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Abstract

Nowadays, provisioning delay-constrained services becomes more and more important in

communication and transportation systems. However, most existing communication and

transportation systems are best-effort and do not provide any delay guarantee. To ad-

dress such an issue, in this thesis, we study two important yet different delay-constrained

problems: (i) how to maximize the system performance in terms of network utility of a

wireless communication system where every packet has a hard delivery delay constraint?

and (ii) how to minimize the fuel consumption of a heavy-duty truck delivering cargos in

a highway transportation system where the truck has a hard delivery delay constraint?

The first problem is important in multimedia communication systems, cyber-physical

systems (CPSs), and Internet-of-Things (IoT) systems with real-time applications over

wireless networks. The second problem is important for truck operators who aim at

both saving fuel cost and ensuring timely delivery. These two problems share a common

perishable feature that the considered entity (the packet/information or the truck/cargos)

is required to reach the destination on/before a given hard deadline. We remark that

the delay-unconstrained counterparts of these two problems (i.e., without the perishable

feature) were well studied and understood while their approaches cannot be applied to

our delay-constrained problems as shown later in the thesis.

For the first problem, recently, Hou and Kumar provided a novel idle-time-based frame-

work to solve it for a special frame-synchronized traffic pattern. However, the problem

remains largely open for general traffic patterns. To tackle this problem, we have two

critical issues: one is how to characterize the timely capacity region, and the other is how

to maximize the network utility (i.e., achieve the timely capacity region). In this thesis,

we propose a general framework to address these two critical issues with general traffic

patterns in a single-hop downlink access-point wireless network. We first show that the

timely wireless flow problem is fundamentally an infinite-horizon Markov Decision Process

(MDP). Then we apply two simplification methods to prove that the timely capacity re-

gion is a convex polygon specified by a finite number of linear constraints. This allows us

for the first time to characterize the timely capacity region of wireless flows with general
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traffic patterns, addressing the first critical issue. To address the second critical issue,

we further design three scheduling policies to maximize network utility and/or support

feasible timely throughput vectors for general traffic patterns. The first policy achieves

the optimal network utility and supports any feasible timely throughput vector but suffers

from the curse of dimensionality. The second and third policies are heuristic that are in-

spired by our MDP framework and are of much lower complexity. Simulation results show

that both achieve near-optimal performance and outperform other existing alternatives.

For the second problem, we minimize the fuel consumption of the heavy-duty truck by

exploring the full design space of both route planning and speed planning. We remark that

this new and practically important problem is a generalization of the classical Restricted

Shortest Path (RSP) problem. We first show that the problem is NP-complete and then

design a fully polynomial time approximation scheme (FPTAS) to solve it. While achieving

highly-preferred theoretical performance guarantee, the proposed FPTAS still suffers from

long running time for large-scale national highway systems. Leveraging insights from

studying the dual problem, we design a heuristic with much lower complexity, which can be

applied to large-scale national highway systems. We further characterize a condition under

which our heuristic generates an optimal solution. We observe that the condition holds

in most of practical instances in numerical experiments, justifying the superior empirical

performance of our heuristic. Numerical experiments using real-world truck data over the

actual U.S. highway network show that our proposed solutions reduce the fuel consumption

by up to 17%, as compared to the shortest/fastest path algorithm adapted from common

practice.

Overall, in the communication and transportation systems, we observe that both the

problem structure and the problem-solving methodology of delay-constrained problem-

s are completely different from those of the well-understood delay-unconstrained ones.

This thesis serves as a first step towards studying delay-constrained communication and

transportation systems and calls for further investigation participation.
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Part I

Motivation and Thesis Structure
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2

Nowadays, provisioning delay-constrained services becomes more and more important

in communication and transportation systems. However, most existing communication

and transportation systems are best-effort and do not provide any delay guarantee. To

address such an issue, in this thesis, we study two important yet different delay-constrained

problems:

• Timely Wireless Flow Problem: how to maximize the system performance in terms of

the network utility in a wireless communication system with general traffic patterns

where every packet has a hard delivery delay constraint?

• Energy-Efficient Timely Transportation Problem: how to minimize the fuel con-

sumption of a heavy-duty truck delivering cargos in a highway transportation system

where the truck has a hard delivery delay constraint?

The first timely wireless flow problem is important for multimedia communication sys-

tems such as real-time streaming and video conferencing over cellular networks, and cyber-

physical systems (CPSs) or Internet-of-Things (IoT) systems such as real-time surveillance

and control over wireless sensor networks. The second energy-efficient timely transporta-

tion problem is important for current truck operators who aim at both saving fuel cost and

ensuring timely delivery. These two problems share a common perishable feature that the

considered entity (the packet/information or the truck/cargos) is required to reach the

destination on/before a given hard deadline. We remark that the delay-unconstrained

counterparts of these two problems (i.e., without the perishable feature) were well stud-

ied and understood while their approaches cannot be applied to our delay-constrained

problems as shown later in the thesis.

This thesis is divided into two parts to solve these two problems. The first part is from

Chapter 1 to Chapter 9 focusing on the first timely wireless flow problem. The second

part is from Chapter 10 to Chapter 17 focusing on the second energy-efficient timely

transportation problem. We preview each chapter as follows.

Chapters 1–9 study the first timely wireless flow problem. Part of the results was

published in [40].

Chapter 1 introduces necessary backgrounds, challenges, fundamental problems, and

our contributions for the first timely wireless flow problem.



3

Chapter 2 discusses the related work in the timely wireless flow research area.

Chapter 3 presents our system model and formulates our timely wireless flow problem.

We also prove that the network utility maximization problem for timely wireless flow is

co-NP-hard in the strong sense.

Chapter 4 explains how to cast our timely wireless flow problem as an infinite-dimension

infinite-horizon multi-reward Markov Decision Process (MDP) problem.

Chapter 5 demonstrates two simplification methods to reduce the state space and ad-

dress the infinite-horizon issue by observing that our MDP is actually almost cyclostation-

ary. We prove that the timely capacity region is a convex polygon which is characterized

by a finite set of linear constraints. We also design a scheduling policy by solving a finite-

size convex program, which is feasibility-optimal and maximizes network utility. But the

scheduling policy suffers from the curse of dimensionality.

Chapter 6 proposes two low-complexity heuristic algorithms to address the curse of

dimensionality of our MDP formulation.

Chapter 7 presents numerical performances of our solutions on characterizing timely

capacity region, maximizing network utility, and supporting feasible timely throughput

vectors. It shows that the two proposed low-complexity heuristics achieve near-optimal

performance and outperform other existing alternatives.

Chapter 8 concludes the first part and introduces possible future research directions

for our first timely wireless flow problem.

Chapter 9 gives the detailed proofs of our theoretical results and presents some other

supplementary analysis for our first timely wireless flow problem.

Chapters 10–17 study the second energy-efficient timely transportation problem. Part

of the results was published in [39].

Chapter 10 introduces the importance of both saving fuel cost and ensuring timely de-

livery for heavy-duty trucks, and motivates our second energy-efficient timely transforation

problem. We further summarize our contributions.

Chapter 11 shows the system model and formulates our energy-efficient timely trans-

portation problem. We prove that this problem is NP-complete.

Chapter 12 designs a fully polynomial time approximation scheme (FPTAS) to solve

our energy-efficient timely transportation problem. The FPTAS attains an approximation
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ratio of (1 + ε) with a network-size induced complexity of O(mn2/ε2), where m and n are

the numbers of nodes and edges of the highway transportation network, respectively.

Chapter 13 proposes another low-complexity dual-based heuristic algorithm to solve

our energy-efficient timely transportation problem. The network-sized induced complexity

is O(m+ n log n), much lower than that of the FPTAS. The proposed heuristic algorithm

allows us to tackle the energy-efficient timely transportation problem on large-scale na-

tional highway systems. We further characterize a condition under which our heuristic

generates an optimal solution.

Chapter 14 discusses some possible extensions of our problem by considering more

practical constraints for the heavy-duty trucks.

Chapter 15 uses real-world data to evaluate the performance of our algorithms. It

shows that our heuristic algorithm guarantees timely delivery and can save up to 17%

of fuel consumption as compared to the fastest/shortest path algorithm adapted from

common practice.

Chapter 16 concludes the second part and introduces possible future research directions

for our second energy-efficient timely transportation problem.

Chapter 17 gives the detailed proofs of our theoretical results and presents some other

supplementary analysis for our second energy-efficient timely transportation problem.



Part II

Timely Wireless Flows with

General Traffic Patterns: Capacity

Region and Scheduling Algorithms

5



Chapter 1

Introduction

1.1 Background

Real-time wireless communication systems that require delay guarantee have become

prevalent. Typical systems of this kind include multimedia communication systems such

as real-time streaming and video conferencing over cellular networks, and cyber-physical

systems (CPSs) or Internet-of-Things (IoT) systems such as real-time surveillance and

control over wireless sensor networks. As a consequence, real-time wireless traffic has ex-

perienced a phenomenal growth in recent years [80], and is predicted to increase its volume

by another 7-fold in 2016–2021 [33].

A common characteristic of these systems is that they have a strict deadline for packet

delivery. Packets traversing the wireless network need to be delivered before their dead-

lines, otherwise they expire and are deemed useless. For example, mobile video confer-

encing may require bounded delay on video delivery [87]. Similarly, in CPSs, time-critical

applications impose latency constraints within which data or control messages must reach

their targeting entities [25]. Additionally, real-time wireless communication systems often

require performance on the timely throughput, defined as the throughput of packets that

are delivered on time [53].

1.2 Challenges

Serving delay-constrained traffic over wireless networks is uniquely challenging due to the

inherent coupling of space, time, and unreliable transmission.

Space: Wireless networks differ from wired networks in the presence of spatial inter-

ference, wherein the transmission over a link can upset other transmissions in its neigh-

borhood. An optimal scheduler needs to carefully decide which link/flow to serve at a

6
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given time slot.

Time: To ensure timely packet delivery, one also has to keep track of deadlines of

individual packets and properly account for delivery urgency in scheduling link transmis-

sions. Such unique feature in the time domain often introduces high-dimensional system

state.

Unreliable Transmission: Wireless transmissions are unreliable because of shadow-

ing and fading. The channel quality may also differ from link to link. This could result in

significant delay when a delay-oblivious scheduling scheme is used.

1.3 Fundamental Problems

In delay-constrained wireless communications, there are three fundamental problems.

Capacity Region Problem: How to characterize the capacity region in terms of

timely throughput? This problem is important because: (i) it provides the fundamental

benchmark to evaluate any scheduling policy, and (ii) it lays down the necessary foundation

for network utility maximization in terms of timely throughput.

Network Utility Maximization (NUM) Problem: How to design scheduling

policies to maximize network utility in terms of timely throughput? This is the delay-

constrained counterpart of the celebrated NUM framework for delay-unconstrained wireless

flows, which has been widely used as both a modeling language and solution tools [62, 76,

32].

Feasibility-Optimal Policy Design Problem: A common by-product of solving

the capacity region problem is that one can obtain a scheduling policy to support one

feasible throughput vector in the region, by solving an optimization problem (a linear

one if the capacity region is a polyhedron). This approach, however, may result in using

(many) different policies to support different feasible rate vectors, one policy for each or

multiple rate vectors. In practice, it is more desirable to implement only one policy that

can support any feasible rate vectors.

For the delay-unconstrained scenario, the celebrated back-pressure algorithm [89] can

support any feasible rate vector within the delay-unconstrained capacity region, and it

is termed throughput-optimal. For the delay-constrained scenario studied in this thesis,

following the terminology coined in [53], we call a policy feasibility-optimal if it can support
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Table 1.1: Our contributions and comparisons with existing works. All of them consider

a single-hop downlink AP scenario.

Traffic Pattern Capacity Region
Scheduling Policy for

Network Utility Maximization

Feasibility-Optimal

Scheduling Policy Design

Frame-Synchronized

([53, 56])
[53] [56] [53]

General (this work)

A convex polygon RAC, optimal, high complexity RAC, optimal, high complexity

(Chap. 5) (Chap. 5) (Chap. 5)

A fast outer bound RAC-Approx, heuri., low compl. RAC-Approx, heuri., low compl. (Chap. 6)

(Chap. 6) (Chap. 6) L-LDF, heuristic, low complexity (Chap. 6)

any feasible throughput vector within the timely capacity region. A central problem of

scheduling delay-constrained traffic is to design a feasibility-optimal policy.1

Systematically solving these three fundamental problems calls for a framework that

both captures the challenges in Sec. 1.2 of delay-constrained wireless communications and

offers tractable solutions.

1.4 Our Contributions

Recently, researchers devoted much effort to studying real-time wireless communications

[53, 56, 54, 57, 55, 68, 58, 59, 60, 65]. Among them, Hou and Kumar [53, 56, 54, 57, 55]

developed an elegant idle-time-based framework to solve all the three fundamental prob-

lems in Sec. 1.3 for a special frame-synchronized traffic pattern, over single-hop downlink

access-point (AP) wireless networks. Inspiring as it is, their idle-time-based framework

apparently only applies to flows with the special traffic pattern, which can only capture a

limited number of practical scenarios. Overall, the three fundamental problems in Sec. 1.3

remain largely open for general traffic patterns.

In this thesis, we take a first step towards solving these three fundamental problems

for general traffic patterns by establishing a framework based on Markov Decision Process

(MDP). The structure of the timely wireless flow problem makes MDP a natural candidate

for establishing such framework. We summarize our contributions about how we solve

these problems and compare them with existing works in Tab. 1.1. Specifically, we make

1Note that the Largest Debt First (LDF) policy proposed by Hou, Borkar, and Kumar in [53] is

feasibility-optimal, for a special traffic (arrival and expiration) pattern. In this thesis, we design a

feasibility-optimal policy for general traffic patterns.
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the following contributions:

B In Chap. 3, we model general traffic patterns. Then in Chap. 4, we show that

the timely wireless flow problem with general traffic patterns is fundamentally an MDP

problem. This new observation allows us to systematically explore the full design space,

beyond those in previous studies [53, 56, 54, 57, 55].

B The MDP formulation is challenging to solve. In particular, it is of infinite-horizon,

infinite state space, and time-heterogeneous. In Chap. 5, by leveraging the underlying

structure of the MDP formulation, we apply two simplification methods to show that

the timely capacity region is a finite-size convex polygon. Our results build upon the

rich literature of MDP to judiciously formulate the problem and adapt several existing

techniques of MDP in a coherent way so as to fully answer the fundamental problem:

“What is the capacity region for timely wireless flows with general traffic patterns?” As a

by-product of the capacity region analysis, we obtain a provably optimal scheduling policy,

called RAC, for network utility maximization. We also show that RAC is feasibility-

optimal.

B Our capacity region characterization and the optimal RAC scheduler suffer from the

curse of dimensionality rooted in the MDP approach. To address this issue, in Chap. 6,

we first propose a relaxed but computationally-efficient convex polygon characterization,

serving as a fast outer bound of the capacity region. Based on the outer bound analysis, we

propose a low-complexity heuristic scheduling policy, called RAC-Approx, for optimizing

network utility and supporting feasible timely throughput vectors. Motivated by our model

for system state, we also propose another low-complexity heuristic scheduling policy, called

L-LDF, for supporting feasible timely throughput vectors.

B In Chap. 7, we carry out extensive simulations to verify the optimality of our RAC

scheduler and show that our proposed heuristic scheduler are near-optimal and outperform

other conceivable alternatives.



Chapter 2

Related Work

Supporting delay-constrained traffic over wireless networks has been a very active research

area and we review the most relevant works in the following by categorizing them according

to the three fundamental problems in Sec. 1.3.

Capacity Region Problem: For the special frame-synchronized traffic pattern, Hou

et al. in the seminal paper [53] proposed an idle-time based approach to characterize the

capacity region of timely flows over a single-hop downlink AP scenario. The approach has

been further extended to variable-bit-rate applications in [54] and time-varying channels

in [55]. However, to the best of our knowledge, there are no results to characterize the

capacity region for general traffic patterns beyond the special frame-synchronized traffic

pattern. In this work, we fill this gap and give a complete characterization of the capacity

region for general traffic patterns.

NUM Problem: Still for the special frame-synchronized traffic pattern, Hou et al.

in [56] solved the NUM problem efficiently for the single-hop downlink AP scenario where

each user has a general and valid utility function in terms of the achieved timely through-

put. Later in [68] Lashgari et al. generalized the single-AP scenario to a multi-AP scenario,

but still focused on the frame-synchronized traffic pattern and only considered a linear

utility function for each user. They proposed a relaxed bin-packing problem with elegant

insights for the original complicated network utility maximization problem, and provided

some theoretical guarantees for such relaxation. However, there is little result on network

utility maximization beyond the special frame-synchronized traffic pattern. Our work

addresses this open issue.

Feasibility-Optimal Scheduling Policy Design Problem: For the special frame-

synchronized traffic pattern, Hou et al. in [53] proposed the celebrated largest-deficit-first

(LDF) scheduling policy and proved that it is feasibility-optimal in the sense that it

can support any feasible timely throughput vectors. However, it turns out LDF is not

10
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feasibility-optimal for general traffic patterns [65, 58]. There have been two lines of ef-

forts to study the feasibility-optimal policy design problem for general traffic patterns.

One is to study the performance of LDF. Kang et al. in [65] proposed a theoretical lower

bound for the quality of service (QoS) efficiency ratio, i.e., the fraction of capacity region

that can be achieved by LDF. Further, in [64], Kang et al. derived theoretical upper and

lower bounds for the capacity efficiency ratio, i.e., the minimum link capacity required

by LDF to achieve the capacity region in the same network with unit-capacity links.

Both [65] and [64] considered an “i.i.d.” traffic pattern. The other line is to propose new

scheduling algorithms to support feasible timely throughput vectors. In [58], Hou et al.

proposed the Earliest-Positive-deficit-Deadline-First (EPDF) scheduling policy, which is

shown to outperform LDF numerically for the frame-based heterogenous-delay traffic pat-

tern. However, currently there is not yet feasibility-optimal scheduling policy for general

traffic patterns. This work fills in this gap and proposes a feasibility-optimal policy for

general traffic patterns.



Chapter 3

System Model and Problem Formu-

lation

3.1 The Communication Model

Network Topology and Scheduling Model: We consider a single-hop downlink access-

point (AP) scenario where the AP aims to transmit K independent timely traffic to K

users,1 one for each user. The traffic (resp. channel) between the AP and user k ∈ [1,K]

is denoted as flow (resp. link) k. Assume slotted transmission. In each slot, only one link

can be scheduled and can only send one packet. At the beginning of slot t, the action of

the AP, denoted by At, thus decides which flow/link to schedule.2 At the beginning of

slot (t + 1), the AP can choose a different At+1 and the process starts over. For easier

reference, we use “at time (slot) t” to refer to “at the beginning of slot t” and use “in time

(slot) t” to refer to “in the time span of slot t.”

