2m−2

⎤

⎥⎥⎥⎥⎥⎦

[
01×(m−1)

I(m−1)×(m−1)

]
=

⎡

⎢⎢⎢⎢⎢⎣

0
Fm−1
Fm
...

F2m−3

⎤

⎥⎥⎥⎥⎥⎦

[
	

01×(m−1)

]
(74)

where 01×(m−1) is a zero row vector of dimension m − 1 and
I(m−1)×(m−1) is the (m − 1)-by-(m − 1) identity matrix.

If we remove the first column of FD−1 and denote the
remaining (mD)×(mD−1) matrix as F

′
D−1, we will then have

Rank(F
′
D−1) = Rank(FD−2) since (i) F� = 0 if � ≤ m − 2;

(ii) by (70) and (74) every column of F
′
D−1 can be written as

a linear combination of the columns in F
′′
D−2 where

F
′′
D−2

�=
[

0m×(m(D−1))

FD−2

]
;

and (iii) we also have Rank(F
′′
D−2) = Rank(FD−2). The fact

that Rank(F
′
D−1) = Rank(FD−2) then implies

Rank(FD−1) − Rank(FD−2) ≤ 1

whenever 	 is well-defined, which is of close-to-one proba-
bility.

278 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 1, JANUARY 2017

Finally, since the (m, 1)-th entry of Fm−1 being∏m−1
i=1 β

[i]
H,H is non-zero with close-to-one probability, we have

Rank(FD−1)−Rank(FD−2) = 1 with close-to-one probability.
By Proposition 8, the largest supportable R∗

RLNC = 1 even with
the optimal precoder and decoder designs.

APPENDIX J
FIG. 4(A) HAS R∗

RLNC = 2

In this section we show that with high probability, RLNC
is able to support an integer rate R = 2 in Fig. 4(a). The
proof that RLNC is not able to support R = 3 is similar to
our discussion in Section II-C and is thus omitted.

For the ease of exposition, we assume that the message
symbols for each time t are X (t) and Y (t). Since the symbols
are precoded in (28), we assume

M(t)
sv2

= a1 X (t) + b1Y (t)

M(t)
sv1

= a2 X (t) + b2Y (t)

M(t)
sv4

= a3 X (t) + b3Y (t)

where the coefficients ai and bi are randomly chosen. Assum-
ing nodes {v1, v4, v5, v3, v6, v7} only perform pure relaying,
we will have

M(t)
v2d = βs,d(a1 X (t − 1) + b1Y (t − 1))

+ βv1,d(a2 X (t − 2) + b2Y (t − 2))

+ βv5,d(a3 X (t − 3) + b3Y (t − 3)) (75)

where for any u1 ∈ In(v2) and u2 ∈ Out(v2), the scalar βu1,u2

is shorthand for the local coding coefficient from edge (u1, v2)
to edge (v2, u2) at node v2. Similarly, we have

M(t)
v3d = βs,v3(a1 X (t − 2) + b1Y (t − 2))

+ βv1,v3(a2 X (t − 3) + b2Y (t − 3))

+ βv5,v3(a3 X (t − 4) + b3Y (t − 4)) (76)

M(t)
v7d = βs,v6(a1 X (t − 3) + b1Y (t − 3))

+ βv1,v6(a2 X (t − 4) + b2Y (t − 4))

+ βv5,v6(a3 X (t − 5) + b3Y (t − 5)). (77)

Recall that d would like to decode X (t − 3) and Y (t − 3) by
the end of time t since D = 4. By delaying the M(t)

v2d coded
symbol in (75), destination d can compute

M(t)
v3d − βs,v3

βs,d
M(t−1)

v2d

=
(

βv1,v3 − βs,v3

βs,d
βv1,d

)
(a2 X (t − 3) + b2Y (t − 3))

+
(

βv5,v3 − βs,v3

βs,d
βv5,d

)
(a3 X (t − 4) + b2Y (t − 4))

(78)

We now notice that in (77) and (78) the terms corresponding to
(X (t −4), Y (t −4)) and (X (t −5), Y (t −5)) have already been
decoded in the past, and they can thus be removed. Destination
d can then decode (X (t − 3), Y (t − 3)), with close-to-one

probability, from the remaining terms of (77) and (78), which
are

βs,v6(a1 X (t − 3) + b1Y (t − 3))

and

(
βv1,v3 − βs,v3

βs,d
βv1,d

)
(a2 X (t − 3) + b2Y (t − 3)).

