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Optimal Distributed P2P Streaming under Node
Degree Bounds
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Abstract—We study the problem of maximizing the broadcast
rate in peer-to-peer (P2P) systems under node degree bounds, i.e.,
the number of neighbors a node can simultaneously connect to
is upper-bounded. The problem is critical for supporting high-
quality video streaming in P2P systems, and is challenging due to
its combinatorial nature. In this paper, we address this problem
by providing the first distributed solution that achieves near-
optimal broadcast rate under arbitrary node degree bounds,
and over arbitrary overlay graph. It runs on individual nodes
and utilizes only the measurement from their one-hop neighbors,
making the solution easy to implement and adaptable to peer
churn and network dynamics. Our solution consists of two
distributed algorithms proposed in this paper that can be of
independent interests: a network-coding based broadcasting al-
gorithm that optimizes the broadcast rate given a topology, and a
Markov-chain guided topology hopping algorithm that optimizes
the topology. Our distributed broadcasting algorithm achieves
the optimal broadcast rate over arbitrary P2P topology, while
previously proposed distributed algorithms obtain optimality
only for P2P complete graphs. We prove the optimality of our
solution and its convergence to a neighborhood around the
optimal equilibrium under noisy measurements or without time-
scale separation assumptions. We demonstrate the effectiveness
of our solution in simulations using uplink bandwidth statistics
of Internet hosts.

Index Terms—P2P broadcasting, back pressure, network cod-
ing, Markov approximation, optimal and distributed algorithms

I. Introduction

Peer-to-peer (P2P) systems have provided a scalable and
cost effective way for streaming video in the past decade.
Recent studies [11]–[14], however, indicate that the practical
performance of P2P streaming systems can be far from their
theoretical optimal.

There have been work studying the performance limit of
P2P systems to understand and unleash their potential. One
focus is on the streaming capacity problem [15] in P2P live
streaming systems , i.e., maximizing the streaming rate subject
to the peering and overlay topology constraints. The problem is
critical for supporting high-quality video, which is determined
by the streaming rate, in P2P live streaming systems. In this
paper, we focus on the broadcast scenario where all peers in
the system are receivers.
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The case of unconstrained peering on top of a complete
graph is well studied, where the maximum broadcast rate
is derived in several papers [1]–[3], [16], [17]. The case
of unconstrained peering over general graph can also be
addressed by using a centralized solution [5].

The streaming capacity problem becomes NP-Complete
over general graph with node degree bounds [10]. Node degree
is defined as the number of simultaneous active connections
that a node maintains with its neighbors. Due to connection
overhead costs, it is necessary to limit the number of simulta-
neous connections a peer can maintain. This naturally bounds
the node degrees in P2P systems. For instance, in practical
systems such as PPLive [18], the total number of neighbors
of a node is usually bounded around 200, and the number
of active neighbors of a node is usually bounded by 10-15
[15]. In such large P2P systems with hundreds of thousands
of peers, the system topology is not a complete graph.

There has been work studying this challenging problem
of maximizing streaming rate under node degree bounds
and over general P2P graph. SplitStream/CoopNet [6], [7],
ZIGZAG [8], PRIME [9] and most practical systems (such
as PPLive [18] and UUSee [19]) bound node degree but do
not provide rate optimality guarantee. Recently, the authors
in [10] proposed a centralized Cluster-Tree algorithm that
achieves near-optimal broadcast rate with high probability over
complete graph, under the assumption that the node degree
bound is at least logarithmic in the size of the network. A
summary and comparison of previous work and this work are
in Table I.

Despite of these exciting results, the following two impor-
tant questions remain open:
• What is the maximum broadcast rate under arbitrary node

degree bounds, and over general P2P overlay graph?
• How to achieve the maximum broadcast rate in a dis-

tributed manner?
Systems running distributed algorithms, compared with those
running centralized algorithms, are more adaptable to peer
churn and network dynamics.

In this paper, we answer the above two questions and make
the following contributions:
• We provide the first distributed solution that achieves

a broadcast rate arbitrarily close to the optimal under
arbitrary node degree bounds, and over arbitrary overlay
graph. Our solution runs on individual nodes and utilizes
only the information from their one-hop neighbors.

Our solution consists of the following two algorithms that can
be of independent interests.
• We propose a distributed broadcasting algorithm that

achieves the optimal broadcast rate over arbitrary overlay
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TABLE I
Summary and comparison of previous work and this work for maximizing P2P broadcast rate.

References General Arbitrary Node Exact or 1 − ϵ Distributed
Overlay Graph? Degree Bound? Optimality? Solution?

Mutualcast [1] and the algorithms in [2], [3] × × X X
Iterative in [4], [5] X × X ×

CoopNet/SplitStream [6], [7] × X × ×
ZIGZAG [8], PRIME [9] X X × X

Cluster-tree [10] × X conditionally optimal ∗ ×
This paper X X X X

∗ The Cluster-Tree algorithm is (1 − ϵ)-optimal with high probability if the node degree bound is O
(
log N

)
.

graph. Previous distributed P2P broadcasting algorithms
are optimal only for complete overlay graph [1]–[3]. Our
algorithm is based on network coding and utilizes back-
pressure arguments.

• We also propose a distributed algorithm that optimizes the
topology. In this algorithm, each node hops among their
possible set of neighbors towards the best peering con-
figuration. Our algorithm is inspired by a set of log-sum-
exp approximation and Markov chain based arguments
expounded in [20].

• We prove the optimality of the overall solution. We also
prove its convergence to a neighborhood around the op-
timal equilibrium in the presence of noisy measurements
or without time-scale separation assumptions. We demon-
strate the effectiveness of our solution in simulations
using uplink bandwidth statistics of Internet hosts.

II. Problem Formulation

A. Settings and Notations
We model the P2P overlay network as a general directed

graph G = (V, E), where V denotes the set of nodes and E
denotes the set of links. Each link in the graph corresponds
to a TCP/UDP connection between two nodes. Let Nv denote
the neighbor set of node v ∈ V in the graph. Each node v ∈ V
is associated with an upload capacity Cv ≥ 0. We assume
there is no constraint on the downloading rate for each node
v ∈ V . This assumption can be partly justified by the empirical
observation that as residential broadband connections with
asymmetric upload and download rates become increasingly
dominant, bottlenecks typically are at the uplinks of the access
networks rather than in the middle of the Internet.

As such, P2P networks have capacity limits on the nodes
instead of links. This is different from traditional underlay
networks where the capacity limits are on the links.

We focus on the single-source streaming scenario, i.e., a
source s broadcasts a continuous stream of contents to the
entire network. We denote the receiver set as R , V − {s}.

We consider the peering constraints that each node has a
degree bound Bv, i.e., it can only exchange streaming content
with up to a Bv number of neighbors simultaneously due to
connection overhead cost. We allow different nodes to have
different degree bounds. Fig. 1 shows four sample peering
configurations of a 5-node network with node degree bound 3
for each node.

Let F denote the set of all feasible peering configurations
over graph G under node degree bounds. Given a configuration
f ∈ F , we obtain a connected sub-graph of G that satisfies
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Fig. 1. Peering configuration examples for a 5-node network with node
degree bound 3 for each node.

the node degree bound constraints. We denote this sub-graph
as G f =

(
V, E f

)
, where E f represents the set of links in this

sub-graph. We denote Nv, f as the set of node v’s neighbors in
this sub-graph. We have |Nv, f | ≤ Bv where | · | represents the
size of a set.

B. Problem Formulation and Our Approach
For a configuration f ∈ F , let x f be the maximum

achievable broadcast rate under f , i.e., the highest rate at
which every node in the system can receive the streaming
content simultaneously. The problem of maximizing broadcast
rate under node degree bounds can be formulated as follows:

MRC : max f∈F x f . (1)
This problem is combinatorial in nature which is known

to be NP-complete [10], and there is no efficient approximate
solution to the problem even in a centralized manner.

In this paper, we address this problem by providing a
distributed solution. In particular, we first develop a distributed
broadcasting algorithm that can achieve x f under arbitrary
f ∈ F . We then design a distributed algorithm that opti-
mizes towards the best peering configurations. They operate
in tandem to achieve a close-to-optimal broadcast rate under
arbitrary node degree bounds, and over arbitrary overlay graph.
We elaborate on these two algorithms in the following two
sections.

