On Optimizing XOR-Based Codes for Fault-Tolerant Storage Aoplications

Cheng Huang, Jin Li, and Minghua Chen
Microsoft Research, Redmond, WA 98052

Abstract— For fault-tolerant storage applications, computation and make aconjecturethat the current problem is also NP-
complexity is the key concern in choosing XOR-based codes.complete.

We observe that there is great benefit in computing common . .
operations first (COF). Based on the COF rule, we describe Two greedy approaches are proposed to find approximate

a generic problem of optimizing XOR-based codes and make Solutions to the OXC problem. When optimization is applied
a conjecture about its NP-completeness. Two effective greedyto XOR-based Reed-Solomon codes, we show that these codes
algorithms are proposed. Against long odds, we show that XOR- can in fact be as efficient and sometimes even more efficient
e o o s oo ot Acon e e pesnan the best know specifcal designed XOR based codes,
" . A hich is contrary to long time odds. In particular, i
known specifically designed XOR-based codes. fault-tolerant case, XOR-based Reed-Solomon codes are mor
|. INTRODUCTION efficient in encoding than EVENODD codes [1] and as effi-
Erasure correcting codes are often adopted by storage eient as the RDP scheme. They are less efficient in decoding
plications to provide fault tolerance [5]. For such appimas, though. In 3-fault-tolerant case, XOR-based Reed-Solomon
encoding and decoding complexity is the key concern todes are more efficient in encoding than both the genedalize
determining which codes to use. XOR-based codes use pEMENODD codes [2] and the STAR scheme [9]. They are
XOR operation during coding computation, which makealso more efficient in decoding in most cases. As large scale
implementation most efficient in both hardware and softwarproduction adoption of erasure correcting codes is loorimg
Hence, such codes are highly desirable in fault-toleramage the horizon, it is conceivable that redundancy beyéndill
applications. become necessary and XOR-based Reed-Solomon codes with
XOR-based codes can be implemented by transformingtimization should easily live up to such requirements.
from existing codes, which originally could be defined intBni The rest of the paper is organized as follows. Section II
fields [3]. For instance, [4] constructs XOR-based codesfrorevisits EVENODD codes as an example of specifically de-
Reed-Solomon codes [14] to protect packet losses in commigned XOR-based codes. Section Il briefly describes the
nication networks. Reed-Solomon codes, as probably thé mgansformation of Reed-Solomon codes into XOR-based codes
widely used codes, are flexible in coding parameters and asection IV presents the OXC problem, the complexity conjec-
able to recover the maximum number of failures (the MD&re and two greedy approaches. The performance of OXC is

property [11]). However, it has long been assumed that XORvaluated in Section V and we conclude in Section VI.
based Reed-Solomon codes are inefficient (see the positiona

paper [1] and all its followers) and thus inappropriate for
storage applications. This might be one of the most prontinen
reasons that motivated decades of efforts in designingfspecay, EvENODD: an example
XOR-based codes.

However, the biggest problem of specifically designed codesEVENODD codes [1] are probably the most widely referred
is that they are in general not flexible. While codes providin§OR-based codes in fault-tolerant storage applicationsn
2 or 3-fault-tolerance (recoverable from or 3 storage node other schemes adopt a similar concept, where data blocks are
failures) are well studied [1], [2], [6], [7], [9]. Efficientodes arranged in a two dimensional array and XOR is the only
offering more redundancy still appear out of reach, evdgquired operation. Schemes as such are often referiategs
though theredo exist a few schemes [2], [8]. In this papercodes Low complexity is the key advantage of array codes,
we reexamine XOR-based Reed-Solomon codes and arguevbich is especially desirable for storage applicationdoBe
their suitableness in storage applications. Since the ity We give a simple example of EVENODD codes.
of XOR-based codes is solely determined by the total numberl) EVENODD encodingWe examine &5,2) EVENODD
of XOR operations in encoding or decoding, we make @de. There ar8 data blocks £ = 3) and2 redundant blocks
simple yet key observation that common XOR operatior{s = 2). An EVENODD code is in the form of §p—1) x (p+
should be computed first (the COF rule). Based on the CQltwo dimensional array, whengis a prime number. Hence,
rule, we can optimize arbitrary XOR-based codes (includirepch block is segmented intp — 1) cells Figure 1 shows
Reed-Solomon codes). We describe the optimization probléhis particular EVENODD code, whepe= 3 and each block
as finding a computation path, which computes all requirddorresponding to one column in the Figure) is segmented int
outputs and minimizes the total number of XOR operatiorscells. The encoding is straightforward. The first redundant
at the same time. We relate the problem of optimizing XORlock is simply the XOR of all the data blocks. In terms of
based codesOXCin short) to a known NP-complete problemcells, they can be represented as (#tisas a simple notation