Propagation Delay and Random Erasure: To model propagation delay, we as-

sume that if link k is scheduled at time t, then the transmitted packet can be received

by user k at the end of time t. To model unreliable transmission of wireless channels, we

assume that along any link k successful delivery happens with some probability pk ∈ (0, 1],

1In this work, each user represents one delay-constrained application, e.g., video streaming, video

conferencing, etc. A physical user/device can simultaneously run multiple delay-constrained applications

and thus host multiple users.
2After scheduling which flow to transmit, one also needs to choose which packet of the selected flow to

transmit if there are multiple packets in the current queue. However, as one can show by a realization-based

argument, it is optimal to always transmit the packet of the selected flow that is of the earliest deadline.

If there is no packet of the selected flow in the AP’s data queue, the AP just remains idle (or equivalently

transmits nothing), which will not contribute to the timely throughput. In this work, we assume that the

AP always chooses one flow to transmit while implicitly allowing the AP to remain idle when the queue

of the chosen flow is empty.

12
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the random delivery events are independently and identically distributed (i.i.d.) over time,

and the events for different links are independent.

We also assume that at the end of time t, the scheduled user will inform the AP

through a separate control channel whether it has received the transmitted packet or not

(ACK/NACK). The information will then be used for scheduling at time (t + 1) and

onward.

The above model captures the practical Wi-Fi networks and is also widely adopted in

the real-time wireless communications literature, e.g., [53, 57, 55, 56, 68]. We also remark

that although we consider an ON-OFF channel model in this thesis, our results can be

extended to the general multi-state channel model [29].

3.2 Traffic Pattern

We assume periodic-i.i.d. packet arrivals with hard delay constraints for each flow k, which

can be best described by the following concept of “arrival and expiration (A&E) profile.”

For any flow k, its A&E profile can be described by a 4-dim. vector

(offsetk, prdk,Dk,Bk),

where offsetk denotes the time offset for the start of the arrival process of flow k; prdk

is the inter-arrival period of flow k; Dk is the deadline for each flow-k packet; and Bk ∈
(0, 1] is the arrival probability of each flow-k packet. For flow k with an A&E profile

(offsetk, prdk,Dk,Bk), we denote the arrival time of the m-th3 flow-k packet as t
[k]
arr(m),

which can be computed as

t[k]
arr(m) = offsetk + (m− 1)prdk + 1. (3.1)

The m-th packet arrives with probability Bk. If it indeed arrives, it expires after Dk slots,

and the expiration time is denoted as t
[k]
exp(m), which can be computed as

t[k]
exp(m) = t[k]

arr(m) + Dk. (3.2)

The expired packets are removed from the system as they are no longer useful to the

application.

3 We slightly abuse the notation and still call the packet arriving at t
[k]
arr(m) the m-th packet, even

though on average only (m− 1)Bk out of the first m− 1 packets have actually “arrived.”
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(a) (offset1, prd1,D1,B1) = (0, 3, 3, 1)
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(b) (offset2, prd2,D2,B2) = (1, 3, 4, 0.7)

Figure 3.1: The illustration of two arrival and expiration (A&E) profiles.

An illustration of two A&E profiles is provided in Fig. 3.1. For example, the first flow-1

packet will always arrive at time 1 since offset1 = 0 and B1 = 1 and will expire at time 4.

The second flow-2 packet will arrive at time 5 with probability 0.7 and expire at time 9.

We then define the traffic pattern as the collection of A&E profiles of all K flows. We

remark that our traffic model is quite general because it captures not only the special

frame-synchronized traffic pattern, but also other practical traffic patterns, as shown in

the following.

The frame-synchronized traffic pattern can be captured by our traffic model as

(offsetk, prdk,Dk,Bk) = (0, T, T, 1), ∀k ∈ [1,K]

where T is called the frame length. As we can see, all K flows start at slot 1 and have

the same arrival period T , and the same deadline T . Thus, every T slots, all flows have

a packet arrival simultaneously, and all these packets will expire simultaneously after T

slots. All three fundamental problems in Sec. 1.3 have been solved by [53, 56] for this

special traffic pattern.

However, the frame-synchronized traffic pattern cannot model many important prac-

tical scenarios. For example, consider a typical mobile video conferencing scenario. Sup-

pose that packets arrive every 20ms with a hard delay of 200ms.4 Since the delay is

4If we assume that every packet has 1000 bytes (1kB), such arriving process means a sending rate
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larger than the period, such flow cannot be modeled by the frame-synchronized traffic

pattern. However, our traffic model can capture such traffic profile: if we assume that

each slot spans 20ms and the first packet arrives at time 1, the A&E profile would be

(offset, prd,D,B) = (0, 1, 10, 1).

Note that our traffic pattern also suggests that we do not need an infinite-size data

queue in the AP. Since all expired flow-k packets will be removed from the system, there

exist at most
⌈

Dk
prdk

⌉
flow-k packets in the data queue of the AP. The total number of

packets in the queue (from all K flows) is thus at most
∑K

k=1

⌈
Dk
prdk

⌉
. To avoid overflow,

we therefore require that the data queue of the AP can at least hold
∑K

k=1

⌈
Dk
prdk

⌉
packets.

Again consider a video-conferencing scenario with ten flows where each flow’s packets

arrive every 20ms with a hard delay of 200ms. If every packet has a size of 1000 bytes

(1kB), then the minimal data queue size requirement is 1kB× 10×
⌈

200ms
20ms

⌉
= 100kB.

Remark: Although our work is described only for the periodic-i.i.d. traffic patterns,

the same principle can be readily extended to the much more general cyclostationary

Markovian arrivals with observable states. Moreover, although we assume that any flow

has at most one packet arrival in each period, our work can be generalized to the case

that a flow may have multiple packet arrivals in a batch [93]. Our analysis can also be

generalized to the case that different flows could have different packet lengths by treating

a large packet as multiple sub-packets of the same length.

3.3 The Objective

The timely throughput Rk of flow k is defined as

Rk , lim inf
T→∞

E{# of flow-k pkts delivered before expiration in [1,T]}
T

, (3.3)

which computes the long-term average number of flow-k packets delivered before expiration

per slot. Obviously, Rk depends on how to schedule the links/flows for t = 1 to ∞.

As we introduced in Sec. 1.3, our objective is to solve the following three fundamental

problems.

of 400kbps. All settings, including packet size, sending rate and delay, are in line with practical video

conferencing systems [94].
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Capacity Region Problem: Characterize the capacity region,

R , {~R = (R1, R2, · · · , RK)| there exists a scheduling

policy achieving timely throughput Rk,∀k ∈ [1,K]}. (3.4)

NUM Problem: Design scheduling policies such that the resulting timely throughput

vector solves the NUM problem,

(P1) max
~R∈R

K∑
k=1

Uk(Rk)

where Uk(·) is the utility function for flow k, which is assumed to be increasing, concave,

and continuously differentiable.

Feasibility-Optimal Scheduling Policy Design Problem: Design one scheduling

policy, so that for any feasible timely throughput vector ~R = (R1, R2, · · · , RK) ∈ R, the

achieved flow-k timely throughput under this policy is at least Rk for any k ∈ [1,K].

3.4 Complexity Hardness

It is valuable to first examine the computational complexity of our problems. Since only

the NUM problem (P1) is a well-defined optimization problem, we show its hardness.

Theorem 3.1. (P1) is co-NP-hard in the strong sense.

Proof. Please see Appendix 9.1.

This shows that it is computationally prohibitive to get the exact solution unless P=co-

NP. Note that it only shows the hardness but does not suggest any exact solution to solve

(P1).

In next two chapters (Chap. 4 and Chap. 5), we will propose an exact solution based

on MDP to (P1) (and also to capacity region problem and feasibility-optimal scheduling

policy design problem) with exponential complexity, meaning that all these three problems

are in principle solvable. Theorem 3.1 shows that this could be the best that we can

achieve if we desire an exact solution. To address the complexity issue, we must sacrifice

the optimality. In Chap. 6, we therefore propose some heuristic solutions with much lower

complexity.



Chapter 4

An Infinite-Dimension Infinite-Horizon

MDP

This section explains how to cast our timely wireless flow problem as an infinite-dimension

infinite-horizon multi-reward MDP problem. In Chap. 5, we will further simplify the

infinite-size MDP and characterize the complete timely capacity region and propose a

scheduling policy that is feasibility-optimal and maximizes network utility.

An MDP problem [79, 31] can be described in many different forms. The MDP used

in this work is described by a tuple (S, {As : s ∈ S}, {Pt}, {rk}) where S is the state

space, As is the set of possible actions when the state is s ∈ S, and Pt is the transition

probabilities in time t:

Pt(St+1 = s′|St = s,At = a), ∀t,∀s, s′ ∈ S,∀a ∈ As, (4.1)

and rk is the flow-k reward function, i.e., rk(s, a) denotes the per-slot (additive) flow-k

reward of taking the action At = a when the system state is St = s. In our problem, since

we should characterize the capacity region in terms of all K flows’ timely throughput, we

thus define K reward functions. This is called an MDP with multiple rewards [31]. We

now describe how the timely wireless flow problem can be cast as an MDP by describing

the corresponding (S, {As : s ∈ S}, {Pt}, {rk}).
Definition of the State: We define the (network) state St of the MDP as the snap-

shot of all the network queues at time t. More specifically, define

St , (S1
t , S

2
t , · · · , SKt ),

where Skt , the state of flow k at time t, is the collection of all non-expired flow-k packets

in the AP’s queue.

For example, suppose that there are only K = 2 flows with the corresponding A&E

profiles depicted in Figs. 3.1(a) and 3.1(b), respectively. Then a possible network state

17
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Figure 4.1: Two examples for network states in slots 8 and 9, respectively.

at slot 8 is illustrated in Fig. 4.1(a). Specifically, for flow 1, at slot 8, packets m = 1

and m = 2 have expired and packet m = 3 has arrived at the AP. If the packet m = 3

has not been delivered successfully, it will remain in the queue and the state of flow 1

is S1
8 = {X3}. For flow 2, at slot 8, packet m = 1 has expired (no matter whether it

showed up at the AP or not), and thus it does not appear in the queue. Packets m = 2

and m = 3 could have arrived at the AP. Suppose that these two packets have not been

delivered successfully. The state of flow 2 is thus S2
8 = {Y2, Y3}. The network state at

slot 8 is S8 = (S1
8 , S

2
8) = ({X3}, {Y2, Y3}). Clearly, this is just one of many possibilities.

Fig. 4.1(b) depicts another possible network state S9 = (S1
9 , S

2
9) = (∅, {Y3}) at slot 9.

By enumerating all possible network states, we can explicitly construct the state space

S.

Definition of the Action: As mentioned in Sec. 3.1, an action At represents the

selection of which flow to transmit in time t. After selecting the flow, say flow k, the AP

will transmit the oldest flow-k packet if there exist packet(s) in the data queue or remain

idle otherwise. For example, if the network state at slot 8 is as Fig. 4.1(a), then there are

2 possible actions:

• Action 1: schedule link 1 (and then transmit the oldest packet of flow 1, which is

X3);

• Action 2: schedule link 2 (and then transmit the oldest packet of flow 2, which is

Y2).

One can quickly see that there are at most K actions for any state s. Even though
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not all K actions will contribute to timely throughput, for ease of exposition, in this

thesis we denote the action set for any state s as As = {1, 2, · · · ,K} and then simply

write A = {1, 2, · · · ,K} by omitting the subscript s. Thus we get the action space

A = {1, 2, · · · ,K}.
Definition of the Transition Probabilities: We observe that the transition prob-

ability Pt from St = s to St+1 = s′ if taking action At = a in slot t depends on (i) the

channel success probabilities {pk : k = 1, · · · ,K}, and (ii) the arrival and expiration events

at the end of time t (or equivalently at the beginning of time (t+1)). For example, at slot

(t+ 1), some packet may be successfully delivered in time t, some old packets may expire

and no longer remain in the queue, and some new packets may arrive, all of which will

affect the network state St+1. By carefully examining (i) and (ii), we can explicitly con-

struct the transition probability Pt in (4.1) for all t, s, s′ and a. For example, considering

the scenario in Fig. 4.1, we have

P8(S9 = (∅, {Y3})|S8 = ({X3}, {Y2, Y3}), A8 = Action 1) = p1.

The reason is as follows. When the AP takes “Action 1: schedule link 1 (and transmit

packet X3)” in slot 8, if the transmission is successful, then X3 will arrive at user 1 and

will thus be removed from the queue. At the same time, since Y2 will always expire at

slot 9, it will also be removed from the queue. The network state at slot 9 thus becomes

S9 = (∅, {Y3}). The probability of this transition is thus p1.

Note that since the packet arrival/expiration event depends on the time index t, the

transition probabilities are time-inhomogeneous.

Definition of the Reward: In our problem, we care about the timely throughput of

all K flows. Thus, we associate K reward functions for each state s ∈ S and action a ∈ A
[31]. More specifically, for any flow k ∈ [1,K], we define a reward function

rk(s, a) , pk · 1{a flow-k pkt is transmitted under state s & action a}. (4.2)

The indicator function 1{·} returns value 1 if the action a schedules a flow-k packet and the

corresponding queue, specified in s, is not empty, and returns 0 otherwise. Notation pk is

the probability that the scheduled packet is successfully delivered. Eq. (4.2) calculates the

expected value of the flow-k contribution for a given (s, a). Note that since our definition of
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state s only keeps those unexpired packets, any successful transmission is always unexpired

and will contribute to rk(s, a).

For example, at slot 8, if S8 = ({X3}, {Y2, Y3}) (see Fig. 4.1(a)) and A8 is “Action 1:

schedule link 1 (and transmit packet X3)”, then the respective flow-1/flow-2 rewards are

r1(S8, A8) = p1, r2(S8, A8) = 0,

MDP-based Equivalence: From our MDP formulation, we can see that the timely

throughput of any flow k is exactly the flow-k (long-term) average reward, i.e.,

Rk = lim inf
T→∞

∑T
t=1 E{rk(St, At)}

T
. (4.3)

The capacity regionR defined in (3.4) can then be rewritten as the following reward region

of our MDP formulation, i.e.,

R = {~R = (R1, R2, · · · , RK)| there exists a scheduling

policy of the MDP achieving average reward Rk,∀k}.

It is straightforward to verify that the NUM problem and the feasibility-optimal

scheduling policy design problem can also be rewritten as an MDP-based formulation

in a similar manner.

Remark: Note that the essence/difficulty of the timely throughput problem is that

when we schedule a particular flow k at time t, the remaining packets in the queues

are getting “older” and some may even expire. Therefore, the decision of sending which

flow not only affects the instantaneous “reward” in time t, but it will also change the

subsequent network state at time (t + 1). The effect of a decision at time t can even

propagate over multiple time slots, which makes it difficult to find the optimal solution.

Such a phenomenon is captured naturally by our new MDP formulation where the action

At not only affects rk(St, At)(∀k ∈ [1,K]) but also affects the next network state St+1

through the transition probability (4.1).



Chapter 5

Simplification and Optimal Solution-

s

The first contribution of this work is to observe that the the timely wireless flow problem

is fundamentally an MDP problem. However, our MDP formulation in Chap. 4 is difficult

to handle, because it has an infinite number of states, and it is time-inhomogeneous with

infinite horizon. In this section, we demonstrate two simplification methods to reduce the

state space S, and address the time-inhomogeneity by observing that our MDP is actually

almost cyclostationary. We then prove that the timely capacity region is a convex polygon

which is characterized by a finite set of linear constraints. Our analytical results also allow

us to design a scheduling policy, by solving a convex program, which is feasibility-optimal

and maximizes network utility.

5.1 Reduce the State Space

Define the lead time (see [66] for further discussion) of the m-th flow-k packet at slot

τ ∈ [t
[k]
arr(m), t

[k]
exp(m)− 1] as

t
[k]
lead(m) = t[k]

exp(m)− τ. (5.1)

Clearly, we have t
[k]
lead(m) ∈ [1,Dk], which can be interpreted as the remaining time before

expiration. Moreover, at any slot t, there exists at most one flow-k packet in the queue

whose lead time is τ , for any τ ∈ [1,Dk]. Therefore, the state of flow k, which was

originally defined as the set of unexpired flow-k packets in the queue, can be rewritten as

an equivalent binary string, Skt , lk1 l
k
2 , · · · lkDk where

lki =

 1, if ∃ a flow-k packet with lead time i at t;

0, otherwise.

21
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For example, for flow 2 in Fig. 4.1(a), the state at slot 8 is S2
8 = 1001. The reason is

that both Y2 and Y3 are in the queue. The lead time of Y2 is t
[2]
lead(2) = t

[2]
exp(2)−8 = 1 and

the lead time of Y3 is t
[2]
lead(3) = t

[2]
exp(3) − 8 = 4. At slot 9, the state becomes S2

9 = 0010

since only Y3 remains and its lead time is now changed to t
[2]
lead(3) = t

[2]
exp(3)− 9 = 3. For

Fig. 4.1, similar reasoning can be used to show S1
8 = 010 and S1

9 = 000. The network

state thus becomes S8 = (S1
8 , S

2
8) = (010, 1001) and S9 = (S1

9 , S
2
9) = (000, 0010).

The new binary-string-based representation is equivalent to the original set-based rep-

resentation since for any time t, we can use (3.2) and (5.1) to infer whether the m-th

flow-k packet is in the queue or not.

Since each state sk is a binary string of length Dk, if we denote Sk as the set of all

possible sk, then we have |Sk| ≤ 2Dk . The total number of network states is thus

|S| = |S1| · |S2| · · · · · |SK | ≤ 2D1+D2+···+DK <∞. (5.2)

The new lead-time-based state space S is therefore bounded. Note that even with the

lead-time-based S, the MDP is still of infinite horizon.

The reason that (5.2) is only an upper bound is that for any given traffic pattern,

some binary strings do not represent any state. This fact can be used to further reduce

the state space for some special traffic patterns. For example, for the frame-synchronized

traffic pattern in Sec. 3.2, at each time t, the flow-k state Skt = lk1 l
k
2 , · · · lkT , wherel

k
i = 0,∀i ∈ [1, T ], if no flow-k packet;

lkg(t) = 1, lki = 0, ∀i 6= g(t), if ∃ a flow-k packet.
(5.3)

and g(t) = T − ((t− 1) mod T ). Since there are only two possible states for each flow-k

at any slot, we can perform a “lossless compression” and use Skt = 0 to represent the

first case, and use Skt = 1 for the second case in (5.3). In this way, the state space

is further reduced and we have |Sk| = 2. The number of network states is then equal

to |S| = 2K , much smaller than the upper bound (5.2). A similar compression method

can be used to reduce the bound to |S| ≤ 2
∑K
k=1dDk/prdke when the traffic pattern is not

frame-synchronized.
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5.2 Reduce the Horizon

With the simplification in Sec. 5.1, the new MDP is of finite dimension now. However,

it is still time inhomogeneous with infinite horizon, which makes it difficult to apply the

existing techniques that solve time-homogeneous infinite-horizon average-reward MDP

[79]. To circumvent this difficulty, we make another critical observation:

Lemma 5.1. Using the new network state representation, the transition probabilities Pt

are almost cyclostationary. Namely, define

Prd , Least.Common.Multiple(prd1, prd2, · · · , prdK),

i.e., Prd is is the smallest positive integer that is divisible by all prdk, and choose L as a

constant positive integer such that

L · Prd ≥ max
k∈[1,K]

(offsetk + Dk).