III. The Proposed Distributed Broadcasting Algorithm
By exploiting network coding [21], we design a back-

pressure based distributed broadcasting algorithm. Back-
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pressure type algorithm is proposed initially in [22]. This type
of algorithms select a subset of queues in the system with
the maximum back-pressures and serve these queues subject
to resource constraints, where back-pressure is defined as the
difference between the queue at the local node and that of its
downstream nodes. Back-pressure algorithm design has found
applications in many network resource allocation domains
[23], [24], [25]. In this paper, we apply this method for the
first time to design distributed P2P broadcasting algorithm.
Our algorithm can achieve the maximum broadcast rate over
arbitrary P2P topology.

A. Routing vs. Network Coding
In P2P systems, there are two approaches for broadcasting

contents: one is based on routing [26], in which nodes only
store and forward packets; and the other is based on network
coding [21], [26], in which a node is also allowed to mix
information and output data as functions of the data it received.
Some commercial P2P systems are built upon routing-based
approach (e.g., PPLive [18]), and some are based on network
coding (e.g., UUSee [19], [27])1. It is known that both
routing and network coding approaches can achieve optimal
broadcast rate over arbitrary P2P graph [2], [17]. Compared to
routing-based approach, the network-coding based approach
introduces additional packet header overhead for carrying
coding coefficients (e.g., 3% extra overhead according to
[29]) and computation complexity for encoding and decoding
(e.g., [13], [27] discuss how to keep the complexity low).
However, the network-coding based approach is robust to
peer dynamics since there is no need for constructing and
maintaining the spanning trees. In this section, we design a
distributed broadcasting algorithm based on network coding
that is robust to dynamics. In Section VII, we will discuss
how the overall problem can be solved by using centralized
solutions when only routing is allowed.

B. Network Coding Based Formulation
According to the Max-Flow-Min-Cut theorem, a data trans-

mission of rate z between source s and a receiver d is feasible
if and only if there exists a flow, denoted as f d, satisfying the
following flow conservation constraints:∑

u∈in(v)

f d
uv ≤

∑
u∈out(v)

f d
vu, ∀v ∈ R − {d} , (2)

z ≤
∑

u∈out(s)

f d
su, (3)

0 ≤ f d, (4)

where in(v) , {u|(u, v) ∈ E f } is the set of nodes sending content
to v under configuration f , and out(v) , {u|(v, u) ∈ E f , u , s}
is the set of nodes receiving content from v.

A powerful theorem established in [21] states that a multi-
cast or broadcast rate z from s to a set of receivers is achievable
if and only if z is feasible for s and any receiver d. This is
a strong result as it says that if the network can support a

1We refer interested readers to [27], [28] for more details on performance
of routing-based and network-coding-based practical P2P systems. We focus
on optimal distributed P2P broadcasting algorithm design based on network
coding in this paper.

unicast rate of z between s and any receiver assuming other
receivers’ traffic is absent, then it can support a multicast rate
of z to all the receivers simultaneously. Such rate z can be
achieved by every node in the network performing network
coding [21]. Further, authors in [29], [30] show that it is
sufficient to perform random linear network coding.

In random linear network coding, by independently and ran-
domly choosing a set of coding coefficients from a finite field,
each node sends out the coded packet as a linear combination
of the node’s received packets. The combination information is
specified by a coefficient vector in the packet header, which is
updated by applying the same linear transformations as to the
data. When one node receives a full set of linearly independent
coded packets, it can decode and recover the original packets.
In this paper, we focus on the distributed algorithm design.
The discussions of decoding probability and implementation
details can be found in [29], [30].

Under the setting of network coding, we can consider f d

as a “virtual” information flow between s and d. Multiple
information flows “piggyback” together to transmit over the
physical links. The actual physical rate over a physical link is
only the maximum rate of individual information flows passing
over it. Let guv be the physical flow rate over a link (u, v) ∈ E f ,
then we have f d

uv ≤ guv for all d ∈ R.
With the above understanding, we formulate the problem of

maximizing broadcast rate under configuration f as follows:
MP : max

z, f,g≥0
U(z) (5)

s.t.
∑

u∈in(v)

f d
uv + z1{v=s} ≤

∑
u∈out(v)

f d
vu,∀v ∈ V − {d}, d ∈ R,(6)

f d
vu ≤ gvu,∀v ∈ V,∀u ∈ out(v), d ∈ R, (7)∑

u∈out(v)

gvu ≤ Cv,∀v ∈ V, (8)

where U (z) is a twice-differentiable strictly concave utility
function2, 1{·} denotes the indicator function. The constraints
in (6) describe the flow conservation requirements. The con-
straints in (7) come from the piggybacking property of infor-
mation flows. The node upload capacity constraints are in (8).
The problem MP is a convex problem. All feasible broadcast
rates must satisfy the constraints in (6)-(8) and are achievable
by using random linear network coding.

C. Algorithm Design via Lagrange Decomposition
To proceed, we first relax the first set of constraints in (6)

in problem MP to obtain a partial Lagrangian as follows:
L(z, f, g, λ)

=U(z) −
∑

v∈V−{d}

∑
d∈R
λv,d

 ∑
u∈in(v)

f d
uv + z1{v=s} −

∑
u∈out(v)

f d
vu


=U(z) −

∑
v∈V

∑
d∈R
λv,d

 ∑
u∈in(v)

f d
uv + z1{v=s} −

∑
u∈out(v)

f d
vu

 , (9)

where λv,d, v ∈ V − {d}, d ∈ R are Lagrange multipliers, λd,d =

0,∀d ∈ R, and
∑

u∈in(s) f d
us = 0.

2It might seem unnecessary to involve a strictly concave utility function in
this formulation. The reason is that we later design a primal-dual algorithm
to solve the problem, and using a strictly concave utility function can avoid
its potential instability problem [17].
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The strong duality holds for problem MP since the Slater
conditions are satisfied [31]. Therefore, we can solve problem
MP by finding the saddle points of L(z, f, g, λ).

Noticing that ∑
v∈V

∑
d∈R
λv,d z1{v=s} = z

∑
d∈R
λs,d (10)

and∑
v∈V

∑
d∈R
λv,d

 ∑
u∈in(v)

f d
uv −

∑
u∈out(v)

f d
vu

 =∑
d∈R

∑
v∈V

∑
u∈out(v)

f d
vu(λu,d − λv,d),

(11)
we can find the saddle points of L(z, f, g, λ) by solving the
following problem successively in z, f , g, λ:

min
λ≥0

max
z≥0

(U(z) − z
∑
d∈R
λs,d) + max

f,g≥0

∑
d∈R

∑
v∈V

∑
u∈out(v)

f d
vu(λv,d − λu,d)


(12)

s.t. (7) − (8).

Given λ and z, we consider the following scheduling sub-
problem on f, g:

SSP : max f,g≥0

∑
d∈R

∑
v∈V

∑
u∈out(v)

f d
vu(λv,d − λu,d) (13)

s.t. (7) − (8).

The above linear programming problem has a structure that
allows us to solve it distributedly. The first observation is that
if an optimal g∗ is given, then an optimal f ∗ can be obtained
as follows: ∀u, v ∈ V, d ∈ R,(

f d
vu

)∗
=

0, if λv,d − λu,d ≤ 0,
g∗vu, otherwise.

(14)

As such, it is sufficient to study the following problem in g:

maxg≥0

∑
v∈V

∑
u∈out(v)

gvu wvu (15)

s.t.
∑

u∈out(v)

gvu ≤ Cv,∀v ∈ V,

where
wvu ,

∑
d∈R

[λv,d − λu,d]+, ∀(u, v) ∈ E f . (16)

denotes the aggregate back-pressure between two neighboring
nodes u and v, and [·]+ , max(·, 0).

For any v ∈ V , let

u∗(v) , arg max
u∈out(v)

wvu (17)

be one of its neighbors with the maximum back-pressure
(breaking ties arbitrarily). Then one optimal solution for
problem SSP is as follows:(

gd
vu

)∗
=

Cv, if u = u∗(v),
0, otherwise,

(18)

and (
f d
vu

)∗
=

0, if λv,d − λu,d ≤ 0,
g∗vu, otherwise.

