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Abstract—Uncertainties in renewable generation make accu-
rate load forecast essential for reliable power system operation.
This paper considers energy imbalance market (EIM), where
market players are allowed to procure energy ahead of time
and trade the mismatch due to forecast error and strategic
behaviors. The ISO sets the trading prices according to the
market conditions, and pursues various system-level objectives.
We first identify the power-law relationship between data volume
and forecast accuracy, which enables the formulation of forecast
cost model. Then, we cast the interactions in the EIM in the
Stackelberg game framework with the ISO acting as the leader.
We offer explicit subgame perfect equilibrium among the players
in EIM, and derive the sufficient condition for the existence
of unique equilibrium. Then, we show that this equilibrium, if
exists, supports the maximal social welfare and under certain
conditions, minimizes the total mismatch. We further examine
the local and global impacts of the forecast errors under mild
conditions, together with robustness analysis. Such analysis
provides mechanism design guidelines for the ISO to enable the
data sharing and forecast method sharing among market players
in the EIM. Numerical studies further examine the effectiveness,
robustness and sensitivity of the subgame.

Index Terms—Load Forecast, Stackelberg Game, Subgame
Perfect Equilibrium, Power Law

NOMENCLATURE

Functions
B̃(·) Benefit function with penalty term of each player.
B(·) Social welfare of the system.
B(·) Benefit function of each player.
Cd(·) Generic forecast cost function.
fei(·) PDF of player i’s forecast error.
Fe(·) CDF of total forecast error.
Indexes and Numbers
i Index for player.
N Number of players in EIM.
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Parameters
λd Unit price for each unit volume of data.
λe Unit energy excess penalty.
λr Energy trading price in the EIM.
λs Unit energy shortage penalty.
λt Energy procurement price ahead of time.
λu Energy price for local users.
µi Mean value of player i’s forecast error.
σi Standard deviation of player i’s forecast error.
a, b, c Parameters of relationship between data volume and

forecast accuracy.
C0 Fixed access fee of forecast training data.
p Unit penalty coefficient in benefit function with

penalty term.
Pi Parameter of player i’s benefit function with penalty

term to ensure budget balance.
Variables
α Aggregate strategic behavior of all players.
αi Player i’s strategic behavior.
∆ Total mismatch in the system.
∆i Mismatch of player i due to forecast error and strate-

gic behavior.
D̂i Forecast net load of player i.
r̂i Forecast renewable energy of player i.
Di True load of player i.
e Total forecast error of all players.
ei Forecast error of player i.
Li Demand under the purview of player i.
Qi Energy procurement ahead of time for player i.
ri True renewable energy of player i.
v Data volume of forecast model’s training set.

I. INTRODUCTION

Classically, quantitative trading is one of the major means
for institutional investment, which enabled the last round of
trading revolution in the financial market. It utilizes advanced
mathematical models and computer technology, to replace
human subjective judgment. Quantitative trading reduces the
impact of traders’ sentiment by avoiding irrational decision
making in extremely enthusiastic or pessimistic conditions.
Advanced machine learning and artificial intelligence tech-
niques are reshaping the landscape of financial market trading
by introducing algorithmic trading. It shifts the focus of
classical quantitative trading to price trend forecast and real-
time decision making.

The development of electricity market introduces many
forms of financial instruments for various purposes, e.g.,
competition promotion, or fluidity enhancement in the market.
In the recent years, there is a similar trend of advancement
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in the electricity market and the general financial market.
Advanced machine-learning-based forecast methods enable the
innovation of financial instruments in the electricity market.

A. Opportunities and Challenges

To date, major players in virtual bidding and financial
transmission right markets have already developed their own
machine-learning-based decision-making systems. In this pa-
per, we focus on the interaction of heterogeneous decision-
making systems in the energy imbalance market (EIM), firstly
proposed by the California Independent System Operator
(CAISO) in 2013 for coordinating the day-ahead market and
the real-time market [1].

However, the interaction is complex. The first difficulty
comes from the unknown cost structure of the forecast meth-
ods, e.g., what is the exact relationship between the data
volume (or the running time) and the forecast accuracy? Even
if the relationship is clear, it is imprecise how the forecast
accuracy affects the players’ profits in the EIM. This leads
to the second difficulty, i.e., how to characterize the potential
strategic behaviors of market players with advanced forecast
methods? In other words, under which circumstances, the
market reaches an equilibrium? These are the major focuses
of our work. With the equilibrium characterization, we further
analyze the market effectiveness at the equilibrium. Specifi-
cally, we identify the guidelines for the Independent System
Operator (ISO) to enable information sharing (including both
data and forecast method) between competitors.

B. Related Works

In tackling the aforementioned challenges, we identify two
major streams of closely related works which investigate 1) the
optimal design of various forecast methods in the electricity
sector and 2) the impacts of forecast results on the electricity
market outcomes.

There is a rapidly growing body of research on the optimal
design of forecast methods in the electricity sector, from
load forecast to electricity price forecast. For load forecast,
Ghadimi et al. design a hybrid load forecast method contain-
ing smart feature selection based on Elman neural networks
[2]. Bedi et al. propose a deep-learning-based framework to
forecast electricity demand by combining cluster analysis, load
trend characterization, and Long Short Term Memory (LSTM)
network in [3]. Liu et al. design a hybrid forecast engine for
small scale load forecast based on sliding window empirical
mode decomposition in [4]. Many researchers extensively
employ advanced learning frameworks for the electricity price
forecast. For instance, Qiao et al. generate a hybrid model
consisting of wavelet transform, stacked auto-encoder, and
LSTM in [5]. Chitsaz et al. propose an intra-hour rolling hori-
zon framework using high-resolution data for price forecast
in [6]. Bello et al. forecast electricity prices in the medium
term focusing on accurate estimates of tail risks in [7]. Gao
et al. find out the correlation between load and price forecast,
which leads to an improved forecast engine in [8]. The focus
of latest researches goes beyond the value forecast of load or
price. The focus shifts to (i) forecast probability distribution

function of the generated power in photovoltaic systems based
on the higher-order Markov chain [9], (ii) a new prototype tool
developed in Electric Reliability Council to forecast system
inertia and adequacy evaluation of frequency response reserves
[10], etc. In contrast to the above literature, whose goal is to
improve the forecast accuracy, we intend to study how the
data volume (and hence the cost of accessed data) may affect
the forecast accuracy based on the existing forecast methods.
Specifically, we seek to establish the functional relationship
between data volume and forecast accuracy, which helps us
uncover the true cost for the market players to obtain accurate
forecast.

Uncertainty exists in many aspects of the electricity sector,
such as uncertainty of cooling demand [11], peak load man-
agement of industrial consumers [12], etc. A well-investigated
topic is to quantify uncertainties impacts (mostly due to fore-
cast errors) on the electricity market outcomes. For example,
Abedinia et al. consider uncertainties in demand, power prices
and weather information (solar, wind, temperature, etc.) to
obtain consumer’s strategies in [13]. Sun et al. propose a
probabilistic day-ahead net load forecast method to capture
both epistemic uncertainty and aleatoric uncertainty using
Bayesian deep learning in [14]. To quantify the uncertainty
of future electricity demand, Taieb et al. estimate an addi-
tive quantile regression model for future distribution using
a boosting procedure in [15]. Baker et al. provide a tool to
optimally size energy storage systems to handle the difficulties
brought by the renewable generation forecast errors in the
model of predictive control framework in [16]. Xie et al.
propose an energy storage capacity optimization method for
grid-connected microgrid systems considering multiple time
scale uncertainty coupling in [17]. In this paper, we focus
on the impact of uncertainties in a specific market, the EIM:
We characterize how the forecast competition between players
affects the market outcome.