Then, for any τ ∈ [1,Prd], l ≥ L, the transition probability Pl·Prd+τ for slot t = l · Prd + τ

is identical to the transition probability P(l+1)Prd+τ for slot t′ = (l + 1) · Prd + τ .

Proof. Please see Appendix 9.2.

The reason behind is that when l ≥ L, then at time t = (l ·Prd + τ), the first packet of

flow k has expired for all k. Therefore, all K flows have left their transient “initialization

phase” and entered their “steady state”. Also, since Prd is the least common multiple of

all prdk, then after every Prd time slots the arrival and expiration patterns of all K flows

will repeat themselves. Since the inhomogeneity of the transition probability Pt is only

caused by different arrival and expiration events for each time t, the transition probability

Pt will also repeat itself after every Prd time slots since the traffic pattern are periodic.

For future reference, we define τtrans = L · Prd and call the time interval [1, τtrans] the

transient duration.

The fact that the transition probability Pt is almost periodic prompts the following

intuition. If we can focus on the those time slots after the transient duration, then the

network controller faces a periodic environment. As a result, in terms of finding the

asymptotic average reward, we can consider a single period instead of the infinite horizon
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from 1 to ∞, as long as the period of interest is beyond the transient duration. For

example, one such period could be the interval [L ·Prd + 1, (L+ 1)Prd]. We will make this

intuition rigorous in the next subsection.

5.3 Optimal Solutions

In this subsection, we make use of the two simplification methods in Sec. 5.1 and Sec. 5.2

to characterize the capacity region, based on which we further propose a scheduling policy

that is feasibility-optimal and maximizes network utility.

Towards that end, we first define the randomized almost cyclostationary (RAC) policy

as follows.

Definition 5.1. A scheduling policy π is randomized if for every time t under state St = s,

the action At is chosen randomly according to a probability mass function

ProbAt|St(a|s) = Prob(At = a|St = s), ∀a ∈ A.

For our given MDP, a randomized policy π is almost cyclostationary if the following two

conditions hold: (i)

ProbAt|St(a|s) = ProbAt+Prd|St+Prd
(a|s),

for all s ∈ S, a ∈ A, t > τtrans, that is, for all t > τtrans, the conditional probabilities repeat

themselves after Prd slots, and (ii) the random process1 of the MDP state after time τtrans,

{Sτtrans+t : ∀t ≥ 1}, is cyclostationary with period Prd.

We now present our main result.

Theorem 5.1. (i) Any feasible timely throughput vector ~R ∈ R can be achieved by an

RAC policy.

(ii) The capacity region R can be characterized by the following convex polygon,

R = {~R = (R1, R2, · · · , RK)| there exits an ~x

such that the following conditions (5.4a)− (5.4e) hold},
1Condition (i) requires that the way we make the decision is periodic and condition (ii) requires that

the resulting state distribution is periodic. Although condition (i) generally means that condition (ii) is

satisfied asymptotically when t→∞, here we require condition (ii) to be satisfied for small finite t.
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where the conditions are∑
a∈A

xt+1(s′, a) =
∑
s∈S

∑
a∈A

Pt(s
′|s, a)xt(s, a), ∀s′ ∈ S, t ∈ [T1, T2 − 1] (5.4a)

∑
a∈A

xT1(s′, a) =
∑
s∈S

∑
a∈A

PT2(s′|s, a)xT2(s, a), ∀s′ ∈ S (5.4b)

Rk ≤
T2∑
t=T1

∑
s∈S

∑
a∈A

rk(s, a)xt(s, a)

Prd
, ∀k ∈ [1,K] (5.4c)

∑
s∈S

∑
a∈A

xt(s, a) = 1, ∀t ∈ [T1, T2] (5.4d)

~x ≥ 0, ~R ≥ 0 (5.4e)

with [T1, T2] , [L · Prd + 1, (L+ 1)Prd].

(iii) For any ~x and ~R = (R1, R2, · · · , RK) that satisfy (5.4a)− (5.4e), the RAC policy2

with conditional probability, ProbAt|St(a|s) = xt(s,a)∑
a′∈A xt(s,a

′) , ∀t ∈ [T1, T2];

ProbAt|St(a|s) = ProbAt−Prd|St−Prd
(a|s), ∀t > T2,

(5.5)

and state distribution,

ProbSt(s) =
∑
a∈A

xt(s, a), ∀t ∈ [T1, T2]. (5.6)

achieves the timely throughput Rk, for any k ∈ [1,K].

Proof. Please see Appendix 9.3.

Note that here [T1, T2] = [L · Prd + 1, (L + 1)Prd] is the period that we mentioned in

Sec. 5.2.

Part (i) of Theorem 5.1 shows that RAC polices achieve any feasible timely throughput

vector. This greatly reduces the policy space since, if we ignore the transient phase,

an RAC scheme can be specified by the conditional probability ProbAt|St(a|s) and the

resulting state distribution ProbSt(s) for one period of Prd slots. The design space is now

bounded and the resulting RAC policy can fully solve an infinite-horizon MDP problem.

This justifies our intuition in Sec. 5.2.

2For ease of exposition, we omit the design of the transient state t ≤ τtrans = T1 − 1. The complete

RAC design can be found in the proof, i.e., Appendix 9.3.
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Part (ii) of Theorem 5.1 shows that the complete timely capacity region can be char-

acterized by a finite-size convex polygon in (5.4). The intuition of (5.4) is as follows. The

variable xt(s, a) = ProbSt,At(s, a) is the probability that the system state is s and the

action is a at slot t under an RAC policy, which is why the total sum of xt(s, a) is 1 (see

(5.4d)). The right-hand side of (5.4c) computes the average reward of flow k under such

an RAC policy. Eq. (5.4a) is the consistency condition for time [T1, T2− 1]. The left-hand

side of (5.4a) is the marginal probability ProbSt+1(s′). The right-hand side of (5.4a) starts

from the joint distribution ProbSt,At and uses the transition probability Pt(St+1|St, At) to

compute ProbSt+1(s′). Similarly, (5.4b) is the consistency condition from time T2 back to

T1 since we require the periodicity condition ProbST2+1
(s′) = ProbST1

(s′).

Part (iii) of Theorem 5.1 gives the corresponding RAC policy to achieve any feasible

timely throughput vector based on the solution of (5.4).

Theorem 5.1 solves the first fundamental problem in Sec. 1.3, i.e., characterizing the

capacity region. To the best of our knowledge, this is the first timely capacity characteri-

zation for general traffic patterns.

Based on the capacity region in (5.4), we can optimally solve the other two fundamental

problems proposed in Sec. 1.3. More specifically, the NUM problem (P1) is equivalent to

the following convex one:

(P2) max

K∑
k=1

Uk(Rk)

s.t. (5.4a)− (5.4e)

var. ~x, ~R

Similarly, to design a feasibility-optimal scheduling policy, we can solve the following

linear programming (LP),3

(P3) max 1

s.t. (5.4a)− (5.4e)

var. ~x

3We write (P3) as a maximization problem for consistence, but we should note that in (P3), we only

need to find a solution ~x such that (5.4a)− (5.4e) hold.
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Note that in (P2), the achieved timely throughput Rk is an optimization variable while

in (P3), Rk is given as an input.

RAC (Optimal) Scheduling Policy: Once we solve (P2) or (P3), we obtain the

optimal state-action frequency ~x∗. We then replace ~x in (5.5) and (5.6) by ~x∗. This

gives the optimal RAC policy that is feasibility-optimal and maximizes network utility, as

shown in part (iii) of Theorem 5.1.

Remark: The existing elegant framework in [53, 56] is based on the frame-synchronized

setting. In contrast, our framework applies to general traffic patterns. Further, the existing

framework is based on first deriving an idle-time-based outer bound. Then a largest-deficit-

first (LDF) scheme is proposed that attains any point within the outer bound. However,

for general settings, how to find a tight outer bound is highly non-trivial and remains open

as of today. Instead of finding an outer bound and an achievability scheme separately as

in [53], our approach is fundamentally different. By proposing a new MDP framework,

we first establish that any optimal point can always be achieved by an RAC policy. Then

we search for the optimal RAC by solving a finite-size convex program. The solution is

thus simultaneously an outer bound (no scheme can do better) and an inner bound (as it

explicitly leads to an optimal design). In the broadest sense, our approach can be viewed

as directly finding the maximum flow instead of indirectly finding the minimum cut.



Chapter 6

Low-complexity Heuristics

Thus far we have characterized the timely capacity region and designed the correspond-

ing optimal scheduling policy that is feasibility-optimal and maximizes network utility.

However, our capacity region characterization (5.4) suffers from high complexity, which

involves O(Prd ·K · 2
∑K
k=1 Dk) variables and constraints. This makes it less appealing for

practical implementation.1

In this section, we address the complexity issue by proposing two low-complexity

heuristics, both of which are inspired by our MDP-based formulation. In the first one

in Sec. 6.1, we derive a computationally-efficient outer bound for the capacity region in

(5.4), based on which we further propose a heuristic scheduling policy to optimize network

utility or support feasible timely throughput vectors. In the second one in Sec. 6.2, we

improve the LDF scheduling policy [53] to support feasible timely throughput vectors by

combining both deficit information and urgency information. Both heuristics are based

on the insights derived in Theorem 5.1 and achieve good performance in the numerical

evaluation, as shown later in Chap. 7.

6.1 RAC Approximation

In our original system, the AP schedules one and only one flow at each slot. We can

equivalently convert this 1-to-many system to K parallel 1-to-1 systems (srck,dstk) for

each k in the following way. We allow each srck to make their own decisionAkt ∈ {1, · · · ,K}
1The main complexity is due to the computation of the optimal x∗t (s, a) in (P2) or (P3). Once

x∗t (s, a) is known, the actual RAC scheduler is simple and involves generating random variables with

probability distribution in (5.5). Therefore, for a relatively stable system, the optimal RAC policy can

still be implemented by computing the optimal x∗t (s, a) offline. For references, using off-the-shelf solvers,

(P2) or (P3) can be solved in a few seconds with K = 7 flows and moderate Dk values for linear utility

functions.

28
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and srck transmits only when Akt = k and remains idle whenever Akt 6= k. We further

impose that Ak1
t = Ak2

t for any two flows k1 and k2. This ensures that even though we

have K parallel 1-to-1 systems, their decisions are strictly synchronized, and only one of

them can be active in any time t. Therefore, the K parallel 1-to-1 systems are equivalent

to the original 1-to-many AP network.

Now we relax this synchronized action constraint Ak1
t = Ak2

t to a common scheduling

frequency constraint Prob(Ak1
t = a) = Prob(Ak2

t = a) , zt(a). Namely, for each parallel

system k, we use zkt (sk, a) to denote the probability that flow k is in state sk and the

action is a at slot t. The common scheduling frequency constraint imposes that the K

parallel systems must share a common scheduling frequency, i.e.,∑
sk∈Sk

zkt (sk, a) = zt(a), ∀k ∈ [1,K], t, a ∈ A. (6.1)

Clearly, the sample-path-based synchronized action constraint Ak1
t = Ak2

t implies the

distribution-based common scheduling frequency constraint (6.1). This motives us to de-

fine the following outer bound Router of the capacity region R in (5.4).

Router , {~R = (R1, R2, · · · , RK)| there exits an ~z

such that the following conditions (6.2a)− (6.2f) hold}.

where the conditions are∑
a∈A

zkt+1(s̃k, a) =
∑
sk∈Sk

∑
a∈A

P kt (s̃k|sk, a)zkt (sk, a), ∀k ∈ [1,K], s̃k ∈ Sk, t ∈ [T1, T2 − 1]

(6.2a)∑
a∈A

zkT1
(s̃k, a) =

∑
sk∈Sk

∑
a∈A

P kT2
(s̃k|sk, a)zkT2

(sk, a), ∀k ∈ [1,K], s̃k ∈ Sk (6.2b)

Rk ≤
T2∑
t=T1

∑
sk∈Sk

∑
a∈A

rk(s
k, a)zkt (sk, a)

Prd
, ∀k ∈ [1,K] (6.2c)

∑
sk∈Sk

zkt (sk, a) = zt(a), ∀k ∈ [1,K], t ∈ [T1, T2] (6.2d)

∑
sk∈Sk

∑
a∈A

zkt (sk, a) = 1, ∀k ∈ [1,K], t ∈ [T1, T2] (6.2e)

~z ≥ 0, ~R ≥ 0 (6.2f)
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In (6.2), P kt (s̃k|sk, a) is the transition probability from state sk to state s̃k for flow k

if taking action Akt = a at slot t, rk(s
k, a) is the flow-k per-slot reward under state sk and

action a (defined similarly as (4.2)), and T1 and T2 are defined as the same in (5.4). One

can see that the form of (6.2) is very close to that of (5.4) except that (6.2) deals with

each 1-to-1 system separately and links them through the common scheduling frequency

constraint (6.2d).

We can regard (6.2) as a relaxed version of (5.4). In return for the relaxation, we can

handle it more efficiently since the state of each flow k is considered separately (rather

than considered as a joint network state). The new complexity (in terms of number of

variables and constraints) thus becomes,

O
(

(2D1 + 2D2 + · · ·+ 2DK ) ·K · Prd
)
.

This allows us to handle significantly large K, Prd and very reasonable practical Dk values.

If we further use the lossless simplification method in (5.3), then the complexity can be

further reduced to

O

((
2

⌈
D1
prd1

⌉
+ 2

⌈
D2
prd2

⌉
+ · · ·+ 2

⌈
DK
prdK

⌉)
·K · Prd

)
, (6.3)

which is quite manageable for almost all practical system parameters. If we aim to

solve (6.2)2 approximately rather than exactly, we can further unwind the arrival of

packets from K flows and find an approximation solution of (6.2) with a complexity

of O((
∑K

k=1dDk/prdke) · K · Prd). Please see the details in Appendix 9.5. We thus call

Router a fast outer bound of the capacity region R.

Next we use the outer bound Router to design a heuristic scheduling policy, called

RAC-Approx, to either maximize the network utility or support feasible timely throughput

vectors. More concretely, for the NUM problem, we solve the following convex program,

(P4) max
K∑
k=1

Uk(Rk)

s.t. (6.2a)− (6.2f)

var. ~z, ~R

2Precisely, we mean solving (P4) or (P5) with constraints (6.2) which will be mentioned soon.



CHAPTER 6. LOW-COMPLEXITY HEURISTICS 31

and for designing low-complexity scheduling policy for supporting feasible throughput

vectors, we solve the following size-reduced LP with the timely throughput vector ~R as

an input:

(P5) max 1

s.t. (6.2a)− (6.2f)

var. ~z

We can regard (P4) (resp. (P5)) as the relaxed problem of (P2) (resp. ((P3)) with much

lower complexity. We then use the optimal solution of (P4) or (P5), denoted by z̃kt (sk, a),

to design the control probability of an RAC policy, i.e., we will replace (5.5) by a new

formula.

RAC-Approx Scheduling Policy: At slot t, suppose that the system state is

St = (S1
t , S

2
t , · · ·SKt ) = (s1, s2, · · · sK), first compute the following conditional probability

for each action a ∈ A and each flow k ∈ [1,K], ProbAt|Skt
(a|sk) =

z̃kt (sk,a)∑
a′∈A z̃

k
t (sk,a′)

, ∀t ∈ [T1, T2];

ProbAt|Skt
(a|sk) = ProbAt−Prd|Skt−Prd

(ak|s), ∀t > T2.
(6.4)

and then select action a with probability∏K
k=1 ProbAt|Skt

(a|sk)∑
a′∈A

∏K
k=1 ProbAt|Skt

(a′|sk)
. (6.5)

The intuition of (6.5) is as follows. Eq. (6.4) is the probability that the k-th parallel

system will choose a specific action a. Since all parallel systems choose their actions

independently, the numerator of (6.5) is the probability that all flows of the auxiliary K

parallel systems choose the same action a. When all flows choose the same action a, we

let the AP of our actual system take such action a. Note that it is possible that all flows

choose a different action a′. By normalizing over the probability of all possible a′ in the

denominator of (6.5), it is as if we directly let the AP randomly choose an action a with

probability (6.5).

Our RAC-Approx policy, using (P4)/(P5), (6.4), and (6.5), is very efficient since all

the computation can be performed on a per-flow base, as opposed to the network-wide

computation in (P2)/(P3) and (5.5). We further show the convergence result of our

RAC-Approx policy under a mild condition.
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Lemma 6.1. Suppose that the arrival probability is strictly less than 1, i.e., Bk < 1, for

any flow k ∈ [1,K]. Then the timely throughput of the RAC-Approx policy converges and

the lim inf in (3.3) can be replaced by lim.

Proof. Please see Appendix 9.4.

6.2 Deficit-based Scheduling Algorithm

In this subsection, we propose a low-complexity heuristic deficit-based scheduling policy

to support feasible timely throughput vectors. Our MDP formulation shows that the

lead-time-based state representation is critical to finding the optimal solution. In the

following, we show that by incorporating the concept of lead time, we can further improve

the performance of the existing deficit-based policies.

In general, the flow-k deficit at slot t is the difference between the desired number

of delivered flow-k packets3 and the actual number of delivered flow-k packets up to slot

t [53]. Intuitively, the AP should schedule the flow with largest deficit, which is the

celebrated Largest-Deficit-First (LDF) scheduler. The authors in [53] proved that LDF

is feasibility-optimal for the frame-synchronized traffic pattern. The reason why LDF

is optimal in the frame-synchronized traffic pattern is that all non-expired packets are

equally urgent because they have the same deadline. However, when different packets

have different deadlines, they have different levels of urgency. Since the deficit does not

contain any urgency information, the LDF policy is no longer optimal for general traffic

patterns [65, 58].

To handle heterogeneous deadlines, [58] proposed the Earliest-Positive-deficit-Deadline-

First (EPDF) scheduler. In EPDF, at any slot, the AP focuses on those flows with strictly

positive deficit and among them selects the flow which has the earliest deadline. Unfor-

tunately, when evaluated numerically, EPDF is strictly sub-optimal, see Sec. 7.3 for more

detailed discussion of the sub-optimality of EPDF.

Inspired by our lead-time-based MDP study, we propose the following Lead-time-

normalized-Largest-Deficit-First (L-LDF) scheduler, which combines both deficit and ur-

gency information.

3More specifically, the desired number of delivered flow-k packets up to t is qkt, where qk is the flow-k

timely throughput requirement.
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L-LDF Scheduling Policy: Suppose flow-k timely throughput requirement is qk ∈
(0, 1]. At each slot t, among all flows that currently have packets to send, the AP computes

the lead-time-normalized deficit d̄k(t) for each flow k:

d̄k(t) ,
dk(t) · pk

smallest-lead-time(k, t)
,

where dk(t) is the flow-k deficit at slot t defined as,

dk(t) , [dk(t− 1)− 1{a flow-k packet is delivered at slot t}]
+ + qk,

with dk(0) , 0, [x]+ , max{x, 0}, and smallest-lead-time(k, t) is the smallest lead time

among all flow-k packets at slot t. Note that smallest-lead-time(k, t) is no smaller than 1

according to the definition of lead time in (5.1) and the remark right below the equation.

Then, the AP selects the flow with the largest d̄k(t).

