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ABSTRACT
Idling, or running the engine when the vehicle is not moving,
accounts for 13% - 23% of vehicle driving time and costs bil-
lions of gallons of fuel each year. In this paper, we consider
the problem of idling reduction under the uncertainty of ve-
hicle stop time. We abstract it as a classic ski rental prob-
lem, and propose a constrained version with two statistics
µB- and qB+ , the expectation of short stops’ lengths and the
probability of long stops. We develop an online algorithm
that combines the best of the well-known deterministic and
randomized schemes to minimize the worst case competitive
ratio. We demonstrate the robustness of the algorithm in
terms of both worst case guarantee and average case perfor-
mance using simulation and real-world driving data.

1. INTRODUCTION
Fuel economy has become a major concern in vehicle de-

signs, due to its significant environmental impact and the
foreseeable shortage of fossil oil. There is an enormous
amount of efforts in place to reduce the vehicle fuel con-
sumption and emission (see e.g. [8]). This greatly motivates
the development and commercialization of electric vehicles,
hybrid electric vehicles, and other energy efficient vehicles.

In this paper, we consider the problem of reducing the
cost associated with vehicle idling. An idling vehicle
runs its engine when it is not moving, which causes unnec-
essary waste of fuel. The average amount of idling has been
measured at 13% to 23% of the total vehicle operating time,
according to surveys conducted in North America and Eu-
rope [4]. In US alone, idling vehicles uses more than 6 billion
gallons of fuel at a cost of more than $20 billion each year [1].
These (possibly astonishing) facts have triggered significant
legislation efforts against unnecessary long idling. For ex-
ample, Toronto City Council at its meeting on July 8, 2010,
made changes to the Idling Control By-Law, to impose an
idling limit of 1 minute [7]. Similar rules and laws can be
found throughout US [3] and Europe [6].
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In order to reduce the costs associated with idling time
(including fuel and emissions), the driver may manually turn
off the engine, when he/she expects to experience a long
stop. Alternatively, Stop-Start Systems (SSS) have been
proposed to automatically perform the task. Such a system
is a key building block in hybrid electric vehicles (HEV), but
it can also be added as a new feature to conventional vehicles
(those equipped with an internal combustion engine only).
In the later case, they are typically referred to as Stop-Start
Vehicles (SSV) or micro-hybrid vehicles. SSV would turn off
the engine immediately when the car stops, and restart the
engine when the driver pushes the gas pedal to go forward.
Other functions like accessories and lighting are powered by
an electrical source other than the vehicle’s alternator. In
HEV, the strategy can be more complicated, and is out of
the scope of this work.

As in the case of idling, restarting the engine also comes
with a cost. It is estimated that the fuel consumption for
restarting the engine once is equivalent to keeping the engine
idling for 10 seconds [4, 2]. Considering other cost associated
to engine wear and exhaust gas emission, this number goes
up to 28 seconds for SSV or 47 seconds for those without
SSS [9]. Thus, it is not necessarily the best strategy to
turn off the engine immediately. Considering the cost of fuel
consumption alone, it is better to keep the engine running
if the vehicle is known to be at rest for less than 10 seconds.

However, the vehicle stop time is unknown or even hard
to estimate in many situations, such as at traffic lights or in
heavy traffic. Thus, SSV have to make online decisions, i.e.,
without the a-prior knowledge of the vehicle stop time. In
this paper, we consider the problem of finding the best online
strategy for the start-stop systems. It can also be provided
as a driving tip to drivers of vehicles without stop-start sys-
tems. In particular, we claim the following contributions:
– We consider the costs of fuel consumption, emission, and
engine wear associated with idling and restart. We abstract
the problem as a classic ski rental problem, where a break-
even value characterizes the trade-off between keeping the
vehicle idle and restarting the engine. Thus, existing solu-
tions can be incorporated.
– We observe the characteristic of the optimal offline algo-
rithm, and propose a constrained ski rental problem by in-
troducing two new statistics µB- and qB+ , where µB- is the
expected length of short stops, and qB+ is the probability
of long stops. We derive an online algorithm for the con-
strained ski rental problem, which gives the smallest worst
case expected competitive ratio under any traffic conditions.