Rate R = 2 is thus supported by RLNC.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216,
Jul. 2000.

[2] F. Bai, T. Elbatt, G. Hollan, H. Krishnan, and V. Sadekar, “Towards
characterizing and classifying communication-based automotive applica-
tions from a wireless networking perspective,” in Proc. IEEE Workshop
Autom. Netw. Appl. (AutoNet), Dec. 2006, pp. 1–25.

[3] X. Chen, M. Chen, B. Li, Y. Zhao, Y. Wu, and J. Li, “Celerity: A low-
delay multi-party conferencing solution,” IEEE J. Sel. Areas Commun.,
vol. 31, no. 9, pp. 155–164, Sep. 2013.

[4] R. Dougherty, C. Freiling, and K. Zeger, “Networks, matroids, and non-
Shannon information inequalities,” IEEE Trans. Inf. Theory, vol. 53,
no. 6, pp. 1949–1969, Jun. 2007.

[5] E. Drinea, C. Fragouli, and L. Keller, “Delay with network coding and
feedback,” in Proc. IEEE Int. Symp. Inf. Theory, Seoul, South Korea,
Jun./Jul. 2009, pp. 844–848.

[6] J. Edmonds, “Edge-disjoint branchings,” in Combinatorial Algorithms,
R. Rustin, Ed. New York, NY, USA: Academic, 1973, pp. 91–96.

[7] J. Edmonds and R. M. Karp, “Theoretical improvements in algorith-
mic efficiency for network flow problems,” J. ACM, vol. 19, no. 2,
pp. 248–264, Apr. 1972.

[8] E. Erez and M. Feder, “Convolutional network codes,” in Proc. IEEE
Int. Symp. Inf. Theory, Jun./Jul. 2004, p. 146.

[9] E. Erez, M. Effros, and T. Ho, “Network codes with deadlines,” in Proc.
46th Annu. Allerton Conf. Commun., Control, Comput., Monticello, IL,
USA, Sep. 2008, pp. 339–346.

[10] A. Eryilmaz, A. Ozdaglar, M. Médard, and E. Ahmed, “On the delay
and throughput gains of coding in unreliable networks,” IEEE Trans.
Inf. Theory, vol. 54, no. 12, pp. 5511–5524, Dec. 2008.

[11] L. Ford, Jr., and D. R. Fulkerson, “Maximal flow through a network,”
Can. J. Math., vol. 8, no. 3, pp. 399–404, 1956.

[12] A. Goldberg, “Recent developments in maximum flow algorithms,”
NEC Res. Inst., Inc., Princeton, NJ, USA, Tech. Rep. 98-045, 1998.

[13] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum-flow
problem,” J. ACM, vol. 35, no. 4, pp. 921–940, Oct. 1988.

[14] W. Guo, N. Cai, and Q. T. Sun, “Time-variant decoding of convolutional
network codes,” IEEE Commun. Lett., vol. 16, no. 10, pp. 1656–1659,
Oct. 2012.

[15] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Trans. Inf. Theory, vol. 46, no. 2, pp. 388–404, Mar. 2000.

[16] J. Han and C.-C. Wang, “General capacity region for the fully-connected
3-node packet erasure network,” in Proc. IEEE Int. Symp. Inf. Theory,
Hong Kong, Jun. 2015, pp. 2648–2652.

[17] N. J. A. Harvey, R. Kleinberg, and A. R. Lehman, “On the capacity
of information networks,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2345–2364, Jun. 2006.

[18] T. Ho et al., “A random linear network coding approach to multicast,”
IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[19] S. Kamath, S. Kannan, P. Viswanath, and C. Chekuri, “Delay-
constrained unicast and the triangle-cast problem,” in Proc. IEEE Int.
Symp. Inf. Theory, Hong Kong, Jun. 2015, pp. 804–808.

[20] S. Kamath, D. N. C. Tse, and C.-C. Wang, “Two-unicast is hard,” in
Proc. IEEE Int. Symp. Inf. Theory, Honolulu, HI, USA, Jun./Jul. 2014,
pp. 2147–2151.

