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Understanding Performance of Edge Content
Caching for Mobile Video Streaming
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and Wenwu Zhu, Fellow, IEEE

Abstract— Today’s Internet has witnessed an increase in the
popularity of mobile video streaming, which is expected to exceed
3/4 of the global mobile data traffic by 2019. To satisfy the consid-
erable amount of mobile video requests, video service providers
have been pushing their content delivery infrastructure to edge
networks—from regional content delivery network (CDN) servers
to peer CDN servers (e.g., smartrouters in users’ homes)—to
cache content and serve users with storage and network resources
nearby. Among the edge network content caching paradigms,
Wi-Fi access point caching and cellular base station caching
have become two mainstream solutions. Thus, understanding the
effectiveness and performance of these solutions for large-scale
mobile video delivery is important. However, the characteristics
and request patterns of mobile video streaming are unclear in
practical wireless network. In this paper, we use real-world data
sets containing 50 million trace items of nearly 2 million users
viewing more than 0.3 million unique videos using mobile devices
in a metropolis in China over two weeks, not only to under-
stand the request patterns and user behaviors in mobile video
streaming, but also to evaluate the effectiveness of Wi-Fi and
cellular-based edge content caching solutions. To understand the
performance of edge content caching for mobile video streaming,
we first present temporal and spatial video request patterns,
and we analyze their impacts on caching performance using
frequency-domain and entropy analysis approaches. We then
study the behaviors of mobile video users, including their
mobility and geographical migration behaviors, which deter-
mine the request patterns. Using trace-driven experiments, we
compare strategies for edge content caching, including least
recently used (LRU) and least frequently used (LFU), in terms
of supporting mobile video requests. We reveal that content,
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location, and mobility factors all affect edge content caching
performance. Moreover, we design an efficient caching strategy
based on the measurement insights and experimentally evaluate
its performance. The results show that our design significantly
improves the cache hit rate by up to 30% compared with
LRU/LFU.

Index Terms— Edge network, mobile video streaming, user
behavior, measurement, content delivery.

I. INTRODUCTION

GLOBAL mobile video traffic reached 3.7 EB/month at
the end of 2015, and it is predicted that over 3/4

of the global mobile data traffic will be video traffic by
2019 [1]. This trend is further accelerated by the rapid growth
of online/mobile social media and mobile networks: video
clips are increasingly being generated by users and instantly
shared with their friends. In contrast to conventional live
and on-demand video streaming that are consumed using
TVs and PCs, mobile video streaming is generally watched
by users on mobile devices with wireless connections, i.e.,
3G/4G cellular or Wi-Fi. User behaviors and wireless net-
work quality in mobile video streaming [2], [3] can be quite
different from those in conventional video streaming [4], [5],
thus requiring improvements in the delivery of mobile video
streaming.

To meet the sky-rocketing increase in bandwidth require-
ments resulting from data-intensive video streaming and to
reduce the monetary cost for renting expensive resources in
conventional content delivery networks (CDNs), video service
providers are pushing their content delivery infrastructure
closer to users to utilize network and storage resources in
households for content delivery [6], including caching con-
tent over femtocells [7] and replicating video content via
Wi-Fi smartrouters in households. Youku, one of the largest
online video providers in China, has deployed over 300K
smartrouters in its usersâŁ™ homes in less than one year,
expecting to transform a large fraction of its users (250M) into
such content delivery peer nodes [8]. To serve users with good
quality of experience using the new edge network solutions,
it is important to answer the following questions: (1) What
are the video request patterns in mobile video streaming, how
do users behave in today’s mobile video systems, and what
is the implication of their behaviors on edge network video
content delivery (Sec. IV and Sec. V)? (2) How is the quality
of user experience in the mobile video sessions (Sec. VI-B)?
(3) Can today’s mobile network infrastructure appropriately
satisfy the mobile video streaming demand (Sec. VI-A)?
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(4) What strategies can be applied to best support mobile video
content delivery (Sec. VII)?

Several measurement studies have been conducted to
address the above questions. However, such measurement
studies are challenging because many different factors are
involved, including user behaviors (i.e., mobility pattern and
video preference), video content characteristics, and mobile
network characteristics. Previous studies generally focus on a
single aspect, e.g., studying the popularity of mobile video
content [9], [10], user mobility behaviors [11], or network
strategies to support mobile video streaming, e.g., content
replication [12]. The limitation of the previous studies is that
they have not considered the joint impact of user behaviors,
content characteristics and wireless network deployment, on
edge network content delivery.

In this paper, we propose to address the above questions
from the perspectives of both the mobile video service and
wireless network providers. From the perspective of mobile
video service, we study how users view mobile videos, includ-
ing their mobility patterns in video sessions and the content
selection in different locations, and we build a mobile video
consumption model. From the perspective of wireless network
provider, we present how the mobile video requests can be
served by both the Wi-Fi and cellular infrastructures that are
commonly used by today’s users, and we provide insights on
how to improve the QoS of wireless networks according to
their video request patterns.

Our contributions are summarized as follows:
First, we use large-scale datasets to study user behaviors

in a real-world mobile video streaming system, covering
50 million sessions of nearly 2 million users viewing more
than 0.3 million videos using mobile devices in 2 weeks. Using
frequency-domain and entropy analyses [9], [13], we show
that mobile video requests exhibit unique spatial and temporal
patterns that can significantly affect the performance of content
caching strategies in edge networks. (1) We observe a skewed
geographic request distribution in the mobile video system,
and the number of requests is highly affected by the regular
mobility patterns of users. For example, the number of requests
in train stations is much larger than that in residential areas.
(2) We observe that videos with lower popularity have more
uniform distribution of requesting locations, while videos with
higher popularity have more skewed distribution. Surprisingly,
the increase of multi-location users (who request videos in
different locations, i.e., mobile users) in a location does
not increase the requested number of unique videos, which
is different from conventional single-location users (who
request videos only in the same locations, i.e., home users).
(3) In the frequency-domain analysis, we observe that the
number of requests in locations with different functionalities
over time has 3 major periods, e.g., residential areas have an
obvious period of 8 hours, which can be used to predict the
future traffic in content delivery.