– We use real-world data and simulation to test the perfor-
mance of the online algorithm. For vehicles with or with-
out SSS, the proposed strategy exhibits robust behavior in
different traffic conditions. For 1182 vehicles with real driv-
ing data, it performs the best in 1169 vehicles if they are
SSV, and in 977 vehicles without SSS. At the same time, it
achieves the smallest bound on worst case performance.

The rest of the paper is organized as follows. In Section 2,
we introduce the problem of SSS online strategy and link
that to the classic ski rental problem. We also review related
works proposed in the context of the ski rental problem. In
Section 3 we consider the constrained ski rental problem. In
Section 4 we propose an online algorithm to minimize the
worst case CR. In Section 5, we use real-world driving data
and simulation to validate the performance of the proposed
strategy. Finally, the paper is concluded in Section 6.

2. IDLING REDUCTION PROBLEM
When the car has to stop due to the traffic or the driver’s

needs, there are two possible actions that the driver/SSS can
take, each associated with different costs as below:
– Keeping the Vehicle Idle, which would waste fuel to
keep the engine running at a relatively low speed, and con-
sequently with exhaust gas emissions. The associated cost
is proportional to the vehicle idling time.
– Turning off the Engine. In this case, the engine has to
restart when the driver pushes the gas pedal. Restarting the
engine requires a one-time cost due to 1) fuel consumption
and related emission; 2) excessive engine wear, including
those to the starter and battery.

Both costs can be calculated by studying the character-
istics of the vehicle and the cost to each parts (e.g., starter
and battery). In the end, we can use two constant numbers,
costidling/s denoting the cost of idling per unit time, and
costrestart for the one-time cost to restart the engine. The
ratio between these two

B =
costrestart
costidling/s

(1)

denotes the amount of idling time such that the total cost
for idling is equal to the cost of stoping and restarting the
engine. B is called the break-even interval, which plays
a key role in the algorithm design.

During the vehicle stop, decision has to be made whether
to continue waiting (and keeping the engine idle) or turn
off and restart when the driver intends to move forward.
If the vehicle stop time y is known in advance, it is easy
to figure out the optimal strategy as follows: if y is less
than B (informally, the stop is “short”), then it is better
to keep the engine idle; otherwise (informally, in case the
stop is “long”), the driver/SSS should turn off the engine
immediately and restart later.

However, the vehicle stop time is naturally random, and
in many situations, such as stops at light or in heavy traffic,
it is unknown. The decision has to be made without having
the input y, or in an online fashion. In contrast, the opti-
mal strategy with the knowledge of y is called the offline
algorithm. The problem of designing online algorithm to
choose between continuing idling (and paying a repeating
cost) or paying a one-time restart cost is exactly the topic
of the classic ski rental problem [11]. In the ski rental
problem [11], suppose a skier has to pay $1 for renting skis
for one day or pay $B to buy his own. He/she cannot pre-
dict until which day he/she is still able to ski due to weather

condition. Every day when he/she goes skiing, an online de-
cision can be made on whether to rent or buy.

2.1 Competitive Analysis
Competitive analysis is a common way to evaluate online

algorithms, which compares the cost incurred by the evalu-
ated strategy with the optimal offline algorithm. For a stop
with length y, we denote the offline cost by costoffline(y),
which can be calculated as

costoffline (y) =

{
y 0 ≤ y < B
B y ≥ B (2)

The online algorithm (deterministically or randomly) se-
lects the amount of idling time x. We denote the cost
of the online algorithm for a selected x and a given y as
costonline(x, y). Since the vehicle will wait until x, if y < x,
the cost is y; otherwise, the cost is the amount of idle time
plus the one time restart cost.

costonline (x, y) =

{
y 0 ≤ y < x

x+B y ≥ x (3)

The competitive ratio cr(x, y) for a given pair of x and
y is defined as the ratio between the costs of the online and
offline algorithms:

cr(x, y) =
costonline(x, y)

costoffline(y)
(4)

The expected competitive ratio, denoted as CR, is de-
fined as the ratio between the expected cost of an online
algorithm and that of the offline algorithm [12]:

CR =
E
y
[E
x
[costonline(x, y)]]

E
y
[costoffline(y)]

(5)

Our objective is to select the strategy of idling time x such
that the worst case CR (maxy CR) is minimized.