Note that L-LDF collapses to the existing LDF in the frame-synchronized traffic pat-

tern, since in that setting all non-expired packets at time t will have the same smallest

lead time. However, the additional normalization according to the smallest lead time will

better reflect the urgency of each individual flow for general traffic patterns.



Chapter 7

Simulation

In this section, we demonstrate numerical performances of our solutions on character-

izing timely capacity region, maximizing network utility, and supporting feasible timely

throughput vectors.

7.1 Characterizing Capacity Region

Since the existing idle-time-based analysis [53] can only characterize the capacity region

for the frame-synchronized traffic pattern, we also apply our MDP-based computation R
in (5.4) to such a simple setting. Specifically, we consider the following frame-synchronized

traffic pattern:

(offset1, prd1,D1,B1, p1) = (0, 3, 3, 1, 0.8),

(offset2, prd2,D2,B2, p2) = (0, 3, 3, 1, 0.6).

Fig. 7.1(a) shows the capacity region of this traffic pattern. As expected, both [53] and our

MDP-based computation R in (5.4) successfully characterize the same capacity region.

Next we offset flow-2 by 2 slots. Namely, the two flows are non-synchronized now:

(offset1, prd1,D1,B1, p1) = (0, 3, 3, 1, 0.8),

(offset2, prd2,D2,B2, p2) = (2, 3, 3, 1, 0.6).

The idle-time-based analysis does not hold anymore. However, our MDP-based computa-

tion R in (5.4) can still characterize the capacity region, see Fig. 7.1(b), which contains

three corner points, as opposed to only two corner points in Fig. 7.1(a). Such a phe-

nomenon is observed for the first time in the literature.

In both Figs. 7.1(a) and 7.1(b), we also evaluate our fast outer bound Router in (6.2).

We can see that empirically it is a reasonably tight outer bound of the capacity region.

34



CHAPTER 7. SIMULATION 35

0.2 0.25 0.3 0.35 0.4
0.2

0.25

0.3

0.35

0.4

R1

R
2

R in (5.4) 
Hou[53]
R

outer in (6.2)

(a) Two synchronized flows

0.2 0.25 0.3 0.35 0.4
0.2

0.25

0.3

0.35

0.4

R1

R
2

R in (5.4)
R

outer in (6.2)

(b) Two non-synchronized flows

Figure 7.1: Capacity regions of two examples in Sec. 7.1.

We further show the gap between our outer bound and the capacity region as follows.

We consider the linear utility function Uk(Rk) = wkRk. For any particular weight vector

~w = (w1, w2, · · · , wK), we solve the RAC problem (P2) and the RAC-Approx problem

(P3), respectively. We denote the optimal value/utility of (P2) (resp. (P4)) as u∗2(~w)

(resp. u∗4(~w)). We then define r(~w) , u∗4(~w)
u∗2(~w) , which measures the gap between the outer

bound and the capacity region in the direction ~w. Now we define the ratio of the outer

bound to the capacity region as r∗ , max
~w∈RK+

r(~w) where RK+ is the set of all nonnegative

directions, i.e., RK+ , {~w = (w1, w2, · · · , wK) : wk ≥ 0,∀k ∈ [1,K]}. If r∗ = 1, then the

outer bound is exactly the capacity region, and smaller r∗ means tighter outer bound. We

thus use r∗ to measure the gap between our outer bound and the actual capacity region.

We measure r∗ by using Monte Carlo method, i.e., randomly generating 1000 different

direction ~w’s. We show ratio vs. number of flows results in Fig. 7.2 for three different traffic

patterns. As we can see, the ratio r∗ does not monotonically change when the number of

flows increases. When we compare the ratios for different cases with different flows, the

traffic patterns may not change in a “monotonic” way though all flows in those different

cases share similar A&E profile. Thus, we may not be able to observe the monotonicity.

But we can observe the decreasing trend of r∗ when the number of flows becomes larger.

Note that due to the high complexity, it requires more significant computing resources

than those we can access to solve the RAC problem (P2) for more than 10 flows, and thus
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(c) Case 3:

(offsetk, prdk,Dk,Bk, pk)=

(offsetk, 3, 3, 0.5, 0.8) for all k

where offsetk = 0 (resp. 1) for odd

(resp. even) k.

Figure 7.2: Ratio of the outer bound to the capacity region, defined as

r∗ , max
~w=(w1,w2,··· ,wK)∈RK+

u∗4(~w)
u∗2(~w) , where u∗2(~w) (resp. u∗3(~w)) is the optimal value/utility of

(P2) (resp. (P4)) if taking utility function Uk(Rk) = wkRk for all k.

we only show the results up to 10 flows.

7.2 Maximizing Network Utility

In this subsection we evaluate the two proposed scheduling policies to maximize the net-

work utility: one is the provably optimal RAC scheduling policy; the other is the low-

complexity heuristic RAC-Approx scheduling policy. We show their performances by

considering the following 3-flow traffic pattern:

(offset1, prd1,D1,B1, p1) = (0, 4, 4, 1, 0.5),

(offset2, prd2,D2,B2, p2) = (2, 4, 4, 1, 0.5),

(offset3, prd3,D3,B3, p3) = (0, 1, 3, 0.9, 0.7).

We first set the utility functions as Uk(Rk) = logRk,∀k ∈ [1, 3]. Note that here flow 3 is

simply the traditional i.i.d. arrival since prd3 = 1. By solving (P2), we get the optimal

timely throughput vector (R∗1, R
∗
2, R

∗
3) = (0.1667, 0.1667, 0.2333), which maximizes the

network utility. To see concretely how our optimal RAC policy works, in Appendix 9.6

in the supplementary materials, we also show the conditional probability ProbAt|Skt
(a|sk)
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Figure 7.3: Comparison of different scheduling policies for maximizing network utility

for three flows in Sec. 7.2 with utility functions, U1(R1) = log(R1), U2(R2) = log(R2),

and U3(R3) = log(R3). Both RAC and RAC-Approx scheduling policies converge to the

optimal solution.

of the optimal RAC policy (see (5.5)). Fig. 7.3 shows that both RAC and RAC-Approx

converge to the optimal solution. This verifies the optimality of RAC scheduling policy and

demonstrates the good empirical performance of RAC-Approx scheduling policy. Note that

in Fig. 7.3 and later figures in this section, we define the flow-k running timely throughput

at slot t as
1

t
· {# of flow-k pkts delivered before expiration in [1, t]}.

We also evaluate RAC and RAC-Approx policies with different utility functions. Specif-

ically, we set U1(R1) = 2
√
R1, U2(R2) =

√
R2, and U3(R3) =

√
R3. The results are shown

in Fig. 7.4. As we can see, our provably optimal RAC policy again converges to the optimal

timely throughput vector (R∗1, R
∗
2, R

∗
3) = (0.2344, 0.1107, 0.2169) with optimal utility u∗ =

2
√
R∗1 +

√
R∗2 +

√
R∗3 = 1.7667. Our proposed low-complexity RAC-Approx policy con-

verges to a sub-optimal timely throughput vector (R̄1, R̄2, R̄3) = (0.2328, 0.0848, 0.2573)

with utility ū = 2
√
R̄1 +

√
R̄2 +

√
R̄3 = 1.7634. Though RAC-Approx does not achieve

the optimal utility, it has quite good performance with a utility ratio ū/u∗ = 99.81%.

7.3 Supporting Feasible Timely Throughput Vectors

In this subsection we evaluate the three proposed scheduling polices to support feasible

throughput vectors: the first is the provably optimal RAC scheduling policy; the second is

the low-complexity heuristic RAC-Approx scheduling policy; the last is the low-complexity
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Figure 7.4: Comparison of different scheduling policies for maximizing network utility

for three flows in Sec. 7.2 with utility functions, U1(R1) = 2
√
R1, U2(R2) =

√
R2, and

U3(R3) =
√
R3. RAC scheduling policy converges to the optimal solution and RAC-

Approx scheduling policy converges to a near-optimal solution which achieves 99.81% of

the optimal utility.

deficit-based L-LDF scheduling policy. We will compare them to existing LDF [53] and

EPDF [58] scheduling policies.

Since all these scheduling policies require a feasible timely throughput vector as an

input, we will also set a utility function Uk(Rk) for each flow k and solve (P2) to get a

timely throughput vector on the boundary of the capacity region. We then use it as the

input to the scheduling policies. In the following, we use two simple scenarios to show

that both LDF and EPDF can be strictly suboptimal while our proposed RAC policy is

guaranteed to achieve optimality in all scenarios. Our heuristic solutions RAC-Approx

and L-LDF also outperform LDF and EPDF in these two examples.

LDF is Sub-optimal: Consider a 2-flow case with

(offset1, prd1,D1,B1, p1) = (0, 4, 4, 1, 0.5), U1(R1) = R1,

(offset2, prd2,D2,B2, p2) = (2, 4, 4, 1, 0.5), U2(R2) = R2.

By solving (P2), the optimal timely throughput vector is (R∗1, R
∗
2) = (0.2187, 0.2187).

We use (R∗1, R
∗
2) as the timely throughput requirements for the scheduling policies to

be evaluated. Fig. 7.5 shows their performances. As we can see, RAC converges to

(R∗1, R
∗
2) as proven in Theorem 5.1. Our proposed heuristics, RAC-Approx and L-LDF,

also converge to (R∗1, R
∗
2). Meanwhile, the LDF algorithm cannot support this particular

timely throughput vector; indeed, the achieved rates for both flows are strictly smaller
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Figure 7.5: An example showing that LDF is strictly sub-optimal.

than (R∗1, R
∗
2).

EPDF is Sub-optimal: Consider a 2-flow case with

(offset1, prd1,D1,B1, p1) = (0, 4, 4, 1, 0.5),

(offset2, prd2,D2,B2, p2) = (0, 4, 3, 1, 0.5).

We set the utility function as Uk(Rk) = wkRk with weights (w1, w2) = (1, 10−5). Choos-

ing w2 = 10−5 means that we give absolute priority to flow 1. The optimal rate is

(R∗1, R
∗
2) = (0.2344, 0.1250), which we input to all scheduling policies. Fig. 7.6(a) and

Fig. 7.6(b) show that the achieved timely throughputs of our proposed RAC, RAC-Approx,

and L-LDF scheduling policies all converge to (R∗1, R
∗
2); hence, they can all support this

timely throughput vector. On the contrary, EPDF cannot support this particular timely

throughput vector, and thus is strictly sub-optimal. The observation holds for a wide

range of different M values as shown in Fig. 7.6(c) and Fig. 7.6(d) where M is a tuning

parameter of EPDF [58]. The reason is as follows. The choice of U1(R1) and U2(R2)

implies that to achieve the optimal (R∗1, R
∗
2), we must always give priority to flow 1. How-

ever, in EPDF, the periodic virtual injection of every M time slots ensures that for a

constant fraction of time slots, the deficit of flow 2 will be strictly positive. Since flow 2

has an earlier deadline, EPDF will favor flow 2 for a constant fraction of time slots. This

is strictly sub-optimal since an optimal policy must always give precedence to flow 1.

In both Fig. 7.5 and Fig. 7.6, we verify that our RAC scheduling policy is feasibility-
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Figure 7.6: An example showing that EPDF is strictly sub-optimal.

optimal. We also show that, for the instances considered in this set of simulations, our

proposed low-complexity heuristic RAC-Approx and L-LDF scheduling polices support

the given timely throughput vector and thus outperform existing alternatives.

7.4 Average Performance Comparison of Scheduling Poli-

cies Over A Large Number of Problem Instances

In this subsection, we compare the performance of the two scheduling policies for maxi-

mizing network utility, RAC and RAC-Approx, and five scheduling policies for supporting

feasible timely throughput vectors, RAC, RAC-Approx, LLDF, LDF and EPDF, over a

large number of randomly generated problem instances with up to 10 flows.
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Table 7.1: Performance comparison of two scheduling polices for maximizing network

utility, in terms of the average utility gap δ1(u, u∗) over 1000 problem instances.
HH

HHH
HHH

Policy

K
2 4 6 8 10

RAC 0.00% 0.00% 0.01% 0.01% 0.02%

RAC-Approx 0.82% 1.36% 1.76% 2.82% 3.31%

Our experiments consider K flows where K ∈ {2, 4, 6, 8, 10} and we randomly gener-

ate the A&E profile and the successful delivery probability for any flow k ∈ [1,K], i.e.,

(offsetk, prdk,Dk,Bk, pk), where offsetk and prdk are integers uniformly drawn from [1, 5],

Dk is an integer uniformly drawn from [1, prdk], and Bk and pk are real numbers uniformly

drawn from [0.5, 1]. For each flow k, we choose the utility function Uk(Rk) = logRk.

For the utility-maximization problem, we first solve the utility-maximization problem

(P2) and get the optimal network utility u∗. We then evalute the empirical network utility

u for RAC and RAC-Approx scheduling polices. We measure the utility gap by

δ1(u, u∗) ,
u∗ − u
|u∗| .

To evaluate whether a scheduling policy is feasibility-optimal, i.e., capable of support-

ing any feasible throughput vector in the timely capacity region, we first solve the utility-

maximization problem (P2) and get the optimal rate vector ~R∗ = (R∗1, R
∗
2, · · · , R∗K). We

input ~R∗ as the timely throughput requirements for RAC-Approx (see (P3)), LDF, EPDF,

and LLDF scheduling policies. We then evaluate the empirical timely throughput vector

~R for RAC, RAC-Approx, LDF, EPDF, and LLDF scheduling policies. We measure the

throughput gap by

δ2(~R, ~R∗) ,

∑K
k=1[R∗k −Rk]+∑K

k=1R
∗
k

,

where [x]+ , max{x, 0}.
For each K ∈ {2, 4, 6, 8, 10}, the empirical performance of each instance is measured

over 1000000 time slots and we repeat the experiment for 1000 problem instances. We

run all evaluations in MATLAB in a cluster of 40 Linux servers, each of which has an

8-core Intel Core-i7 3770 3.4Ghz CPU and up to 61GB memory, running CentOS 6.4. We

compute the average utility gap δ1(u, u∗) for the two scheduling policies for maximizing
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Table 7.2: Performance comparison of five scheduling polices for supporting feasible timely

throughput vector, in terms of the average throughput gap δ2(~R, ~R∗) over 1000 problem

instances.
HHH

HHH
HH

Policy

K
2 4 6 8 10

RAC 0.04% 0.06% 0.09% 0.14% 0.16%

LLDF 0.85% 1.31% 0.80% 1.13% 1.20%

LDF 1.91% 3.34% 1.95% 1.76% 1.76%

RAC-Approx 1.77% 3.94% 5.25% 6.24% 6.43%

EPDF 1.81% 6.02% 6.27% 9.38% 8.99%

network utility, RAC and RAC-Approx, as shown in Tab. 7.1. We compute the average

rate gap δ2(~R, ~R∗) for the five scheduling policies for supporting feasible timely throughput

vectors, RAC, RAC-Approx, LDF, EPDF, and LLDF, as shown in Tab. 7.2.

For maximizing network utility, Tab. 7.1 verifies that our proposed high-complexity

RAC policy achieves the optimal network utility, and also shows that our proposed low-

complexity RAC-Approx policy achieves near-optimal performance. For supporting fea-

sible timely throughput vector, Tab. 7.2 verifies that our proposed high-complexity RAC

policy is feasibility-optimal. Our proposed L-LDF policy achieves the smallest throughput

gap among the remaining four low-complexity scheduling policies.



Chapter 8

Conclusion and Future Work

In this part (Chap. 1–9), we study three fundamental problems of timely wireless flows un-

der general traffic patterns: capacity region problem, network utility maximization prob-

lem and feasibility-optimal policy design problem. All of them remained largely open.

We propose a new MDP-based framework to formulate the timely wireless flow problem

with general traffic patterns, which allows us to systematically explore the full design

space beyond the existing synchronized-frame-based studies. By applying two problem-

structure-inspired simplification methods, for the first time we show that all these three

fundamental problems can be solved in principle though suffering the curse of dimension-

ality. Therefore, this thesis serves as a benchmark to evaluate any scheduling policies

for timely wireless flows under general traffic patterns. We also take a first step toward

addressing the curse of dimensionality by proposing two low-complexity heuristic solution-

s. Simulation results show that they achieve near-optimal performance and outperform

existing alternatives.

For the future work, an interesting and important direction is to design efficient

scheduling algorithms with performance guarantee for general traffic patterns. To achieve

such goal, one possibility is to apply the approximate MDP (or more general approximate

dynamic programming) solutions [82, 36, 48, 78] to our timely wireless flow problem. How-

ever, to the best of our knowledge, there does not exist direct results that can address the

curse of dimensionality while providing performance guarantee for our timely wireless flow

problem. Thus, it requires further efforts to adapt existing works on approximate MDP

to our problem.

Another practical direction is to study how to generalize our solution to the scenario

that the channel successful-delivery probability is unknown and/or the traffic pattern is

unknown. In our work, we assume that both the channel successful-delivery probability

and the traffic pattern are known a prior to the system operator. However, in practice,

43
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both of them could be unknown but need to be learned during the transmission/scheduing

phase. It is important to design algorithms to simultaneously learn these system param-

eters and do scheduling so that our solution can be applied to more practical scenarios.



Chapter 9

Appendix

9.1 Proof of Theorem 3.1

We turn to prove the hardness of the corresponding decision problem of (P1): given x,

determine whether there exists a scheduling policy such that
∑K

k=1 Uk(Rk) ≥ x. If we

take x =
∑K

k=1 Uk

(
1

prdk

)
, since Rk ≤ 1

prdk
, the decision problem is equivalent to the

following feasibility-check problem: given timely throughput vector ~R = (R1, · · · , RK) =

( 1
prd1

, · · · , 1
prdK

), determine whether ~R is in the capacity region or not.

Note that our timely wireless flow problem can be regarded as a stochastic version of

the preemptive scheduling problem of periodic real-time tasks on one processor [26]. In

[26], the authors proved that the feasibility-check problem for arbitrary periodic real-time

tasks on one processor is co-NP-hard in the strong sense. We largely follow their results

to prove our Theorem 3.1.

In [26], authors leveraged the hardness result of the Simultaneous Congruences Prob-

lem (SCP): given a set A = {(a1, b1), (a2, b2), · · · , (an, bn)} ⊂ N × N+ and an integer

k ∈ [2, n], determine whether there are a subset A′ ⊂ A of k pairs and a positive integer

x such that for every (ai, bi) ∈ A′, x ≡ ai (mod bi). The hardness of SCP is shown in the

following lemma.

Lemma 9.1 (Theorem 3.2, [26]). SCP is NP-complete in the strong sense.

Now for any instance of SCP, i.e., A = {(a1, b1), (a2, b2), · · · , (an, bn)} ⊂ N × N+ and

an integer k ∈ [2, n], we construct (in polynomial time) the following instance of our

feasibility-check problem: for any i ∈ [1,K], let

(offseti, prdi,Di,Bi) = ((k − 1)ai, (k − 1)bi, k − 1, 1) ,

pi = 1, Ri =
1

prdi
=

1

(k − 1)bi
. (9.1)

45
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Next we show that the timely throughput vector ~R = (R1, · · · , RK) =

( 1
(k−1)b1

, · · · , 1
(k−1)bK

) is in the capacity region if and only if the SCP answers No.