(19)

Given f ∗ and g∗, primal-dual algorithms can be designed to
adapt z and λ to pursue the desired optimal solution.

We summarize the above analysis into a distributed algo-
rithm including the following components:

Primal-dual Rate Control: we pursue the saddle point in
z and λ simultaneously as follows:

ż = α[U
′
(z) −∑d∈R λs,d]+z ,

λ̇v,d = kv,d

[∑
u∈in(v)

(
f d
uv

)∗
+ z1v=s

−∑u∈out(v)

(
f d
vu

)∗
λv,d

]+
λv,d

, ∀v ∈ V − {d}, d ∈ R,

λ̇d,d = λd,d = 0, ∀d ∈ R,
(20)

where α and kv,d are positive step sizes, and the function

[b]+a =

max(0, b), a ≤ 0,
b, a > 0.

Neighbor Scheduling, Content Scheduling, and Network
Coding: Every node v ∈ V maintains a queue storing packets
that are intended for d. Whenever a transmission opportunity
arises, node v chooses one neighbor u∗(v) with the maximum
back-pressure according to (17).

If wvu∗(v) > 0, node v sends packets to u∗(v) at rate Cv. Every
output packet is constructed as follows. Node v chooses one
packet from the head of each queue of d if λv,d − λu∗(v),d > 0,
and output one random linear combination of these heard-of-
queue packets. If otherwise wvu∗(v) ≤ 0 or there is no head-of-
line packets to code, node v does nothing.

We have the following observations.
• The Lagrangian variable λv,d is proportional to the length

of queue storing packets that are intended for receiver d.
The back-pressure wvu measures the aggregate difference
in the queues of all d ∈ R between v and u. The larger
the back-pressure is, the more desperate node u wants to
receive data from v.

• Our algorithm can be implemented in a distributed man-
ner. It only requires nodes to exchange information with
its one-hop neighbors, and thus is robust to peer churn and
system dynamics. When a new peer arrives, it connects
to a set of neighbors, assigned by the streaming server
or trackers. Then the peer starts exchanging streaming
data with them following the strategy defined by our
algorithm. When a peer leaves, its neighbors are informed
and then close the connections. For the network coding
operation, theoretically we need to adjust the size of field
where the coding coefficients are chosen to make sure
of the decoding probability when the number of nodes
changes [32], [33]. While [29] and [13] show that in
practice the finite field F28 or F216 is enough to have a suf-
ficiently high decoding probability. Therefore, only local
configuration changes corresponding to dynamics, which
is easy to implement compared to centralized algorithms
where typically global information is needed for whole
configuration change (e.g., spanning trees reconstruction
in spanning tree based solutions).

• Although our algorithm is designed for P2P broadcast
scenarios, it also works for P2P multicast scenarios where
helper nodes exist. The helper nodes simply also perform
the operations described in (18)-(20). Our algorithm can
be considered as the extension of the algorithm in [30],
[34], [35] from link-capacity-limited underlay networks to
node-capacity-limited overlay networks. The unique part
of our algorithm is optimal neighbor scheduling which
decides for each node how to allocate its node capacity
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optimally among its neighbors for transmitting the coded
traffic.

The following theorem characterizes the convergence of the
proposed algorithm.

Theorem 1: The algorithm in (18)-(20) converges to the
optimal solution of problem MP globally asymptotically in
time.
The proof utilizes standard Lyapunov arguments and a Lya-
punov function for primal-dual algorithm, similar to those used
in [17], [36]. The proof is relegated to Appendix-A.

Remark: We derive our algorithm and prove its conver-
gence based on a fluid model formulation. It is also possible
to obtain a similar back-pressure based distributed algorithm
with packet-level dynamics taken into account and prove
its stability, following a set of Lyapunov drift arguments
elaborated in [37].

IV. The Proposed Distributed Topology Hopping Algorithm
We recently proposed in [20] to use Markov chain as a

principled approach in designing distributed algorithms for
solving combinatorial network problems approximately. In
particular, we show one can design distributed algorithms
for a combinatorial network optimization problem in the
following way. First, construct a special class of Markov
chains with problem-specific steady-state distribution. Second,
search for a Markov chain in this class that allows distributed
implementation. If such Markov chain can be found, which
is usually challenging and problem-specific, the distributed
implementation directly yields a distributed algorithm for the
problem.

In this paper, we follow the framework from [20] and design
a distributed topology hopping algorithm for our problem (1).
There are two steps in designing our algorithm under the
Markov approximation framework [20]: log-sum-exp approx-
imation and constructing problem-specific Markov chains that
allows distributed implementation.

A. Log-Sum-Exp Approximation
First, the maximum broadcast rate can be approximated by

a log-sum-exp function as follows:

max
f∈F

x f ≈
1
β

log

∑
f∈F

exp
(
βx f

) , (21)

where β is a positive constant. Let |F | denote the size of the
set F , then the approximation accuracy is known as follows
[20]:

0 ≤ 1
β

log

∑
f∈F

exp
(
βx f

) −max
f∈F

x f ≤
1
β

log |F |. (22)

As β approaches infinity, the approximation gap approaches
zero. As discussed in [20], however, usually β should not
take too large values as there are practical constraints or
convergence rate concerns in the algorithm design afterwards.

To better understand the log-sum-exp approximation, we
associate with each configuration f ∈ F a probability p f .
Consider the following problem

MRC − EQ : max
p≥0

∑
f∈F

p f x f (23)

s.t.
∑
f∈F

p f = 1. (24)

Its optimal value is max f∈F x f and is obtained by setting the
probability corresponding to one of the best configurations to
be one and the rest probabilities to be zero. Hence, problem
MRC − EQ is equivalent to the original problem MRC.

On the other hand, according to [20] we have the following
observations.

Theorem 2 (cf. [20]): The optimal value of the following
optimization problem

MRC − β : max
p≥0

∑
f∈F

p f x f −
1
β

∑
f∈F

p f log p f (25)

s.t.
∑
f∈F

p f = 1 (26)

is given by 1
β

log
[∑

f∈F exp
(
βx f

)]
. The optimal solution of

problem MRC − β is given by

p∗f (x) =
exp
(
βx f

)
∑

f ′∈F
exp
(
βx f ′
) , ∀ f ∈ F . (27)

As such, by the log-sum-exp approximation in (21), we
obtain an approximate version of the maximum broadcast rate
problem MRC, off by an entropy term − 1

β

∑
f∈F p f log p f . If

we can time-share among different configurations according
to the optimal solution p∗f (x) in (27), then we can solve the
problem MRC approximately and obtain a close-to-optimal
broadcast rate.

B. Markov Chain Guided Algorithm Design
We design a Markov chain with state space being the set

of all feasible peering configurations F and stationary distri-
bution as p∗f (x) in (27). We implement the Markov chain to
guide the system to optimize the configuration. As the system
hops among configurations, the Markov chain converges and
the configurations are time-shared according to the desired
distribution p∗f (x).

The key lies in designing such Markov chain that allows
distributed implementation. Since p∗f (x) in (27) is product-
form, it suffices to focus on designing time-reversible Markov
chains [20].

Let f , f ′ ∈ F be two states of Markov chain, and denote
q f , f ′ as the transition rate from state f to f

′
. We have two

degrees of freedom in designing a time-reversible Markov
chain:
• The state space structure: we can add or cut direct

transitions between any two states, given that the state
space remains connected and any two states are reachable
from each other.

• The transition rates: we can explore various options in
designing q f , f ′ , given that the detailed balance equation
is satisfied, i.e.,

p∗f (x)q f , f ′ = p∗f (x)q f ′ , f , ∀ f , f ′ ∈ F . (28)

Satisfying the above equations guarantees the designed
Markov chain has the desired stationary distribution as in
(27).

Recall that for a node v ∈ V , the set of its neighbors under
configuration f is denoted by Nv, f . We call node in Nv, f v’s
in-use neighbor and node in Nv\Nv, f v’s not-in-use neighbor.
For the ease of explanation, we further define N f as the set of
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all the node-pairs under f , i.e., N f = {{v, u},∀v ∈ V, u ∈ Nv, f }.
Note we do not differentiate node pairs {u, v} and {v, u}. As an
example, for the peering configuration f shown in Fig. 1(b),
N f is given by {{s, 1}, {s, 2}, {s, 4}, {1, 2}, {1, 4}, {2, 3}, {3, 4}}.