Second, we further investigate how user behaviors determine
the above request patterns. We reveal that both mobility
and geographic migration behaviors of users can significantly
affect mobile video requests. In particular, we show that the
mobility behaviors of users are heterogeneous, e.g., a number

of multi-location users request videos intensively and request
them in different locations, whereas there is a large fraction
of users who only request a small number of videos in
the same location. For the geographic migration behaviors,
we observe that (1) users have regular commute behaviors,
involving 2–3 regularly visited locations where they tend to
request mobile videos, and (2) it is common for users to move
between the same type of locations (e.g., residential) and issue
video requests. These observations suggest that joint caching
strategies over multiple locations can improve the caching
performance.

Third, we compare the effectiveness of Wi-Fi and cellular-
based edge network caching solutions, and we discuss the
potential improvement on mobile video streaming to today’s
wireless networks. Based on our edge network traces covering
1, 055, 881 Wi-Fi APs and 69, 210 cellular base stations,
we investigate conventional caching strategies, including least
recently used (LRU) and least frequently used (LFU) for edge
network mobile video delivery. We first show that most of
today’s Wi-Fi and cellular deployments are close enough to
the mobile requests of users in different locations; however,
although Wi-Fi and cellular have different deployment strate-
gies, they cannot well serve different categories of mobile
video users. Second, we show that a number of factors
including user mobility, content popularity, cache capacity,
and caching strategies affect the caching performance for
both Wi-Fi and cellular caching for mobile video delivery.
For example, unpopular videos attract users mostly from few
locations where users have particular interests in the content,
and caching strategies have various influences on different
categories of users.

Finally, motivated by the measurement insights, we design
a geo-collaborative caching strategy for mobile video deliv-
ery, which jointly considers mobile video request patterns,
user behaviors and the deployment of wireless networks.
Based on real-world trace-driven experiments, we show that
our design achieves a 20% (resp. 30%) cache hit rate
improvement and a 20% (resp. 30%) service rate improve-
ment compared with conventional LRU (resp. LFU) caching
strategies.

The remainder of this paper is organized as follows.
We discuss the related works in Sec. II. We present the datasets
used in our measurement studies in Sec. III. We study the
temporal and spatial request patterns and the content charac-
teristics in a mobile video system in Sec. IV. We measure user
behaviors in mobile video streaming sessions and how they
affect the quality of mobile streaming in Sec. V. We compare
the effectiveness of Wi-Fi and cellular-based edge content
delivery solutions and discuss the potential improvement to
today’s wireless networks to improve mobile video streaming
in Sec. VI. We present the details of our caching strategy and
evaluate its performance in Sec. VII. Finally, we conclude the
paper in Sec. VIII.

II. RELATED WORK

There are four main research areas related to our work:
video measurement, user mobility behaviors, edge video deliv-
ery and edge network caching strategies.
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A. Video Measurement

There are several prior studies that focus on the properties
of videos and how to model and predict the popularity of
such videos. One of the works investigates the relationship
between the popularity and location of online videos [9], [14].
This work finds that videos exhibit a geographical distribution
of interest, with users arising from a confined and single area
rather than from a global area, and it provides new insights on
how the geographic reach of a video changes as its popularity
peak and then fades away. The prediction of video popularity
has also been studied based on historical information given by
early popularity measures [10], [15]. Two novel models are
proposed, which are able to better distinguish between videos
with different popularities, by assigning different weights to
samples with different popularities and exploring the similarity
between the video and known samples within the monitoring
period. Our study on mobile video differs from these works
since our analysis focuses not only on time period (hour
level), but also on entropy analysis. In addition, the geographic
locations that we measured are more specific, allowing us
to obtain a comprehensive relationship between temporal and
spatial video request patterns.

B. User Mobility Behaviors

There are also several prior studies that focus on character-
izing mobile video traffic. Li et al. [16] focus on analyzing
the main discrepancies when users access video-on-demand
systems using either Wi-Fi or 3G connections. They study the
factors that affect mobile users’ interests and video popularity.
Li et al. [14] characterize the geographical patterns on a
large-scale, commercial, mobile video-on-demand system and
analyze the temporal evolution trends of the geographical
popularity, which reveal distinct behaviors of popular and
unpopular videos. However, they only use coarse-grained
(in province) location information, which differs from our
study in which the latitudes and longitudes of users are
analyzed to obtain useful insights about the relationship
between user mobility and video request patterns. Recently,
Wang et al. [13] model the mobile traffic patterns of large-scale
cellular base stations deployed in a city. Their work contributes
some valuable information for Internet service providers,
mobile users, and government management of mobile network
resources.

With the development of new location-sensing technologies,
the information about the locations of users has become
available. Toole et al. [17] use the dynamic data generated
by mobile phones to measure spatiotemporal changes in
population, and identify the relationship between land use
and dynamic population. Considering that sharing precise
location information may cause leaks of privacy information,
Das et al. [11] study the contextual locations of users by
passively monitoring the mobile network traffic of many
location-based services, which only rely on contextual loca-
tion. In contrast to these works, our study focuses on pro-
viding an understanding of user mobility and geographical
migrations when using mobile video services. A QoE mod-
eling framework with user, system and context components

is created for a mobile video environment, taking mobile
user, mobile device, mobile network and mobile video service
into consideration [18]. Thus, users requesting mobile videos
may benefit from the model, and video providers could also
develop effective strategies to improve the user experience.
Furthermore, the viewing conditions of mobile video can be
described in terms of three main factors: display size and
viewing distance, surrounding luminance, and body move-
ments of the viewer [19]. It incorporates all three of these
important factors into optimizing video coding and delivery
for mobile devices. Some studies show that users’ cooperation
can effectively reduce the servers’ burden, such as delay and
bandwidth, confirmed to be an attractive solution to limit the
costs incurred by content providers [20], [21].