[21] S. U. Kamath, D. N. C. Tse, and V. Anantharam, “Generalized network
sharing outer bound and the two-unicast problem,” in Proc. 7th Work-
shop Netw. Coding, Theory, Appl. (NetCod), Beijing, China, Jul. 2011,
pp. 1–6.

[22] A. Khreishah, C.-C. Wang, and N. B. Shroff, “Rate control with pairwise
intersession network coding,” IEEE/ACM Trans. Netw., vol. 18, no. 3,
pp. 816–829, Jun. 2010.

[23] H. Kim, Y.-K. Chia, and A. El Gamal, “A note on the broadcast channel
with stale state information at the transmitter,” IEEE Trans. Inf. Theory,
vol. 61, no. 7, pp. 3622–3631, Jul. 2015.

WANG AND CHEN: SENDING PERISHABLE INFORMATION 279

[24] M. Kodialam and T. V. Lakshman, “On allocating capacity in networks
with path length constrained routing,” in Proc. 40th Annu. Allerton Conf.
Commun., Control, Comput., 2002, pp. 1–10.

[25] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.

[26] D. Koutsonikolas, C.-C. Wang, Y. Hu, and N. Shroff, “FEC-based
AP downlink transmission schemes for multiple flows: Combining the
reliability and throughput enhancement of intra- and inter-flow coding,”
Perform. Eval., vol. 68, no. 11, pp. 1118–1135, Nov. 2011.

[27] W.-C. Kuo and C.-C. Wang, “Two-flow capacity region of the cope prin-
ciple for wireless butterfly networks with broadcast erasure channels,”
IEEE Trans. Inf. Theory, vol. 59, no. 11, pp. 7553–7575, Nov. 2013.

[28] W.-C. Kuo and C.-C. Wang, “Robust and optimal opportunistic schedul-
ing for downlink 2-flow inter-session network coding with varying chan-
nel quality,” in Proc. 33rd IEEE Conf. Comput. Commun. (INFOCOM),
Toronto, ON, Canada, Apr./May 2014, pp. 655–663.

[29] S.-Y. R. Li and Q. Sun, “Network coding theory via commutative
algebra,” IEEE Trans. Inf. Theory, vol. 57, no. 1, pp. 403–415, Jan. 2011.

[30] S.-Y. R. Li and R. W. Yeung, “On convolutional network coding,”
in Proc. IEEE Int. Symp. Inf. Theory, Seattle, WA, USA, Jul. 2006,
pp. 1743–1747.

[31] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[32] X. Li, C.-C. Wang, and X. Lin, “Optimal immediately-decodable inter-
session network coding (IDNC) schemes for two unicast sessions with
hard deadline constraints,” in Proc. 49th Annu. Allerton Conf. Commun.,
Control, Comput., Monticello, IL, USA, Sep. 2011, pp. 784–791.

[33] X. Li, C.-C. Wang, and X. Lin, “On the capacity of immediately-
decodable coding schemes for wireless stored-video broadcast with hard
deadline constraints,” IEEE J. Sel. Areas Commun., vol. 29, no. 5,
pp. 1094–1105, May 2011.

[34] C. K. Ngai and R. W. Yeung, “Network coding gain of combination
networks,” in Proc. IEEE Inf. Theory Workshop, San Antonio, TX, USA,
Oct. 2004, pp. 283–287.

[35] Q. T. Sun, S. Jaggi, and S.-Y. R. Li, “Delay invariant convolutional
network codes,” in Proc. IEEE Int. Symp. Inf. Theory, St. Petersburg,
Russia, Jul./Aug. 2011, pp. 2492–2496.

[36] C.-C. Wang, “Pruning network coding traffic by network coding—A new
class of max-flow algorithms,” IEEE Trans. Inf. Theory, vol. 56, no. 4,
pp. 1909–1929, Apr. 2010.

[37] C.-C. Wang, “On the capacity of 1-to-K broadcast packet erasure
channels with channel output feedback,” IEEE Trans. Inf. Theory,
vol. 58, no. 2, pp. 931–956, Feb. 2012.

[38] C.-C. Wang, “Capacity region of two symmetric nearby erasure channels
with channel state feedback,” in Proc. IEEE Inf. Theory Workshop,
Lausanne, Switzerland, Sep. 2012, pp. 352–356.