In our Markov chain design, we first specify its state space
structure as follows: we set the transition rate q f , f ′ to be zero,
unless f and f ′ satisfy that |N f \N f ′ | = 1 or |N f ′\N f | = 1.
In other words, we only allow direct transitions between two
configurations if such transitions correspond to a single node
adding a new node in its in-use neighbor set or removing one
in-use neighbor from its in-use neighbor set.

Second, given the state space structure of Markov chain, we
design the transition rates to favor distributed implementation
while satisfying the detailed balance equation in (28).

One possible option is to set q f , f ′ to be exp−1(βx f ). One
way to implement this option is for every node to generate
a timer according to its measured receiving rate and counts
down accordingly. When the timer expires, the dedicated node
performs the neighbor swapping and resets its timer. As simple
as the implementation may sound, this option is expensive
to implement. Once the peering configuration changes, the
system needs to notify all the nodes to measure the new
receiving rate and reset their timers accordingly. It is not clear
how to implement such system-wide notification in a low-
overhead manner.

In this paper, we design q f , f ′ and q f ′, f as follows:

q f , f ′ =
1

exp(τ)

exp(βx f ′ )

exp(βx f ) + exp(βx f ′ )
(29)

and
q f ′, f =

1
exp(τ)

exp(βx f )
exp(βx f ) + exp(βx f ′ )

, (30)

where τ is a constant. It is straightforward to verify that
detailed balance equation is satisfied. As will be clear in the
next subsection, our choices of transition rates do not require
coordination or notification among peers in its implementation.

C. Distributed Implementation
One distributed implementation of our designed Markov

chain is briefly described as follows.
• Initialization: Each peer v ∈ V randomly selects neigh-

bors from its neighbor list Nv under the node degree
bound and builds connections with these selected neigh-
bors.

• Step 1: Let f denote the current configuration. Each
node v ∈ V generates an exponentially distributed random
number independently with mean 2 exp(τ)

|Nv | , and counts
down according to this number.

• Step 2: When the count-down expires, node v measures
its current receiving rate as an estimate of the broadcast
rate x f . Then with probability |Nv, f |

|Nv | node v goes to the
Step 2a; with probability |Nv |−|Nv, f |

|Nv | , node v goes to the
Step 2b;

– Step 2a: Node v randomly selects one in-use neigh-
bor in Nv, f and removes it from Nv, f . Under the new
peering configuration f

′
, node v measures its receiv-

ing rate as an estimate of x f ′ . With the estimates of
x f and x f ′ , peer v stays in the new configuration f

′

with probability
exp(βx f ′ )

exp(βx f )+exp(βx f ′ )
, and switches back to

f with probability 1 −
exp(βx f ′ )

exp(βx f )+exp(βx f ′ )
. Node v then

repeats Step 1.
– Step 2b: Node v randomly selects one not-in-use

neighbor in Nv\Nv, f . If the node degree of the se-
lected not-in-use node is equal to the bound or v’s
node degree is equal to the bound, node v jumps
back to Step 1 immediately. Otherwise, node v adds
this selected node into Nv, f . Under the new peering
configuration f

′
, node v measures its receiving rate

as an estimate of x f ′ . With the estimates of x f and
x f ′ , peer v stays in the new configuration f

′
with

probability
exp(βx f ′ )

exp(βx f )+exp(βx f ′ )
, and switches back to f

with probability 1 −
exp(βx f ′ )

exp(βx f )+exp(βx f ′ )
. Node v then

repeats Step 1.
It is straightforward to summarize the above implementation

into a distributed algorithm that runs on individual nodes and
utilizes only the measurement from their one-hop neighbors.
The correctness of the implementation is shown as follows:

Proposition 1: The implementation in fact realizes a time-
reversible Markov chain with stationary distribution in (27).
The proof is relegated to Appendix-B.

Remarks: a) In Step 1, the generation of count-down
timers does not depend on the receiving rate, thus the system
does not need to notify the nodes about changes of peering
configurations. b) With the above implementation, the system
hops towards configurations with better broadcast rate prob-
abilistically. For example, if x f ′ > x f , then the system will
be more likely to stay in configuration f ′ than in f , and vice
versa. c) With large values of β, the system hops towards
better configurations more greedily. However, this may as
well lead to the system getting trapped in locally optimal
configurations. Hence there is a trade-off to consider when
setting the value of β. Moreover, the value of β also affects
the convergence rate of the time-reversible Markov chain to the
desired stationary distribution. It is worth future investigation
to further understand the impact of β. d) In the presence of
peer dynamics, our algorithm incurs only simple actions based
on local information. When a new peer arrives, a neighbor
set and a neighbor list are assigned to it. The peer builds
connections with the nodes in the neighbor set. Then the peer
starts counting down as Step 1 and follows the strategy of our
algorithm. When a peer leaves, we just eliminate it from the
neighbor list of its previous neighbors and end up connections.

V. Convergence Properties of Overall Solution
We have designed the distributed broadcasting algorithm in

Section III and the Markov chain guided topology hopping
algorithm in Section IV. The pseudocodes of each algorithm
are shown in Algorithm 1 and Algorithm 2 respectively. Both
algorithms are simple to implement, run on each individual
node, and only require nodes to exchange information with
their neighbors.

If the broadcasting algorithm converges instantaneously, i.e.,
time-scale separation assumption holds, then we can obtain the
accurate value of x f for any configuration f ∈ F . Transiting
based on the accurate x f , the designed Markov chain will
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Algorithm 1 Broadcasting Algorithm
1: The following procedure runs on each individual node

independently.
2: For the source s and each time slot,
3: x←

[
x + α(U

′
(x) −∑d∈R λs,d)

]+
4: For each node v ∈ V and each time slot,
5: w∗ ← 0
6: for u ∈ out(v) do
7: for for d ∈ R do
8: wvu ← wvu +max(λv,d − λu,d, 0)
9: end for

10: if wvu > w∗ then
11: w∗ ← wvu
12: u∗ ← u
13: end if
14: end for
15: if wvu∗ > 0 then
16: for d ∈ R do
17: if λv,d − λu∗,d > 0 then
18: f d

vu∗ ← Cv
19: end if
20: end for
21: end if
22: for d ∈ R do
23: λv,d ←

[
λvd + kv,d(

∑
u∈in(v) f d

uv −
∑

u∈out(v) f d
vu)
]+

24: end for

converge to the desired stationary distribution (27). Hence
by operating these two algorithms in tandem, we obtain a
close-to-optimal broadcast rate under arbitrary node degree
bounds, and over arbitrary overlay graph. The optimality gap
is characterized in (22).

In practice, however, it is possible to obtain only an in-
accurate measurement or estimate of x f . These inaccuracies
root in two sources. One is the noisy measurements of the
maximum broadcast rates given the configuration. The other
is the fast state transition of Markov chain, i.e., the Markov
chain transits before the underlying broadcasting algorithm
converges and thus it transits based on inaccurate observations
of the broadcast rates.

Consequently, the topology hopping Markov chain may not
converge to the desired stationary distribution p∗f (x). This
observation motivates our following study on the convergence
of Markov chain in the presence of inaccurate transition rates.

For each configuration f ∈ F with broadcast rate x f , we
assume that its corresponding inaccurate observed rate belongs
to the bounded region

[
−∆ f ,∆ f

]
. ∆ f is the inaccuracy bound

and can be different for different f .
For easy explanation of our approach, we further assume

that the observed broadcast rate for configuration f only takes
one of the following 2n f + 1 discrete values:[

x f − ∆ f , . . . , x f −
1
n f
∆ f , x f , x f +

1
n f
∆ f , . . . , x f + ∆ f

]
,

where n f is a positive constant. Further, with probability
η j, f , the observed broadcast rate takes value x f +

j
n f
∆ f ,

∀ j ∈ {−n f , . . . , n f } and
∑n f

j=−n f
η j, f = 1.

With the inaccurate observed broadcast rates, the topology
hopping behaves as follows. Suppose the current configuration

Algorithm 2 Topology Hopping Algorithm
1: The following procedure runs on each individual node

independently. We focus on a particular node v ∈ V .
2: procedure Initialization

• Initialize Nv, Bv; randomly connects to peers from Nv
under the degree bound.