C. Edge Video Delivery

The substantial demand for bandwidth from data-intensive
applications has challenged the traditional content delivery
paradigms: the content delivery network (CDN), including its
variations ISP-operated CDN [22], content-provider-operated
CDN [23], and peer-to-peer CDN [24], [25]. Because mobile
video content has occupied most of the mobile network
traffic, caching videos in the network edge (i.e., femtocells or
Wi-Fi APs) has become a common solution. Building caches
at the network edge is an appealing solution since the cost of
network equipment, such as cellular base stations, substantially
exceeds the cost of installing a cache [26]. Furthermore, if
videos can be fetched from a local cache rather than CDN
servers, the large delays can be significantly reduced [27].
Golrezaei et al. [7] envision femtocell-like base stations called
helpers, with weak backhaul links but large storage capacity,
which can assist in the macro base station by handling requests
for popular files that have been cached. Based on a real
measurement study of mobile video viewing logs from a
leading Internet video provider for 14 days, Lin et al. [28]
study the potential of peer-assisted video delivery in Wi-Fi
mobile networks aiming to reduce server load. Moreover,
Zhou et al. [29] study how video popularity changes over
time and varies among different categories, and they apply
the results to design video caching strategies in CDN servers.

D. Edge Network Caching Strategies

The impact of content popularity dynamics on cache per-
formance can be captured by an analytical model under
the assumption that requests at different caches are inde-
pendent [30]. Based on this assumption, a threshold-based
caching scheme is proposed for wireless access networks,
which replicates content that is requested more times than
the given threshold [31]. To investigate collaborative caching,
coded caching strategies for heterogeneous wireless networks
have been proposed to balance the cost among base sta-
tion transmission, access point storage and user connection
latency [32], [33]. Distributed caching architectures have also
been proposed to replicate content close to users to reduce the
average video delivery delay [34].

To the best of our knowledge, we are the first to jointly
measure both the mobile video request patterns, user mobil-
ity behaviors, and the deployment of wireless networks to
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TABLE I

MOBILE VIDEO BEHAVIOR DATASET

investigate the performance of wireless network caching and to
design an efficient caching strategy for mobile video delivery.

III. DATASETS ON MOBILE VIDEO STREAMING

AND EDGE NETWORKS

In this section, we present how we collect the datasets used
in our study.

A. Mobile Video Behavior Dataset

The mobile video behavior dataset is collected by a video
provider company in China. How users view videos in the
mobile video streaming app has been recorded. The dataset
spans 2 weeks and covers 2 million users watching 0.3 million
unique videos in Beijing. In each trace item, the following
information is recorded: (1) The device identifier, which is
unique for different devices and can be used to track users;
(2) The timestamp when the user starts to watch the video;
(3) The location where the user watches the video: the video
player reports the location either collected from the device’s
built-in GPS function or inferred from the network parameters
(e.g., cellular base station); (4) The title of the video, as shown
in Table I.

B. Wi-Fi and Cellular Network Dataset

We also study how today’s edge network content deliv-
ery paradigms can be supported by both Wi-Fi and cellular
solutions [35], [36].

1) Wi-Fi AP Information: The Wi-Fi and cellular network
dataset is provided by Tencent Wi-Fi [37], a mobile app
that asks users to respond to questions on how they use
Wi-Fi/cellular networks. In particular, we collected over
1 million Wi-Fi APs in Beijing city, including the basic service
set identifier (BSSID) of Wi-Fi APs and the location of the
Wi-Fi hotspots. This valuable dataset samples a large fraction
of Wi-Fi APs that are actually deployed in Beijing, allowing us
to determine whether these APs can provide content delivery
functionality for mobile video streaming. Table II shows the
details of the dataset: each trace item contains the latitude and
longitude of the AP and the point of interest (PoI) information
of the AP (e.g., hotel).

2) Cellular Base Station Information: Our dataset also con-
tains cellular network information, including locations, IDs,
and location area code (LAC) of over 70 thousand cellular
base stations.

TABLE II

Wi-Fi AND CELLULAR NETWORK DATASET

IV. REQUEST PATTERNS IN MOBILE VIDEO STREAMING

In this section, we first investigate the popularity distribution
of mobile videos; we then study the spatial and temporal
patterns of users’ video requests in mobile video streaming
and present how content affects mobile video requests; finally,
we present the implications of such request patterns.

A. Popularity Distribution

We first describe the popularity distribution of mobile
videos. As illustrated in Fig. 1(a), we observe that the pop-
ularity of mobile video content also follows a power-law
distribution.

Fig. 1(b) shows the average normalized number of daily
requests for different video categories over time, for the
1000 most popular videos. We observe that trailer has the
smallest decreasing rate, short variety show has the largest
decreasing rate, and the animation category has the longest
lifetime.

Furthermore, we investigate the popularity of videos in
different locations by studying the popularity rank of the
1, 000 most popular videos (top 0.3% in the entire system).
In Fig. 1(c), we plot the CDF of the average popularity rank
of these videos in 1, 000 locations where they are requested.
We observe that the top 0.3% videos have quite different
popularity ranks in different locations: the average popularity
rank for these videos is below the top 40% in as many as
60% of the locations. This observation indicates that global
popularity cannot be directly used to infer the local popularity
of mobile video content. Thus a local caching strategy is
more suitable than a global strategy in current mobile video
systems.

B. Spatial and Temporal Patterns of Mobile Video Requests

To study the mobility patterns of viewers, we assume that
the users’ requests can be served by the nearest Wi-Fi APs or
cellular BSes. Thus, we first classify all the users in the mobile
video streaming system into two categories: multi-location
users, who request videos in different locations (APs/BSes)
within one day in the traces, and single-location users, whose
requests are all issued from the same location (APs/BSes)
within one day. Note that a user may be a multi-location user
or a single-location user on different days.
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Fig. 1. Characteristics of mobile video popularity.