C. Our Contributions

Two closely related works inspire our work. The first work
is by Zhao et al., which studies the strategic bidding behaviors
of players under a game-theoretical setting in the deregulated
electricity market, taking the uncertainty in both demand and
local renewable generation into account [18]. They assume
that forecast error follows independent zero-mean Gaussian
distribution, and model the interactions among players as
a competitive game. Our new idea is to examine the local
impact and global impact of forecast errors on the market
outcome. Another work is by Kalathil et al., which charac-
terizes equilibrium prices for shared storage in a spot market,
and formulates storage investment decisions of the firms as a
non-convex competitive game in [19]. Our inspiration source
for conducting this study is the solution concept in analyzing
the sharing market; nevertheless, our work is fundamentally
different from these two works in terms of both research scope
and technical contributions.

To the best of our knowledge, we are the first to discuss
forecast competition in the electricity sector. We summarize
the principal contributions of our work as follows:
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Fig. 1. Paradigm of Forecast Competition in EIM

• Identification of Forecast Cost: We first use numerical
studies to highlight the power-law relationship between
data volume and forecast accuracy (in terms of Mean
Square Error (MSE)), and then establish the cost func-
tion for market players to obtain forecast results with
guaranteed accuracy.

• Equilibrium Analysis for Forecast Competition: We study
the Stackelberg equilibrium for the forecast competition
and offer an explicit characterization of general subgame
perfect equilibrium. We then propose the sufficient con-
dition for its existence and uniqueness, and examine its
robustness.

• Local and Global Impact Analysis: Assuming the forecast
error distribution as independent zero-mean Gaussian,
we investigate the local and global impact of forecast
errors on the market outcome. Based on such analysis, we
design a guideline for the ISO to achieve various system-
level objectives. We also propose a mechanism for the
ISO to enable information sharing among players.

The structure of this paper is as follows. We first introduce
the forecast competition model in the EIM and construct
a forecast cost model in terms of data volume in Section
II. Based on the competition model, Section III formulates
the EIM interaction game with subgame analysis and studies
the effectiveness of the equilibrium. Section IV investigates
the local and global impacts of forecast error on market
outcome. In Section V, extensive numerical studies highlight
the effectiveness of our proposed market. Finally, Section VI
delivers the concluding remarks. Fig. 1 indicates the structural
relationship between sections.

II. FORECAST COMPETITION MODEL

This section introduces the interaction between market
players in the EIM, and then formally characterizes the benefit
function for each player.

A. Interaction in EIM
We consider N players in the EIM, where each player could

be a local utility company, or an aggregator. The player is

responsible for the stability of its region via participating in
the EIM. Specifically, at each time period, player i needs to
forecast its net load D̂i:

D̂i = Li − r̂i, (1)

where Li is the demand under the purview of player i, and
r̂i is the forecast renewable energy output. This paper takes
wind energy as an example. Correspondingly, Eq. (2) defines
the true (or realized) net load Di:

Di = Li − ri. (2)

Obviously, there is a mismatch between Di and D̂i due to
the renewable energy forecast error, denoted by the random
variable of ei:

ei = ri − r̂i. (3)

Its mean and variance are as follows:

E {ei} = µi, D {ei} = σ2
i . (4)

Due to the forecast error, each player first procures certain
energy ahead of time at price λt, and then purchases the deficit
or sells the excess via the EIM. Note that in the first stage,
the players may strategically over-purchase or under-purchase
based on their own forecast knowledge. Mathematically, we
denote the energy procurement ahead of time for player i by
Qi, which is different from D̂i. Let αi denote such difference
by

αi = D̂i −Qi, (5)

which measures player i’s strategic behavior.
At the system-level, in the EIM, the mismatch ∆i is the

result of player i’s forecast error and its strategic behavior.
Specifically, the calculation of ∆i is as follows,

∆i = Di −Qi = αi − ei. (6)

The ISO maintains the EIM according to the total mismatch
of ∆ in the system, where ∆ =

∑N
j=1 ∆j . Specifically, it

determines the trading price λr in the EIM as follows:

λr =

λs ∆ > 0
0 ∆ = 0
λe ∆ < 0

(7)

where λs and λe are the unit energy shortage and excess
penalty, respectively. In this paper, we assume that the utilities
are price takers, and the shortage and excess penalty mainly
reflect the cost of emergency power generation and disposal
of excess electricity. Hence, we take λs and λe as fixed
values; nonetheless, λs and λe can be different in various time
slots1. Note that we require λe ≤ λs because it is in general
more expensive to handle the emergency energy shortage (i.e.,
to call for spinning and non-spinning reserve) in real-time
than to handle the energy excess (i.e., to compensate the lost
opportunity cost of certain generators).

Intuitively, ∆ > 0 means that the EIM requires additional
emergency energy purchases. In this case, if ∆i > 0 for player
i, energy purchase price is λs. Otherwise, player i sells its

1While λs and λe can be time varying, we assume that they are decided
ahead of time for single shot EIM interaction, which is the focus of our paper.
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Fig. 2. Framework of EIM with Multiple players

excess energy at price λs, thereby earning through the price
difference between λs and energy procurement price λt. When
∆ < 0, the analysis follows the same routine.

B. Model for Each Player

Fig. 2 shows the framework of EIM with multiple market
players. The red, blue, and green arrows indicate the direc-
tion of energy, information, and monetary flow, respectively.
The red variables are the quantity of energy; and the green
parameters are the corresponding prices.

As indicated in Fig. 2, the benefit function of each player
consists of four parts: energy procurement cost ahead of time
at price λt, energy trading benefit from EIM at price λr, energy
fee collection from local users at price λu2, and the cost to
generate a reliable forecast. Mathematically, we denote the
benefit function of player i by Bi:

Bi = −λt ·Qi + λr · (−∆i) + λu · Li − Cd(MSEi), (8)

where λr is a random variable defined in Eq. (7); and MSEi is
player i’s forecast requirement (we select Mean Square Error,
MSE in short, as the metric for forecast accuracy). For all
the prices, it holds that:

0 < λe < λt ≤ λu < λs. (9)

This requirement is quite intuitive. To ensure the profit of
the player, λt ≤ λu. The emergency energy purchase should
be at a higher cost as λt ≤ λu < λs. Meanwhile, the lost
opportunity cost to handle the energy excess should be less
than the net cost of the generations, yielding 0 < λe < λt.

The only remaining hurdle in modeling the benefit function
for each player is to identify the form of forecast cost Cd in
terms of forecast accuracy MSEi, which is our next target.

C. Forecast Cost Formulation

In this digital age, data is an important asset. For example,
Agarwal et al. introduce the auction mechanism for a two-
sided data market in [20], where the data marketplace enables
effective training data trading for machine learning tasks to
achieve a certain level of accuracy. There is also a classical

2We mainly study the interaction among players in EIM. Hence, to simplify
our analysis, we assume that users face fixed electricity retail rate.

Fig. 3. Boxplot and Log-Log Graph: MSE v.s. Data Volume

Fig. 4. Boxplot and Log-Log Graph: RMSE v.s. Data Volume

way to study data cost and the sample complexity. Kearns
first proposed this notion in the 1990s to study the minimum
number of samples required to achieve learning objectives
in the distribution-free model in [21]. From an information-
theoretic approach, this line of research seeks to design various
lower bounds for the “minimum number of required samples”.
Given these two lines of research, we aim to study the
relationship between data volume and forecast accuracy, which
builds up the forecast cost formulation.

Remark 1: This approach is also very intuitive by considering
the general underfitting and overfitting issues in machine learn-
ing. In case of limited data, the training model are incapable
of fully capturing the key features in the data, which results
in underfitting. In case of too much data, exceeding the model
capacity, the resulting model may suffer from generalization
inability, referred to as overfitting. Hence, the relationship
between data volume and forecast accuracy is clear: the
accuracy first increases with the growing data volume; then
the increasing rate slows down, and it may even finally drop.