“If” Since the SCP answers No, then there are at most k − 1 flows with a packet

arrival at any slot. At slot 1, there are at most k − 1 packets arriving in the system. All

these packets can be scheduled with any work-conserving policy in the next k − 1 slots

during which no new packets arrive (since both offseti = (k− 1)ai and prdi = (k− 1)bi are

a multiple of k − 1 for any i ∈ [1,K]). After k − 1 slots (i.e., at slot k), again there are

at most k− 1 packets arriving to the system, and thus the process can repeat. Therefore,

all packets of all K flows can be delivered successfully before expiration. This yields to

flow-i’s timely throughput 1
(k−1)bi

= Ri.

“Only if” Suppose that the SCP answers Yes, i.e, there exist a subset A′ ⊂ A of k

pairs and a positive integer x such that x ≡ ai (mod bi), ∀(ai, bi) ∈ A′, which equivalently

means that (k − 1)x ≡ (k − 1)ai (mod (k − 1)bi),∀(ai, bi) ∈ A′. Also, if we denote the

common period M = Least.Common.Multiple{(k − 1)bi : (ai, bi) ∈ A′}, we easily obtain

that (k − 1)x + jM ≡ (k − 1)ai (mod (k − 1)bi), ∀(ai, bi) ∈ A′ for any j ∈ N. Thus, at

slot (k − 1)x+ jM + 1(∀j ∈ N), at least k packets arrive in the system, all of which had

a deadline k − 1. Thus, at least 1 packet will be expired every M slots, which means

that at least a 1
M > 0 timely throughput will be lost among all K flows. Therefore,

~R = (R1, · · · , RK) = ( 1
(k−1)b1

, · · · , 1
(k−1)bK

) cannot be achieved by any scheduling policy

and thus is not in the capacity region.

Parts “If” and “Only if” prove that the timely throughput vector ~R = (R1, · · · , RK) =

( 1
(k−1)b1

, · · · , 1
(k−1)bK

) is in the capacity region if and only if the SCP answers No. Since

SCP is NP-complete as shown in Lemma 9.1, we proves that it is co-NP-hard to deter-

mine whether or not the timely throughput vector ~R = (R1, · · · , RK) = ( 1
prd1

, · · · , 1
prdK

) =

( 1
(k−1)b1

, · · · , 1
(k−1)bK

) is in the capacity region. This completes the proof that the corre-

sponding decision problem of (P1) is co-NP-hard in the strong sense and thus (P1) is also

co-NP-hard in the strong sense.
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9.2 Proof of Lemma 5.1

We notice that for any slot t, the following conditional independence relation among

different flows holds,

Pt((s̃
1, · · · , s̃K)|(s1, · · · , sK), a) =

K∏
k=1

P kt (s̃k|sk, a). (9.2)

To show that

Pt((s̃
1, · · · , s̃K)|(s1, · · · , sK), a) =

Pt′((s̃
1, · · · , s̃K)|(s1, · · · , sK), a), (9.3)

where t = l · Prd + τ and t′ = (l + 1) · Prd + τ , it suffices to show that

P kt (s̃k|sk, a) = P kt′ (s̃
k|sk, a), ∀k ∈ [1,K], sk ∈ Sk, a ∈ A. (9.4)

In the following, we will prove (9.4). Let us focus on an arbitrary k ∈ [1,K]. The proof

will be divided into two steps. The first step is to show that the set of all possible states

of flow k at slot t is equal to the set of all possible states of flow k at slot t′, both of which

are a subset of Sk. The second step is to show that the transition probabilities at slots t

and t′ from any state s = lk1 l
k
2 · · · lkDk to any state s̃ = l̃k1 l̃

k
2 · · · l̃kDk under the same action a

are the same.

Step 1: (i) For any state in t, we can prove that it is also a state in t′. More specifically,

if lki = 1 under the state in t, we denote the corresponding packet as m. Clearly, if packet

m + 1 arrived the system and has not been delivered at t′, the state at slot t′ also has

lki = 1. Similar reasoning can be applied for lki = 0. This proves that any state in t is also

a possible state in t′. (ii) On the other hand, if lki = 1 under the state in t′, we denote the

corresponding packet as m. Note that t′ ≥ τ + Prd, which means that1 m ≥ 3. Then, if

packet m − 1 ≥ 2 arrived the system and had not been delivered at t, the state at slot t

also had lki = 1. Similar reasoning can be applied for lki = 0. This proves that any state

in t′ is also a possible state in t. Thus, (i) and (ii) show that the sets of all possible state

at slots t and t′ are the same.

1See the definition of L in Lemma 5.1.
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Step 2: The transition from state s to next state s′ consists of three independent parts:

(i) transmission, (ii) lead time evolution (including expiration), and (iii) arrival. Denote

the lead-time-based binary string representation2 after part (i) by s1 = mk
1m

k
2 · · ·mk

Dk
,

after parts (i) and (ii) by s2 = nk1n
k
2 · · ·nkDk , and after parts (i), (ii) and (iii) by s3 =

ok1o
k
2 · · · okDk . Part (i) characterizes the effect of transmission. If lki = 1 and the corre-

sponding packet is scheduled for transmission under action a, then mk
i = 0 with proba-

bility pk and mk
i = 1 with probability 1 − pk. If the corresponding packet for the bit lki

is not scheduled for transmission under action a, then mk
i = lki . Part (ii) characterizes

the evolution of lead time. From the beginning of slot t to the beginning of slot (t + 1),

the lead time of every packet will decrease by 1 and the packet with lead time 1 at slot

t will expire at slot (t + 1). This evolution is equivalent to a left-shift operation for s1.

Namely, s2 = left-shift(s1), or s2 = nk1n
k
2 · · ·nkDk = mk

2m
k
3 · · ·mk

Dk
0. Part (iii) characterizes

the effect of new arrival. At the beginning of slot (t+ 1), it is possible that a new packet

will come to the system if (t + 1) is the arrival time of some packet of flow k (see (3.1)).

Note that the new arrived packet will always have lead time Dk and thus it only affects

the last bit, i.e., okDk . More specifically, if (t + 1) is not the arrival time of some packet,

then okDk = 0. If (t+ 1) is the arrival time of some packet, then okDk = 1 with probability

Bk and okDk = 0 with probability 1 − Bk. Other bits remain unchanged from part (ii) to

part (iii), i.e., s3 = ok1o
k
2 · · · okDk−1o

k
Dk

= nk1n
k
2 · · ·nkDk−1

okDk .

From the above analysis, we can easily see that parts (i) and (ii) are time-invariant

and part (iii) is periodic with period Prd, which more specifically means that the arrival

probability of a new packet at the beginning of slot (t + 1) is the same as that of at the

beginning of slot (t′ + 1 = t + Prd + 1). Therefore, the transition probabilities at slots t

and t′ from any state s = lk1 l
k
2 · · · lkDk to any state s̃ = l̃k1 l̃

k
2 · · · l̃kDk under the same action a

are the same.

Step 1 and Step 2 complete the proof for (9.4) and the whole proof of Lemma 5.1 is

thus completed.

2Here we use different letters, i.e., m, n and o to represent the letter l for ease of exposition. They

should be clear under the context here.
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9.3 Proof of Theorem 5.1

For ease of exposition, we define the rate vector ~R , (R1, R2, · · · , Rk) and the following

two regions:

RRAC , {~R : ~R can be achieved by some RAC scheduling policy},

RLP , {~R : ~R (together with ~x) is a feasible solution of (5.4a)− (5.4e)}.

Next we will prove the following two claims. Claim 1: RRAC = RLP. Claim 2:

R = RLP.

Clearly, Claim 2 completes the proof for part (ii) of Theorem 5.1. And Claim 1 &

Claim 2 show that R = RRAC, which means that RAC can achieve any feasible rate

vector. This completes the proof for part (i) of Theorem 5.1. Part (iii) of Theorem 5.1

will be proved when we prove Claim 1. The whole Theorem 5.1 is thus proved.

9.3.1 Proof of Claim 1: RRAC = RLP

Step 1: Show that RRAC ⊂ RLP. This is trivially true because of Definition 5.1 for an

RAC scheduling policy. In Definition 5.1, for any RAC scheduling policy π, condition

(i) specifies a conditional probability ProbAt|St(a|s), and condition (ii) specifies a series

of state distribution ProbSt(s) where ProbST2+1
(s) = ProbST1+Prd

(s) = ProbST1
(s). Now if

we define xt(s, a) = ProbAt|St(a|s) · ProbSt(s), ∀t ∈ [T1, T2] and define ~R as the achieved

rate vector of π, we can easily check that ~R together with ~x is a feasible solution of

(5.4a)− (5.4e). This proves that RRAC ⊂ RLP.

Step 2: Show that RLP ⊂ RRAC. We will base on the solution of the LP (5.4a) −
(5.4e), denoted by xt(s, a) and ~R, to construct an RAC scheduling policy such that the

constructed RAC can achieve the rate vector ~R. Note that the following construction is

also the complete design of the RAC scheme in (5.5) and (5.6), and will also be used to

prove part (iii) of Theorem 5.1. In the following, we define ProbAt|St(a|s) = xt(s,a)∑
a′∈A xt(s,a

′)

and ProbSt(s) =
∑

a∈S xt(s, a), same in (5.5) and (5.6), respectively. The construction

contains two phases.

Phase 1: Initialization. The goal of this phase is to make the state distribution at

slot T1 to be the steady state distribution ProbST1
(s) with the help of artificial dummy

packets.
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At the beginning of slot T0 , 1 + maxk∈[1,K] offsetk, the arrival process of all flows has

started. We first remove all arrived packets and then insert dummy packets randomly into

the system such that the probability that the network state at slot T0 is s is ProbSg(T0)
(s)

for all s ∈ S, where g(T0) = L · Prd + [1 + ((T0 − 1) mod Prd)] is the corresponding

same-position slot in the optimized period [T1, T2] in (5.4a)− (5.4e). Note that to achieve

such goal, we should set the lead time of the dummy packets carefully (and randomly),

but any inserted flow-k dummy packet will expire at/before slot T0 + Dk ≤ T1.

Phase 2: Making Scheduling Decisions. At the beginning of any slot t ≥ T0,

we make the decision in the following way. Define g(t) , L ·Prd + [1 + ((t− 1) mod Prd)]

as the corresponding same-position slot in the optimized period [T1, T2] in (5.4a)− (5.4e).

Let st denote the current network state at time t, which counts both real packets and

dummy packets. We use a random scheduler that chooses the flow k with probability

ProbAg(t)|Sg(t)(k|st). (9.5)

One can easily see that the resulting random process of the network state, i.e., {St :

∀t = 1, 2, · · · }, is cyclostationary with period Prd, due to (5.4a) and (5.4b). Thus, the

network state at slot T1 = L · Prd + 1 also has the same distribution of the network state

at slot 1, i.e., {ProbST1
(s) : s ∈ S}. Note that here the network state {St} counts both

real packets and dummy packets. However, since any inserted flow-k dummy packet will

expire at/before slot T1 as shown in Phase 1, from slot T1 on, only real packets exist in

the system.

Now let us focus on the time interval t ∈ [T1,∞). We can see that the scheduling strat-

egy (9.5) satisfies condition (i) in Definition 5.1. And the random process of the network

state, i.e., {Sτtrans+t : ∀t = 1, 2, · · · }, is cyclostationary with period Prd. This shows that

condition (ii) in Definition 5.1 also holds. Therefore, our two-phase construction indeed

produces an RAC scheduling policy. Further, we can readily see that the constructed

RAC can achieve the rate vector3 ~R due to (5.4c), completing the proof for part (iii) of

Theorem 5.1 and also the proof for RLP ⊂ RRAC.

Step 1 and Step 2 complete the proof for Claim 1.

3We can ignore the finite transient duration [1, τtrans] = [1, T1 − 1] but only focus on the time interval

[T1,∞) to calculate the (long-term) timely throughput.
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9.3.2 Proof of Claim 2: R = RLP

Step 1: Show that RLP ⊂ R. This is trivially true because RLP = RRAC ⊂ R from Claim

1.

Step 2: Show that R ⊂ RLP. We prove this by showing that for any scheduling policy

Ψ that achieves rate vector ~R = (R1, · · · , RK) ≥ 0, we can always find a ~x = {xt(s, a), ∀s ∈
S, a ∈ A, t ∈ [T1, T2]} such that ~R and ~x jointly satisfy (5.4a)− (5.4e).

For any scheduling policy Ψ, we choose an arbitrary integer F ≥ 1 and compute the

following quantity for all t ∈ [1,Prd], s ∈ S, and a ∈ A,

yFt (s, a) ,

∑F−1
f=0 E

{
1{(state,action) = (s, a) at time (t+ f · Prd)}

}
F

, (9.6)

where 1{·} is the indicator function. Intuitively, yFt (s, a) in (9.6) quantifies how frequently

we are going to see the network state being s and action being a at a (relative-position)

slot t under policy Ψ, where the average is performed over both the probability space (due

to the expectation operator) and over the time axis (due to the summation over different

f ’s). Obviously, yFt (s, a) depends on the underlaying policy Ψ. On the other hand, given

Ψ and F , yFt (s, a) always exists.

We observe that yFt (s, a) in (9.6) is defined for all t ∈ [1,Prd]. We can also define the

yFt (s, a) value for t = Prd + 1 in the following way,

yFPrd+1(s, a) ,

∑F−1
f=0 E

{
1{(state,action) = (s, a) at time (Prd + 1 + f · Prd)}

}
F

. (9.7)

It is worth emphasizing that in general yFPrd+1(s, a) 6= yF1 (s, a) since the given policy

Ψ may not be cyclostationary. We will use this statement soon.

Now we define the following

xFt (s, a) , yFt−L·Prd(s, a),∀t ∈ [T1, T2], s ∈ S, a ∈ A. (9.8)

Clearly, xFt (s, a) is just a time shift of yFt (s, a) such that the time indices are within the

optimized period [T1, T2] in (5.4a)− (5.4e).

We now find a sequence {Fn : n ≥ 1}, which is a subsequence of the positive integer

sequence {n : n ≥ 1}, such that {yFnt (s, a) : n ≥ 1} converges for all s ∈ S, a ∈ A, and

t ∈ [1,Prd]. Toward that end, we first consider a tuple (s, a, t) where s ∈ S, a ∈ A, and
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t ∈ [1,Prd]. Since ynt (s, a) ≤ 1, i.e., {ynt (s, a) : n ≥ 1} is a bounded sequence, we can find a

convergent subsequence {yF
1
n

t (s, a) : n ≥ 1}. Clearly {F 1
n : n ≥ 1} is a subsequence of {n :

n ≥ 1}. Now for another tuple (s′, a′, t′) different from (s, a, t), since {yF
1
n

t′ (s′, a′) : n ≥ 1}
is a bounded sequence, we can again find a convergent subsequence {yF

2
n

t′ (s′, a′) : n ≥ 1}.
Clearly {F 2

n : n ≥ 1} is a subsequence of {F 1
n : n ≥ 1}, and both {yF

2
n

t (s, a) : n ≥ 1}
and {yF

2
n

t′ (s′, a′) : n ≥ 1} converge. By iterating over all |S| · |A| · Prd tuples for (s, a, t),

we can find sequences {F 1
n : n ≥ 1}, {F 2

n : n ≥ 1}, · · · , {F |S|·|A|·Prdn : n ≥ 1}, where

{F i+1
n : n ≥ 1} is a subsequence of {F in : n ≥ 1} and {F 1

n : n ≥ 1} is a subsequence

of {n : n ≥ 1}. We let Fn = F
|S|·|A|·Prd
n , and thus {Fn : n ≥ 1} is a subsequence of

{n : n ≥ 1}. We also see that {yFnt (s, a) : n ≥ 1} converges for all (s, a, t) tuples. We

then define y∞t (s, a) , limn→∞ y
Fn
t (s, a) for all s ∈ S, a ∈ A, t ∈ [1,Prd]. We also define

x∞t (s, a) , y∞t−Prd(s, a) for all s ∈ S, a ∈ A, t ∈ [T1, T2].

Now we will show that x∞t (s, a) and ~R can satisfy (5.4d), (5.4a), (5.4b) and (5.4c),

respectively. Eq. (5.4e) is trivially true.

(i) It is easy to show that (5.4d) holds for xFt (s, a) for any F ≥ 1 (see (9.6)) and

therefore (5.4d) holds for x∞t (s, a).

(ii) To show that (5.4a) holds, we should notice the following equation due to the

total probability theorem where we define events A(s′) = {state = s′ at time (t+ 1 + f · Prd)}
and B(s, a) = {(state,action) = (s, a) at time (t+ f · Prd)},

E{1{A(s′)}} = Prob(A(s′)) =
∑
s∈S

∑
a∈A

Prob(A(s′)|B(s, a))Prob(B(s, a))

=
∑
s∈S

∑
a∈A

Pt(s
′|s, a)Prob(B(s, a)) =

∑
s∈S

∑
a∈A

Pt(s
′|s, a)E{1{B(s,a)}}. (9.9)

Now due to the definition of yFt (s, a) in (9.6), we get∑
a∈A

yFt (s, a) =

∑F−1
f=0 E

{
1{state = s at time (t+ f · Prd)}

}
F

. (9.10)

By inserting (9.9) into (9.10) (with slot and state modification) and doing some simple

deductions, we get, ∑
a∈A

yFt+1(s′, a) =
∑
s∈S

∑
a∈A

Pt(s
′|s, a)yFt (s, a). (9.11)

This shows that (5.4a) holds for the time-shifted yFt (s, a), i.e., xFt (s, a), for any F ≥ 1,

and therefore (5.4a) holds for x∞t (s, a).
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(iii) To show that (5.4b) holds, we cannot argue that it holds for xFt (s, a) for any

F ≥ 1. That is because the following equation is generally not true,

yF1 (s, a) = yFPrd+1(s, a), ∀F ≥ 1.

Instead we will show that

y∞1 (s, a) = y∞Prd+1(s, a). (9.12)

We first quantify the difference between yF1 (s, a) and yFPrd+1(s, a) with the following

lemma.

Lemma 9.2. For any scheduling policy Ψ, we always have

|yF1 (s, a)− yFPrd+1(s, a)| ≤ 1

F
, ∀s ∈ S, a ∈ A.

Proof. By the definitions of (9.6) and (9.7), we have

yF1 (s, a)− yFPrd+1(s, a) =
E
{

1{(state,action) = (s, a) at time 1}
}

F
−

E
{

1{(state,action) = (s, a) at time (1 + F · Prd)}
}

F
. (9.13)

Denote the right-hand side of (9.13) by term1 − term2. Since both term1 and term2 are

non-negative, we have

|term1 − term2| ≤ max{term1, term2}.

Since the numerators of term1 and term2 are upper bounded by 1, we have

max{term1, term2} ≤ 1
F . The proof is thus completed.