Fig. 2. CDF of the number of requests in the locations partitioned
geographically.

1) Skewed Geographical Request Distribution: We inves-
tigate the geographical distribution of requests. According to
the longitude interval 0.01° and latitude interval 0.01°, Beijing
will be divided into different locations. Every location can
be abstracted as a 0.01° × 0.01° geographic location with
an area of 0.72km2. Each location has a PoI functionality
label, which indicates the largest PoI functionality number
of the location. We count the number of requests issued in
these locations. As shown in Fig. 2, we plot the CDFs of the
number of requests issued in the locations at different times
of a day, i.e., 6am–12am, 12am–6pm, and 6pm–12pm. Our
observations are as follows: (1) More requests are issued at
night than during the daytime, e.g., the number of requests
from 6pm–12pm is 74% greater than that from 12am–6pm.
(2) A significant fraction of locations only have very few
requests issued. These observations indicate that to serve
mobile video requests, the edge network content delivery
systems need to take the geographical request distribution into
consideration, e.g., to allocate more resources to the locations
with higher request density and proactively push content to
the edge at the off-peak times.

2) Multi-location Users in Different Locations: We study
the behaviors of multi-location users in different locations
within one day, such as university, airport, railway station,
scenery spot and business district. In Fig. 3, we plot the
fraction of multi-location users over all video users recorded
in our traces in these locations in one week. Our observations
are as follows: (1) These locations generally have a relatively
stable multi-location user fraction of approximately 20%.

Fig. 3. Evolution of multi-location users in different locations.

Fig. 4. Number of mobile video requests in different locations over time.

(2) Some locations have lower multi-location user fractions
than others, e.g., there are less users in university than at
rail station. (3) The fraction of multi-location users changes
significantly over time in some locations, e.g., the fraction
in the business distinct drops from approximately 25% on
weekdays to 15% on weekends. The reason is that the mobile
video behaviors are highly correlated with the regular com-
mute behaviors of users.

3) Frequency Analysis of Periodical Request Patterns: It is
common for users to generate periodical requests, e.g., more
video requests are issued at night. Such periodical request
patterns can affect the edge network caching strategies, includ-
ing content replication and resource allocation. As illustrated
in Fig. 4, the curves represent the number of video requests
issued in different locations in one week. The requests over
time have different periodical patterns.

To specify the periodical request patterns, we use a fre-
quency analysis approach [13], as follows:
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Fig. 5. Frequency analysis of mobile video requests in different locations:
amplitude versus frequency.

1) Let x = (x1, x2, . . . , xN )T denote the number of video
requests over time, i.e., xi is the number of requests
in time slot i . In our experiments, each time slot is
1 hour, and we study the request samples in 1 week,
i.e., N = 168.

2) We perform DFT as follows,

X[k] =
N∑

n=1

xne−2π ikn/N ,

where X[k] is the frequency spectrum of sequence of
requests X in the time domain. A larger X[k] indicates
that the sequence has a stronger period of k.

3) We study the amplitude of the frequency-domain
sequence X[k], in which amplitude and phase represent
request volume and their peak-valley time, respectively.

Fig. 5 shows the discrete Fourier transform (DFT) results
of the requests over time. In particular, we plot the amplitude
versus the frequency of requests in different functionalities
of locations. Our observations are as follows: (1) There are
some major frequencies with large amplitudes, e.g., k = 7, 14,
and 21, corresponding to 1 day, 12 hours and 8 hours,
respectively. This means that we can use the three frequency
components to present the time-domain traffic. Furthermore,
we can leverage this property to predict the future traffic.
(2) Different functionalities of locations also have different
major frequency patterns. For example, the daily pattern is
more obvious for the residential areas than the hotels, and
the business areas have a strong period of 8 hours. This
observation indicates that the periodical patterns of mobile
video requests are highly affected by the functional type of
locations, which can be utilized to distinguish locations with
different functionalities.

C. Analysis on Content Video: An Entropy Approach

We study how different videos are actually requested in
different locations. To this end, we use an entropy analysis
approach. Motivated by the entropy calculation in information
theory [9], [14], [38], we define a video request entropy and
a location request entropy.

1) Geographical Video Request Entropy: The geographical
video request entropy H V (v) is defined as follows:

H V (v) = −
∑

l∈Lv

nvl∑
j∈Lv

nv j
log

nvl∑
j∈Lv

nv j
,

Fig. 6. Geographical video request entropy versus video popularity.

where H V (v) is the geographical video request entropy for
video v, Lv is the set of locations (e.g., locations defined
previously) where video v has been requested, and nv j is the
number of requests for video v in location j . A lower value
of video request entropy indicates that the video’s requests are
more diversely distributed across different locations, thereby
affecting the caching strategies.

2) Location Request Entropy: The next entropy is loca-
tion request entropy, which reflects the diversity of videos
requested in a particular location. The location request entropy
is calculated as follows:

H L(l) = −
∑

v∈Vl

nvl∑
j∈Vl

n j l
log

nvl∑
j∈Vl

n j l
,

where Vl is the set of videos requested in location l.
A larger location request entropy value indicates that the
videos requested in the location are more diverse. For the
caching strategy, a location with a larger location request
entropy generally requires more content items to be replicated
to serve the users.

We can compare geographical video request entropy (loca-
tion request entropy) to evaluate their request patterns given
fixed total videos and locations. However, it is unfair to
compare geographical video request entropy (location request
entropy) directly if the total number of locations where video
requests are issued is different (each location has different
unique videos). Once any additional location is involved, the
entropy will be increased [39]. For example, the requested
videos with more locations tend to have larger geographical
video request entropy than videos with fewer requesting loca-
tions. To overcome this ambiguity, the two entropies have been
normalized in our measurement.

3) Entropy Analysis: In this section, we will conduct
entropy analysis from two perspectives: video and location.