We use an empirical study to fit such a relationship. We
select LSTM as the predictor and two metrics for forecast
accuracy. Fig. 3 fits the relationship between training data
volume and MSE, and Fig. 4 replaces metric MSE with
Root Mean Squared Error (RMSE). The fitted curves are
consistent with many of our intuitions: if error is already
small, the marginal value of data is very limited; and if
the available data volume is limited, it is very beneficial to
purchase more data. In fact, we find that the data volume and
forecast accuracy follow a power-law relationship. From an
intuitive point, when the forecast accuracy is already high, it
is difficult to increase the accuracy rate. Conversely, when the
forecast accuracy is very low, adding a small amount of data
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can increase the accuracy dramatically. We also replot log-
log graph with average value in Fig. 3 and Fig. 4. The R2

values of 0.94 (MSE) and 0.97 (RMSE) verify the strong
power-law relationship.
Remark 2: In this paper, our forecast model is LSTM, and the
metric for forecast accuracy is MSE. However, we emphasize
that the power-law relationship between data volume and
forecast accuracy is quite general as we observed similar
results using data from NordPool and PJM.

Thus, the relationship between data volume v and MSE is
as follows:

v = a ·MSE−b + c, (10)

where parameters a and b are both positive.
Since the data do not come free, we assume a generic cost

function Cd(v) to gain the access to a dataset of volume v:

Cd(v) = C0 + λd · v, (11)

where C0 is the fixed access fee, and λd is the unit price for
each unit volume of data.

Together with Eq. (10), the forecast cost function in terms
of forecast accuracy MSE is:

Cd(MSE) = C0 + λd · c+ λd · a ·MSE−b. (12)

III. EQUILIBRIUM ANALYSIS FOR EIM
Based on the forecast competition model, we formulate a

Stackelberg game to fully capture the interaction between the
ISO (market organizer) and all the market players in the EIM:

EIM Interaction Game (EIG):
Players: ISO acts as leader and market players in EIM
act as followers;
Strategies: ISO sets the energy trading price λr
(specifically λs and λe); market players select their
strategic energy procurement αi’s according to their
forecast information.
Benefit Functions: The ISO may have a range of
benefit functions from maximizing the social welfare
to minimizing the total mismatch. We discuss how
these diverse benefit functions may shape the
equilibrium. Eq. (8) is the benefit function Bi for each
market player.

We refer to this Stackelberg game as the EIM Interaction
Game (EIG). The general solution for Stackelberg equilibrium
is backward induction: we characterize the subgame perfect
equilibrium between all the market players given λr, and then
utilize the subgame perfect equilibrium to optimally determine
λr for establishing the equilibrium of EIG.

Before diving into detailed equilibrium analysis, we first
make the following assumption on forecast error distribution:
Assumption 1: Denote the probability density function of
forecast error ei by fei(x). We assume fei(x) > 0,∀x ∈ R,∀i.
Remark 3: This is a standard assumption in analyzing the
forecast error. The forecast error is often assumed to follow
various continuous distributions, such as Gaussian distribu-
tion [22], Lévy α−stable distribution [23], etc, where this

assumption automatically holds. In practice, we often don’t
need to strictly require fei(x) is positive over R. Instead, it
often suffices for fei(x) to be positive over some continuous
interval.

A. Subgame Analysis

This assumption paves the way for further characterizing the
subgame perfect equilibrium. The key is to examine the first-
order optimality condition for all the benefit functions Bi’s:

∂E {Bi}
∂αi

= 0. (13)

All the forecast errors ei’s are the expected values as other
players’ forecast errors also affect player i’s benefit function
through λr. This also highlights the coupling between players
in the EIG.
Theorem 1: If the subgame of EIG admits an equilibrium,
denoted by {α∗i ,∀i}, the equilibrium is the unique subgame
perfect equilibrium for given λe and λs, characterized as
follows:

α∗i = E {ei|e = α∗} , (14)

α∗ = F−1e

(
λt − λe
λs − λe

)
, (15)

where e =
∑N
j=1 ej ; α

∗ =
∑N
j=1 α

∗
j ; and Fe(·) is the

cumulative distribution function of e.
Remark 4: This result follows the classical result of the
newsvendor problem [24]. The detailed proof of Theorem 1 is
given in Appendix A. However, Theorem 1 does not guarantee
the existence of subgame perfect equilibrium. This is due to
the non-convexity of the game formulation. We exemplify the
fact that equilibrium may not always exist as follows.
Example 1: Consider two market players in the EIM. Their
respective forecast error distributions are as follows:

e1 = ρ2, e2 = ρ− ρ2, (16)

where ρ follows uniform distribution U(−10, 10). Set λe = 1,
λt = 2, and λs = 3. According to Theorem 1, if the
equilibrium exists, then it must be achieved at α∗1 = 0 and
α∗2 = 0.

However, we can further examine the first-order optimality
condition for the first player:

∂E {B1}
∂α1

=λt − λe − (λs − λe)Fe(α)

− (λs − λe)fe(α) (α1 − E {e1|e = α})

=
1

10
(α2

1 − 2α1),

(17)

where the hypothetical equilibrium point (α∗1 = 0, α∗2 = 0) is
a local maximum of B1. Hence, it is not the optimal choice
for player 1. We use Fig. 5 to visualize the observations. The
red point corresponding to α1 = 0 is the local maximum, and
the blue point corresponding to α1 = 2 is the local minimum.
Fig. 5(b) confirms that the local maximum corresponding to
α1 = 0 is not the global maximum.

Thus, the existence of subgame perfect equilibrium needs
the sufficient condition:
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Theorem 2: If the following technical alignment condition
holds,

∂E {ej |e = ρ}
∂ρ

≥ 0, ∀j, (18)

the subgame perfect equilibrium characterized in Theorem 1
uniquely exists.

The key to prove this theorem is to use condition (18) to
examine the monotonicity of the first order condition for each
benefit function. Appendix B provides detailed proof.
Remark 5: It is easy to satisfy this technical alignment con-
dition. It merely requires that when the forecast becomes hard
(e.g., due to an unexpected holiday, a storm in the summer,
etc.), it is hard for every player. Example 1 fails to admit
an equilibrium exactly due to the violation of the technical
alignment condition:

∂E {e2|e = ρ}
∂ρ

= 1− 2ρ, (19)

which might be negative over [−10, 10].

B. Equilibrium Effectiveness

The ISO seeks to achieve maximal social welfare in terms of
maximizing the total benefit functions of all players. The ISO
also sets the trading prices in EIM (λs and λe) to minimize
the total mismatch in the EIM, for balancing the supply and
demand in real-time.

Denote the social welfare of the system by B:

B =
∑N

j=1
Bj . (20)

We can show that, no matter how the trading prices are set in
EIM, the subgame perfect equilibrium automatically supports
the maximal social welfare:
Theorem 3: If the subgame perfect equilibrium {α∗i ,∀i}
holds, it supports the maximal social welfare, i.e.,

α∗ = arg max
α

E {B} . (21)

It can be proved by considering the case where all players
are merged into a single player, and showing the subgame per-
fect equilibrium coincides with the optimal decision making
for the single player, as dictated in Theorem 1. The proof is
demonstrated in Appendix C.
Remark 6: The maximal social welfare is a function of the
trading prices (λs and λe). Hence, the ISO still could select
the proper prices to influence the exact value of social welfare.

This paper also examines the ISO’s strategy if it minimizes
the total mismatch, in addition to maximization of social
welfare. Specifically, it adopts the absolute value of mismatch
in the entire EIM, |∆|, as the metric.
Theorem 4: Under Assumption 1 and technical alignment
condition, if the ISO sets the prices λe and λs such that

λe + λs = 2λt, (22)

the ISO could also minimize the total mismatch in EIM:

α∗ = arg min
α

E {|∆|} . (23)

This theorem can be proved by checking the partial deriva-
tive of E {|∆|} with respect to α. The detailed proof is given
in Appendix D.
Remark 7: It is difficult to satisfy condition (22). For ex-
ample, during peak demand seasons, the cost to call for
emergency supply can be far more expensive than the day-
ahead price. This partially proves that designing a fully
competitive electricity market is very challenging without any
manipulation, due to the complex structure of the power
system.