II. REVISITING EVENODD CODES

1 0 1 0] [1 o 1 o] [o [1][1 1
0 1 0 1 0@ o 10
1 00 1 o ofd |1 @ o0o@
0 1 0D 1D 0 1
1 0 [1] o 1 [1] 0 0
011 0] [0 1 1 0 |0® 0

>

(a) EVENODD encod<{b) encoding with COFc) decoding witl
ing

COF

Fig. 2. A matrix perspective of EVENODD code.

(b) decoding

Fig- 1. An EVENODD code example. Note thatM, represents a portion of the code’s generator

for XOR) matrix. For systematic codes, it is convenient to ignore the
rest systematic part.
c1=dy +ds +ds, Given the encoding matrix, aaive approach to compute
C2 =dy + dy + ds, the redundant blocks is to XOR all data cells whenever the
encoding matrix has non-zero entries. For example,=
dy + ds +ds, c3 = di + ds + ds + dg, and so on. In this
way, counting the total number of non-zeros entries yields

which can be regarded as computingrizontal parities. The
second redundant block can be computed as

S=ds+ds the encoding complexity. Hence, we might conclude ttat
cg =dy +dg+ 5, XORs are required (note that thré&s in one column counts
cs=dy+ds+ S for 2 XORs). However, if we are slightly more careful, we

will observe that some XORs are computed more than once.
which can be regarded as computing diagonal paritiss(|ndeed, if the EVENODD encoding is mapped onto the matrix
called adjusto)). It is easy to count that the total number oOfepresentation, it is equivalent to computidg + ds only
XORs is9. once (the calculation of the adjustor), which saueXOR
2) EVENODD decodingEVENODD codes guarantee re-anq exactly accounts for the difference between the offigina
coverability when there are no more than two block failurgs\yENODD encoding and the matrix-based naive approach.
(i.e., two columns completely wiped out). For instance, Weigure 2(a) illustrates this.
examine a particular failure pattern, when the second aed th Now, an interesting question to ask is: can we find more
third data blocks are unavailable. The decoding turns obieto sharedxORs, which can be computed once and in turn further
straightforward as well. Using all the remaining paritydie, reduce the total number of operations? Indeed, we obseave th
the adjustor can first be computed as dy + d3 (denoted asl, 3) and dy + ds (denoted asl, 5) are
S =cy+cy+ 3+ e shared XORs (shown in Figure 2(_b)). If. we adopt a simple
rule to compute suchommon operations fir§COF),ds 5 and
Once S is known,dg can be computed a = ¢35 +d; + S. dy 5 will be computed. Theng; = dy + da s, ¢ = dy s + dg,
Then,d, can be computed a&, = c; + ds + dg. Next, d5 can c3 = dy 4 ds+ds +dg (as normal), and, = do 5+ dy5. The
be computed ads = dy + 5. And finally, ds = di +d5 +c1. total number of XORs i8, less than the original EVENODD
The decoding process is completed and all failed blocks afgcoding.
recovered. The total number of XORs]i8. 2) decoding with COF:We consider the same failure
B. EVENODD: a matrix perspective pattern, where the second and third data blocks are unbieila

The encoding and decoding of linear block codes C%lﬁe., cellsds, d4, ds anddg are erasures). It is straightforward

be represented in a matrix form. Here, we use the sa oederiv_e decoding _equation_s ffom the encoding makvx
EVENODD code example to illustrate ' rz]essentlally performing matrix inversion) and obtdd =
1) encoding with COF: Denote data cells a®d = C *Ma whereD’=[ds dy ds dg], C' = [d1 da c1 ¢z c5 cal,

g wi : Denote data cells a . ; .