2.2 Existing Solutions
For SSV, one strategy commonly used in the design1 is

that the engine would be turned off immediately when the
car stops. This strategy (with the short name TOI) has a
fixed cost of B for any stop length y. For vehicles without
SSS, the drivers may be reluctantly to turn off the engine
because of the concerns on the engine wear or other needs.
This behavior (with the short name NEV) would certainly
incur large cost when the stop time is long. In the following,
we review existing online algorithms proposed in the context
of the ski rental problem.

A deterministic online algorithm chooses a fixed x in (3).
[11] proves that among all possible deterministic algorithms,
the strategy of x = B gives the smallest worst case cr(x, y):

min
x

max
y

cr(x, y) = max
y

cr(B, y) = 2 (6)

We use DET to denote this online algorithm.
If we consider the metric of the worst case CR, DET is

not the best strategy. [12] proposes a randomized online al-
gorithm, which can guarantee that the worst case CR is no
larger than e/(e−1) for any distribution of y. This bound is
also proven to be the smallest that any online algorithm can
provide with no further statistical information on y. This al-
gorithm, denoted as N-Rand, select the idling time x based
on the probability density function P (x) as follows

P (x) =

{
1

B(e−1)
e

x
B 0 ≤ x ≤ B

0 otherwise
(7)

[13] proposes to include the first-moment (the average) µ

1see e.g., http://en.wikipedia.org/wiki/Start-stop system



or second-moment of the stop length as additional statis-
tical information. It then derives a revised randomization
algorithm to minimize the largest CR′, where

CR′ = E
y

Ex [costonline(x, y)]

costoffline(y)

 (8)

With the available information on µ, if µ ≤ 2 e−2
e−1

B = 0.836B,

the probability density function of x is derived as in (9); oth-
erwise, it is the same as N-Rand.

P (x) =

{
1

B(e−2)

(
e

x
B − 1

)
0 ≤ x ≤ B

0 otherwise
(9)

The upper bound on CR′ is proven to be 1 + µ
2B(e−2)

. We

denote this strategy as MOM-Rand.
Other works include [10] [14]. [10] proposes to analyze the

average-case CR, but the analysis is based on the assumption
that the distribution q(y) of stop length y is exponential
or uniform. [14] defines a variance of the classic ski rental
problem, by introducing the option of leasing (partly rent,
partly buy) in addition to pure rent or pure buy.

In the following, we look at additional statistical infor-
mation of the stop length that would help provide better
performance guarantees than the existing solutions. We use
the definition of CR in (5), because of its direct relationship
with the expected cost of the online algorithm.

3. CONSTRAINED SKI RENTAL PROBLEM
First-moment (the average) is widely used as characteris-

tics of random variables. However, it may not be informative
for the ski rental problems. Once the stop length y is longer
than B, to what extent its length exceeds B would not affect
the optimal offline decision: the engine should be turned off
immediately. Similarly, the behavior of the deterministic on-
line algorithm (DET) does not depend on the actual length
y either if y > B: it would only wait until time B to turn off
the engine. In addition, we prove that the additional infor-
mation µ does not change the randomized online algorithm:
with any given µ, the randomized algorithm is still the same
as defined in (7), and the optimal CR remains to be e

e−1
.