C. Equilibrium Robustness

At equilibrium, each player adopts its optimal strategy in re-
sponse to all other players executing their specified strategies.
In practice, when some players are irrational or adversarial,
there could exist fault behaviors which are not optimal given
others’ strategies. It could be an issue if these players can
take advantage of the fault or adversarial behaviors for more
benefit. This is often referred to as the robustness analysis.
For our game formulation, we can obtain Theorem 5.
Theorem 5: Under Assumption 1 and technical alignment
condition, the subgame perfect equilibrium {α∗i ,∀i} is (0, N−
1) fault immune. That is, consider all players except a group
of players S, S ⊂ {1, 2, ..., N} and 1 ≤ |S| ≤ N − 1. Given
αj = α∗j , ∀j ∈ {1, 2, ..., N}\S, E {Bj} takes minimum when
αS = α∗S , where αS =

∑
i∈S αi and α∗S =

∑
i∈S α

∗
i . In ad-

dition, E {Bj} is non-decreasing (respectively non-increasing)
w.r.t. αS when αS > α∗S (respectively αS < α∗S).

The proof follows similar routine as the robustness analysis
in [25]. Appendix E provides the complete proof.
Remark 8: This theorem demonstrates the robustness of the
subgame perfect equilibrium {α∗i ,∀i} in response to non-
optimal strategies of a group of players. The non-optimal fault
behaviors of irrational players will not decrease the benefit of
other rational players.

IV. FORECAST COMPETITION IN EIM

Up to now, this paper is out of focus on how the fore-
cast accuracy may affect each market player’s strategy since
the equilibrium characterization only concerns the first-order
moment (i.e., expectation) while MSE deals with the second-
order moment (i.e., variance). This section studies a practical
scenario: In addition to benefit maximization (after the sub-
game perfect equilibrium is reached), the market players may
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also want to minimize the variance of the benefit function to
firmly secure the benefit.

For the ease of analysis, we assume that all the forecast er-
rors follow the independent zero-mean Gaussian distributions,
i.e., ei ∼ N(0, σ2

i ),∀i, with possibly distinct variances. In this
setting, MSE coincides with the variance:

MSEi = σ2
i . (24)

Specifically, we can characterize the expectation and vari-
ance of benefit function Bi’s in terms of MSEi and MSE−i
(MSE−i =

∑N
j=1,j 6=iMSEj) as follows:

Proposition 1: If ei ∼ N(0, σ2
i ),∀i, and the forecast errors

are independent, we have

E {Bi} =λuLi − λtDi − C0 − λdc− λdaMSE−bi

− (λs − λe)MSEi√
2π
√
MSEi +MSE−i

,
(25)

D {Bi} =
1

2
MSEi(λe − λt)2 + (λs − λt)2

− (λe − λs)2MSE2
i

2π(MSEi +MSE−i)
.

(26)

The proof for this proposition involves utilizing the proper-
ties of Gaussian distribution and advanced calculus techniques.
Appendix F illustrates detailed calculation. Such characteriza-
tions pave the way for studying the impact of MSEi and
MSE−i on the benefit function, specifically, the local and
global impact of forecast errors [26].
Theorem 6: When MSE−i is fixed, D {Bi} increases mono-
tonically with respect to MSEi.

The proof requires solving the partial derivative of D {Bi}
with respect to MSEi, and theoretical proof is given in
Appendix G.
Remark 9: This measures the incentive of each market player
to improve its forecast accuracy, as an improved forecast
method would reduce the variance of its benefit function.
This is the local impact of forecast accuracy, which is quite
straightforward.
Theorem 7: When MSEi is fixed, E {Bi} and D {Bi} both
increase monotonically with respect to MSE−i.

The proof of monotonicity of E {Bi} with respect to
MSE−i is straightforward. It immediately follows Eq. (25)
in Proposition 1. To prove the monotonicity of D {Bi} with
respect to MSE−i, we only need to examine the partial
derivative of D {Bi} with respect to MSE−i. For more details
of the proof, please refer to Appendix H.
Remark 10: This is a quite interesting yet counter-intuitive
result. When the forecast method of player i is fixed, the player
can benefit from other players’ inability to predict well, though
at the cost of the larger variance of benefit function. This is the
global impact of forecast accuracy, as this result specifies how
one player’s forecast method may affect the others’ benefits.

These two theorems (especially Theorem 7) motivate us to
design a mechanism for the ISO to enable the data sharing
or even the forecast method sharing between market players.
To overcome the global impact in Theorem 7, we introduce a

Player 𝑖𝑖 shares information with others

criterion (31)Player 𝑖𝑖: small 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖
Player −𝑖𝑖: large 𝑀𝑀𝑀𝑀𝑀𝑀−𝑖𝑖

𝜕𝜕𝔼𝔼{ �𝐵𝐵𝑖𝑖}
𝜕𝜕𝑀𝑀𝑀𝑀𝑀𝑀−𝑖𝑖

< 0

Find some other player 𝑗𝑗,  s.t. 𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗 and 𝑀𝑀𝑀𝑀𝑀𝑀−𝑗𝑗 trigger criterion (31) 

No

The end of information sharing

Yes 𝑖𝑖 ← 𝑗𝑗

Fig. 6. Virtuous Cycle of Forecast Accuracy

penalty term to the benefit function Bi when the performances
of forecast methods are too diverse in the system:

B̃i =− λt ·Qi + λr · (−∆i) + λu · Li − Cd(MSEi)

+ Pi − p ·
(
MSEi −

MSEi +MSE−i
N

)2

,
(27)

where B̃i denotes the refined benefit function; p is the unit
penalty coefficient; and Pi is a constant to ensure budget
balance.

The penalty term affects the mean of the benefit functions:

E
{
B̃i

}
=E {Bi}+ Pi +

2p(N − 1)

N
MSEi ·MSE−i

− p(N − 1)2

N

(
MSE2

i +MSE2
−i
)
.

(28)

To highlight how the penalty term contains the global impact
of MSE−i, we need to examine the first-order derivative of
E
{
B̃i

}
with respect to MSE−i:

∂E
{
B̃i

}
∂MSE−i

=
(λs − λe) ·MSEi

2
√

2π (MSEi +MSE−i)
3
2

+
2p(N − 1)·

N
MSEi −

2p

N
MSE−i.

(29)

Standard mathematical manipulation yields that

∂E
{
B̃i

}
∂MSE−i

<
λs − λe

2
√

2π
(

1 + MSE−i
MSEi

)
+

2p(N − 1)

N
MSEi −

2p

N
MSE−i

<
λs − λe
2
√

2π
+

2p(N − 1)

N
MSEi −

2p

N
MSE−i.

(30)

The first inequality is due to MSEi + MSE−i > 1. The
second is due to the positive sign of MSEi and MSE−i.

Hence, with the penalty term, we know that if

MSE−i >
N(λs − λe)

4p
√

2π
+ (N − 1)MSEi, (31)

we have
∂E
{
B̃i

}
∂MSE−i

< 0. (32)
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(c) TenneT

Fig. 7. Forecast Results of Three players

In other words, when player i’s own forecast results are
good, but the average forecast results of other players in
the system are too poor, the expected (refined) benefit of
player i will decrease. This situation promotes the sharing
of information (including data and forecast methods) among
players in the EIM, so as to jointly improve the accuracy of
forecast. Fig. 6 shows the underlying logic for the information
sharing in the EIM.

V. NUMERICAL STUDIES

This section conducts extensive numerical studies to support
our theoretical analysis, with special focus on the characteri-
zation of local and global impact.

A. Dataset Overview

We adopt two datasets: the wind power generation and the
aggregate demand. Together, they allow us to estimate the
market players’ ability in forecasting the net demand. We
consider three major players in Germany: 50Hertz, Amprion,
and TenneT. For the convenience of representation, we use
player 1, 2, and 3 to represent 50Hertz, Amprion, and TenneT,
respectively. The wind power generations are provided in [27],
collected from Jan. 1, 2016 to Apr. 14, 2016, with a resolution
of 15 minutes. We aggregate the data to obtain the hourly wind
power generation data, in alignment with the hourly energy
consumption data. Such hourly consumption data for the three
areas are in [28]. We select these two datasets as the wind
power generation dataset contains diverse features beyond the
wind power generation, including wind speed, temperature,
and air pressure at the surface (as indicated in [29]). We can
use such features to train the predictions and to obtain the cost
parameters for achieving certain forecast accuracy.