[dl do d3 dy ds d6] and parlty cells aC = [Cl Co C3 04]. and the deCOdlng matriv, is

Then, the encoding can be representedCas= D x M., 01 11
where theencoding matrixM., is in the following form: 1110
101 0 Mdzié?} @)
01 0 1 10 10
1 0 0 1
Me - O 1 1 1 (1) O 1 0 1
1 011 Again, the naive approach requiré8 XORs. But, applying
01 10 the COF rule, and compute shared XORs first (€ig+ d4,

c1 + ¢4 andcy + c3 in this case, also shown in Figure 2(c))field of size4 and the following encoding matrix:
the total number of required XORs 9 This is also less than

the original EVENODD decodingl() XORS). [c cb] _ [d dy d] } i 4)
1 z+4+1

I1l. A 2-FAULT-TOLERANT REED-SOLOMON CODE

wherec,, ¢, are redundant blocks ant}, d,, d. data blocks,
representing elements in the finite field. Let = cix + o,
de = dix + do, etc. Now,c1, ca, di andd, are elements in
binary and we get the following through isomorphism:

10

In this section, we construct &, 3) Reed-Solomon code
and apply the COF rule to both encoding and decoding.

A. Premier on isomorphism

Reed-Solomon codes are constructed in finite fields, where
the addition operation is simply XOR, but the multiplicatio
operation is handled specially. Elements of finite fieldsloan [¢1 2 ¢z ca] = [di d2 d3 dy ds dg]
represented using polynomials, which help to understaad th
addition and multiplication operations. 1
Consider a simple finite field with only elements, which (5)

can be constructed taking polynomials modufd+ = + 1. Applying the COF rule, we observe thét+ds andd,+dg are
Since addition in this finite field is XOR+ and — are the shared XORs and should only be computed first. In the end, the
same, hence, we can computé= z+1 (moduloz®+x+1) total number of XORs i8, less than the EVENODD encoding.
andz® = z2® = z(z + 1) = 2* + = 1 (moduloz® + = + Similarly, it is straightforward to verify that decoding eth

1). It is easy to imagine all polynomials can be represent@@cond and third data blocks requiteXORs, also less than
using4 basicelementsbeing0, 1, z andz + 1. Given these the EVENODD decoding. As a matter fact, for this particular
elements, the addition and multiplication between any te# p example, the encoding and decoding matrices happen to be the

can be easily computed and stored in look-up tables. With tsgme for the EVENODD code and the Reed-Solomon code.
addition and multiplication tables, Reed-Solomon codesiEa This is not true in general though.

implemented using table-lookups, which is exactly how they
are often realized. For rigorous representations, plessé33. IV. OPTIMIZING XOR-BASE CODES

From the polynomial perspective, however, there is anotherConceivably, the COF rule is applicable to arbitrary XOR-
way to represent the multiplication operation. Assuming waased codes, no matter whether they are specially designed
would like to computer(z+1). Instead of directly computing XOR-based codes, or simply isomorphism of regular Reed-
x(x+1) =22 +2 =1 (moduloz? + x + 1), we can consider Solomon or other types of codes. However, when the encoding
a more general case by writing the term it + b)(x + 1). matrix or decoding matrix is large, it becomes nontrivial to

O = OO

—_ o~ O
O R = O

[e N i e S)

Of course,a = 1 andb = 0 here. Hence(ax + b)(z + 1) = determine which shared XORs should be computed first and
a(z? +) +b(x +1) = a+b(z + 1) (moduloz? + x + 1). used as intermediate results for other. In this section, efiael
Therefore,(az + b)(z + 1) can be represented as the problem of optimizing XOR-based codes formal@XC
in short), present a conjecture of the NP-completenesseof th
(ax +b)(x+1)=[a b {(1) ﬂ) (3) Problem, and propose two effective greedy algorithms.

A. Problem formulation

'I&et t(;] =1 anld b t: B 1we g%n_gitx(x; 1) = 1. . The OXC problem is stated as follows. Given a set of
nother example seta = 1 andb = 1, and we can ge inputs (denoted as,, i, ---, 4;;) and a coding matrixV

(x + 1)(x + 1) = z. Both can be easily verified using direct, _: . ;
polynomial multiplications. Hence, the multiplication fimite (either encoding or decoding), a set of outputs (denotad as

-, 0j0|) are computed from the inputs and the coding

. . . 09, **
fields can bg transformed mfco pure XQR. .operatpns. Thrlﬁatrix, where XOR is the only computation operation. Define
mechanism is calledsomorphism The significance is that