By Lemma 9.2, we thus conclude that (9.12) holds. Then from (9.12) and (9.11), we

have ∑
a∈A

y∞1 (s′, a) =
∑
a∈A

y∞Prd+1(s′, a) =
∑
s∈S

∑
a∈A

PPrd(s′|s, a)y∞Prd(s, a),

which shows that (5.4b) holds for x∞t (s, a).
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(iv) Due to the definition of Rk in Sec. 3.3, we have

Rk = lim inf
T→∞

E {# of flow-k pkts delivered before exp. in [1,T]}
T

= lim inf
n→∞

∑Prd
t=1

∑
s∈S

∑
a∈A rk(s, a)ynt (s, a)

Prd

≤ lim
n→∞

∑Prd
t=1

∑
s∈S

∑
a∈A rk(s, a)yFnt (s, a)

Prd

=

∑Prd
t=1

∑
s∈S

∑
a∈A rk(s, a)y∞t (s, a)

Prd
. (9.14)

Therefore, (5.4c) also holds for x∞t (s, a) and ~R.

Thus, (i) − (iv) show that for any scheduling policy Ψ that achieves rate vector ~R =

(R1, · · · , RK), we can always find an ~x = {xt(s, a), ∀s ∈ S, a ∈ A, t ∈ [T1, T2]} such that

~R and ~x are a feasible solution of (5.4a)− (5.4e).

This completes the proof for R ⊂ RLP.

Step 1 and Step 2 complete the proof for Claim 2.

9.4 Proof of Lemma 6.1

We consider the random process {St : ∀t ≥ 1} for the system state induced by our

RAC-Approx scheduling policy. We then consider the sub-process {Zi : ∀i ≥ 1} where

Zi , Si·L·prd+1. Since the decision rules of our RAC-Approx scheduling policy using (6.4)

and (6.5) repeat themselves every prd slots staring at slot (L · prd + 1), it is easy to see

that {Zi : ∀i ≥ 1} is a Markov chain.

We first show that the Markov chain {Zi : ∀i ≥ 1} is an ergodic unichain [43]. We

denote Sz as the state space of the Markov chain {Zi : ∀i ≥ 1}. Clearly Sz is a subset

of the state space S, and thus is finite. Then the Markov chain {Zi : ∀i ≥ 1} must have

at least one positive recurrent class Cz ⊂ Sz. We further denote the set of other states

as C̄z = Sz\Cz. Since we assume that the packet arrival probability Bk < 1, there exists

a strictly positive probability that no packets of any flow arrive in the system during the

time interval [i · L · prd + 2, (i + 1) · L · prd + 1]. In addition, all packets arrived at slot

(i ·L ·prd+1) will expire at slot ((i+1) ·L ·prd+1) since L ·Prd ≥ maxk∈[1,K](offsetk+Dk).
4

4See the definition of L in Lemma 5.1.
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Therefore, it is possible from any state in Sz to the empty state, denoted as s∅ ∈ Sz, i.e.,

Prob(Zi+1 = s∅|Zi = s) > 0, ∀s ∈ Sz. (9.15)

Now consider a positive recurrent state s ∈ Cz. Since s is positive recurrent and s∅ is

accessible from s due to (9.15), s must also be accessible from state s∅. Thus, s∅ and s

communicate and we have that s∅ ∈ Cz. We further show that all states in C̄z are transient.

Suppose that state s′ ∈ C̄z is not transient, which means that it must be positive recurrent.

Now again since s∅ is accessible from s′ due to (9.15), s′ must also be accessible from state

s∅. Thus, s∅ and s′ communicate and we have that s′ ∈ Cz, which is a contradiction that

s′ ∈ C̄z = Sz\Cz. Therefore, the Markov chain {Zi : ∀i ≥ 1} has only one positive recurrent

class Cz, and thus is a unichain [43]. In addition, since Prob(Zi+1 = s∅|Zi = s∅) > 0, the

empty state s∅ is aperiodic and thus the positive recurrent class Cz is also aperiodic.

Therefore, the Markov chain {Zi : ∀i ≥ 1} is an ergodic unichain.

Then according to Theorem 4.3.7 in [43], the Markov chain {Zi : ∀i ≥ 1} has a unique

steady state distribution, i.e., there exists a πs such that

lim
i→∞

Prob(Zi = s) = πs,∀s ∈ Sz. (9.16)

Based on the initial state distribution {πs : s ∈ Cz}, for any flow k, we can get the

expected number of delivered flow-k packets during the interval [i·L·prd+1, (i+1)·L·prd+1]

as i → ∞, denoted by nk. Then we can easily see that the achieved timely throughput

for any flow k up to slot T, i.e., E{# of flow-k pkts delivered before expiration in [1,T]}
T , converges to

nk
L·prd as T→∞. This completes the proof.

9.5 How to Solve (P4) and (P5) Approximately in Polyno-

mial Time by Unwinding Traffic Patterns

For any flow k with A&E profile (offsetk, prdk,Dk,Bk) and prdk < Dk, we unwind it into

dDk/prdke flows, indexed from k1, k2, to kdDk/prdke: flow ki (1 ≤ i ≤ dDk/prdke) has A&E

profile (offsetki , prdki ,Dki ,Bki) where

offsetki = offsetk + (i− 1)prdk, Dki = Dk,

prdki = dDk/prdkeprdk, Bki = Bk.
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(a) Original flow k with A&E profile: (offsetk, prdk,Dk,Bk) = (1, 3, 4, 0.7)
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(b) Unwound flow k1 with A&E profile: (offsetk1 , prdk1 ,Dk1 ,Bk1) = (1, 6, 4, 0.7)
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m=1,
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expire

(c) Unwound flow k2 with A&E profile: (offsetk2 , prdk2 ,Dk2 ,Bk2) = (4, 6, 4, 0.7)

Figure 9.1: An illustrating example of unwinding traffic patterns. We unwind the original

flow k in (a) into flow k1 in (b) and flow k2 in (c).

One unwinding example is shown in Fig. 9.1. Now for each flow ki, the delay Dki is no

more than the period prdki . Thus, the size of the state space of flow ki can be reduced

to 2 by using the compression method in (5.3). In addition, any flow-ki’s packet will be

successfully delivered with probability pk.

After such unwinding, in the new system, all flows have size-2 state space. We further

denote Rki as the timely throughput of flow ki in the new system, and define

Rk =

dDk/prdke∑
i=1

Rki ,

as the timely throughput for flow k in the original system. Now if we use the relaxation

method in Sec. 6.1 for the new system, the complexity (in terms of number of variables

and constraints) of solving (P4) and (P5) becomes O((
∑K

k=1dDk/prdke) ·K ·Prd). There-

fore, by unwinding traffic patterns, we can solve (P4) and (P5) for the original system

approximately in polynomial time.
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Table 9.1: The optimal RAC policy for the setting in Fig. 7.3 in Sec. 7.2. We show

the conditional probability ProbAt|St(a|s) for each state s = (s1, s2, s3), each action a ∈
{1, 2, 3} in the period [T1, T2] = [9, 12]. Note 1: the flow-1 state s1 = 1 (resp. 0) means

one (resp. no) flow-1 packet; the flow-2 state s2 = 1 (resp. 0) means one (resp. no) flow-2

packet; the flow-3 state s3 = l31l
3
2l

3
3 where lki = 1 (resp. 0) means one (resp. no) flow-3

packet with lead time i. For example, state s = (s1, s2, s3) = (0, 1, 001) means that in

the AP’s queue, there is no flow-1 packet, one flow-2 packet, and one flow-3 packet with

lead time 3. Note 2: The hyphen (-) notation means that the corresponding state is

impossible at the corresponding slot under this optimal RAC policy. Note 3: We only

show 2 digits after the decimal point. Thus
∑3

a=1 ProbAt|St(a|s) may not be 1.

t = T1 = 9 t = 10 t = 11 t = T2 = 12

s = (s1, s2, s3) a = 1 a = 2 a = 3 a = 1 a = 2 a = 3 a = 1 a = 2 a = 3 a = 1 a = 2 a = 3

(0, 0, 000) - - - 0.33 0.33 0.33 - - - 0.33 0.33 0.33

(0, 0, 001) - - - 0.00 0.00 1.00 - - - 0.00 0.00 1.00

(0, 0, 010) - - - 0.00 0.00 1.00 - - - 0.00 0.00 1.00

(0, 0, 011) - - - 0.00 0.00 1.00 - - - 0.00 0.00 1.00

(0, 0, 100) - - - - - - - - - - - -

(0, 0, 101) - - - 0.00 0.00 1.00 - - - 0.00 0.00 1.00

(0, 0, 110) - - - 0.00 0.00 1.00 - - - 0.00 0.00 1.00

(0, 0, 111) - - - 0.00 0.00 1.00 - - - 0.00 0.00 1.00

(0, 1, 000) - - - - - - 0.00 1.00 0.00 0.00 1.00 0.00

(0, 1, 001) - - - 0.00 0.98 0.02 0.00 0.83 0.17 0.00 0.85 0.15

(0, 1, 010) - - - 0.00 1.00 0.00 0.00 0.03 0.97 0.00 0.01 0.99

(0, 1, 011) - - - 0.00 0.97 0.03 0.00 0.48 0.52 0.00 0.62 0.38

(0, 1, 100) - - - - - - 0.00 0.00 1.00 0.00 0.00 1.00

(0, 1, 101) - - - 0.00 0.50 0.50 0.00 0.01 0.99 0.00 0.00 1.00

(0, 1, 110) - - - 0.00 0.50 0.50 0.00 0.00 1.00 0.00 0.00 1.00

(0, 1, 111) - - - 0.00 0.52 0.48 0.00 0.00 1.00 0.00 0.87 0.13

(1, 0, 000) 1.00 0.00 0.00 1.00 0.00 0.00 - - - - - -

(1, 0, 001) 0.83 0.00 0.17 0.85 0.00 0.15 - - - 0.98 0.00 0.02

(1, 0, 010) 0.03 0.00 0.97 0.01 0.00 0.99 - - - 1.00 0.00 0.00

(1, 0, 011) 0.48 0.00 0.52 0.62 0.00 0.38 - - - 0.97 0.00 0.03

(1, 0, 100) 0.00 0.00 1.00 0.00 0.00 1.00 - - - - - -

(1, 0, 101) 0.01 0.00 0.99 0.00 0.00 1.00 - - - 0.50 0.00 0.50

(1, 0, 110) 0.00 0.00 1.00 0.00 0.00 1.00 - - - 0.50 0.00 0.50

(1, 0, 111) 0.00 0.00 1.00 0.87 0.00 0.13 - - - 0.52 0.00 0.48

(1, 1, 000) 0.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

(1, 1, 001) 0.01 0.99 0.00 0.00 1.00 0.00 0.99 0.01 0.00 1.00 0.00 0.00

(1, 1, 010) 0.00 0.37 0.63 0.00 1.00 0.00 0.37 0.00 0.63 1.00 0.00 0.00

(1, 1, 011) 0.00 0.50 0.50 0.22 0.39 0.38 0.50 0.00 0.50 0.39 0.22 0.38

(1, 1, 100) 0.00 0.00 1.00 0.00 0.52 0.48 0.00 0.00 1.00 0.52 0.00 0.48

(1, 1, 101) 0.00 0.00 1.00 0.00 0.65 0.35 0.00 0.00 1.00 0.65 0.00 0.35

(1, 1, 110) 0.00 0.55 0.45 0.00 0.62 0.38 0.55 0.00 0.45 0.62 0.00 0.38

(1, 1, 111) 0.00 0.91 0.09 0.14 0.77 0.09 0.91 0.00 0.09 0.77 0.14 0.09
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9.6 The Optimal RAC Policy for the Setting in Fig. 7.3 in

Sec. 7.2

In this part, we show the optimal RAC policy for the setting in Fig. 7.3 in Sec. 7.2, i.e.,

(offset1, prd1,D1,B1, p1) = (0, 4, 4, 1, 0.5), U1(R1) = log(R1),

(offset2, prd2,D2,B2, p2) = (2, 4, 4, 1, 0.5), U2(R2) = log(R2),

(offset3, prd3,D3,B3, p3) = (0, 1, 3, 0.9, 0.7), U3(R3) = log(R3).

In Tab. 9.1, we show the conditional probability ProbAt|St(a|s) for each state s = (s1, s2, s3),

each action a ∈ {1, 2, 3}, and each slot t ∈ [T1, T2] = [9, 12], which is the optimization

period in (P2).

Note that since Dk ≤ prdk for k = 1, 2, we can use the compression method similar in

(5.3) to denote the state of flow 1 and flow 2. More specifically, we use s1 = 1 (resp. 0)

to denote the flow 1’s state: flow 1 has one (resp. no) packet, and we use s2 = 1 (resp.

0) to denote the flow 2’s state: flow 2 has one (resp. no) packet. We remark that though

we do not have the lead time information in the state representation for flow 1 and flow

2, we can recover the lead time from the current slot. For flow 3, since Dk > prdk, we still

use the lead-time-representation to denote its state, i.e., s3 = l31l
3
2l

3
3 where lki = 1 (resp.

0) is the state that flow 3 has one (resp. no) packet with lead time i. For example, state

s = (s1, s2, s3) = (0, 1, 001) means that in the AP’s queue, there is no flow-1 packet, one

flow-2 packet, and one flow-3 packet with lead time 3.

Now we show several examples to illustrate the optimal RAC policy in Tab. 9.1.

• Consider state s = (s1, s2, s3) = (0, 0, 000) at slot t = 9, i.e., all flows have no packet.

This state is impossible (we use the hyphen (-) notation in Tab. 9.1 to denote an

impossible state at the corresponding slot) because at the beginning of slot 9, flow

1 has a packet arrival with probability B1 = 1 and thus the flow-1 state must be 1.

• Consider state s = (s1, s2, s3) = (0, 0, 000) at slot t = 10, i.e., all flows have no packet.

Though our optimal RAC policy will still schedule each flow with equal probability

(0.33), no packets will be transmitted and thus the system actually remains idle.
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• Consider state s = (s1, s2, s3) = (0, 1, 100) at slot t = 11, i.e., flow 2 has a packet

with lead time 4 and flow 3 has a packet with lead time 1. Our optimal RAC policy

will schedule flow 3 with probability 1, i.e, give the complete priority to flow 3. This

is reasonable because the flow-3 packet will be expired in the next slot and thus is

more urgent than the flow-2 packet.

• Consider state s = (s1, s2, s3) = (1, 0, 111) at slot t = 12, i.e., flow 1 has a packet

with lead time 1, and flow 2 has a packet with lead time 1, a packet with lead time

1, and a packet with lead time 3. Our optimal RAC policy will schedule flow 1 with

probability 0.52 and schedule flow 3 with probability 0.48, i.e., gives a little bit more

priority to flow 1. This is reasonable because though both flows have a very urgent

packet (with lead time 1), flow 3 has more packet candidates than flow 1.
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Chapter 10

Introduction

In the U.S., heavy-duty trucks haul more than 70% of all freight tonnage [6], and they

consume 17.6% of energy in transportation sector [35, Tab. 2.8] and contribute to about

5% of the greenhouse gas emission [17]. Fuel cost is the largest operating cost (34%) of

truck owners/operators [42], and reducing fuel consumption is critical for cost-effective

and environment-friendly heavy-duty truck operations.

Currently there are mainly two lines of efforts to reduce fuel consumption of heavy-duty

trucks. The first line is to operate with more fuel efficient trucks, from better designs for

engines, drivetrains, aerodynamics, and tires [49, 74, 14], to better management of truck

parts such as maintaining optimal tire pressures [7]. The second line is to operate heavy-

duty trucks more economically. This explores several possibilities, e.g., reducing idling

energy consumption [85], platooning more than one heavy-duty trucks [20, 67], route

planning [38, 86, 92], and speed planning [52, 51, 12, 4]. In this thesis, we focus on route

and speed planning. Different routes could have different mileages, levels of congestion,

road grades, and surface types, etc., all of which would largely affect the fuel consumption.

Real-world studies [92] show that choosing a more efficient route for a heavy-duty truck

can improve its fuel economy by 21%. Speed planning is another well-recognized approach

to effectively reduce fuel consumption: As a rule of thumb for truck operations on highway,

every one mile per hour (mph) increase in speed incurs about 0.14 mile per gallon (mpg)

penalty in fuel economy [12, 4].

However, operating at low speed may result in excessive travel time and the goods

carried by the truck cannot be delivered on time. We remark that timely delivery is critical

for truck operators [71, 16]. As estimated by the U.S. Federal Highway Administration

(FHWA) in [71], unexpected delay can increase freight cost by 50% to 250%. Multiple

reasons can explain the importance of timely delivery. First, some freight goods are

perishable, such as food [24], which definitely require timely delivery. Second, to ensure
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Table 10.1: Comparisons of our work and existing work on energy-efficient truck operation.

Paper Route Planning Speed Planning Hard Deadline

[83] 3 7 7

[52] 7 3 7

[51] 7 3 3

This work 3 3 3

customers’ satisfaction, some companies, e.g., Amazon, may have a service-level agrement

(SLA) with users, under which the delivery delay is guaranteed [11]. Finally, violating

scheduled delay can introduce difficulties for global logistic decisions and even increase

the uncertainty and inefficiency of supply chains [71]. Overall, it is crucial to ensure

timely goods delivery for truck operators, and considering timely delivery in fuel cost

minimization poses a unique challenge.

Motivated by the above observations, in this thesis, we study the problem of energy-

efficient timely transportation for heavy-duty trucks. We aim to minimize the heavy duty

truck’s fuel consumption while satisfying a hard deadline constraint, under which we take

both route planning and speed planning into account to exploit complete design space

of reducing fuel consumption. Since heavy-duty trucks are mainly operated for long-haul

delivery and most of time run on highways [35, Tab. 5.2 and Fig. 5.1], we focus our model

on their operation in the highway transportation network system. We summarize our

contributions in the following.

� We formulate an energy-efficient timely transportation problem of minimizing the

fuel consumption subject to a hard deadline constraint for a heavy-duty truck running on

a highway transportation network, with design spaces of both route planning and speed

planning in Chap. 11. To the best of our knowledge, as compared to existing work on

energy-efficient truck operation [83, 52, 51], our work is the first one that simultaneously

considers route planning, speed planning, and hard deadline (see Tab. 10.1).

� We show that our problem is NP-Complete and then design a fully polynomial time

approximation scheme (FPTAS) in Chap. 12 to solve it. The proposed FPTAS attains

an approximation ratio of (1 + ε) with a network-size induced complexity of O(mn2/ε2),

where m and n are the numbers of nodes and edges, respectively.
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Table 10.2: Comparisons of our problem and existing problems on performance optimiza-

tion in various transportation systems with delay taken into consideration. Here RSP

stands for Restricted Shortest Path problem, VRPTW stands for Vehicle Routing Prob-

lem with Time Windows, and BSP stands for Bi-objective Shortest Path problem.

Our problem RSP [50, 45, 63]
VRPTW

[81, 44, 34, 88]

Tramp Ship

Operation [77]

BSP

[84, 91, 30, 46]

S
e
t
t
in

g
s

Objective
Cost

minimization

Cost

minimization

Cost

minimization

Profit

maximization

Cost and delay

minimization

Constraints A hard deadline A hard deadline
Time window?,

Other constraints

Time window?,

Other constraints
N/A

Design Spaces
Route planning,

Speed planning
Route planning Route planning

Route planning,

Speed planning
Route planning

R
e
s
u
lt
s Hardness NP-Complete NP-Complete [45] NP-Complete [81] N/A NP-Complete [84]

Algorithms
FPTAS,

Heuristic†
FPTAS [50],

Heuristic [63]
Heuristic [44, 34, 88] Heuristic

FPTAS [91, 30],

Heuristic [46]

? The time window constraint captures the hard deadline constraint in our problem and RSP as a special case.