We would also like to clarify the parameter selections
in the numerical study. We adopt the energy retail price3

from [30] and set λu to be 72.9C/MWh. According to ISE
(Fraunhofer Institute for Solar Energy Systems) 2013 [31],
we set the energy procurement price λt to be 66.5C/MWh,
the shortage penalty to be 80C/MWh, and the excess penalty
to be 53C/MWh. As for the unit price for accessing data, we
set the fixed cost C0 to be 10, 000C, and the price for each
unit volume of data λd to be 70C.

The whole dataset is divided into two sets: the training
set from Feb. 10, 2016 to Mar. 30, 2016, and the test set

3Note that in the Germany electricity market, various taxes and surcharges
contribute roughly three quarters of the retail price. In our work, we only
consider the pure retail electricity price without any tax or surcharge.

Fig. 8. Influence of Parameters and α on Social Welfare

from Mar. 31, 2016 to Apr. 14, 2016. We adopt the LSTM
based predictor (see Appendix I for more details) and highlight
the forecast performance for the three players in Fig. 7.
The performance coincides with our expectations: the forecast
value (represented by the red line) is most often consistent with
the ground truth (represented by the black line). However, at
breaking point (local minima and maxima), the forecast error
is often large. This is the common issue for (net) load forecast
[32].

B. Effectiveness, Sensitivity and Robustness Analysis

Section III investigates the effectiveness of equilibrium,
and proves that the equilibrium α∗ supports the maximal
social welfare in Theorem 3. This section examines how the
interaction game improves social welfare by comparing three
strategies. The first one is the equilibrium behavior (illustrated
by the black line in Fig. 8); the second one is to simply
purchase the expected energy consumption without taking into
account others’ information (shown by the red line in Fig. 8);
and the last strategy is to depart from the EIM, i.e., to set αi
to be 0 (indicated by the blue line in Fig. 8).

Fig. 8 compares the performance in terms of the social
welfare achieved by the three strategies and by examining the
trend of total social welfare with respect to the price difference
between λs and λe (i.e., the arbitrage opportunities). Clearly,
our equilibrium strategy achieves the best performance, which
coincides with the conclusion in Theorem 3. Compared with
the second strategy, we can observe the value of information.
The information of all players improves the total social welfare
by 6.8% when the arbitrage opportunity is high (λs − λe =
55C/MWh). Note that the second strategy does not always
outperform the third strategy. When the arbitrage opportunity
is high, even without the full information of the market, all the
players may be willing to participate. However, when the arbi-
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Fig. 9. Sensitivity Analysis on Social Welfare and Total Mismatch
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Fig. 10. Statistical Result of Forecast Error with Noise

trage opportunity is low (in our example, λs− λe is less than
25C/MWh), many players may choose not to participate in
the EIM. Such observations indicate the necessity of carefully
designing the EIM.

To examine the sensitivity of subgame equilibrium, we
consider two aspects. On the one hand, in Fig. 9, from the
ISO’s perspective, we study the impact of changes in α
on expectation of social welfare E {B} and total mismatch
E {|∆|}. On the other hand, in Fig. 10, from the perspective of
a single player, taking 50Hertz as an example, we explore the
impact of noise in training set on the forecast error statistics.

Fig. 9(a) shows the changes of expected social welfare
E {B} when α − α∗ changes from −6 GWh to 6 GWh.
The red and black dotted lines represent 2.215× 106C and
2.22 × 106 C, respectively. It is obvious from Fig. 9(a) that
E {B} reaches its maximum when α = α∗, and as α deviates
farther from α∗, E {B} decreases at a faster rate. This result
is consistent with Theorem 3. Similarly, Fig. 9(b) describes
the evolution of expected total mismatch, where the red and
black dashed lines correspond to 22.7 GWh and 23 GWh,
respectively. Consistent with Theorem 4, E {|∆|} reaches the
minimum when α = α∗, and increases at a faster rate when
α deviates farther from α∗.

In order to characterize the impact of noise on the sensitivity
of the forecast model, we use three indexes to measure
the forecast error: the biased variance estimation (empirical
variance), MSE value, and the variance of the fitted Gaus-
sian distribution. We select three cases for the training set:
without noise, mixture with little noise (a noise following
U(−0.3, 0.3)), and mixture with large noise (a noise following
U(−0.6, 0.6)). We forecast multiple times and perform statis-
tical analysis on forecast error. From Fig. 10, it is obvious that
the increase in noise leads to an increase in forecast error, and

Fig. 11. Robustness of Subgame Perfect Equilibrium

a more discrete distribution of the statistical result of MSE,
which reduces the feasibility and rationality of MSE.

To verify the robustness of subgame perfect equilibrium, we
compare the performance of three cases in the general setting
(i.e., error expectation is non-zero and players are dependent)
in Fig. 11. The first two cases examine the performance when
only one single player is irrational. The last case examines the
performance when both player 2 and player 3 are irrational.
In such cases, the increase of αS of irrational player(s)
deviating from the equilibrium value α∗S causes the larger
expected benefit of rational player 1, i.e., E {B1}. This result is
guaranteed by Theorem 5. Taking the last case as an example,
combined with the result of Fig. 9(a), we find that when
|αS − α∗S | is larger, the social welfare becomes smaller, and
the benefit of the rational player increases. This illustrates that
the more the irrational player deviates from the equilibrium,
the more its benefit decreases. This observation promotes all
players to follow the equilibrium action.

C. Gaussian Assumption Justification

We use the available data to justify our independent zero-
mean Gaussian distribution assumptions for the forecast error.
Fig. 12 plots the empirical forecast error distribution and
its associated fittings. According to the literature, we select
two fitting models: the Gaussian and the Levy α−stable
distribution. Clearly in our work, the empirical forecast error
distribution does not exhibit the heavy tail property; hence
Gaussian distribution fits the empirical distribution better. In
addition, all of the three players’ empirical expectations are
around zero, which further justifies our assumption is practical.

In Section IV, we submit that assuming Gaussian distri-
butions, the biased variance estimation equals to MSE (see
Eq. (24)). Similar to the three indexes in Fig. 10, Table I
compares the biased variance estimation, MSE value, and
the variance of the fitted Gaussian distribution. The three
values are roughly the same, partially implying the validity
of Gaussian distribution assumption.

The last justification is the assumption that the error dis-
tributions are independent. We study the correlation between
error distributions by examining the correlation coefficient
between the three players. Numerical calculation suggests that
the weakest correlation is between Amprion and TenneT, equal
to 0.1468; and the strongest one is between 50Hertz and
TenneT, equal to 0.3051. Thus, the correlation is in general
rather weak, which further justifies our assumption.
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Fig. 12. Forecast Error Histogram and Probability Density Function Fitting

TABLE I
COMPARISON OF BIASED ESTIMATION VARIANCE, MSE AND ERROR

FITTING VARIANCE (GWH2)

Player Biased Estimation MSE Error Fitting

50Hertz 165.0226 176.8760 165.4825

Amprion 67.4165 68.8016 67.6042

TenneT 330.6231 333.1033 331.5422

(a) Expectation of B1 (b) Variance of B1

Fig. 13. Local Impact Considering Expectation and Variance of Benefit
Function with Small, Medium and Large MSE−1

D. Local and Global Impact

We use the data at 7 a.m. on Mar. 31, 2016 to examine the
benefit of 50Hertz, highlighting the local and global impacts
of forecast error. To align with our theoretical analysis, we
refer to 50Hertz as player i, and the other two as players −i.

We first examine the local impacts by considering three
cases for MSE−i: small MSE−i (200 GWh2), true MSE−i
(401.9 GWh2), and large MSE−i (600 GWh2). For all the
three cases, Fig. 13(a) illustrates that the relationship between
expected benefit and MSEi share similar pattern. Fig. 13(b)
illustrates the monotonic relationship between D{Bi} and
MSEi. While reducing MSEi may not always help improve
the expected benefit, for fixed MSEi, the larger MSE−i
is, the larger the expected benefit E{Bi} is. The observation
reflects the global impacts in Theorem 7.