• Generate a timer that follows exponential distribution
with mean equal to 2 exp(τ)/(|Nv|) and begin counting
down.

3: end procedure
4:
5: When the timer expires, invoke the procedure Transition.
6: procedure Transition
7: With probability |Nv, f |

|Nv | ,
8: No ← Nv, f ;
9: randomly remove one in-use neighbor from Nv, f ;

10: x f ′ ←
∑

u∈in(v) f v
uv;

11: Nv, f ← No with probability
1 − exp(βx f ′ )/

(
exp(βx f ) + exp(βx f ′ )

)
;

12: refresh the timer and begin counting down;
13: With probability 1 − |Nv, f |

|Nv | ,
14: No ← Nv, f ;
15: randomly add one not-in-use neighbor v

′
in

Nv\Nv, f to Nv, f ;
16: if |Nv, f | = Bv or |Nv′ , f | = Bv′

17: refresh the timer and begin counting down;
18: end if
19: x f ′ ←

∑
u∈in(v) f v

uv;
20: Nv, f ← No with probability

1 − exp(βx f ′ )/
(
exp(βx f ) + exp(βx f ′ )

)
;

21: refresh the timer and begin counting down;
22: end procedure

is f and the observed broadcast rate is x f +
j

n f
∆ f , where

j ∈ {−n f , . . . , n f }. After some count-down process, the system
hops to a new configuration f ′ and probes its broadcast
rate. In configuration f ′, the broadcast rate is observed as
x f ′ +

j′

n f ′
∆ f ′ , j′ ∈ {−n f ′ , . . . , n f ′ }. The system stays in the new

configuration f ′ with probability
exp(β(x f ′ +

j′

n f ′
∆ f ′))

exp(β(x f ′ +
j′

n f ′
∆ f ′)) + exp(β(x f +

j
n f
∆ f ))
,

and switches back to configuration f with probability

1 −
exp(β(x f ′ +

j′

n f ′
∆ f ′))

exp(β(x f ′ +
j′

n f ′
∆ f ′)) + exp(β(x f +

j
n f
∆ f ))
.

By arguments similar to the proof of Proposition 1, the tran-
sition rate from configuration f with broadcast rate x f +

j
n f
∆ f

to configuration f ′ with broadcast rate x f ′ +
j′

n f ′
∆ f ′ is given by

η j′, f ′

exp(τ)
·

exp(β(x f ′ +
j′

n f ′
∆ f ′))

exp(β(x f ′ +
j′

n f ′
∆ f ′)) + exp(β(x f +

j
n f
∆ f ))
. (31)

We construct a Markov chain to capture and study the above
topology hopping behavior. In this Markov chain, a state is
associated with a configuration and an observed broadcast
rate. Given any configuration f ∈ F and its correspond-
ing x f , there are 2n f + 1 states in the extended Markov
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Fig. 2. An example of the original three-state topology hopping Markov chain
and the extended Markov chain. M is the original topology hopping Markov
chain with accurate broadcast rates. M’ is the corresponding extended Markov
chain with inaccurate broadcast rate observations. For each configuration f ∈
{1, 2, 3}, the observed broadcast rate takes values x f − ∆ f , x f , x f + ∆ f with
probability η−1, f , η0, f and η1, f respectively. The transition rates are assigned
according to (32) and (33).

chain:
(

f , x f +
j

n f
∆ f

)
, j ∈ {−n f , . . . , n f }. Further, Given direct

transitions between configuration f and f ′ in the original
topology hopping Markov chain, there are direct transitions
between states ( f , x f +

j
n f
∆ f ) and ( f ′, x f ′ +

j′

n f ′
∆ f ′ ) (∀ j ∈

{−n f , . . . , n f }, j′ ∈ {−n f ′ , . . . , n f ′ }) in the corresponding new
Markov chain. The corresponding transition rates are shown
as follows:

q( f ,x f+
j

n f
∆ f ),( f ′,x f ′+

j′
n f ′
∆ f ′ )

=
η j′, f ′

exp(τ)
·

exp(β(x f ′ +
j′

n f ′
∆ f ′))

exp(β(x f ′ +
j′

n f ′
∆ f ′)) + exp(β(x f +

j
n f
∆ f ))

(32)

and
q( f ′,x f ′+

j′
n f ′
∆ f ′ ),( f ,x f+

j
n f
∆ f )

=
η j, f

exp(τ)
·

exp(β(x f +
j

n f
∆ f ))

exp(β(x f +
j

n f
∆ f )) + exp(β(x f ′ +

j′
n f ′
∆ f ′ ))

, (33)

where
∑n f

j=−n f
η j, f = 1 and

∑n f ′

j′=−n f ′
η j′, f ′ = 1. This new Markov

chain can be thought as an extended version of the original
topology hopping Markov chain. As an example, an extended
Markov chain is shown and explained in Fig. 2.

The extended Markov chain has a unique stationary distri-
bution since it is irreducible and only has a finite number of
states. We can study the impact of inaccurate broadcast rates
by comparing the stationary configuration distribution of the
new Markov chain and that of the original topology hopping
Markov chain.

We denote the stationary distribution of the states in the
new Markov chain by

p̃ , [p̃ f ,x f+
j

n f
∆ f
, j ∈ {−n f , . . . , n f }, f ∈ F ]. (34)

We also denote p̄ : [ p̄ f (x), f ∈ F ] as the stationary distribution
of the configurations in the extended Markov chain. Given a
configuration f ∈ F , there are 2n f + 1 states associated with
f in the extended Markov chain. We have

p̄ f (x) =
∑

j∈{−n f ,...,n f }
p̃ f ,x f+

j
n f
∆ f
,∀ f ∈ F . (35)

Recall that the stationary distribution of the configurations
for the original topology hopping Markov chain is p∗ :
[p∗f (x), f ∈ F ]. We use the total variance distance [38] to
quantify the difference between p∗ and p̄, as

dTV (p∗, p̄) ,
1
2

∑
f∈F
|p∗f − p̄ f |. (36)

We have the following result:
Theorem 3: Let ∆max = max f∈F ∆ f , and xmax =

max f∈F x f . The dTV (p∗, p̄) are bounded as follows:
0 ≤ dTV (p∗, p̄) ≤ 1 − exp (−2β∆max) . (37)

Further, the optimality gap in broadcast rates |p∗xT − p̄xT | is
bounded as below:

|p∗xT − p̄xT | ≤ 2xmax(1 − exp(−2β∆max)). (38)
The proof is relegated to Appendix-C.

Remarks: a) The upper bound on dTV (p∗, p̄) shown in (37)
is general, as it is independent of the number of configurations
|F |, the values of n f , and the distributions of inaccurate
observed rates η j, f

(
−n f ≤ j ≤ n f , f ∈ F

)
. b) The upper bound

on dTV (p∗, p̄) shown in (37) decreases exponentially with
the worst inaccuracy bound ∆max decreasing. c) It would be
interesting to explore a tighter upper bound on dTV (p∗, p̄) than
the one in (37).

VI. Performance Evaluation
We implement a packet-level simulator to our proposed

solutions and use this simulator to evaluate the performance
of our solutions.

A. Settings
In our simulations, time is chopped into slots of equal

length, and we adopt three different settings. In Setting I, we
set the total number of nodes to be 100, and assign the node
upload capacities randomly according to the distribution in
Table II, which is obtained from the uplink bandwidth statistics
of Internet hosts [39]. We set the source’s upload capacity to
be 768 kbps. With this upload capacity, the source is not the
broadcast bottleneck [1], [3].

Setting II is the same as Setting I, except that we set the
total number of nodes to be 10.

In Setting III, there are 4 different peering configurations
as shown in Fig. 3. Every node has a unit capacity. Under
configuration f1, f2 and f3 the maximum broadcast rate is 1,
and under configuration f4 the maximum broadcast rate is 0.5.

When running our network coding based broadcasting al-
gorithm, we set the updating step size of z and λ to be 0.1 and
0.00005 respectively. These parameters are empirically chosen
to obtain smooth algorithm updating and small errors.