¢ Sntd b no loggergze:'? to be SSSlgntply b;; -srggs%agz bethe inputs and/or the intermediate results from previouRXO
a byte, a word o s, even its (wi), A computation path isvalid, if it yields all required outputs

the maximal length a single XOR instruction can operate o fter all XORs along the path are computed. Tleagth
Through isomorphism, arbitrary codes defined on finite fiel 3 a computation path is simply the total numBer of XORS

(including Reed-solomon codes) can be implemented usi Ontained in the pattGiven the inputs and the coding matrix,
pure XOR operations. For more details, please see [4], [13 e OXC problem is to find a valid computation path with the
minimum length.
Next, we relate the OXC problem to a known NP-complete
[11] gives a convenient way to construct Reed-Solom@roblem and make a conjecture about its complexity. As
codes when the redundant blocks are no more $hdo offer illustrated by various shapes (rectangle, circle, andpsel)i
2-fault-tolerance foB data blocks, we can use the above finiten Figure 2(c), we can useoversto represent shared XORs.

a computation pathas an order of XOR operations involving

B. A 2-fault-tolerant Reed-Solomon code

(a) graph with edge counters (b) approach I: cardinality matching (c) approach II: weighted matching

Fig. 3. lllustration of greedy approaches.

Here, we define a general conceptreaitangle covefdenoted total cost. In [15], theninimum weighted rectangle covering
asRC) for shared XORs. A rectangle cover may span multipMWRC) problems is shown to be NP-complete. Note that
rows (ectangle heighthrc) and columns rectangle width the general MWRC problem includes arbitrary cost functions
wre) Of the coding matrix. It doesot need to be contiguous for each rectangle. It isot clear that the problem is still NP-

in either rows or columns. Intuitively, a rectangle coves hacomplete with the current cost function. Hence, we only make
to be rectangle so it contains the same number of entriea conjecture here that the OXC problem is also NP-complete.
among all rows (or columns). A rectangle cover can only the rest of this section, we describe two greedy algorithm
containl’'s andno 0’s at all. All columns of a rectangle coverto derive approximate solutions.

share same XORs. Hence, computing any single columné's
sufficient and the number of XORs required fsrc — 1). ‘
Now, we define theostof a rectangle cover (denoted @sc) Let's use the coding matrix in Figure 2(c) to describe the
ascrc = (hrc — 1) + wre, where(hgrc — 1) accounts for algorithm. The inputs aré, is, is, is, is andig. The outputs
the number XORs to be computed within the rectangle, af@€01, 02, 03, ando,. Based on the coding matrix, in order to
wrec one potential XOR with outside inputs per column ofompute celb,, we need to XORI inputs, i.€.,0, = iz +i3+

the rectangle. Finally, we define a set mbne-overlapping % =+ is- There are many ways to compute For instance, we
complete rectangle covelslenoted aRC;'s), which donot can first compute, + 43, is + 45 and then sum them up. Or,

overlap with each other and cover i of the coding matrix. W€ can compute, +iz, and then add, andi; one by one. To
We have the following corollary. list all possibilities, we draw all inputs a®desin a graph and

connect two nodes with an edge whenever there is a potential

Corollary 1: A F:omputat|on path is equivalent to a seloR computation. Clearly, between any two-node pair among
of none-overlapping complete rectangle covers. Moreover, is, is andis, there exists an edge. Hence, the graph contains

. 12,

the length of the computqtlon path equals to the total Foéﬁ—clique. This is for one output. Similarly, for other output
of all rectangle covers minus the ngmber of outputs, -8he graph will contain different cliques. Putting all cleg
ZcRci N |O_|‘ (We Ieaye the _proof to interested readers ANfto the same graph, while some edges belong to only one
simply mention that minugO| is because each column OVer'cquue, other might belong to multiple. We keep a counter
counts exact by.) on each edge. Intuitively, the counter represents how many