Also, we analyze the global impact with small penalty
coefficient p (p = 5), medium p (p = 10), and large p
(p = 15). Fig. 14(a) and Fig. 14(b) consider the impact of
MSEi on E{B̃i} when MSEi is small (MSEi = 100 GWh2)
and large (MSEi = 250 GWh2), respectively. Both subfigures
show that the penalty coefficient determines the increasing or
decreasing rate of E{B̃i}. Comparing Fig. 14(a) and 14(b),
an interesting result is that when MSEi is small, the increase
of MSE−i causes the decrease of E{B̃i}. On the other hand,
when MSEi is large, the increase of MSE−i causes increase
of E{B̃i}. This result implies that all players in EIM tend to
achieve the same level of forecast accuracy, which enables the

(a) Small MSE1 (b) Large MSE1

Fig. 14. Global Impact Considering Expectation of Improved Benefit Function
with Small, Medium and Large p

information sharing.

E. Dynamic Process of EIM

To study the decision making of all players in the system,
Fig. 15 visualizes the payoff matrices for all the three players
where grey, red and blue colors represent the three players
of 50Hertz, Amprion, and TenneT, respectively. Here again,
the time is at 7 a.m. on Mar. 31, 2016 for experimentation.
The MSEi of each player takes three values: small, medium,
and large. The exact value is on the top of each subfigure,
and the scattered points size of each color is under the same
measurement, representing the size of E{B̃i}. For example,
comparing the size of the scatter points in the three subgraphs
in the first line, we observe the value of E{B̃1} when MSE1,
MSE2 and MSE3 take small, medium, and large values
respectively (corresponding to 3× 3× 3 = 27 combinations).
Hence, the three subfigures together serve as payoff matrix in
game theory.

Combining the results of 9 subfigures illustrates a dynamic
adjustment process in the entire EIM. First, we assume that
initially all the players do not spend too much effort on the
forecast and they have large MSEs. In this case, player 3
first moves, as it observes that improving its forecast accuracy
could significantly improve its benefit. Hence, player 3 reduces
its MSE to 160 GWh2. The state transits from position 1
to position 2; and this state makes player 1 reconsider its
situation. For player 1’s decision making, we need to locate
the same condition for player 1, moving from position 2 to
position 3. Clearly, player 1 always would like to improve its
accuracy. However, such a task could be hard for player 2 and
it only reduces the MSE to the medium level, 175 GWh2. The
state now transits from position 3 to position 4; and we can
then consider player 2’s decision making by further jumping
to position 5. This procedure highlights competition in EIM.

However, information sharing could also achieve similar
performance. For example, if we consider the initial benefit
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of the three players, highlighted by the yellow boxes (position
1, 6, and 7), it is clear that player 2 has both the incentive and
the ability to help player 3 improve the forecast accuracy.

VI. CONCLUSION

In this work, we study the role of forecast accuracy in the
benefit function of market players in the EIM. We further
identify the power-law relationship between forecast accuracy
and the cost of purchasing various volumes of data, which
serves as the basis of player’s benefit function formulation.
This allows us to characterize the Stackelberg game interaction
in the EIM. To examine the Stackelberg equilibrium behavior,
we first offer the explicit characterization of the subgame
perfect equilibrium with the sufficient condition for the unique
existence of such equilibrium, which is supported by both
complete theoretical proof and an intuitive counter example.
We submit that the Stackelberg equilibrium supports maximal
social welfare. To harness the benefit of all the players, in
addition to the expected benefit, we also consider the vari-
ance of benefit. Under the independent zero-mean Gaussian
distribution assumption for all forecast errors, we investigate
the local and the global impacts of each individual player’s
forecast accuracy on the final outcome. We provide a guideline
for ISO as an example by introducing a penalty term to enable
the information sharing among the competitors in the EIM.

The numerical studies examine the effectiveness, sensitivity
and robustness of the subgame equilibrium results. Through
the analysis of the forecast results and the comparison of
several error measurement indexes, we verify the rationality of
the Gaussian distribution assumption. In addition, an example
with three players illustrates the dynamic process of EIM. This
example also demonstrates that guideline with penalty term
can improve the overall efficiency and forecast accuracy of
EIM.

Our work can be extended in many interesting directions.
For example, although we have considered the price uncer-

tainties, it is interesting to fully characterize the randomness
in the energy procurement price in the formulation. Also, our
proposed mechanism can incentivize the information sharing.
However, it remains unknown how to design the information
sharing market. Especially, to better track the information
usage, one promising solution is to implement a blockchain-
enabled information sharing market.

APPENDIX A
PROOF OF THEOREM 1

Existence of Subgame Perfect Equilibrium:
Note that expected benefit Bi can be expressed as follows,

E {Bi}
=E {λu · Li − (λt ·Qi + λr ·∆i)− Cd(MSEi)}
=λu · Li + λt · (αi −Di − µi)
− Cd(MSEi)− E {λr ·∆i} .

(33)

As stated above, if there exists a Nash equilibrium, Eq. (13)
holds for each player. Since only E {λr ·∆i} and λt · αi are
related to αi, the first-order optimality condition reduces to

∂E {λr ·∆i}
∂αi

= λt. (34)

The only remaining hurdle is to fully characterize
E {λr ·∆i} in terms of αi:

E {λr ·∆i}
=αi · E {λr} − E {λr · ei}
=αi · {λs · Fe(α) + λe · [1− Fe(α)]}

− λs
∫ +∞

−∞
yifei(yi)Fe|ei(e < α|ei = yi)dyi

− λe
∫ +∞

−∞
yifei(yi)Fe|ei(e > α|ei = yi)dyi

=αi · {λs · Fe(α) + λe · [1− Fe(α)]} − λeµi

−(λs − λe)
∫ +∞

−∞
yifei(yi)Fe|ei(e < α|ei = yi)dyi

=λeαi − λeµi + αi(λs − λe)Fe(α)

−(λs − λe)
∫ +∞

−∞
yifei(yi)Fe|ei(e < α|ei = yi)dyi,

(35)

where e−i =
∑N
j=1,j 6=i ej , and α−i =

∑N
j=1,j 6=i αj . The func-

tions fei(·) and Fe(·) represent probability density function of
player i’s error, and cumulative distribution function of system
total error respectively. In addition, we use Fe|ei(·) and fe|ei(·)
to represent the conditional cumulative distribution function
and conditional probability density function between e and ei
respectively.

Note that the following two equations hold:
∂αiFe(α)

∂αi
= Fe(α) + αife(α), (36)

where fe(·) is probability density function of system total
error, and,

∂
∫ +∞
−∞ yifei(yi)Fe|ei(e < α|ei = yi)dyi

∂αi

=

∫ +∞

−∞
yifei(yi)fe|ei(e = α|ei = yi)dyi.

(37)
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Hence, combining Eq. (36) and (37) with (35) yields

∂E {λr ·∆i}
∂αi

= λe + (λs − λe) · [Fe(α) + αife(α)]

− (λs − λe)
∫ +∞

−∞
yifei(yi)fe|ei(e = α|ei = yi)dyi.

(38)

According to the definition of conditional expectation, we
can find that,∫ +∞

−∞
yifei(yi)fe|ei(e = α|ei = yi)dyi

=

∫ +∞

−∞
yife(α)fei|e(ei = yi|e = α)dyi

=fe(α) · E {ei|e = α} ,

(39)

where fei|e is the conditional probability density function
between ei and e.

According to Eq. (34),

Fe(α) + fe(α) (αi − E {ei|e = α}) =
λt − λe
λs − λe

. (40)

Thus, α∗i = E {ei|e = α∗} and Fe(α
∗) = λt−λe

λs−λe establish
the equilibrium.

Uniqueness of Subgame Perfect Equilibrium:
Summing condition (40) over all players, we know

LHS

=N · Fe(α) + fe(α)

 N∑
j=1

αj −
N∑
j=1

E {ej |e = α}


=N · Fe(α).

RHS = N · λt − λe
λs − λe

.