From the video perspective, we primarily use geographical
video request entropy. We first divide videos into four grades
according to the requested times (i.e., video popularity) during
two weeks, and then we select 50 videos from each grade
randomly and compute the geographical video request entropy
for these videos. Fig. 6(a) shows that the geographical video
request entropy increases as the video popularity increases.
This result is consistent with the general understanding.
The more popular the video is, the larger its geographi-
cal video request entropy is. Consequently, popular videos
receive requests from almost everywhere (global distributions),
whereas unpopular videos only receive requests from some
specific locations (local distributions). Fig. 6(b) shows the
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Fig. 7. Location request entropy schemetic diagram.

normalized geographical video request entropy. Interestingly,
this figure shows a different result that the more popular the
video is, the smaller the normalized entropy is. The reason is
that although the requests for a popular video are requested
from more locations, the request distribution of these locations
is more skewed compared with that of unpopular videos.

From the location perspective, we primarily use the nor-
malized location request entropy. We study the distribution
of the location request entropies. In Fig. 8(a), we plot the
location request entropies H L(l) of 10514 locations versus
the rank of the locations. The results are calculated based on
our 2-week traces. We observe that the normalized location
request entropy distribution is almost a straight line without
the smallest locations, ranging from 0.8 to 1. To better under-
stand these values, Fig. 7 shows the corresponding schematic
diagram, where different shapes represent different unique
videos. Location A only requests one video each time; thus,
the entropy is 0. However, users in location B issue eight
requests for eight different videos and the distribution is uni-
form; thus, the corresponding request entropy is 1. Therefore,
the fewer video requests and strongly skewed distributions
result in the smallest entropy of the locations. Intuitively,
locations with more unique videos have smaller entropy, which
have more skewed distributions. Considering cache strategies,
LFU is better for locations with smaller location entropy
since there are many different requested videos at each time,
whereas LRU is better for locations with larger location
entropy.

We next investigate whether the normalized location request
entropy is affected by the characteristics of the location.
In particular, we study the correlation between the location
request entropy and the number of PoI functionality labels of
a location, e.g., residential area. As shown in Fig. 8(b), each
sample is the average normalized entropy of locations versus
the number of PoI labels of these locations. Our observations
are as follows: (1) Locations with a larger number of PoI
labels typically have smaller location request entropies, indi-
cating that a location with more “functionalities” has a more
skewed request distribution accompanied by more diverse
video requests. (2) The relationship approximately follows
the quadratic function y = 0.0003x2 − 0.0096x + 0.9648,
indicating that the location with a particular number (nearly
fifteen) of PoI labels has the smallest entropy.

We also study the impact of the number of users on the
location request entropy. In Fig. 8(c), each sample is the
average normalized location request entropy versus the number
of users requesting videos in these locations. We observe

that a larger number of users generally leads to a smaller
location request entropy, indicating that more users generate
more skewed request distributions with more diverse content
requests.

Finally, we investigate the impact of user mobility on
the normalized location request entropy. We define the user
mobility intensity of a location as the mean of all multi-
location users who have requested videos in that location.
In this experiment, locations with no user movement are not
considered. In Fig. 8(d), each sample is the location request
entropy versus the user mobility intensity. As shown in this
figure, as the user mobility intensity increases from 100 to 103,
the normalized location request entropy gradually increases.
We fit the samples into the function y = 0.0085 log(x) +
0.9273, implying that user mobility is also a factor for the
content diversity. In contrast to user number, the user mobility
intensity has a positive impact on location request entropy. The
larger the user mobility intensity is, the larger the location
request entropy is and the less the unique video number of the
location is. It is inferred that multi-location users are more
likely to request popular videos without increasing the unique
video number. One possible reason is that the time of the
multi-location users is fragmented such that they are more
interested in popular videos. Thus, LFU is more suitable for
multi-location users. We will verify the results in Sec. VI.

V. MOBILE VIDEO REQUESTS AFFECTED

BY USER MOBILITY BEHAVIORS

In this section, we study what drives the previous request
patterns. Particularly, we focus on mobile video user behav-
iors. In the following experiments on multi-location users, our
results are the average results of fourteen days.

A. Mobility Intensity Analysis

In our experiments, we only study the behaviors of active
users who requested at least ten videos daily in our 2-week
traces. Among these 9, 576 active users, we have 30% multi-
location users and 70% simple-location users, which are
defined previously.

1) Movements and Locations Visited: We first study the
mobility intensity of the multi-location users. In Fig. 9(a), we
plot the fraction of users versus the number of “movements”,
i.e., the number of requests issued in different locations in one
day. We observe that the number of movements is generally
in the range [1, 30], and the range [2, 3] has the largest
fraction of users. The results are quite similar for weekdays
and weekends. We next study the number of locations where
the requests are issued. In Fig. 9(b), the bars are the fraction
of users versus the number of locations where videos are
requested in one day. As shown in this figure, as many
as 50% of the multi-location users only issued video requests
at 2 locations, and 80% of the users only requested videos
from less than 4 locations. These results indicate that it
is common for multi-location users to request videos from
different locations, but the number of locations (per user) is
quite limited. It provides some basic characteristics to capture
the trajectory of multi-location users.
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Fig. 8. Content request geographical distribution: entropy analysis.

Fig. 9. Statistics of movement of mobile users.

2) Distance and Interval of Movements: We further mea-
sure the cumulative distribution of the distances between
consecutively visited locations with different time intervals.
Fig. 10(a) plots the CDFs of distances between locations where
users consecutively request mobile videos. In detail, we select
3 intervals to divide users into the same order: [0, 10) min,
[10, 60) min, and [60,∞] min. We observe that when the
interval is shorter than 10 min, the distance is much shorter
than that with the other intervals. However, as the interval
time increases, the distance does not always become longer.
The small time interval indicates that users frequently move
between different locations. It is inferred that most users move
between 2 or 3 locations in a small time interval.