To this end, the OXC problem is equivalent to findingimes one particular XOR is shared during the computation of
a set of none-overlapping complete rectangle covers of ttiferent outputs. To reduce the total number of operatidiss
coding matrix with the minimum total cost(@| is constant natural to compute the mostly shared XORs first. In the graph
and thus can be ignored). To get rid of the none-overlappingtation, it is to compute the edges with the highest counter
requirement, we can apply a simple technique and modify tkalue.
cost function of rectangle covers. For each entry in a rggan For instance, Figure 3(a) shows the complete graph and
cover, we add a large constahtto its cost. Then, for none- edge counters corresponding to the coding matrix. The kighe
overlapping rectangle covers, the number of times thas counter is2. To compute such edges first, we remove all edges
counted in total cost equals to the numben sfin the coding with less counter values and obtain the subgraph in Figune 3(
matrix. On the other hand, once two rectangle covers overldfhe next step is to find the maximum number difjoint
L will be counted more times. Hence, as longlass large edges (no two edges share the same node) and compute
enough (e.g. more than the total entries in the coding matrtkem first. The intuition is that disjoint edges representReO
|I] x |O|), overlapping rectangle covers willeveryield the on completely different nodes and computing them at the
minimum cost. With this cost function modification, we onlysame time dmot affect each other. Computing the maximum
need to find a set of complete rectangle covers with minimunumber of disjoint edges can get the maximum reduction of

Greedy approach [: cardinality matching

XORs at once. It turns out that finding the maximum numbel the edges connected to these nodes, the remaining graph
of disjoint edges is a well-studied graph theory problerieda should be as dense as possible such that it's likely to ammtai
maximum cardinality matchingA matching is a set of edgesmore matchings for the next round.
in a graph, where there are no two edges share the samBlow we describe the second approach, which differs from
node. A maximum matching is a matching with the maximurte first greedy approach in the way of finding a maximum
number of edges. Given a graph, there are many polynommaatching. Starting from the original graph with countemes,
time algorithms to find a maximum matching. When a graplie assign weights to all edges. For an edge with the maximum
contains multiple maximal matchings, our algorithm pratse counter value, its weight is set to be a large constant (say
with any of them. The XORs corresponding to the matching) minus the degrees of both its end nodes. For instance,
are computed first. Given the matching shown in Figure 3(¢he edge betweer;, and ig has weightE — 9 (rest shown
we will first computei; + iz, i3 + i andiq + is. in Figure 2(c)). For an edge with a smaller counter valus, it’
Once these XORs are computed, we examine the remainexgluded. Once we go through all edges and obtain a subgraph,
XORs. We can still use a matrix to represent all the XORs. Thee find amaximum weighted matchinghich is known to be
matrix will be modified from the original coding matrix, wheer solvable in polynomial time. Note that the maximum weighted
entries corresponding to XORs, which have already been comatching doesot guarantee to find the maximum number
puted, need to be removed. Also, we need to add new entridésmatching pairs. The constaiit is added exactly for this
for the intermediate results from the above computations. Teason. As long as we maké large enough (e.g., the sum
this end, we add three new imaginary inpiits, i3 ¢ andis 5 of all nodes’ degrees), a maximum weighted matching will
to represent the intermediate results. Now the decodingxmatalways contains the maximum number of matching paries (i.e.

becomes also a maximum cardinality matching). Maximum weighted
0 150 150 17 matching has comparable complexity as maximum cardinality
1 1—-0 1—0 0 matching, so the complexity of the second greedy approach is
1 1-0 0 1-0 also comparable to the first approach. Finally, we note that o
-0 0 120 1 empirical experience shows that neither approach is superi
M= [1=0 0 150 0 6) SO we simply run both approaches and take a better result in
0 1-0 0 1—o0l practice.
0 1 1 0 V. PERFORMANCE EVALUATION
(1) (1) (1) (1) In this section, we apply the both greedy approaches to opti-

- mize XOR-based Reed-Solomon codes. We compare encoding
where the three bottom rows are newly added. Taking thed decoding complexities to the naive approach, as well as
second column as an example, it Hasion-zero entries. It to the best known specifically designed XOR-based codes.

corresponds t@, = 412 + i3 ¢ and indeed the same as the imited | . N ilabl d-Sol d
original computation Oby — 7, + iy + is 4+ io. A. Limited exploration of available Reed-Solomon codes

Given the new coding matrix, it's possible to find more We shows 2-fault-tolerant and 3-fault-tolerant casesctvhi
shared XORs operations and again compute them only onatg the focus of a large number of specifically designed XOR-
Apparently, we can apply the same procedure to find tis@sed codes. Even with limited redundancy, there are still
maximum number of shard XORs. Indeed, the procedurerigmerous ways to construct a Reed-Solomon code. Here,
repeated until there are no more shared XORs. It is eawg use the Reed-Solomon codes presented in [11] (Ch.
to show that the algorithm terminates after finite roundgheoremll). For a given finite field GKp = 29), the parity
and within each round, both preparing the graph and findisgeck matrix is given as

maximum matching take polynomial time. Hence, the overall 1 ... 1 10 0
complexity is still in polynomial time. We will elaborateith H=|ay - aoy 0 1 0 @)
later when discussing practicality issues. 2 37 00 1 ’
al DY (‘YQ71
C. Greedy approach II: weighted matching To construct a(n, k) systematic Reed-Solomon code