(41)

Hence, it holds

Fe(α) =
λt − λe
λs − λe

. (42)

Bringing (42) back to Eq. (40) yields that

fe(α) (αi − E {ei|e = α}) = 0. (43)

Hence, α∗i is the unique equilibrium if fe(α) > 0.
�

APPENDIX B
PROOF OF THEOREM 2

We already know that

∂E {Bi}
∂αi

=λt − λe − (λs − λe) · Fe(α)

− (λs − λe)fe(α) · (αi − E {ei|e = α}) .
(44)

For convenience, we define

Ψ(αi) = λt − λe − (λs − λe) · Fe(αi + α−i), (45)

and
Ω(αi) = αi − E {ei|e = αi + α−i} . (46)

Hence, Eq. (44) can be expressed as

∂E {Bi}
∂αi

= Ψ(αi)− (λs − λe)fe(α) · Ω(αi). (47)

It is obvious that function Ψ(αi) decreases monotonically
with αi when α−i is determined due to the monotonicity of
Fe(·). In addition, Ψ(α∗i ) = 0.

Next, we consider the monotonicity of Ω(αi). Note that

γ =

N∑
k=1

E {ek|e = γ} (48)

is always true. Calculating partial derivative of (48) with
respect to γ yields that

1 =

N∑
j=1

∂E {ej |e = γ}
∂γ

. (49)

Combining with Eq. (18), we obtain that,

∂E {ej |e = γ}
∂γ

≤ 1. (50)

Hence, Ω(αi) is monotonically increasing and Ω(αi) = 0
since

∂Ω(αi)

∂αi
= 1− ∂E {ei|e = αi + α−i}

∂αi
≥ 0. (51)

Together, we find that ∂E{Bi}∂αi
decreases monotonically with

respect to αi when α−i is fixed, and ∂E{Bi}
∂αi

= 0 when αi =
α∗i . Hence, when α−i is determined, α = α∗i is the optimal
choice for player i.

�

APPENDIX C
PROOF OF THEOREM 3

By transforming the summation of N players’ benefit into
the form of only one player in the system, the conclusion can
be proved. Note that the total expected benefit of all players
can be calculated as follows

E {B}

=

N∑
j=1

{λuLj − (λtQj + λr∆j)− Cd(MSEj)}

=E

λuL− (λtQ+ λr∆)−
N∑
j=1

Cd(MSEj)

 ,

(52)

where L =
∑N
j=1 Lj and Q =

∑N
j=1Qj . It is straightforward

to verify that

α∗ = F−1e

(
λt − λe
λs − λe

)
(53)

is the unique solution to the first-order optimality condition of
(52).

�
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APPENDIX D
PROOF OF THEOREM 4

We can calculate E {|∆|} as follows,

E {|∆|}

=

∫ α

−∞
fe(y) · (α− y)dy +

∫ +∞

α

fe(y) · (y − α)dy

=α− µ− 2α

∫ +∞

α

fe(y)dy + 2

∫ +∞

α

fe(y) · ydy.

(54)

Taking the partial derivative of E {|∆|} with respect to α:

∂E {|∆|}
∂α

=1− 2

(∫ +∞

α

fe(y)dy − αfe(α)

)
− 2αfe(α)

=2Fe(α)− 1.

(55)

Our theorem immediately follows. �

APPENDIX E
PROOF OF THEOREM 5

We know that

E {Bj} =λuLj − λtDj − λtµj + λtαi

− Cd(MSEi)− E {λr ·∆j} ,
(56)

and

E {λr ·∆j}
=λeαj − λeµj + αj(λs − λe)Fe(α)

−(λs − λe)
∫ +∞

−∞
yjfej (yj)fe|ej (e < α|ej = yj)dyj .

(57)

Note that the following two equations hold:

∂Fe(α)

∂αS
= fe(α), (58)

and
∂
∫ +∞
−∞ yjfej (yj)Fe|ej (e < α|ej = yj)dyj

∂αS

=

∫ +∞

−∞
yjfej (yj)fe|ej (e = α|ej = yj)dyj ,

(59)

where αS =
∑
i∈S αi.

Hence, combining Eq. (58) and (59) with (57) yields

∂E {λr ·∆j}
∂αS

= (λs − λe) · αjfe(α)

− (λs − λe)
∫ +∞

−∞
yjfej (yj)fe|ej (e = α|ej = yj)dyj .

(60)

According to the definition of conditional expectation, we
can find that,∫ +∞

−∞
yifej (yj)fe|ej (e = α|ej = yj)dyj

=

∫ +∞

−∞
yjfe(α)fej |e(ej = yj |e = α)dyj

=fe(α) · E {ej |e = α} .

(61)

Thus we have
∂E {Bj}
∂αS

=(λe − λs)fe(α) · (αj − E {ej |e = α}) . (62)

For convenience, we define

Ω̂(αS) = αj − E {ej |e = αS + α−S} , (63)

where α−S =
∑
i∈{1,2,...,N}\S .

Next, we consider the monotonicity of Ω̂(αi). Consider

∂Ω̂(αS)

∂αS
= −∂E {ei|e = αS + α−S}

∂αS
≤ 0. (64)

Hence we have ∂E{Bj}
∂αS

increases monotonically with re-
spect to αS when α−S is fixed, and ∂E{Bj}

∂αS
= 0 when

αi = α∗i ,∀i ∈ {1, 2, ..., N}. Hence, when αj is fixed to be
α∗j ,∀j ∈ {1, 2, ..., N} \ S, αS = α∗S minimizes E {Bj}.

�

APPENDIX F
PROOF OF PROPOSITION 1

Before calculating expectation of player i’s benefit function,
we introduce two lemmas for later calculations and proofs.
Lemma 1: For Gaussian variable X satisfying X ∼ N(µ, σ2),
it holds ∫ +∞

µ

x · fX(x)dx =
σ√
2π

+
µ

2
. (65)

Proof: Normalizing X ∼ N(µ, σ2) to be Y ,

Y =
X − µ
σ

∼ N(0, 1). (66)

Integrating variable Y from 0 to infinity yields∫ +∞

0

y · fY (y)dy =

∫ +∞

0

y · 1√
2π
e−

y2

2 dy

=2

∫ +∞

0

y√
2
· 1√

2π
e
−
(
y√
2

)2

d
y√
2

=
1√
2π

Γ(1) =
1√
2π
,

(67)

where the last line of Eq. (67) uses the definition of Gamma
function. Generalizing the conclusion to X leads to∫ +∞

µ

x · fX(x)dx

=

∫ +∞

µ

(σy + µ) · 1

σ
fY (y)d(σy + µ)

=

∫ +∞

µ

(σy + µ) · fY (y)dy

=σ ·
∫ +∞

µ

y · fY (y)dy + µ ·
∫ +∞

µ

fY (y)dy

=
σ√
2π

+
µ

2
.

(68)

Lemma 2: For any variable X and constant a,∫ +∞

0

e−ax
2

dx =
1

2

√
π

a
. (69)
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Proof: Define Z as follows:

Z =

∫ +∞

−∞
e−ax

2

dx. (70)

Then, we can first study the behavior of Z2,

Z2 =

∫ +∞

−∞

∫ +∞

−∞
e−a(x

2+y2)dxdy. (71)

Replacing (71) with integral of polar coordinates as follows,

Z2 =

∫ +∞

0

∫ 2π

0

e−ar
2

rdθdr

=− 2π

2a
·
∫ +∞

0

e−ar
2

d
(
−ar2

)
=− 2π

2a
· e−ar2

∣∣∣+∞
0

=
π

a
.

(72)

The symmetry of Z indicates∫ +∞

0

e−ax
2

dx =
1

2

∫ +∞

−∞
e−ax

2

dx =
1

2

√
π

a
. (73)

Proof for the Property of Expectation:

When ej ∼ N(0, σ2
j ) for each player j, then,

α∗j = µj = 0 ∀j ∈ {1, ..., N} . (74)

According to Eqs. (33) and (35), we can obtain,

E {Bi} = λuLi − λtDi − C0 − λdc− λdaMSE−bi

− (λs − λe)
∫ +∞

−∞
yifei(yi)f (e > α|ei = yi) dyi.