We also study the intervals between consecutive mobile
video requests. In Fig. 10(b), we plot the interval between
consecutive requests of users with different movement speeds.
We choose two reference speeds: the average speed of
walking (i.e., 5.6 km/h) and the average speed of subway
(i.e., 40 km/h). As shown in this figure, when the speed is
less than 5.6 km/h, most of the request intervals are small.
For example, 80% of the request intervals are issued within
1.5 hours, whereas only 40% of the request intervals are issued
in 1.5 hours for the movement speed of [5.6, 40) km/h. These
observations indicate that the mobility speed of users also
affects the request patterns. Moreover these results largely
depend on vehicles, which determine the enroute time.

B. Migration Patterns

For the multi-location users who request videos in different
locations, we study their migration patterns, i.e., how they
move across different locations.

1) Location Migration Pattern: According to our previous
observations, users only request mobile videos in a small
number of locations. We study how they move across these
locations. In Fig. 11, we plot the fraction of users who

Fig. 10. CDFs of distances and intervals of consecutive requests.

Fig. 11. Fraction of migration patterns.

share the same migration patterns across different locations.
In this figure, we plot the most popular 7 migration patterns,
which contribute 70% of all the migrations between locations.
We observe that moving between two particular locations
constitutes almost 50% of the migrations. Additionally, there
are migration patterns across 3 and 4 locations. These results
provides us with the basic characteristics to construct con-
nections between different locations for achieving caching
cooperation strategies.

2) Location Type Migration Pattern: We study the migra-
tion between different functionalities of locations. Based on
the PoI information used in our previous measurement studies,
we calculate the number of migrations of users from one
functionality of location to another functionality of location.
As summarized in Table III, each entry is the number of
migrations in two weeks, e.g., there are 2, 223 migrations
from the hospital areas to the business areas. We observe that
(1) it is common for users to move between locations with
the same PoI type, e.g., business to business, and (2) there
are large migration numbers between some specific pairs of
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TABLE III

MIGRATION MATRIX

Fig. 12. Request coverage by edge-network infrastructure.

location functionalities, e.g., the largest migration number
occurs between residential areas and business areas.

VI. EDGE NETWORK CONTENT DELIVERY

FOR MOBILE VIDEO STREAMING

In this section, we compare the effectiveness of Wi-Fi
APs and cellular base stations-based edge content delivery
solutions, and we discuss the potential improvement to today’s
wireless networks to enhance mobile video streaming. We first
study whether the request intensity in different locations
matches the number of edge network infrastructures; we then
present the difference between cellular and Wi-Fi on spatial
and temporal patterns. In particular, we focus on the effects on
caching performance of influencing factors, including different
strategies, request density, video and user diversity and user
mobility.

A. Request Coverage by Edge Network Infrastructure

To answer the question of whether today’s edge net-
work infrastructure can appropriately satisfy the mobile video
streaming demand, we measure the distance between users and
their nearest infrastructure, and we compare the differences of
distribution between requests and edge network infrastructure.

1) Distance between Requests and APs/BSes: We investi-
gate how the mobile video requests can be served by nearby
edge network infrastructures, including the Wi-Fi APs (i.e., the
smartrouter mode) and cellular base stations (i.e., the femtocell
mode). In particular, we study how far away users can find an
AP or base station to download videos. Fig. 12(a) plots the
CDFs of the distances between the requests and the nearest
Wi-Fi APs or cellular BSes that can potentially serve them.
We observe that over 95% of the mobile video requests can
at least find a Wi-Fi AP within 500 meters or a cellular
BS within 750 meters, indicating that edge network video
content delivery is promising. We further compare the distance
between a video request and the nearest Wi-Fi AP, and the

Fig. 13. Request intensity versus number of APs/BSes.

distance between the same request and the nearest cellular BS.
In Fig. 12(b), a distance gap larger than 0 suggests that the
distance for cellular base station is larger than the distance
for Wi-Fi AP. We observe that over 80% of the distance
differences are larger than 0, suggesting that Wi-Fi APs are
generally closer to users.

2) Request Intensity versus Number of APs/BSes: We also
investigate the request intensity (number of requests in dif-
ferent locations) and the number of Wi-Fi APs and cellular
base stations in the entire city under two assumptions: all
the requests have the same cost, and all APs/BSes have the
same power. We use the max-min method to normalize request
intensity and number of APs/BSes ranging from 0 and 1.
In particular, we investigate whether the requests and the
APs/BSes share the same distribution, e.g., there are more
APs/BSes if there are more requests in the same location.
To this end, we calculate the cosine similarity between the two,
i.e., q · a, where q is the normalized vector of the numbers
of requests in the locations and a is the normalized vector
of the numbers of the APs or BSes at the same locations.
A large similarity indicates that the request intensity matches
the number of APs/BSes. We observe that the similarity is
higher than 0.77, which is considered to indicate a significant
similarity. Interestingly, only considering the centralized 30%
area that occupies more than 80% of the total requests, the
similarity is less than 0.39, as shown in Fig. 13(a). Fig. 13(b)
shows the comparison between them. These results imply
that a marked difference exists between request intensity and
number of APs/BSes, particularly in high-intensity locations
where APs/BSes are generally unable to satisfy the requests.
It suggests that video service providers should deploy more
APs/BSes to better satisfy the users’ quality of experience.

3) Wi-Fi/Cellular Stability Analysis: From each Wi-Fi AP
and cellular base station perspective, we are interested in
the following question. Does the request time distribution of
Wi-Fi/cellular follow the global request distribution?
To answer this question, we measure the divergence
between the time distribution of global requests and single
Wi-Fi/cellular requests. To this end, we use the Kullback-
Leibler (KL) distance to measure the distance between two
distributions, which is defined on two distributions P and Q
as follows:

DK L(P ‖ Q) =
∑

t∈T

P(t) log
P(t)

Q(t)
,

where T refers to the set of time, P is the Wi-Fi/cellular
distribution of request time on a particular day, and Q is
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Fig. 14. KL distance between daily request distributions.

the distribution of global request. The KL distance is a non-
negative value. It represents the number of extra bits necessary
to encode samples from P when using a code based on Q,
rather than directly based on P . The smaller the value is,
the closer the two distributions are. Fig. 14(a) depicts the
CDF of KL distance over Wi-Fi and cellular, which conveys
that the daily request distributions of cellular relatively follow
the global request distribution. The reason is that Wi-Fi APs
attract users mostly from a smaller location where users have
particular interests in the content. Fig. 14(b) illustrates two
instances of KL distance. It shows that when KL distance
equals 0.1, the distribution is similar to the baseline.