As mentioned already, there might exist multiple maximum — k < 3), we can choose any out of 3 rows andk out of
matchings in a graph. For instance, in Figure 2(b), matchingthe first(Q — 1) columns fromH. It's easy to verify that this
with g, i With i5 andiz with 74 is also a maximum matching. gives us ar x n parity check matrix, which corresponds to
In the above greedy approach, we proceed with any maximungn, k) systematic Reed-Solomon code. Still, the number of
matching. In this part, we consider a variation of the abowvailable codes (i. e(Q 1) column combinations) are quite
approach. We still like to find a maximum matching (i.e., thiarge. Hence, we further limit our exploration to includdyon
maximum number of disjoint pairs), but we like the matchingolumns that are contiguous iH (cyclic is fine). In short,
to cover as fewedensenodes as possible. The density of @iven (n, k), we only considef@ — 1) codes when = 3
node is defined by its degree. The intuition is that if all r@deand 3(Q — 1) codes when = 2 (3 times more due to row
covered by the maximum matching are removed, as well esmbinations). For eacfwn, k), we choose a Reed-Solomon

code that incurs the minimum number of XORsdncoding these are more likely to be the most common failures and the
(after optimization) as the desirable code and compute itsost performance gain will be achieved when the common
corresponding average decoding complexity over all failucases are optimized. During rare cases when more failures
patterns. occur, the decoding falls back into the naive approach. Less
efficient decoding in those cases shootit have much impact

on overall system performance. Moreover, OXC might be
particularly suitable for codes with inherent hierarchyg(e
Pyramid Codes [10]), where most decodings happen within

B. Comparison

encoding complexity decoding complexity

‘ k ‘ EVENODD | RS (naive) [RS (OXC RDP [[EVENODD | RS (naive) | RS (OXC RDP . e
3 7 567 783 small groups with limited redundancy.
5 8.75 16.33 9.97
7 12.83 17 12 12 13.67 23.43 14.25 12

V1. SUMMARY

We make a simple and yet important observation that com-
mon XOR operations should be computed first in XOR-based
coding. We describe the OXC problem and make a conjecture
about its complexity. Two greedy approaches are proposed,
which effectively show that XOR-based Reed-Solomon codes
with optimization can be as efficient and sometimes even more
efficient than the best known specifically designed XOR-thase
codes. Moreover, XOR-based Reed-Solomon codes with opti-

11
13

20.9
24.92

29.75
36.75

20
24

20
24

21.8
25.83

46.66
55.43

24.67
29

20
24

(a) 2-fault-tolerant case

‘\ encoding complexity i decoding complexity |
k | gen. EOTSTAR] RS (naive)] RS (OXC) || gen. EO] STAR | RS (naive)| RS OXC) |
5 13.5 18 11.33 28.8 13.6 22.27 12.57
7 19.67 28 17.33 36 21.06 32.29 17.58
11 31.8 50.75 27 49.1 34.2 67.08 32.02
13 37.83 63 32.25 55.44 41.04 79.75 36.96
17 49.86 95 44.6 67.84 54.4 128.78 55.17
19 55.89 107.8 50.4 73.98 61.74 144.12 60.50

(b) 3-fault-tolerant case

mization are likely to be applicable in large scale produrtti

Fig. 4. Comparison with best known specifically designed XitaRed codes.

In 2-fault-tolerant case, we compare XOR-based Reed-
Solomon codes to the EVENODD codes [1] and the RDP!
scheme [6]. From Figure 4(a), we observe that, with opti-
mizaiton, the encoding of Reed-Solomon codes can be &
efficient as EVENODD/RDP. The decoding of Reed-Solomon
codes ardessas efficient though. In 3-fault-tolerant case, wes
compare with the generalized EVENODD codes [2] ¢es.