[39] C.-C. Wang, “On the capacity of wireless 1-hop intersession network
coding—A broadcast packet erasure channel approach,” IEEE Trans.
Inf. Theory, vol. 58, no. 2, pp. 957–988, Feb. 2012.

[40] C.-C. Wang and J. Han, “The capacity region of two-receiver multiple-
input broadcast packet erasure channels with channel output feedback,”
IEEE Trans. Inf. Theory, vol. 60, no. 9, pp. 5597–5626, Sep. 2014.

[41] C.-C. Wang and N. B. Shroff, “Pairwise intersession network cod-
ing on directed networks,” IEEE Trans. Inf. Theory, vol. 56, no. 8,
pp. 3879–3900, Aug. 2010.

[42] Y. Wu, M. Chiang, and S.-Y. Kung, “Distributed utility maximization
for network coding based multicasting: A critical cut approach,” in
Proc. 2nd Workshop Netw. Coding, Theory, Appl. (NetCod), Boston,
MA, USA, Feb./Mar. 2006, pp. 1–6.

[43] Y. Wu, K. Jain, and S.-Y. Kung, “A unification of network coding and
tree-packing (routing) theorems,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2398–2409, Jun. 2006.

[44] Y. Wu and S.-Y. Kung, “Distributed utility maximization for network
coding based multicasting: A shortest path approach,” IEEE J. Sel. Areas
Commun., vol. 24, no. 8, pp. 1475–1488, Aug. 2006.

[45] L. Ying, S. Shakkottai, A. Reddy, and S. Liu, “On combining shortest-
path and back-pressure routing over multihop wireless networks,”
IEEE/ACM Trans. Netw., vol. 19, no. 3, pp. 841–854, Jun. 2011.

Chih-Chun Wang is currently an Associate Professor of the School of
Electrical and Computer Engineering of Purdue University. He received the
B.E. degree in E.E. from National Taiwan University, Taipei, Taiwan in 1999,
the M.S. degree in E.E., the Ph.D. degree in E.E. from Princeton University
in 2002 and 2005, respectively. He worked in Comtrend Corporation, Taipei,
Taiwan, as a design engineer in 2000 and spent the summer of 2004 with
Flarion Technologies, New Jersey. In 2005, he held a post-doctoral researcher
position in the Department of Electrical Engineering of Princeton University.
He joined Purdue University as an Assistant Professor in 2006, and became
an Associate Professor in 2012. He is currently a senior member of IEEE
and has been an associate editor of IEEE TRANSACTIONS ON INFORMATION

THEORY since 2014 and the technical cochair of the 2017 IEEE Information
Theory Workshop. His current research interests are in the delay-constrained
information theory and network coding. Other research interests of his fall in
the general areas of networking, optimal control, information theory, detection
theory, and coding theory.

Dr. Wang received the National Science Foundation Faculty Early Career
Development (CAREER) Award in 2009.

Minghua Chen (S’04–M’06–SM’13) received his B.Eng. and M.S. degrees
from the Department of Electronic Engineering at Tsinghua University in 1999
and 2001, respectively. He received his Ph.D. degree from the Department of
Electrical Engineering and Computer Sciences at University of California at
Berkeley in 2006. He spent one year visiting Microsoft Research Redmond as
a Postdoc Researcher. He joined the Department of Information Engineering,
the Chinese University of Hong Kong in 2007, where he is currently an
Associate Professor. He is also an Adjunct Associate Professor in Institute
of Interdisciplinary Information Sciences, Tsinghua University. He received
the Eli Jury award from UC Berkeley in 2007 (presented to a graduate
student or recent alumnus for outstanding achievement in the area of Systems,
Communications, Control, or Signal Processing) and The Chinese University
of Hong Kong Young Researcher Award in 2013. He also received several
best paper awards, including the IEEE ICME Best Paper Award in 2009,
the IEEE Transactions on Multimedia Prize Paper Award in 2009, and the
ACM Multimedia Best Paper Award in 2012. He is currently an Associate
Editor of the IEEE/ACM TRANSACTIONS ON NETWORKING. He serves as a
TPC Co-Chair of ACM e-Energy 2016 and a General Co-Chair of ACM e-
Energy 2017. His current research interests include energy systems (e.g., smart
power grids and energy-efficient data centers), energy-efficient transportation
system, distributed optimization, multimedia networking, wireless networking,
network coding, and delayconstrained network information flow.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