In our simulations, we assign node degree bounds in the
following two ways. The first is to set identical bound on
each node’s node degree. The second is to set degree bound
proportional to the node’s upload capacity. This is based on the
empirical observations that nodes with high upload capacities
usually have more system resource (e.g., memory and CPU
power) than nodes with low upload capacities. With more
system resource, nodes can maintain more concurrent con-
nections, thus have larger node degree bounds. In our second
degree bounds assignment, nodes set their node degree bounds
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TABLE II
Peer upload capacity distribution

Upload Capacity (kbps) 64 128 256 384 768
Fraction (%) 2.8 14.3 4.3 23.3 55.3

proportional to the ratio between their upload capacities and
64 kbps. In particular, nodes with 64 kbps have a degree bound
of 2, and nodes with 128 kbps have a degree bound of 4, etc.

We carry out two sets of simulations. First, we evaluate the
performance of our distributed broadcasting algorithm under
Setting I and II. Second, we evaluate the overall performance
when we combine the topology hopping algorithm and the
broadcasting algorithm under Setting I and III. In these two
sets of simulations, we also compare the performance under
the two different degree bounds assignments.
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Fig. 3. Peering configurations under Setting III. For the ease of illustration,
we only allow node 1 to add or remove neighbors between nodes 2 and 4.
The rest nodes keep their neighbors fixed.
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Fig. 5. a) Optimal configuration distribution for different values of β
under Setting III; b) Configuration distribution obtained by our algorithm for
different values of β under Setting III.

B. Evaluation of the Proposed Broadcasting Algorithm

In this simulation, we evaluate our distributed broadcasting
algorithm proposed in Section III. We randomly choose a
sub-graph that satisfies the node degree bounds constraints,
and run our algorithm over it. We evaluate three aspects of
the proposed algorithm: 1) does it converge to the optimal
broadcast rate as expected from the theoretical analysis? 2)
How fast does it converge? 3) How would different values of
degree bounds affect the maximum broadcast rate? The results
are summarized in Fig. 4.

From Fig. 4(a) and Fig. 4(b), we see that our broadcasting
algorithm converges. It converges faster in the small size
network as shown in Fig. 4(a) than in the large size network

as shown in Fig. 4(b). From Fig. 4(d), we also see that the
converged rate when the node degree bound is 10 is very
close to a theoretical upper bound – the optimal broadcast
rate without degree bounds computed according to [1], [17],
[3]. This suggests that our algorithm converges to the optimal
broadcast rate.

Under different degree bounds, the optimal broadcast rate
varies. Fig. 4(d) shows that the optimal broadcast rate increases
when we increase the node degree bounds. We plot the
CDF of peer receiving rates (after the broadcasting algorithm
converges) for the cases where degree bound is 4, 10, and
proportional to the peer’s upload capacity. It’s seen that when
the bound is 10, the obtained rate is close to the full-mesh
rate, which suggests that we do not need a large degree bound
to achieve close to the full-mesh rate.

C. Evaluation of the Overall Solution

Our overall solution, which combines the Markov chain
guided topology hopping algorithm and the back-pressure and
network coding based broadcasting algorithm, achieves the
near optimal broadcast rate under arbitrary node degree bound
and over arbitrary overlay graph. To evaluate its performance,
we generate a sub-graph randomly, run our algorithms on
every node, and evaluate the achieved broadcast rate.

The topology hopping algorithm runs on top of the broad-
casting algorithm. Under given topology, the broadcasting
algorithm achieves the optimal broadcast rate. Nodes swap
neighbors based on their observed receiving rate, thus chang-
ing the topology from time to time. In the simulation, we run
the broadcasting algorithm long enough so that it converges
before the topology transits according to the Markov chain.
This way, the overall algorithm converges to the close-to-
optimal broadcast rate.

In all simulations, we compare our overall algorithm with
our back-pressure and network coding based broadcasting
algorithm to illustrate the benefit of topology hopping, and
with a simple heuristic algorithm introduced below to illustrate
the benefit of our overall solution. Remind that no existing
works solve the problem of streaming-rate maximization under
general node degree bounds and over arbitrary topology we
studied in this paper.

The simple heuristic algorithm we compare our overall
algorithm against is also composed of two parts: routing-
based broadcasting algorithm and random topology hopping
algorithm. In routing-based broadcasting algorithm, each peer
evenly allocates its upload capacity to its neighbors. Given
the topology and capacity allocation, a centralized routing
strategy (e.g. spanning trees based solution) is used to achieve
the best broadcast rate the system can support. Similarly, the
random topology hopping algorithm runs on the top of the
broadcasting algorithm. Every peer maintains a timer. When
the timer of one peer expires, the peer randomly drops one
active neighbor which is exchanging data with it, and then
selects one random candidate from its feasible neighbor list
and starts to exchange data with it. By doing so, we actually
allow nodes running the simple scheme to have a node degree
beyond the bounds. This relaxation gives the simple scheme
more degree of freedom to optimize its performance. Overall,
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Fig. 4. Broadcasting algorithm evaluations. a) The source broadcast rate and average peer receiving rate under Setting II when degree bound is set to 3;
b) The source broadcast rate and average peer receiving rate under Setting I when degree bound is set to 4; c) The source broadcast rate and average peer
receiving rate under Setting I when degree bound is set to 10. d) This figure shows the impact of degree bound on the peer receiving rate under Setting I.
The full-mesh rate is the maximum broadcast rate when the node degrees are unbounded [1].
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Fig. 6. Evaluation of our overall solution which combines the topology hopping algorithm and the broadcasting algorithm. a) The average peer receiving
rate when the node degree bound is 3 and β is 20; b) The average peer receiving rate when the node degree bound is 3 and β is 50; c) The average peer
receiving rate when peer degree bound is proportional to its upload capacity and β is 20. The percentage of average receiving rate improvement of our overall
algorithm against our broadcasting algorithm and the simple heuristic algorithm are shown in these three figures. For example, in (a), 22% means that the
average receiving rate of our overall algorithm is 1.22 times of that of our broadcasting algorithm, and 550% means that the average receiving rate of our
overall algorithm is 6.5 times of that of the simple heuristic algorithm.

the topology changes randomly on the top under which peers
use routing to exchange streaming data.

Our first observation is that our overall scheme converges
to the solution that theory predicts. We carry out simulations
under Setting III. Under this setting the optimal broadcast rate
is 1. The optimal configuration solution to problem MRC − β
is calculated and shown in Fig. 5(a) for different values of β.
We run the overall scheme for this specific case and show the
empirical configuration distribution in Fig. 5(b). Comparing
the distributions in Fig. 5(a) and Fig. 5(b), we can see that the
distribution obtained by our overall solution is very close to
the optimal one. We also calculate the achieved broadcast rate
under different values of β. For β = 1, 5 and 10, the broadcast
rate is 0.917, 0.987, and 0.998 respectively. We see that with
large β, the achieved broadcast rate is close to the optimal
value 1, as predicted by our analysis in Section IV.

Next, we evaluate our overall solution under Setting I.
In Fig. 6(a) and Fig. 6(b), the broadcast rates obtained are
305 kbps and 312 kbps respectively. They are about 22%
and 25% higher respectively than the broadcast rate 250
kbps achieved by running the broadcasting algorithm over a
randomly chosen topology. This demonstrates the advantage
of performing topology hopping to optimize the configuration,
as compared to only randomly choosing topology.

By setting node degree bounds proportional to peers’ upload
capacity, nodes with higher upload capacity maintain more
connections. From Fig. 6(c), we observe that this flexibility
offers a broadcast rate of 475 kbps. Although the additional
gain of topology hopping is small under the specific P2P

simulation settings (e.g., node uplink capacity distribution),
we remark that our topology-hopping based algorithm is theo-
retically guaranteed to achieve close-to-optimal streaming rate
under arbitrary node degree bounds and P2P settings, while
the broadcasting algorithm with random topology selection
has no performance guarantee. By Fig. 6(c), we want to show
that there could be empirical benefit of allowing node degree
bounds to be proportional to peers’ upload capacities, and it
might be an interesting future direction to fully investigate the
potential of such option.

From Fig. 6(a), Fig. 6(b) and Fig. 6(c), we observe that the
average receiving rate of our overall algorithm is about 5.5-7
times higher than that of the simple algorithm. And also we
can see from Fig. 6(a) and Fig. 6(b), our algorithm can achieve
smoother streaming rate than the simple algorithm because
our algorithm optimizes the topology hopping and stays in
the optimal topology while the simple algorithm hops among
topologies randomly and arbitrarily.