EO) and the STAR scheme [9]. The encoding complexity of?!
both specifically designed schemes are the same. The dgcodin
of the STAR scheme is more efficient than the generalizeph
EVENODD codes. We observe that the Reed-Solomon codes
appear more efficient than both schemes in encoding over |
k's, and more efficient in decoding over moss. This is
very interesting and suggests that designing more effident
tolerant XOR-based codes might be possible. Moreover,in g,
cases, we observe that OXC shows great improvement over
the naive approach, where the complexity literarily couhts 8]
number of1’s in coding matrices. We believe the significant
gap between OXC and the naive approach contributes to
the long time misconception that Reed-Solomon codes afé
inappropriate as XOR-based codes.

10
C. Practicality discussion 1ol

In order for OXC to be practically useful, computatiory]
paths should be computed offline and stored physically. For
encoding, the additional storage overheadds an issue at
all, since there is only one computation path to store. For
decoding, the number of paths to be stored can be potentid¥$i
large (literally, one path per erasure pattern). To alteviae

systems with higher redundancy requirements.

REFERENCES

M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An Eféint

Scheme for Tolerating Double Disk Failures in RAID Architees,”

IEEE Trans. on Computerd4(2), 192-202, Feb. 1995.

M. Blaum, J. Bruck, and A. Vardy, “MDS Array Codes with Inplendent
Parity Symbols,1EEE Trans. Information Theory2(2), 529-542, Mar.
1996.

R. E. Blahut, “Algebraic Codes for Data Transmission,'h@t&idge Univ.
Press, Cambridge, U.K. 2002.

J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and. Buck-

erman, “An XOR-Based Erasure-Resilient Coding Scherfie¢hnical
Report No. TR-95-048CSI, Berkeley, California, Aug. 1995.

P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Bedbn,
“Raid — High-Performance, Reliable Secondary Storage&”M Com-
puting Surveys26(2), 145-185, 1994.

P. Corbett, B. English, A. Goel, T. Grcanac, S. KleimanlLdong, and
S. Sankar, “Row-Diagonal Parity for Double Disk Failure faation”,

the 4t" USENIX Conference on File and Storage Technolgoies (FAST

2005) San Francisco, CA, Dec. 2005.

G.-L. Feng, R. H. Deng, F. Bao, and J.-C. Shen, “New Effiti®IDS
Array Codes for RAID Part I: Reed-Solomon-Like Codes for Taling
Three Disk Failures”]EEE Trans. on Computer$4(9), Sep. 2005.
G.-L. Feng, R. H. Deng, F. Bao, and J.-C. Shen, “New Effiti®IDS
Array Codes for RAID Part II: Rabin-Like Codes for ToleraiMultiple
(> 4) Disk Failures”,IEEE Trans. on Computer$4(12), Dec. 2005.
C. Huang, and L. Xu, “STAR: an Efficient Coding Scheme for@et-
ing Triple Storage Node Failuresthe 4" USENIX Conference on File
and Storage Technolgoies (FAST 2005an Francisco, CA, Dec. 2005.
C. Huang, M. Chen, and J. Li, “ Pyramid Codes: Flexible Subs to
Trade Space for Access Efficiency in Reliable Data Storagee®ys”,
Mar. 2007 (submitted).

F. J. MacWilliams, and N. J. A. Sloane, “The Theory of Er@orrecting
Codes, Amsterdam: North-Holland”, 1977.

] J. S. Plank, “A tutorial on Reed-Solomon Coding for Faldterance

in RAID-like Systems”,Software — Practice & Experienc@7(9), 995-
1012, Sep. 1997.

J. S. Plank, and L. Xu, “Optimizing Cauchy Reed-Solomord&€ofor
Fault-Tolerant Network Storage Applicationgtie 5t* IEEE Interna-
tional Symposium on Network Computing and ApplicationsA2G06)

overhead, we consider two scenarios: 1) when the redundancy cambridge, MA, Jul., 2006.

is limited (e.g.2 or 3-fault-tolerant), the total number of pathl14]
might not be large and thus all paths can be stored; a
2) when there are more redundancy, computation paths to
recover limited failures can be stored. In storage apptioat

I. S. Reed, and G. Solomon, “Polynomial Codes over CerFiite
Fields”, J. Soc. Indust. Appl. Math8(10), 300-304, 1960.

] R. Rudell, “Logic Synthesis for VLSI Design”, Ph.D. tis, UC

Berkeley, 1989.