The proof is informally described in [9].
We observe that the average length for stops shorter than

B is still meaningful. For the stops with length higher than
B, we will use its total probability. Hence, we propose to
use the knowledge of µB- and qB+ to improve the online
algorithm design, which are defined as follows 2

µB- =

∫ B

0+
yq(y)dy (10)

qB+ = 1−
∫ B

0+
q(y)dy (11)

Now all the possible distributions of stop length y can be
described by the set Q
Q = {q(y)|q(y) ≥ 0, (10) and (11) are satisfied.} (12)

With these two constraints, the expected costs of the offline
algorithm and DET are

E
y
[costoffline(y)] = µB- + qB+B (13)

E
y
[costDET (y)] = µB- + 2qB+B (14)

which are both constants for a given pair of µB- and qB+ .
Also, an upper bound on the expected offline cost can be

2Mathematically speaking, the expectation of short stops
should be

µB-

1−qB+
. We use our definition for convenience.

derived as B (since µB- ≤ B). This is consistent with the
intuition that no online algorithm can outperform the offline
algorithm, including TOI, whose expected cost is always B.

Our problem is to find an online algorithm that defines
the probability distribution P (x) of the idling time x with
the given information of µB- and qB+ , such that it provides
the smallest upper bound on the CR (and consequently the
expected online cost). If the expected online cost with strat-
egy P (x) and stop length distribution q(y) is denoted as

J(P, q) = E
y
[E
x
[costonline(x, y)]] (15)

the problem can be formulated as a minimax problem
min
P∈P

max
q∈Q

J(P, q) (16)

where P defines the set of all possible P (x)

P =
{
P (x)|P (x) ≥ 0,

∫ +∞
0+

P (x)dx = 1
}

(17)

4. PROPOSED SOLUTION
We first consider the solution format. Similar to the case

of randomized algorithm (N-Rand) [12], it can be prove that
∀x > B, P (x) = 0 (see [9]). In other words, the optimal
online strategy only selects idling time x no larger than B.

Next, we observe that N-Rand has a continuous pdf for
x ∈ [0, B]. The deterministic online algorithm (DET) ex-
hibits the same optimal behavior as the offline algorithm
when the stop length y is less than B. On the other hand,
the solution of turning off immediately (TOI) follows the
online strategy when y > B. Both DET and TOI can be
regarded as a discrete probability distribution, represented
with dirac function. Thus, we propose a generic solution for-
mat for the designer’s strategy P (x), to include the discrete
and continuous distributions simultaneously:
P (x) = p(x) + αδ(x− ε) + βδ(x−B) + γδ(x− b) (18)

where p(x) is a continuous pdf function, δ(x) is the Dirac
delta function, and ε is an arbitrarily small positive number
(to represent the algorithm TOI). In Equation (18), there
are three components of discrete distributions at ε, B, and b,
with a probability mass function of α, β, and γ respectively.
The one at b (0 < b < B) is used to represent b-DET. The
only difference between b-DET and DET is that b-DET
would idle until b instead of B. We now use the following
steps to solve the constrained ski rental problem as in (16).

First, we assume α, β, and γ are constants, and solve (16):
– The problem (16) (constrained by (10) and (11)) is trans-
formed to an unconstrained one using the standard Aug-
mented Lagrangian method, as in Section 4.1.
– A set of relationship between q(y) and P (x) is introduced
to offset the variation in q(y). The problem now is converted
to a linear programming (LP) problem with an objective
independent of q(y), as in Section 4.2.
– In Section 4.3, we obtain and solve an ordinary differ-
ential equation for the continuous pdf p(x), and find the
Lagrangian coefficients as functions of α, β, and γ.

With the derived Lagrangian coefficients, we can trans-
form the problem (16) into an LP with variables α, β, and
γ. Their values can be solved with standard techniques in
linear programming, as in Section 4.4.