† We further characterize a condition under which the heuristic outputs the optimal solution to our problem.

� While achieving highly-preferred theoretical performance guarantee, the proposed

FPTAS still suffers from long running time when applying to national-wide highway sys-

tems with tens of thousands of nodes and edges. In Chap. 13, by leveraging elegant

insights from studying the dual of the original problem, we design a fast heuristic solution

with O(m + n log n) complexity. The proposed heuristic scheme allows us to tackle the

energy-efficient timely transportation problem on large-scale national highway systems.

We further characterize a condition under which our heuristic generates an optimal solu-

tion. We observe that the condition holds in most of the practical instances in numerical

experiments in Chap. 15, justifying the superior empirical performance of our heuristic.

� We carry out extensive numerical experiments using real-world truck data over the

U.S. highway network in Chap. 15. The results show that our proposed solutions achieve

17% (resp. 14%) fuel consumption reduction, as compared to a fastest path (resp. shortest

path) algorithm adapted from common practice. The amount of fuel consumption saving

is enough to power up more than 90% of the entire transportation sector in New York

State [3].

Comparison with existing problems. Theoretically, we also compare our problem

with some existing problems in Tab. 10.2. First, our energy-efficient timely transportation

problem is a generalized version of Restricted Shortest Path problem (RSP) [50, 45, 63],

with an extra design space of speed planning. Therefore, we generalize the FPTAS design
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and the dual-based design of RSP to our problem. Second, for the well-studied Vehicle

Routing Problem with Time Windows (VRPTW) [81, 44, 34, 88], if we only consider one

vehicle and one customer with departure deadline, then it becomes the RSP problem,

which is a special case of our problem without speed planning. Third, our problem can

be regarded as a special case of the problem on energy-efficient tramp ship operation

[77], a different context from our focus on trucks. However, [77] does not prove the

hardness of the problem and only proposes a heuristic algorithm without performance

guarantee to solve the problem. Our work, instead, shows that our studied problem

is NP-complete, and proposes an FPTAS and a heuristic algorithm with characterizing

an optimality condition to solve the problem. Finally, another related problem is the

Bi-objective Shortest Path problem (BSP) [84, 91, 30, 46], which needs to find all Pareto-

optimal paths to simultaneously minimize the travel cost and travel time. Clearly, BSP is

different from our problem because it regards the travel time as one objective and it does

not have the design space of speed planning.
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System Model and Problem Formu-

lation

11.1 System Model

Consider a highway transportation network as exemplified in Fig. 11.1. We model it as a

directed graph G = (V, E), where V is the vertex/node set and E is the edge/road set. We

define n , |V| as the number of nodes and m , |E| as the number of edges. For each edge

e ∈ E , we denote De > 0 as its distance (unit: mile), and Rlb
e > 0 (resp. Rub

e ≥ Rlb
e ) as its

minimal (resp. maximal) speed (unit: mph). (Governments usually set the maximal speed

for all highways and the minimal speed for some highways. For the sake of both safety and

fuel efficiency, lower speed limits than passenger cars may be applied to large commercial

vehicles like heavy-duty trucks and buses.) Now consider a long-haul heavy-duty truck

who aims to ship cargos from a source node s ∈ V to a destination node d ∈ V. The goal

is to minimize the energy/fuel1 consumption subject to a hard delay requirement T > 0

(unit: hour).

Fuel consumption and travel delay are usually in conflict with each other, both of

which are related to the speed profile of the truck. High travel speed obviously decreas-

es the travel delay, but it can also increase the fuel consumption significantly [12, 4].

To analyze the performance tradeoff between energy and delay, we need to model the

relationship between the fuel consumption and the travel speed. There are an inten-

sive number of such models (see a survey in [37]). In this thesis, we use the instan-

taneous fuel consumption model [37, 19] which generally depends on three factors: (i)

static vehicle/road/environment properties, (ii) instantaneous acceleration/deceleration,

and (iii) instantaneous speed. As we consider a specific vehicle running over a specific

1 We interchangeably use fuel and energy in this thesis.
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Figure 11.1: System model.

network, static vehicle/road/environment properties are fixed. The instantaneous accel-

eration/deceleration reflects the speed variation. However, since we consider a highway

model, the truck spends most of time to maintain a relatively constant cruise speed [23, 72]

such that the fuel consumption caused by acceleration/deceleration would be negligible.

This motivates us to model the instantaneous fuel consumption as a function of the in-

stantaneous speed.

We thus define fe : [Rlb
e , R

ub
e ] → R+ as the (instantaneous) fuel-rate-speed function

of the truck running on edge e: if the vehicle’s speed on edge e is re (unit: mph), the

fuel consumption rate is fe(re) (unit: gallons per hour (gph)), and then the total fuel

consumption for driving time τ (unit: hour) with the constant speed re is fe(re) · τ (unit:

gallon). Since many existing models [23, 21, 19, 75, 27] use polynomial functions to model

the fuel consumption which are also strictly convex in a reasonable speed limit region,

in this thesis, we assume that fe(·) is a polynomial function and is strictly convex2 over

[Rlb
e , R

ub
e ]. This assumption also holds in the physical interpretation of fuel-rate-speed

function as shown in Appendix 17.1, and is further verified in our simulation using real-

world data (see Fig. 15.2(a)).

2The strict convexity can be relaxed to convexity. For simplicity, we use the strict convexity in this

thesis.
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11.2 Problem Formulation

We consider two design spaces: path selection (route planning) and speed optimization

(speed planning). For path selection, we define a binary variable xe for any e ∈ E ,

xe =

 1, Edge e is on the selected path;

0, otherwise.
(11.1)

For the speed optimization, the truck needs to determine a speed profile (speeds at all

travel time) over any selected edge. This is a functional variable, but the convexity of

fuel-rate-speed function can simplify the speed profile significantly based on the following

lemma.

Lemma 11.1. For any edge e, if the travel time te is given, i.e., the truck must pass edge

e with exactly te hours, then the optimal speed profile to minimize the fuel consumption is

to maintain constant speed De/te during the whole trip.

Proof. See Appendix 17.2.

Lemma 11.1 shows that for any edge, any non-constant speed profile is dominated

by another constant speed profile in terms of fuel consumption without sacrificing the

delay performance. Therefore, without loss of optimality, the truck only needs to follow

a constant speed for any edge. As explained in Sec. 11.1, since we consider a long-haul

highway scenario, we will ignore the speed transition period between two adjacent edges.

Thus, for the speed optimization, we consider the travel time te > 0 over each edge e as

the design variable, which equivalently implies a constant speed De/te over e. We then

define a fuel-time function ce(·) for each road e,

ce(te) , te · fe(
De

te
), (11.2)

which is the total fuel consumption for the truck traveling edge e with travel time te.

By vectorizing our decision variables as x , {xe : e ∈ E} and t , {te : e ∈ E}, now we

are ready to formulate our PAth selection and Speed Optimization (PASO) problem,

PASO: min
x∈X ,t∈T

∑
e∈E

xe · ce(te) (11.3)

s.t.
∑
e∈E

xete ≤ T (11.4)
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In PASO, set X restricts that one and only one s− d path is selected, defined as

X , {x : xe ∈ {0, 1}, ∀e ∈ E , and∑
e∈out(v)

xe −
∑

e∈in(v)

xe = 1{v=s} − 1{v=d},∀v ∈ V}, (11.5)

where 1{·} is the indicator function, in(v) , {(u, v) : (u, v) ∈ E} is the set of incoming

edges of node v ∈ V, and out(v) , {(v, u) : (v, u) ∈ E} is the set of outgoing edges of node

v. Set T captures the speed limits of all roads, defined as

T , {t : tlbe ≤ te ≤ tube , ∀e ∈ E}, (11.6)

where tlbe , De
Rub
e

and tube , De
Rlb
e

are the minimal and maximal travel time due to the speed

limits on edge e, respectively. Constraint (11.4) is to satisfy the hard delay requirement.

Objective (11.3) is to minimize the total fuel consumption over the selected path.

11.3 Complexity Hardness

PASO has both integer variables and continuous variables. Thus it is worth understanding

its hardness first. It turns out that a special case of PASO is the well-known Restricted

Shortest Path (RSP) problem [50, 45]. In RSP, a directed graph is given where each edge

has a fixed travel time and travel cost, and the goal is to find a minimal-cost path subject

to a hard path delay requirement. Clearly, our problem PASO generalizes RSP where we

allow a varying edge cost and edge time because of the design space of speed optimization.

Since RSP is NP-complete [45], we can thus easily prove that our problem PASO is also

NP-complete.

Theorem 11.1. PASO is NP-complete.

Proof. We can prove it by setting Rlb
e = Rub

e to an appropriate value for each edge e in

PASO, and using the result that RSP is NP-complete [45].

11.4 Preprocessing and Some Notations

We first check the feasibility of our problem PASO. We can use the shortest path algorithm

where each edge e has cost tlbe to find the fastest path. If the travel time of the fastest
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path is larger than the delay requirement T , PASO is infeasible. In the rest of this thesis,

we thus assume that the delay constraint T is at least the travel time of the fastest path

such that the problem is feasible.

We then analyze properties of the fuel-time function ce(·).

Lemma 11.2. ce(te) is strictly convex over [tlbe , t
ub
e ]. Also, there exists a point t̂e ∈

[tlbe , t
ub
e ]3 such that ce(te) is first strictly decreasing over [tlbe , t̂e] and then strictly increasing

over [t̂e, t
ub
e ].

Proof. See Appendix 17.3.

Based on Lemma 11.2, we can easily prove that the travel time over edge e, i.e., te, in

any optimal solution of PASO must be in the region [tlbe , t̂e]. Otherwise, we can decrease

the trave time from te to t̂e and at the same time decrease the fuel consumption, which

violates the optimality of te. Thus, without loss of optimality, we can reset the travel time

limit from [tlbe , t
ub
e ] to [tlbe , t̂e], which equivalently implies that we reset the speed limit from

[Rlb
e , R

ub
e ] to [De/t̂e, R

ub
e ]. After such preprocessing, in the rest of the thesis, ce(te) can

be assumed to be strictly convex and strictly decreasing over te ∈ [tlbe , t
ub
e ] without loss of

optimality.

In the rest of the thesis, we define an s − d path p as the set of all edges over p and

tp , {te : e ∈ p} as the corresponding travel time set. Moreover, we define c(p, tp) ,∑
e∈p ce(te) as the fuel consumption of path p with travel time set tp, and OPT as the

optimal value of PASO.

Next, we will propose a fully polynomial time approximation scheme (FPTAS) in

Chap. 12 and a fast dual-based heuristic scheme in Chap. 13 to solve our problem PASO.

3Note that t̂e can be on the boundary.



Chapter 12

An FPTAS for PASO

Since PASO generalizes RSP, which is well-known to have an FPTAS [50, 70], it is natural

to ask whether we can extend RSP’s FPTAS for our problem PASO. In this section, by

carefully tackling the difference between PASO and RSP, we “reformulate” PASO such

that we can adapt RSP’s FPTAS to construct an FPTAS for PASO. More specifically, in

this section, we propose an approximation scheme (Algorithm 3) such that for any given

ε ∈ (0, 1), it can find a (1+ε)-approximate solution in the sense that the solution is feasible

and the corresponding fuel consumption is at most (1 + ε)OPT, and the time complexity

is polynomial in both the problem size and 1
ε .

The essence of RSP’s FPTAS [50, 70] is a test procedure. For any input value X >

0 and any input accuracy parameter δ > 0, the test procedure can “approximately”

compare X and the optimal value OPT in the sense that it can tell either OPT > X

or OPT ≤ (1 + δ)X in polynomial time. Based on this test procedure, starting with

some arbitrary lower bound LB and upper bound UB for OPT, a binary search scheme is

designed [50, 70] to exponentially narrow down the bounding interval [LB,UB] and finally

a (1 + ε)-approximate solution is outputted.

To solve our problem PASO, we adapt RSP’s FPTAS by designing our own test proce-

dure. In RSP, [50] and [70] use the rounding and scaling technique, where each fixed edge

cost is rounded into certain (polynomial) number of cost levels controlled by the accuracy

parameter δ. As we only require an “approximate” comparison, rounding into certain

number of cost levels is enough to perform such a task. However, as opposed to a fixed

edge cost in RSP, in PASO each edge has a fuel-time function. Hence, instead of round-

ing a fixed cost in RSP, we quantize the continuous fuel-time function ce(·) into another

staircase fuel-time function c̃e(·) according to the input value X and the input accuracy

parameter δ, which can be further characterized by a polynomial number of representative

points. We then prove that such quantization can perform the “approximate” comparison.

70
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Later on we will describe our algorithms in a bottom-up fashion. We first describe the

quantizing procedure (Algorithm 1) in Sec. 12.1. Then we present our own test procedure

(Algorithm 2) which invokes Algorithm 1 in Sec. 12.2. Finally, we describe the whole

FPTAS (Algorithm 3) which invokes Algorithm 2 in Sec. 12.3.

12.1 Quantizing Fuel-Time Function

For any V > 0 and N ∈ Z+, we quantize the edge-e fuel-time function ce(te) to be

c̃e(te) , min

{⌊
ce(te)

V

⌋
+ 1, N

}
, ∀te ∈ [tlbe , t

ub
e ]. (12.1)

Since we have assumed that ce(te) is strictly decreasing in Sec. 11.4, c̃e(te) thus becomes

a staircase function with at most N stairs. During the quantization, parameter V is to

control the accuracy, which is the vertical span of each stair. Larger V means rougher

quantization and lower accuracy but smaller complexity. Parameter N is to control the

maximal number of stairs. Since ce(te) could take an arbitrarily large value, the number of

stairs could be unbounded, which definitely incurs high complexity. To design a polynomial

time test procedure where we only need to perform an “approximate” comparison, we

truncate ce(te) by putting a ceil V N . This truncation is sufficient for use in the test

procedure (see Sec. 12.2). Clearly, c̃e(te) is a quantized and truncated version of ce(te). An

example is shown in Fig. 12.1. Here we set V = 20, N = 4. Thus, each stair spans 20 and

ce(te) is truncated by the ceil V N = 80. The resulting curve c̃e(te) is a non-increasing

staircase function, which jumps from 4 to 3 at te = 1.8 and jumps from 3 to 2 at te = 2.8.

Moreover, since c̃e(te) is a staircase function and only takes integer values, we can

use an N -dim vector τ e to represent it without any information loss. We define it as

τ e , (τ1
e , τ

2
e , · · · , τNe ) where τ ie is the minimal travel time over [tlbe , t

ub
e ] such that c̃e(·) = i

and is defined as nan if c̃e(·) = i has no solution. For the example in Fig. 12.1, we have

τe = (τ1
e , τ

2
e , τ

3
e , τ

4
e ) = (nan, 2.8, 1.8, 1).

We call (τ ie, i) the i-th representative point of c̃e(·). Thus c̃e(·) is characterized by at

most N representative points, which will play a key role in our test procedure in Sec. 12.2.

We summary the quantizing procedure QUANTIZE(e, V,N) in Algorithm 1. The basic idea

is to first find the range of the stair levels, i.e., [nmin, nmax] and then find τ ie for any level

i in this range by solving an equation ce(te) = iV .
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Figure 12.1: An example for quantizing

ce(·).

BL BUX 2X

BUBL OPT

BL BUOPT

Before TEST(X,X,1)

TEST(X,X,1) Returns FAIL

TEST(X,X,1) Returns a Path

Figure 12.2: Binary search (Step 2 ) of Al-

gorithm 3.

Time Complexity: (i) When nmin = nmax (e.g., if tube = tlbe ), the loop in lines 7-

12 will not be executed. Thus, the total complexity of QUANTIZE(e, V,N) is O(N) due

to the initial loop in lines 1-3. (ii) When nmin < nmax, we need to solve an equation

for each i in the range [nmin, nmax − 1] as shown in line 8. Since we have assumed that

ce(te) is a strictly decreasing function, we can use a binary search to solve this equation,

which has time complexity O
(

log
⌈
tube −tlbe
tol

⌉)
where tol is the tolerance level for termina-

tion. The total complexity of QUANTIZE(e, V,N) is O
(
N + (nmax − nmin) log

⌈
tube −tlbe
tol

⌉)
=

O
(
N +N log

⌈
tube −tlbe
tol

⌉)
= O

(
N log

(
2
⌈
tube −tlbe
tol

⌉))
. To unify the expression of time com-

plexity for both (i) and (ii), we define

ξe , max

{
2, 2

⌈
tube − tlbe

tol

⌉}
,

then the complexity of QUANTIZE(e, V,N) is O(N log ξe). Also, if we define

ξ , max
e∈E

ξe, (12.2)

then the complexity of QUANTIZE(e, V,N) is O(N log ξ) for any e ∈ E .

12.2 The Test Procedure

As introduced above, the test procedure should “approximately” compare X and the

optimal value OPT such that it can answer either OPT > X or OPT ≤ (1 + δ)X in
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Algorithm 1 A Quantizing Procedure QUANTIZE(e, V,N)

1: for i = 1, 2, · · · , N do

2: Set τ ie = nan

3: end for

4: Set nmin = c̃e(t
ub
e ) = min{b ce(tube )

V c+ 1, N}
5: Set nmax = c̃e(t

lb
e ) = min{b ce(tlbe )

V c+ 1, N}
6: Set τnmax

e = tlbe

7: for i = nmin, nmin + 1, · · · , nmax − 1 do

8: Solve the equation ce(te) = iV over te ∈ [tlbe , t
ub
e ]

9: if the equation has a solution te then

10: Set τ ie = te

11: end if

12: end for

13: return τ e = (τ1
e , τ

2
e , · · · , τNe )

polynomial time. Inspired by [70], which improves the FPTAS of RSP in [50], we adopt a

more powerful test procedure, denoted by TEST(L,U, δ). It can answer either OPT > U or

OPT ≤ U + δL. Clearly, if we set L = U = X, TEST(X,X, δ) can answer either OPT > X

or OPT ≤ (1 + δ)X, which exactly completes the “approximate” comparison. The reason

to adopt a more powerful test procedure, similar to [70], is that we will also use it to

finally output a (1 + ε)-approximate solution. We will discuss it soon in Sec. 12.3.

The details of TEST(L,U, δ) are shown in Algorithm 2. As we mentioned before, the

major difference between our problem PASO and the existing problem RSP is that PASO

has a continuous fuel-time function for each edge instead of a fixed cost. Thus, different

from the test procedure for RSP (see [70, Fig. 1]), we have a step to invoke the quantizing

procedure (Algorithm 1) to quantize the fuel-time function, as shown in lines 3-5 in Al-

gorithm 2. More importantly, since our test procedure TEST(L,U, δ) aims to check either

OPT > U or OPT ≤ U + δL, roughly speaking, we do not need to quantize the portion

of each fuel-time function with high fuel cost, i.e., larger than U + δL. Hence, to ensure

polynomial time complexity eventually, we put a ceil V (N+1) for ce(te) as shown in line 4

of the algorithm, where V and N are appropriately set such that V (N + 1) ≥ U + δL.