B. Performance of Content Caching by Edge Networks

In this section, we evaluate the quality of user experience
in current mobile video systems. We assume that a user has a
better quality of experience (lower delay) when he is served
by the edge cache of a Wi-Fi AP or cellular base station. Thus,
we build a discrete trace-driven simulator to evaluate the cache
hit rates of conventional caching strategies for Wi-Fi APs and
cellular BSes. We simulate mobile video requests, following
the records in the real-world traces. We also use the positions
of the APs and BSes recorded in our traces to simulate the
edge network infrastructure.

1) Experimental Setup: In the simulation experiments, we
assume that the average video size S is unit [7], [29], [32]
and the evaluation criterion is the total cache hit rate. We use
the 2-week records of users’ requests to drive the simulation,
and we let the requests be served by the nearest Wi-Fi APs
or cellular BSes. All the APs/BSes have the same cache
capacity C and the default cache capacity is 20 (items). We set
the concurrency of APs/BSes as 20/100 and the bandwidth
as 20S/100S for APs/BSes to limit the max transmission
number per unit time [40]. The radius of each AP/BS is
100m/500m [41]. The parameters of the experiments are
summarized in Table IV.

In our experiments, we use the following conventional
caching strategies: (1) Least recently used (LRU). It discards
the least recently used content item first when the cache is
full. (2) Least frequently used (LFU). It discards the least
frequently used item first when the cache is full. (3) Random
replacement (RR). It randomly selects a candidate item and
discards it when necessary.

2) Hit Rate versus Capacity: We first study the impact
of the cache capacity on the cache hit rate. Fig. 15 shows
the cache hit rates of different caching strategies for both
Wi-Fi and cellular networks by varying the cache capacity

TABLE IV

SIMULATION PARAMETERS SETTING

Fig. 15. Cache hit rate under different cache capacity.

Fig. 16. Cache hit rate versus request density.

from 5 to 600. Our observations are as follows: (1) The cache
hit rates in Wi-Fi APs are generally larger than that in cellular
BSes, e.g., to reach the same cache hit rate of 0.25 (0.42,
0.61) with LRU, the average cache capacity of the Wi-Fi APs
is 5 (20, 50), whereas it is 12 (49, 118) for cellular BSes.
Additionally, the result is similar to LFU. (2) LRU, LFU
and RR achieve similar cache hit rates, particularly when the
cache capacity is large. As the cache capacity increases, the
probability of a new item being discarded in RR gradually
decreases, resulting in similar performance with LRU. Since
the cache contains increasingly more items, all of the strategies
achieve high cache hit rates.

3) Impact of Request Density: According to previous mea-
surement studies, different locations present different levels of
requests. We study the caching performance for locations with
different request density levels. Fig. 16 shows the box-plots
of cache hit rates of (a) APs and (b) BSes with different nor-
malized request levels–the request density level is normalized
in [0, 1]. We use the LRU strategy with a capacity of 20 unless
noted otherwise. We observe only a slight decrease in the
cache hit rate with increasing request density, and the variation
becomes smaller when there are more requests. These results
suggest that the caching strategies are relatively insensitive to
the request density.
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Fig. 17. Video and user diversity on edge network caching performance.

4) Video and User Diversity: In previous measurement
studies, we observe that mobile video request patterns exhibit
both content and user diversity. We study the impact of such
diversities on edge network content caching performance.
We calculate the video diversity as the normalized number of
unique videos requested in a location, and the user diversity as
the normalized number of users in that location. Fig. 17 shows
the cache hit rates with different user diversity and video
diversity for Wi-Fi caching and cellular caching, respectively.
In Fig. 17(a), we observe that lower video diversity and user
diversity typically lead to higher cache hit rates, because
lower diversities lead to less unique content items requested.
We observe different results in Fig. 17(b). For Wi-Fi caching,
it is shown that the cache hit rate is considerably higher, and
many samples with high cache hit rates appear with large user
and video diversities. The result is also consistent with the
measurement of location request entropy in Sec. IV-C3. The
different fitted lines imply that with the same user diversity, the
Wi-Fi APs have larger video diversity on average. For caching
strategies, network designers should deploy larger caches in
locations with high video and user diversity to improve the
quality of service.

5) Impact of User Mobility: We study the impact of user
mobility on the edge network caching performance. In par-
ticular, we investigate the cache hit rates for multi-location
users and single-location users. Fig. 18(a) shows that the
cache hit rates of multi-location users are always lower
than those of single-location users on both LRU and LFU.
Thus, the user mobility has a highly negative influence on
Wi-Fi/cellular. To determine the possible reasons for why
multi-location users have considerably worse caching perfor-
mance, we first compute the Jaccard similarity coefficient of
the users’ requested videos in start location l1 and destination
location l2. The Jaccard similarity coefficient is J (l1, l2) =
|S(l1)∩S(l2)||S(l1)∪S(l2)| , where S(l1) is a set consisting of the videos that
users request in location l1. The coefficient lies between 0
and 1, and the greater the value is, the more similarity they
have. Fig. 18(b) depicts the CDF of the obtained similarity
coefficients. The majority of location pairs have a similarity
coefficient that is less than 0.4, which indicates that the
videos requested by users in different locations have greater
differences. Second, we assume that the multi-location users
are immobile and when moving to l2 can still fetch content
from l1. The cache hit rates are recorded in Fig. 18(a). Inter-
estingly, the caching performance of Wi-Fi/Cellular is greatly
improved, and LFU outperforms LRU, which is an opposite

Fig. 18. Impact of user mobility.

result of single-location users. Thus, the cache strategies
based on LFU are more suitable for multi-location users. The
possible reason is that for destination location l2, the user
becomes a “stranger”. Thus, l2 has difficulty in satisfying the
requests from l1. As with LFU being better than LRU on multi-
location users, the result verifies the measurement of location
request entropy in Sec. IV-C. Fig. 18(c) presents two instances
of single-location and multi-location users. Fig. 18(d) shows
that the cache hit rates are different across different functional
locations. This indicates that LRU and LFU have different
cache hit rates across different locations. Furthermore, the
caching performance gap between LRU and LFU is the
smallest in shopping areas. One of the reasons is that there
are many multi-location users in shopping area. This result
also verifies the above observations that LFU is more suitable
for multi-location users.