VII. Discussions and FutureWork

In this paper, we propose a distributed solution to achieve
a near-optimal broadcast rate under arbitrary node degree
bounds, and over arbitrary overlay graph. Our solution is
distributed and consists of two algorithms that can be of
independent interests. The first is a distributed broadcasting
algorithm that optimizes the broadcast rate given a P2P
topology. It is derived from a network coding based problem
formulation and utilizes back-pressure arguments. It can be
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considered as the extension of the algorithm in [30] from link-
capacity-limited underlay networks to node-capacity-limited
overlay networks. The second algorithm is a Markov chain
guided hopping algorithm that optimizes the topology, inspired
by the Markov Approximation framework introduced in [20].

Assuming the underlying broadcasting algorithm converges
instantaneously, the topology hopping algorithm converges to
the optimal configuration distribution. When the broadcasting
algorithm does not converge fast enough, the topology hopping
Markov chain transits based on inaccurate observations of the
maximum broadcast rates associated with the configurations.
We show that the topology hopping algorithm still converges,
but to a sub-optimal configuration distribution. We characterize
an upper bound on the total variance distance between the
optimal and sub-optimal configuration distributions, as well
as an upper bound on the gap between the achieved and the
optimal broadcast rates. We show that both bounds decrease
exponentially as the bound on inaccuracy decreases.

Using uplink bandwidth statistics of Internet hosts, our
simulations validate the effectiveness of the proposed solu-
tions, and demonstrate the advantage of allowing node degree
bounds to scale linearly with their upload capacities.

In the scenarios where network coding is not allowed, we
can formulate the broadcasting problem in Subsection III-B
as a linear program to construct a feasible node capacity
allocation so that the sum of rate of all spanning trees is max-
imized [15], which is solvable by centralized LP algorithms.
Then we can design the overall algorithm in the following
way. The overall algorithm is composed of two separate
algorithms: the spanning tree based broadcasting algorithm
and the Markov chain guided hopping algorithm. The topology
hopping algorithm is same as the one in Section IV which
runs on the top of the broadcasting algorithm and guides
the topology hopping. Compared to our distributed overall
algorithm when network coding is applied, this algorithm
is centralized making it unsuited for use in a dynamically
changing systems.

Two interesting future directions are as follows. First, the
convergence rate of our solution is determined by the mixing
time of the topology-hopping Markov chain, which can be
substantial for large P2P systems. It is thus of great interest
to explore the design of topology-hopping Markov chains
that mix fast and at the same time allows distributed imple-
mentation. Second, while our algorithms adapt well to peer
dynamics, our theoretical analysis is for static scenarios. How
to extend the analysis to dynamic scenarios such as those
observed in practical P2P systems [40] is another interesting
future direction.
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Appendix

A. Proof of Theorem 1

Due to space limit, the proof can be found in [41].

B. Proof of Proposition 1

By two conditions for state space structure of Markov chain,
we know that all configurations can reach each other within
a finite number of transitions, thus the constructed Markov
chain is irreducible. Further, it is a finite state ergodic Markov
chain with a unique stationary distribution. We now show that
the stationary distribution of the constructed Markov chain is
indeed (27).

Now we verify that under the implementation, the state
transition rate from f to f

′
satisfies (29).

In our Markov chain design, we only allow direct transitions
between two configurations if such transitions correspond to
a single node adding a new neighbor or removing a neighbor,
i.e., |N f \N f ′ | = 1 or |N f ′\N f | = 1. We consider these two
scenarios separately in the following.

Let f → f
′

denote the event that when the timer expires
the process will enter state f

′
after leaving the current state

f . The probability of this event is denoted by Pr( f → f
′
).

When |N f \N f ′ | = 1, assuming N f \N f ′ = (v, u), the event
f → f

′
can be divided into two disjoint events: the event that

node v’s timer expires, then node v selects node u to remove
and removes it from its in-use neighbor set and the event that
node u’s timer expires, then node u selects node v to remove
and removes it from its in-use neighbor set. Denote these two
events by f v − u−−−→ f

′
and f u − v−−−→ f

′
. Let v− u be the event that

node v selects node u and removes it from its in-use neighbor
set and u − v be the event that node u selects node v and
removes it from its in-use neighbor set. Now we calculate the
probability of f v − u−−−→ f

′
and f u − v−−−→ f

′
respectively.

Pr( f v − u−−−→ f
′
)

=Pr(v − u|v’s timer expires) Pr(v’s timer expires)

=
|Nv, f |
|Nv|

· 1
|Nv, f |

·
exp(βx f ′ )

exp(βx f ) + exp(βx f ′ )
·

|Nv |
2 exp(τ)∑

w∈V
|Nw |

2 exp(τ)

=
1∑

v∈V |Nv|
·

exp(βx f ′ )

exp(βx f ) + exp(βx f ′ )
(39)

and

Pr( f u − v−−−→ f
′
)

=Pr(u − v|u’s timer expires) Pr(u’s timer expires)

=
|Nu, f |
|Nu|

· 1
|Nu, f |

·
exp(βx f ′ )

exp(βx f ) + exp(βx f ′ )
·

|Nu |
2 exp(τ)∑

w∈V
|Nw |

2 exp(τ)

=
1∑

v∈V |Nv|
·

exp(βx f ′ )

exp(βx f ) + exp(βx f ′ )
. (40)

Therefore, we have

Pr( f → f
′
)

= Pr( f v − u−−−→ f
′
) + Pr( f u − v−−−→ f

′
)

=
2∑

v∈V |Nv|
·

exp(βx f ′ )

exp(βx f ) + exp(βx f ′ )
. (41)

When |N f ′\N f | = 1, assuming N f ′\N f = (v, u), similarly
we divide f → f

′
into two disjoint events f v + u−−−→ f

′
and

f u + v−−−→ f
′
. f v + u−−−→ f

′
denotes the event that node v’s timer

expires, then node v selects node u to add and adds it in its
in-use neighbor set. f u + v−−−→ f

′
denotes the event that node u’s

timer expires, then node u selects node v to add and adds it
in its in-use neighbor set. Let v + u be the event that node v
selects node u and adds it as one in-use neighbor and u+ v be
the event that node u selects node v and adds it as one in-use
neighbor. Then we have

Pr( f v + u−−−→ f
′
)

= Pr(v + u|v’s timer expires) Pr(v’s timer expires)

=
|Nv| − |Nv, f |
|Nv|

· 1
|Nv| − |Nv, f |

·
exp(βx f ′ )

exp(βx f ) + exp(βx f ′ )
·

|Nv |
2 exp(τ)∑

w∈V
|Nw |

2 exp(τ)

=
1∑

v∈V |Nv|
·

exp(βx f ′ )

exp(βx f ) + exp(βx f ′ )
(42)

and

Pr( f u + v−−−→ f
′
)

= Pr(u + v|u’s timer expires) Pr(u’s timer expires)

=
|Nu| − |Nu, f |
|Nu|

· 1
|Nu| − |Nu, f |

·
exp(βx f ′ )

exp(βx f ) + exp(βx f ′ )
·

|Nu |
2 exp(τ)∑

w∈V
|Nw |

2 exp(τ)

=
1∑

v∈V |Nv|
·

exp(βx f ′ )

exp(βx f ) + exp(βx f ′ )
. (43)

Therefore, we have

Pr( f → f
′
)

= Pr( f v + u−−−→ f
′
) + Pr( f u + v−−−→ f

′
)

=
2∑

v∈V |Nv|
·

exp(βx f ′ )

exp(βx f ) + exp(βx f ′ )
. (44)

In our implementation, under configuration f , peer v counts
down with rate |Nv |

2 exp−1(τ). Therefore, the rate of leaving the
state f is

∑
v∈V

|Nv |
2 exp−1(τ). With the probability Pr( f → f

′
),

the process jumps to state f
′

when leaving state f . So, the
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transition rate from state f to f
′

is

q f , f ′ =
2∑

v∈V |Nv|
·

exp(β · x f ′ )

exp(β · x f ) + exp(β · x f ′ )

×
∑
v∈V

|Nv|
2

exp−1(τ)

= exp−1(τ)
exp(β · x f ′ )

exp(β · x f ) + exp(β · x f ′ )
. (45)

With (27), we see that p∗f (x)·q f , f ′ = p∗f ′(x)·q f ′, f ,∀ f , f ′ ∈ F ,
i.e., the detailed balance equations hold. Thus the constructed
Markov chain is time-reversible and its stationary distribution
is indeed (27) according to Theorem 1.3 and Theorem 1.14 in
[42].