(75)

Note that∫ +∞

−∞
yifei(yi)f (e > α|ei = yi) dyi

=

∫ +∞

−∞
yifei(yi)

[
1− Fe−i(−yi)

]
dyi

=

∫ +∞

−∞
yifei(yi)dyi −

∫ +∞

−∞
yifei(yi)Fe−i(−yi)dyi

=−
∫ +∞

−∞
yifei(yi)Fe−i(−yi)dyi

=

∫ +∞

0

yifei(yi)
[
Fe−i(yi)− Fe−i(−yi)

]
dyi

=

∫ +∞

0

yifei(yi)
[
2Fe−i(yi)− 1

]
dyi

=2

∫ +∞

0

yifei(yi)Fe−i(yi)dyi −
σi√
2π
,

(76)

where the last equation utilizes Lemma 1.
According to integration by parts,∫ +∞

0

h(yi) · g
′
(yi)dyi = h(yi)g(yi)

∣∣+∞
0

−
∫ +∞

0

g(yi) · h
′
(yi)dyi,

(77)

we can calculate the first term in the last line of Eq. (76) by
defining h(yi) and g(yi) as follows:

h(yi) = Fe−i(yi) =

∫ yi

−∞
e
− x2

2σ2−i dx, (78)

g(yi) =

∫
yifei(yi)dyi =

∫
e
− y2i

2σ2
i

2
dy2i = −σ2e

− y2i
2σ2
i . (79)

It holds that∫ +∞

0

yifei(yi)Fe−i(yi)dyi

=
1√

2πσi
· 1√

2πσ−i

∫ +∞

0

h(yi)g
′
(yi)dyi

=
−1

2πσiσ−i σ
2
i e
− y2i

2σ2
i ·
∫ yi
−∞ e

− x2

2σ2−i dx

∣∣∣∣+∞
0

− 1

2πσiσ−i

∫ +∞

0

g(yi)h
′
(yi)dyi

=
σi

2
√

2π
+

σ2
i

2πσiσ−i

∫ +∞

0

e
− y2i

2σ2
i e
− y2i

2σ2−i dyi

=
σi

2
√

2π
+

σ2
i

2πσiσ−i

∫ +∞

0

e
− y

2
i
2

(
1

σ2
i

+ 1

σ2−i

)
dyi

=
σi

2
√

2π
+

σ2
i

2πσiσ−i
·

√
π

2

√
1
2

(
1
σ2
i

+ 1
σ2
−i

)
=

σi

2
√

2π
+

σ2
i

2
√

2π
√
σ2
i + σ2

−i

,

(80)

where the fifth equation of Eq. (80) uses Lemma 2 by setting
a to be 1

2

(
1
σ2
i

+ 1
σ2
−i

)
. Combining with our observation σ2

i =

MSEi in (24), our desired conclusion immediately follows.

Proof for the Property of Variance:

To better facilitate the calculation, we define A to be

A = λuLi − λtDi − C0 − λdc− λdaMSE−bi . (81)

The variance of Bi can be calculated as follows,

D {Bi} = E
{
B2
i

}
− E {Bi}2

=A2 + λ2tE
{
e2i
}

+ E
{
λ2re

2
i

}
+ 2AE {λrei}

− 2λtE
{
λre

2
i

}
−A2 − 2AE {λrei} − E2 {λrei}

=λ2tE
{
e2i
}

+ E
{
λ2re

2
i

}
− 2λtE

{
λre

2
i

}
− E2 {λrei} .

(82)

According to Eq. (25), we know

E {λrei} = −E {λr∆i} =
(λs − λe)MSEi√

2π
√
MSEi +MSE−i

. (83)

Next, we calculate E
{
e2i
}

, E
{
λre

2
i

}
and E

{
λ2re

2
i

}
respec-

tively.
Firstly, for E

{
e2i
}

,

E
{
e2i
}

= D {ei}+ E {ei}2 = D {ei}+ 0 = σ2
i . (84)
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Secondly, for E
{
λre

2
i

}
,

E
{
λre

2
i

}
=(λs − λe)

∫ +∞

−∞
y2i fei(yi)f(e < 0|ei = yi)dyi

+ λe

∫ +∞

−∞
y2i fei(yi)dyi

=(λs − λe)
∫ +∞

0

y2i fei(yi)dyi + λeE
{
e2i
}

=
λs − λe

2

∫ +∞

−∞
y2i fei(yi)dyi + λeE

{
e2i
}

=

[
λs − λe

2
+ λe

]
· E
{
e2i
}

=
σ2
i (λs + λe)

2
,

(85)

where the second equation of (85) is due to the symmetry
of Gaussian distribution, and the fourth equation utilizes Eq.
(84).

Lastly, for E
{
λ2re

2
i

}
,

E
{
λ2re

2
i

}
=λ2e

∫ +∞

−∞
y2i fei(yi)f (e > 0|ei = yi) dyi

+ λ2s

∫ +∞

−∞
y2i fei(yi) f (e < 0|ei = yi) dyi

=λ2e

∫ +∞

−∞
y2i fei(yi)dyi

+ (λ2s − λ2e)
∫ +∞

−∞
y2i fei(yi)f(e < 0|ei = yi)dyi

=λ2eE
{
e2i
}

+ (λ2s − λ2e)
σ2
i

2

=
σ2
i (λ2s + λ2e)

2
,

(86)

where the third equation utilizes Eq. (85).
Combining (82), (84), (85) and (86), we now conclude

D {Bi}

=
1

2
σ2
i

[
(λe − λt)2 + (λs − λt)2 −

(λe − λs)2σ2
i

π(σ2
i + σ2

−i)

]
=

1

2
MSEi

[
(λe − λt)2 + (λs − λt)2

]
− 1

2
MSEi ·

(λe − λs)2MSEi
π(MSEi +MSE−i)

.

(87)

�

APPENDIX G
PROOF OF THEOREM 6

We prove monotonicity by solving the partial derivative of
D {Bi} with respect to MSEi as follows,

∂D {Bi}
∂MSEi

=
(λe − λt)2

2
+

(λs − λt)2

2
− (λe − λs)2MSEi

2π(MSEi +MSE−i)

− 1

2
MSEi ·

(λe − λs)2

π
· MSE−i

(MSEi +MSE−i)2
.

(88)

The independent zero-mean Gaussian assumption for each
forecast error yields that e ∼ N(0,

∑N
j=1 σ

2
j ). From (14) and

(15) in Theorem 1, we submit

λt − λe
λs − λe

=
1

2
. (89)

Hence, it holds

(λe − λt)2 = (λs − λt)2 =
1

4
(λe − λs)2. (90)

Eq. (90) can further simplify Eq. (88) as follows

∂D {Bi}
∂MSEi

=(λe − λt)2 −
2(λe − λt)2MSEi
π(MSEi +MSE−i)

− 2(λe − λt)2

π
· MSEi ·MSE−i

(MSEi +MSE−i)2

=(λe − λt)2
(π − 2)(MSEi +MSE−i)

2 + 2MSE2
−i

π(MSEi +MSE−i)2

>0.

(91)

�

APPENDIX H
PROOF OF THEOREM 7

The proof of monotonicity of E {Bi} with respect to
MSE−i is straightforward. It immediately follows Eq. (25)
in Proposition 1.

To prove the monotonicity of D {Bi} with respect to
MSE−i, we only need to examine the partial derivative of
D {Bi} with respect to MSE−i as:

∂D {Bi}
∂MSE−i

=
MSE2

i · (λe − λs)2

2π · (MSEi +MSE−i)2
> 0. (92)

�

APPENDIX I
DETAILS OF THE LSTM MODEL

We adopt LSTM to forecast wind power as LSTM can
handle the entire sequence of data with high accuracy. In
the wind power forecast problem, since wind power is greatly
affected by the natural environment, we select five features for
the LSTM model: hourly wind speed 2 meters above displace-
ment height, hourly wind speed 10 meters above displacement
height, hourly wind speed 50 meters above ground, hourly
temperature 2 meters above displacement height and hourly
air pressure at surface [29]. When training the LSTM wind
power predictor, we set 50 units, 80 epochs, and 100 batch
size.
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