VII. CACHE STRATEGY BASED ON

MEASUREMENT INSIGHTS

In this section, we design a geo-collaborative caching
strategy for mobile video content delivery based on the
measurement insights. We also compare its performance with
conventional cache strategies.

A. Caching Strategy

Motivated by the measurement insights, we design a
geo-collaborative caching strategy for mobile video delivery.
Without loss of generality, we consider a general network
architecture in which a set L of L locations provide video
content access to their users.

1) Cache Storage: For each location l ∈ L, we divide
the cache storage into 2 parts: one is determined by users
residing in the location (single-location users), and the other
is determined by multi-location users requesting content there.
According to the measurement results, the sizes of the two
storage parts are determined by the fraction of the single-
location users, i.e., a larger single-location user fraction indi-
cates more storage for content to be requested by users residing
in that location.



MA et al.: UNDERSTANDING PERFORMANCE OF EDGE CONTENT CACHING FOR MOBILE VIDEO STREAMING 1087

2) Cross-Location Reference: According to our measure-
ment studies in Sec. IV-B, locations with different func-
tionalities have different request patterns. We propose a
geo-collaborative caching strategy as follows. To enable con-
tent to be cached by cross-location reference, we propose a
rank for locations using the information of user migrations:
content requested in a location is referred more if there are
more users migrating from/to that location, as follows.

r t
l = M

∑

i∈L

o(t−W,t−1)
il r t−1

i , (1)

where o(t−W,t−1)
il is the ratio of the users from location i to l

over the total multi-location users in location i in the previous
time window [t − W, t − 1], W is the time window (one day),
and M is a control parameter.

3) Content to Cache: Let xt
l denote the strategy to be

applied for content replication in location l in time slot t .
An entry xt

lv = 1 indicates that location l will cache video v,
and xt

lv = 0 otherwise. Similarly, yt
l and zt

l represent the
caching strategies for single-location users in location l and for
multi-location users from other locations, respectively. For zt

l ,
we have

zt
l =

∑

i∈Ul

∑

j∈L

r t
j d

(t−W,t−1)
li f (t−W,t−1)

i j xt−1
j , (2)

where d(t−W,t−1)
li is the fraction of request number of user i

over total request number in location l, f (t−W,t−1)
i j is the

request distribution of user i in location j , and Ul is the set
of users in location l. We iteratively calculate zt

l in each time
slot.

Caching strategy yt
l is determined by the popularity of

videos requested by single-location users. For video v, its
historical request number before time slot t−1 is ρt−1

v , and it is
updated by ρt−1

v = ρ
(t−2,t−1)
v +e−μρt−2

v , where μ is a positive
decay factor determined by the video category. To determine
yt

l , location l will cache videos requested with the largest ρt−1
v .

Finally, xt
l can be derived by the union of yt

l and zt
l .

B. Performance Evaluation

We use the same simulator from the previous section to
evaluate the cache strategy. In the experiments, to ensure the
generality that each cellular base station (or Wi-Fi AP) has
sufficient requests, only the top 10% most requested cellular
BSes (or Wi-Fi APs) are considered.

We first study the impact of cache capacity on the cache hit
rate. Fig. 19(a) shows the cache hit rates of different caching
strategies by varying the cache capacity from 1 to 1500.
As expected, increasing the cache capacity increases the cache
hit rate for all the caching strategies, as more requests are
satisfied locally without requesting from the CDN servers.
Compared with LRU and LFU, the gain of our method
increases faster at the beginning. LRU, LFU and our strategy
achieve similar cache hit rates when the cache capacity is
large. The reason is that when the cache capacity is sufficiently
large, each cellular BS can cache all the content and achieve
a high cache hit rate.

Fig. 19. Performance comparison (the percentage number in brackets is the
ratio of cache capacity to the total number of content).

Next, we study the service rate, which is defined as the
fraction of the number of users served by APs/BSes over the
number of all users. Fig. 19(b) shows the service rates under
different cache capacities. Compared with LRU and LFU, the
gain of our strategy gradually increases as the cache capacity
increases, indicating that the geo-collaborative cache strategy
can potentially alleviate the original servers significantly.

VIII. CONCLUDING REMARKS

In this paper, we use measurement studies and trace-
driven experiments to investigate the performance of edge
network content caching for mobile video content delivery.
We measure the spatial and temporal request patterns in mobile
video systems and the user behaviors that have driven such
request patterns. Our results show that the geographic request
distribution in a mobile video system can be highly diverse,
and the content requested varies among changing locations
and periods. Such request patterns are generally determined by
user mobility and preference behaviors, in which users exhibit
regular commute behaviors, suggesting that joint caching
strategies are promising for mobile video content delivery.
Next, we compare the effectiveness of cellular and Wi-Fi
based edge network caching solutions. Although Wi-Fi and
cellular caching are promising, a number of factors including
user mobility, content popularity, and cache capacity, have
to be taken into consideration for edge network caching for
mobile video delivery. Finally, we design a geo-collaborative
caching strategy for mobile video delivery based on the
measurement insights. Trace-driven experiments further verify
the effectiveness of our design.
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