4.1 The Augmented Lagrangian
We denote the expected online cost for a given y ≤ B as

C(P (x), y) =

∫ y

0+
(x+B)P (x)dx+

∫ B

y

yP (x)dx (19)



and the one for y > B as

C′(P (x), y) =

∫ B

0+
(x+B)P (x)dx (20)

The expected online cost J(P, q) can be represented as

J(P, q) =
∫ +∞
0+ E

x
[costonline(x, y)]q(y)dy

=
∫ B
0+
C(P (x), y)q(y)dy +

∫ +∞
B

C′(P (x), y)q(y)dy
(21)

In order to incorporate the constraints (10) and (11), we
use Lagrange Multipliers λ1 and λ2 to associate the con-
straints with the objective function.

L(P, q, λ1, λ2) = J(P, q) + λ1

(
−
∫ B
0+
q(y)dy + 1− qB+

)
+λ2

(
−
∫ B
0+
yq(y)dy + µB-

)
(22)

Due to the linearity of J(P, q) on q, strong duality holds.
Now the original minimax problem (16) can be reformulated
as an unconstrained one, with its objective defined below

min
P∈P,q∈Q

L(P, q, λ1, λ2) (23)

4.2 Constraints on P(x) and q(y)

The Lagrangian in (22) can be partitioned into two parts
L(P, q, λ1, λ2) = Obj + Con (24)

where
Obj(q, λ1, λ2) = qB+

∫ B
0+

(x+B) p(x)dx+ αqB+B + 2βqB+B
+γ (µ1 + (q2 + qB+) (b+B)) + λ1 (1− qB+) + λ2µB-

(25)
Con = C(P (x), y)− λ1 − λ2y (26)

It should be noted that µ1 and q2, defined in (27), are vari-
ables.

µ1 =
∫ b
0+
yq(y)dy q2 =

∫ B
b
q(y)dy (27)

We use the same technique as in [13] to convert (24) into
a linear programming problem. The observation is that for
arbitrary distribution q(y) of stop length, there is a cor-
responding decision distribution P (x) which can offset the
variation from q(y). This is possible as P (x) can be any valid
probability distribution function. The resulted problem is

min
q

Obj (28a)

s.t. Con = C(P̃ (x), y)− λ1 − λ2y = 0 (28b)∫ B

0+
p(x)dx = 1− α− β − γ (28c)

p(x) ≥ 0 (28d)

where P̃ (x) = P (x)−γδ(x−b) is introduced for convenience.

4.3 Solving p(x)

The LP problem (28) can be solved with similar steps as
in [13]. First, to find p(x), (28b) is differentiated twice to
derive the following ordinary differential equation (ODE):

d

dx
p(x) =

1

B
p(x) (29)

The solution for this ODE is
p(x) = C0e

x
B (30)

where the coefficient C0 = 1−α−β−γ
B(e−1)

by considering the con-

straint (28c). Substituting (30) into (26), we can get the
Lagrange multipliers (as functions of α, β).{

λ1 = αB
λ2 = BC0e+ β = (1− α− β − γ) e

e−1
+ β

(31)

4.4 Solving α, β, and γ

Substituting (31) into (25), the objective Obj is now a
function of α, β, and γ, as in (32).

min
α,β,γ

Kαα+Kββ +Kγγ + (qB+B + µB-) e
e−1 (32)

where Kα, Kβ , and Kγ are constants, defined as
Kα = − e

e−1
(qB+B + µB-) +B

Kβ = − e
e−1

(qB+B + µB-) + (2qB+B + µB-)
Kγ = − e

e−1
(qB+B + µB-) + [µ1 + (q2 + qB+) (b+B)]

We incorporate the constraints that P (x) should be a valid
probability function

α+ β + γ ≤ 1, α ≥ 0, β ≥ 0, γ ≥ 0 (33)
The LP problem with the objective in (32) and constraints

in (33) can be solved using standard techniques in linear pro-
gramming. Simply speaking, the constraints in (33) limit
that α, β, and γ are all finite. By the fundamental theo-
rem in linear programming, the solution space of this LP
problem forms a convex polytope, and the optimal solution
is obtained in one of the four vertexes. The strategy and
associated cost to each vertex are summarized below:

– (α, β, γ) = (0, 0, 0): the strategy is N-Rand, with cost

E
y
[costN−Rand(y)] = e

e−1
(qB+B + µB-) [12];

– (α, β, γ) = (1, 0, 0): the strategy is TOI, with cost

E
y
[costTOI(y)] = B;

– (α, β, γ) = (0, 1, 0): the strategy is DET, with cost

E
y
[costDET (y)] = 2qB+B + µB- (as in Equation (14));

– (α, β, γ) = (0, 0, 1): the strategy is b-DET, with cost
defined in Equation (35), if the condition (36) is satisfied;
otherwise its cost is b+B;

We now detail how the expected cost of b-DET is calcu-
lated. Please note that b ∈ [0, B] is a design variable that
can be selected to minimize the cost of b-DET.

Given a pair of µB- and qB+ values, we first prove that b
should select some value larger than

µB-

1−qB+
. To prove it, the

stop length y can be selected to be
µB-

1−qB+
with probability

of 1 − qB+ , and an arbitrary value b′ > B with probability
of qB+ . Under such a distribution of y, the expected cost of
b-DET is b+B, always larger than the one (= B) of TOI.
Thus b-DET will never be selected.

With the assumption that b >
µB-

1−qB+
, y cannot be always

≥ b. Intuitively, any stop with length y ≥ b will introduce a
cost of b+B, larger than the case y < b. The worst case q(y)
can be proven to follow the rule that all short stops have a
length of either 0 or b, consequently µ1 = 0 and q2 =

µB-

b
.

The expected cost for b-DET is
E
y
[costb−DET (y)] = min

b
{E
y
[costonline(b, y)]}

= min
b
{(b+B)(

µB-

b
+ qB+)} (34)

When b =
√

µB-B

qB+
, (34) reaches its minimum value

E
y
[costb−DET (y)] = (

√
µB- +

√
qB+B)2 (35)

This requires that b =
√

µB-B

qB+
>

µB-

1−qB+
, or equivalently

µB-

B
<

(1− qB+)2

qB+
(36)

4.4.1 Optimal Online Algorithm
We now summarize the optimal online algorithm. In par-

ticular, it will always selects the one with the smallest ex-
pected cost among the above four strategies. For example,
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Figure 1: The Proposed Online Algorithm and its Worst
Case CR
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(d) µB- = 0.05B

Figure 2: Projected view

if the following set of inequalities are satisfied,
(
√
µB- +

√
qB+B)2 ≤ B

(
√
µB- +

√
qB+B)2 ≤ e

e−1
(qB+B + µB-)

(
√
µB- +

√
qB+B)2 ≤ µB- + 2qB+B

µB-

B
<

(1−qB+ )
2

qB+

(37)

b-DET is guaranteed to have the smallest cost among all
the strategies by the first three inequalities, and the fourth
inequality makes sure that there is a b that can achieve the
minimum cost for b-DET. Hence, b-DET is the optimal
strategy, and the worst case CR is

CR = CRb−DET =
(
√
µB- +

√
qB+B)2

µB- + qB+B
(38)

The solution is visualized in Figure 1. Figure 1(a) il-
lustrates the selection of N-Rand, DET, TOI, and b-
DET depending on the different values of µB- and qB+ .
Figure 1(b) shows the derived worst case CR. For better
comparison with these strategies, we also give two projected
views in Figure 2. This figure demonstrates that our online
algorithm combines the best of the well-known deterministic
and randomized schemes (its worst case CR is the minimal
among N-Rand, DET, TOI, and b-DET). The possible
improvements brought by b-DET are demonstrated in Fig-
ure 2(c)-(d) (with µB- = 0.02B and µB- = 0.05B).

5. EXPERIMENTAL RESULTS
In this section, we conduct experiments to evaluate the

performance of the proposed online algorithm. We consider
both SSV and the vehicles without start-stop systems. We
estimate a minimum break-even interval B = 28 seconds for
SSV, and 47 seconds otherwise [9]. In summary, we consider
both the fuel consumption and mechanical wears. Hence,
our algorithm addresses not only the environmental impact
of vehicle idling reduction, but also car owners’ concerns on
damages to car starter/battery (possible reasons why they
are reluctant to shut down engines during idling).