C. Proof of Theorem 3
We denote M as the original topology hopping Markov

chain with exact broadcast rates, and M′ as the corresponding
extended Markov chain with inaccurately observed broadcast
rates. For the convenience of expression, for all f ∈ F , j ∈
{−n f , . . . , n f }, we use f j to represent the state ( f , x f +

j
n f
∆ f )

in the extended Markov chain M′, and η f j to represent distri-
bution of inaccurate observed rates η j, f .

Therefore, given direct transitions between configuration f
and f ′ in the original topology hopping Markov chain M,
there are direct transitions between states f j and f ′k (∀ j ∈
{−n f , . . . , n f }, k ∈ {−n f ′ , . . . , n f ′ }) in the extended Markov
chain M′. Following (32) and (33), we have the corresponding
transition rates

q f j, f ′k =
η f ′k

exp(τ)
·

exp(β(x f ′ +
k

n f ′
∆ f ′))

exp(β(x f ′ +
k

n f ′
∆ f ′)) + exp(β(x f +

j
n f
∆ f ))

(46)
and

q f ′k , f j =
η f j

exp(τ)
·

exp(β(x f +
j

n f
∆ f ))

exp(β(x f +
j

n f
∆ f )) + exp(β(x f ′ +

k
n f ′
∆ f ′ ))

,

(47)

where
∑n f

j=−n f
η f j = 1 and

∑n f ′

k=−n f ′
η f ′k = 1.

Now we compute the stationary distribution of states for the
extended Markov chain M′. By detailed balance equation, we
have

p f j q f j, f ′k = p f ′k q f ′k , f j ,∀ j ∈ {−n f , . . . , n f }, k ∈ {−n f ′ , . . . , n f ′ }.
(48)

Then we have

p f j ·
1

η f j · exp(β(x f +
j

n f
∆ f ))

= p f ′k ·
1

η f ′k · exp(β(x f ′ +
k

n f ′
∆ f ′))

,

(49)
∀ j ∈ {−n f , . . . , n f }, k ∈ {−n f ′ , . . . , n f ′ }.

Therefore,
p f0

η f0 · exp(βx f )
=

p f ′0

η f ′0 · exp(βx f ′)
(50)

and
p f ′k

p f ′0

=
η f ′k

η f ′0

· exp(β
k

n f ′
∆ f ′ ),∀k ∈ {−n f ′ , . . . , n f ′ }. (51)

Consider an arbitrary state f̂0 in the extended Markov chain
M′, where f̂ ∈ F and f̂ , f , f ′. Since state space of M′ is

connected, we can always find a path to connect f̂0 and f0
through a series of adjacent states f̃ (1)0, . . . , f̃ (L)0, and f0 =
f̃ (1)0, f̃ (L)0 = f̂0. Therefore,

p f̂0

p f0
=

L−1∏
l=1

p f̃ (l+1)0

p f̃ (l)0

(52)

and by (50) we have
p f̃ (l+1)0

η f̃ (l+1)0
· exp(βx f̃ (l+1))

=
p f̃ (l)0

η f̃ (l)0
· exp(βx f̃ (l))

. (53)

Then
p f̂0

η f̂0 · exp(βx f̂ )
=

p f0

η f0 · exp(βx f )
. (54)

By (51) and (54), we know that ∀ f ∈ F ,
p f0

η f0 · exp(βx f )
is a constant (55)

and
p f j

p f0
=
η f j

η f0
· exp(β

j
n f
∆ f ),∀ j ∈ {−n f , . . . , n f }. (56)

On the other hand, we have∑
f∈F

n f∑
j=−n f

p f j = 1. (57)

By (55), (56) and (57), we obtain the stationary distribution
of states for the extended Markov chain M′ as follows:

∀ f ∈ F , j ∈ {−n f , . . . , n f },

p̃ f j =
η f j · exp(β(x f +

j
n f
∆ f ))∑

f ′∈F

n f ′∑
k=−n f ′

η f ′k · exp(β(x f ′ +
k

n f ′
∆ f ′ ))

. (58)

The stationary distribution of peer configurations in the
extended Markov chain M′ is the probability distribution of
aggregate states f j, j ∈ {−n f , . . . , n f }, i.e.,

p̄ f =

n f∑
j=−n f

p̃ f j . (59)

Let

α f ,
n f∑

j=−n f

η f j · exp(β
j

n f
∆ f ),∀ f ∈ F . (60)

Then we have

p̄ f =
α f exp(βx f )∑

f ′∈F
α f ′ exp(βx f ′)

,∀ f ∈ F . (61)

By (27), we know

p∗f =
exp(βx f )∑

f ′∈F
exp(βx f ′ )

,∀ f ∈ F . (62)

Let

ᾱ ,

∑
f ′∈F
α f ′ exp(βx f ′)∑

f ′∈F
exp(βx f ′)

. (63)

It is not hard to see that
p∗f
p̄ f
= ᾱ
α f

, so

p∗f ≥ p̄ f iff α f ≤ ᾱ. (64)
The total variation distance

dTV (p∗, p̄) =
1
2

∑
f∈F
|p∗f − p̄ f | (65)

=
∑
f∈A

(p∗f − p̄ f ), (66)
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where A , { f ∈ F : p∗f ≥ p̄ f }.
By (64), we know A = { f ∈ F : α f ≤ ᾱ} ⊂ F .
Therefore, ∀ f ∈ A,

p∗f − p̄ f =
exp(βx f )∑

f ′∈F
exp(βx f ′)

−
α f exp(βx f )∑

f ′∈F
α f ′ exp(βx f ′ )

(67)

=
exp(βx f )∑

f ′∈F
exp(βx f ′)

−
α f exp(βx f )
ᾱ
∑

f ′∈F
exp(βx f ′ )

(68)

=
exp(βx f )∑

f ′∈F
exp(βx f ′)

[1 −
α f

ᾱ
]. (69)

Since
n f∑

j=−n f

η f j = 1 and ∀ j ∈ {−n f , . . . , n f },

exp(β
j

n f
∆ f ) ≥ exp(−β∆ f ) ≥ exp(−β∆max) (70)

and

exp(β
j

n f
∆ f ) ≤ exp(β∆ f ) ≤ exp(β∆max), (71)

by (60) we know that ∀ f ∈ F

α f ≥
n f∑

j=−n f

η f j · exp(−β∆max) = exp(−β∆max) (72)

and

α f ≤
n f∑

j=−n f

η f j · exp(β∆max) = exp(β∆max). (73)

Then by (63), we have ᾱ ≤ exp(β∆max). Therefore,

1 −
α f

ᾱ
≤ 1 − exp(−β∆max)

exp(β∆max)
= 1 − exp(−2β∆max),∀ f ∈ A ⊂ F .

(74)
So by (69), we have ∀ f ∈ A,

p∗f − p̄ f =
exp(βx f )∑

f ′∈F
exp(βx f ′ )

[1 −
α f

ᾱ
] (75)

≤
exp(βx f )∑

f ′∈F
exp(βx f ′ )

(1 − exp(−2β∆max)). (76)

Then,

dTV (p∗, p̄) =
∑
f∈A

(p∗f − p̄ f ) (77)

≤
∑
f∈A

exp(βx f )∑
f ′∈F

exp(βx f ′ )
(1 − exp(−2β∆max)) (78)

≤
∑
f∈F

exp(βx f )∑
f ′∈F

exp(βx f ′)
(1 − exp(−2β∆max)) (79)

= 1 − exp(−2β∆max). (80)
Therefore,

|p∗xT − p̄xT | = |
∑
f∈F

(p∗f − p̄ f )x f | (81)

≤ xmax

∑
f∈F
|(p∗f − p̄ f )| (82)

= 2xmaxdTV (p∗, p̄) (83)
≤ 2xmax(1 − exp(−2β∆max)). (84)

This concludes the proof.
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