We first use real-world driving data to demonstrate the
performance of our proposed control strategy and its advan-
tage compared with current solutions. We select data re-
leased by the National Renewable Energy Laboratory (NREL)
[5] in United States, from three areas: California (collected
in the California Household Transportation Survey), Chicago
(by Chicago Metropolitan Agency for Planning - Regional
Household Travel Inventory), and Atlanta (from Atlanta Re-
gional Commission). The number of vehicles in California,
Chicago, and Atlanta are 217, 312, and 653 respectively.
For each vehicle, the driving data were recorded for one
week. Figure 3 depicts the probability distribution of the
stop length for all the vehicles in these three areas. These
distributions are different from the exponential distribution
(as assumed in [10]) according to the Kolmogorov-Smirnov
test, mostly due to their heavy tails.

We use these real-world driving data to study the CR of
the proposed algorithm, and compare it with other solutions,
including TOI (Turning Off Immediately), NEV (Never turn-
ing off), DET (Deterministic Algorithm) [11], N-Rand (Ran-
domized Online Algorithm) [12], and MOM-Rand [13]. We
compare both the worst case CR (the largest CR among all
vehicles) and the average CR (the mean over them).

For SSV (where the break-even interval B is estimated at
28 seconds), the results are shown in the top row of Fig-
ure 4 for each of the three areas. For vehicles without SSS
(where B is set to be 47 seconds), the bottom row in Fig-
ure 4 draws the comparison. From the figure, our algorithm
always provides the smallest worst case CR, which is con-
sistent with the guaranteed optimal performance. Further-
more, our algorithm also outperforms the other solutions in
average CR. Among all the 1182 vehicles, our proposed al-
gorithm achieves the best average CR in 1169 of them for
SSV (B = 28). The mean CR of our algorithm is 1.11, 1.32,
and 1.10 respectively for the three areas, lowest among all
strategies. If B = 47 (for vehicles without SSS), our strategy
achieves best performance in 977 vehicles. The mean CR is
1.35, 1.42, and 1.35 respectively, the best in each area. In
summary, our algorithm not only provides the smallest up-
per bound on the CR, but also exhibits great performance
in terms of the average CR in different areas.

Finally, we use simulation to validate the performance of
the algorithm under different traffic conditions. Although
the three areas have different average stop length (possibly
due to different traffic conditions), their shapes of the stop
length distributions are quite similar, as in Figure 3. Thus,
we generate simulation driving data by following the dis-
tribution of Chicago, but scaling its mean value. We then
check the worst case CR for each mean stop length.

Figures 5 and 6 illustrate the results. It can be seen
that our strategy always achieves the lowest upper bound
on the CR under any traffic condition (average stop time).
On the contrary, DET algorithm only functions well for
good traffic conditions (with short average stop time), and
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Figure 4: Individual Vehicle Test

TOI only works well for bad conditions (with long aver-
age stop time). The two randomized algorithms N-Rand
and MOM-Rand, while being robust, is consistently out-
performed by the proposed algorithm. This validates our
proposal that µB- and qB+ can provide valuable information
to improve the online algorithm design.
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Figure 5: Worst case CR under different average stop
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6. CONCLUSIONS
In this paper, we formulate the vehicle idling reduction

as the classical ski rental problem. Besides incorporating
existing solutions, we propose a constrained ski rental prob-
lem with additional statistical information. We develop an
online algorithm that combines the best of the deterministic
and randomized schemes to minimize the worst case com-
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Figure 6: Worst case CR under different average stop
lengths (B = 47)

petitive ratio. With real-world driving data and simulation,
we demonstrate that the proposed algorithm is robust and
advantageous for different types of vehicles under different
traffic conditions.
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