After such quantization, the fuel-time function ce(te) for each edge e consists of at
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most N + 1 representative points. Therefore, conceptually we can construct a new graph

G̃ = (V, Ẽ). Each edge e ∈ E in the original graph corresponds to at most N + 1 edges

in the new graph Ẽ . For each edge e ∈ Ẽ , the edge cost c̃e is a positive integer, as shown

in (12.1). This is exactly an RSP problem. Therefore, the remaining steps follow the test

procedure for RSP on the new graph G̃. Specifically, since each edge e ∈ E has at most

N + 1 possible cost values all of which are positive integers (each edge e in the new graph

Ẽ has a positive integer cost), we can use dynamic programming to complete such test.

Similar to [50, 70], we define gv(c) as the minimal path travel time among all s− v paths

whose path cost is at most c ∈ Z+, and define gv(c) =∞ if no such path. The optimality

condition (or Bellman’s equation) becomes, for any c = 1, 2, · · · ,

gv(c) = min{gv(c− 1), min
u,i:e=(u,v)∈E,i=1,··· ,N,τ ie 6=nan

{gu(c− i) + τ ie}}, (12.3)

which is shown in line 10 in Algorithm 2. Since we only need to answer either OPT > U

or OPT ≤ U + δL, we do not have to process large c. Instead, iterating c from 1 to N is

enough for us to complete this task. This dynamic programming procedure is shown in

lines 6-15 of Algorithm 2.

In PASO, we should carefully design the quantizing and the dynamic programming

procedures jointly to guarantee performance, as shown in the following lemmas, which are

the counterparts to Lemma 2 and Lemma 3 for RSP in [70].

Lemma 12.1. If Algorithm 2 returns a path p and travel time set tp, then we have

OPT ≤ c(p, tp) ≤ U + Lδ. (12.4)

Proof. Please see Appendix 17.4.

Lemma 12.2. If U ≥ OPT, then Algorithm 2 must return a feasible path p and travel

time set tp, which satisfy

c(p, tp) ≤ OPT + Lδ. (12.5)

Proof. Please see Appendix 17.5.

Lemma 12.3. If Algorithm 2 returns FAIL, then we have

OPT > U. (12.6)
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Algorithm 2 A Test Procedure TEST(L,U, δ)

1: Set V = Lδ
n+1

2: Set N = bUV c+ n+ 1

3: for e ∈ E do

4: Get τ e = QUANTIZE(e, V,N + 1)

5: end for

6: Set gs(c) = 0, ∀c = 0, 1, · · · , N
7: Set gv(0) =∞, ∀v 6= s, v ∈ V
8: for c = 1, 2, · · · , N do

9: for v ∈ V do

10: Set gv(c) according to (12.3)

11: end for

12: if gd(c) ≤ T then

13: return the corresponding path p and travel time set tp = {te : e ∈ p}
14: end if

15: end for

16: return FAIL

Proof. This directly follows Lemma 12.2.

Our test procedure either returns a path p and travel time set tp in line 13, which

implies that OPT ≤ U + Lδ from Lemma 12.1, or returns FAIL in line 16, which implies

OPT > U from Lemma 12.3. Therefore, Lemma 12.1 and Lemma 12.3 justify that our

test procedure (Algorithm 2) completes the “approximate” comparison, i.e., answers either

OPT > U or OPT ≤ U + Lδ.

Thus, for the purpose of the test procedure, Lemma 12.1 and Lemma 12.3 are enough.

However, we present Lemma 12.2, which is stronger than Lemma 12.3, to provide a suffi-

cient condition such that our test procedure returns a path p and travel time set tp. We

will use Lemma 12.2 shortly in Sec. 12.3 to finally output a (1 + ε)-approximate solution.

Time Complexity: The quantizing procedures for all edges in lines 3-5 require

O(mN log ξ). The dynamic programming procedure in lines 6-15 requires O(mN2). Since

N = bUV c+n+1 = bUL · n+1
δ c+n+1 = O(UL · nδ +n), the total time complexity of Algorithm
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Algorithm 3 An FPTAS

1: Get a lower bound LB and upper bound UB for OPT

2: Set BL = LB

3: Set BU = UB

4: while BU
BL

> 16 do

5: X =
√
BL ·BU

6: Call TEST(X,X, 1)

7: if TEST(X,X, 1) returns FAIL then

8: Set BL = X

9: else

10: Set BU = 2X

11: end if

12: end while

13: Call TEST(BL, BU , ε)

2 is O(mN log ξ +mN2) = O(m(UL · nδ + n) log ξ +m(UL · nδ + n)2).

12.3 The Proposed FPTAS

Based on our own test procedure (Algorithm 2), we then follow the FPTAS for RSP in

[70, Fig. 2] by replacing its test procedure with ours. For completeness, we present the

FPTAS in Algorithm 3 and explain it with the following three steps.

Step 1 (line 1): To initialize the bound interval, we need to first obtain a lower bound

LB and an upper bound UB for the optimal value OPT. Define that the minimal single-

edge fuel cost is Clb , mine∈E ce(t
ub
e ) and the maximal single-edge fuel cost is Cub ,

maxe∈E ce(t
lb
e ). Simply, we can use the minimal single-edge fuel consumption Clb as the

lower bound LB and use the maximal single-path1 fuel consumption nCub as the upper

bound UB. Also, in Chap. 13, we will propose a heuristic scheme which can always output

a set of LB and UB.

Step 2 (lines 2-12): Using the initial lower bound LB and upper bound UB, we design

a binary search scheme, which repeatedly invokes our test procedure (Algorithm 2) to

1A simple path can have at most n edges.
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exponentially narrow down the bound interval [BL, BU ] until BU/BL ≤ 16. The binary

search step is visualized in Fig. 12.2. Note that we always keep BL as a lower bound

and BU as an upper bound for OPT. Whenever BU/BL > 16, we input the geometric

mean X =
√
BL ·BU and δ = 1 to the test procedure, as shown in lines 5 and 6. If

TEST(X,X, 1) returns FAIL, then according to Lemma 12.2, we must have X < OPT.

In this case, we reset the lower bound BL to be V in line 8. Otherwise, TEST(X,X, 1)

returns a feasible path p and travel time set tp. According to Lemma 12.1, we must have

OPT ≤ X + δX = 2X. We reset the upper bound to be 2X in line 10. It can be easily

shown that this binary search returns a lower bound BL and an upper bound BU for OPT

such that BU/BL ≤ 16 in O(log log UB
LB ) iterations.

Step 3 (line 13): When BU
BL
≤ 16, we call our test procedure again but we use L = BL

and U = BU and δ = ε. Since BU ≥ OPT, according to Lemma 12.2, TEST(BL, BU , ε)

must return a feasible path p and travel time tp such that

c(p, tp) ≤ OPT + εBL ≤ OPT + εOPT = (1 + ε)OPT.

Therefore, we get a (1 + ε)-approximate solution to PASO.

Time Complexity: Step 1 requires O(m) to get an initial lower bound LB and upper

bound UB. Step 2 invokes the test procedure O(log log UB
LB ) times and each invocation takes

O(mn log ξ+mn2) time by using L = U = X and δ = 1. Thus Step 2 takes O((mn log ξ+

mn2) log log UB
LB ). Step 3 also invokes the test procedure, and it takes O(mn log ξ

ε + mn2

ε2
)

time by using δ = ε < 1 and O(UL ) = O(BUBL ) = O(1) because BU
BL
≤ 16 = O(1). Here we

can also see why we need to use a binary search to obtain BU
BL
≤ 16 in Step 2. This is

because BU
BL

= O(1) ensures polynomial time complexity in Step 3. Therefore, the total

complexity is O((mn log ξ +mn2) log log UB
LB + mn log ξ

ε + mn2

ε2
).

We summarize our results for the approximate scheme in the following theorem.

Theorem 12.1. Algorithm 3 returns a (1 + ε)-approximate solution for PASO in time

O((mn log ξ + mn2) log log UB
LB + mn log ξ

ε + mn2

ε2
). In addition, when we use LB = Clb and

UB = nCub where Clb , mine∈E ce(t
ub
e ) and Cub , maxe∈E ce(t

lb
e ) = ce1(tlbe1), we have

log log UB
LB = max{O(log log n), O(Ie1)} where Ie1 is the input size of all parameters of edge

e1. Thus, Algorithm 3 has time complexity polynomial in the input size of the problem

PASO and therefore is an FPTAS.
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Proof. Please see Appendix 17.6.

Although we generalize the FPTAS design from RSP to PASO, such an FPTAS (Algo-

rithm 3) still has high complexity for a large-scale highway network with tens of thousands

of nodes and edges. In the next chapter, we propose a heuristic scheme with substantially

lower complexity.

12.4 Compare FPTAS with a Simple Layered Algorithm

For those who are familiar with the FPTAS of RSP [50], it appears that our FPTAS of

PASO shares some similarities with the FPTAS of RSP. One may ask whether we can

use the FPTAS of RSP as a blackbox to design an FPTAS of PASO. In this section, we

propose such a simple layered algorithm, which first quantizes the fuel-time function ce(te),

and then constructs a new graph with fixed travel time and cost, and finally applies the

FPTAS of RSP for the new graph. We show that this simple layered algorithm outputs a

(1 + ε)-approximate solution to PASO, but its time complexity is no longer polynomial in

the problem size, which means that it is not an FPTAS of PASO.

The idea of the simple layered algorithm is as follows. We first quantize the fuel-time

function ce(te) to a staircase function c̃e(te), as shown in Sec. 12.1. If the quantization is

accurate enough, we can show that the optimal solution to PASO for graph G = (V, E) with

quantized fuel-time function c̃e(te) is also a near-optimal solution to PASO for graph G =

(V, E) with original fuel-time function ce(te). Thus we can resort to solving PASO for graph

G = (V, E) with quantized fuel-time function c̃e(te). Since c̃e(te) is a staircase function

, we can prove that there exists an optimal solution to PASO for graph G = (V, E) with

c̃e(te), where the optimal travel time of any edge e ∈ E belongs to one of the representative

points of edge e (see the definition of representative points in Sec. 12.1). Hence, though

c̃e(te) is a continuous function, it suffices to focus on those discrete representative points

to solve PASO. Then we can construct another graph G̃ = (V, Ẽ) with only fixed travel

time and fixed travel cost based on representative points. If edge e = (u, v) ∈ E has

k discrete representative points, then there are k parallel edges from u to v in the new

graph G̃, all of which have different (but fixed) travel time and cost. Solving PASO for

graph G = (V, E) with c̃e(te) is equivalent to solving RSP for graph G̃ = (V, Ẽ). Finally,
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Algorithm 4 A Simple Layered Algorithm

1: Set ε1 = ε
2

2: Set V = LB·ε1
n

3: Set N = bCub

V c+ 1 = b 1
ε1
· UBLB c+ 1

4: for e ∈ E do

5: Get τ e = QUANTIZE(e, V,N)

6: end for

7: Construct another graph G̃ = (V, Ẽ) and initially set Ẽ = ∅
8: for e = (u, v) ∈ E do

9: for i = 1, 2, · · · , N do

10: if τ ie 6= nan then

11: Add edge (u, v) with fixed travel time τ ie and fixed travel cost c̃e(τ
i
e) (see (12.1)

for the definition of c̃e(·)) into Ẽ
12: end if

13: end for

14: end for

15: Set ε2 = ε
2+ε

16: Call the FPTAS of RSP in [50, Section 4] for graph G̃ and approximate ratio ε2

17: Return the output path p and travel time set tp.

we can use the FPTAS of RSP to solve RSP problem for graph G̃ = (V, Ẽ). The output

solution is an approximate solution to PASO for graph G = (V, E) with quantized fuel-time

function c̃e(te), which is further an approximate solution to PASO for graph G = (V, E)

with original fuel-time function ce(te). Next, we present this simple layered algorithm.

Same in Sec. 12.3, we define the minimal single-edge fuel cost Clb , mine∈E ce(t
ub
e ) and

the maximal single-edge fuel cost Cub , maxe∈E ce(t
lb
e ). We then define LB , Clb as the

lower bound for OPT and UB , nCub as the upper bound for OPT. The simple layered

algorithm is shown in Algorithm 4.

Step 1 (lines 1-6): We quantize the fuel-time function ce(te) for all edges e ∈ E with

V = LB·ε1
n and N = bCub

V c+1 = b 1
ε1
·UBLB c+1. The time complexity of Step 1 is O(mN log ξ).

Step 2 (lines 7-14): We construct another graph G̃ = (V, Ẽ) based on representative

points. Note that if edge e = (u, v) ∈ E in the original graph G has k ≤ N discrete
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representative points, then there are k parallel edges from u to v in the new graph G̃. The

new graph G̃ has |V| = n nodes and |Ẽ | = O(mN) edges. The time complexity of Step 2

is O(n+mN).

Step 3 (lines 15-16): We apply the FPTAS in [50, Section 4] to solve the RSP problem

for graph G̃. The output solution is an (1 + ε2)-approximate solution to PASO for graph

G = (V, E) with quantized fuel-time function c̃e(te), and further is a (1 + ε)-approximate

solution to PASO for graph G = (V, E) with original fuel-time function ce(te). Note that

we should get a lower bound L̃B and an upper bound ŨB for the optimal value. It is easy

to see that we can set L̃B = bClb

V c+ 1 = b nε1 c+ 1 and ŨB = n(bCub

V c+ 1) = n(b 1
ε1
· UBLB c+ 1),

implying that ŨB
L̃B

= O(UBLB ). Thus, according to [50, Section 4], the time complexity of

Step 3 is O(log log ŨB
L̃B

( |Ẽ|·nε2 + log log ŨB
L̃B

)) = O(log log UB
LB (mnNε2 + log log UB

LB )).

Time Complexity: According to the above three-step analysis, the total time

complexity of the simple layered algorithm (Algorithm 4) is O(mN log ξ+log log UB
LB (mnNε2 +

log log UB
LB )). From line 3 in Algorithm 4, we get that N = O( 1

ε1
· UBLB ). Thus, the total

time complexity is O(mε1 ·
UB
LB · log ξ + log log UB

LB ( mn
ε1·ε2 ·

UB
LB + log log UB

LB )) where ε1 = ε
2 and

ε2 = ε
2+ε , as defined in line 1 and line 15 in Algorithm 4, respectively.

We summarize the time complexity and prove the approximate ratio of Algorithm 4

in the following theorem.

Theorem 12.2. Algorithm 4 returns a (1 + ε)-approximate solution for PASO in time

O(mε1 ·
UB
LB · log ξ + log log UB

LB ( mn
ε1·ε2 ·

UB
LB + log log UB

LB )) where ε1 = ε
2 and ε2 = ε

2+ε .

Proof. Please see Appendix 17.7.

Theorem 12.2 shows that our simple layered algorithm (which uses the FPTAS of

RSP as a blackbox) indeed can output a (1 + ε)-approximate solution. But the time

complexity is no longer polynomial in the problem size since N = O(UBLB ) is not polynomial

in the problem size. The reason is as follows. In the simple layered algorithm, we only

quantize the fuel-time functions once. In order to guarantee the approximate ratio, we

must quantize the fuel-time functions accurately enough. This makes the number of stairs

N too large, i.e., in the order of the ratio of the initial upper bound UB to the initial lower

bound LB, which is not polynomial in the problem size any more.

As compared to this simple layered algorithm (Algorithm 4), our FPTAS (Algorithm 3)
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first iteratively finds a better lower bound and upper bound until the ratio of the upper

bound to the lower bound is within a constant (see lines 2-12 in Algorithm 3) and then

performs an accurate quantization to output the (1+ ε)-approximate solution. During the

procedure to narrow down the ratio of the upper bound to the lower bound, our FPTAS

utilizes the test procedure test(X,X, 1) (see line 6 in Algorithm 3) which also needs to

perform a quantization but the number of stars N is always guaranteed to be polynomial

in the problem size.2 Therefore, our FPTAS avoids quantizations with too many stairs

and thus can guarantee polynomial time complexity.

2According to lines 1-2 in Algorithm 2, when L = U = X, δ = 1, we have N = bn+ 1c+ n+ 1 = O(n).



Chapter 13

A Fast Dual-Based Heuristic

In this section, we present a heuristic scheme for our problem PASO based on Lagrangian

relaxation. Such a heuristic scheme, as we will show later in Sec. 13.3, runs much faster

than the FPTAS (Algorithm 3). Also, it always outputs a lower bound LB and an upper

bound UB on OPT, which implements Step 1 in Algorithm 3. Moreover, in most practical

scenarios as shown in Chap. 15, this heuristic scheme outputs an optimal (or at least

near-optimal) solution, i.e., LB = UB = OPT (or at least LB ≈ OPT ≈ UB).

13.1 Lagrangian Relaxation and Dual Problem

In our problem PASO, since the hard delay constraint (11.4) couples path selection variable

x with speed optimization variable t, we relax it and introduce a Lagrangian dual variable

λ ≥ 0, which can be interpreted as a (per-unit) delay price over the entire network.

Based on such relaxation, we can get the corresponding Lagrangian,

L(x, t, λ) ,
∑
e∈E

xe · ce(te) + λ(
∑
e∈E

xete − T )

=
∑
e∈E

xe · (ce(te) + λte)− λT, (13.1)

and the corresponding dual function is defined as D(λ) , minx∈X ,t∈T L(x, t, λ). Then the

dual problem of PASO is formulated as

(PASO-Dual) max
λ≥0

D(λ)

82
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13.2 Obtain Dual Function

Before we solve the dual problem, let us first show how to obtain the dual function for a

given λ as follows,

D(λ) = min
x∈X ,t∈T

L(x, t, λ)

= −λT + min
x∈X ,t∈T

∑
e∈E

xe · (ce(te) + λte)

(E1)
= −λT + min

x∈X

[
min
t∈T

∑
e∈E

xe · (ce(te) + λte)

]
(E2)
= −λT + min

x∈X

∑
e∈E

xe · min
tlbe≤te≤tube

(ce(te) + λte)

(E3)
= −λT + min

x∈X

∑
e∈E

xe · [ce(t∗e(λ)) + λt∗e(λ)]

(E4)
= −λT + min

x∈X

∑
e∈E

xe · we(λ)

(E5)
= −λT +

∑
e∈p∗(λ)

we(λ). (13.2)

We explain (E1) − (E5) in (13.2) one by one. Equality (E1) is because no coupled

constraints exist for x and t. Equality (E2) is because no coupled constraints exist for the

travel time at different edges in T . Recall that T , {t : tlbe ≤ te ≤ tube ,∀e ∈ E} as defined

in (11.6).

In equality (E3), t∗e(λ) is defined as

t∗e(λ) , arg min
tlbe≤te≤tube

(ce(te) + λte) . (13.3)

Note that since we have assumed that ce(te) is strictly convex and strictly decreasing over

[tlbe , t
ub
e ] in Sec. 11.4, t∗e(λ) is unique and thus (13.3) is well defined. Specifically, t∗e(λ) can

be obtained analytically as follows.

Lemma 13.1. Define c′−1
e (·) as the inverse function of c′e(·). Then we have

t∗e(λ) =


tube , If 0 ≤ λ < −c′e(tube );

c′−1
e (−λ), If −c′e(tube ) ≤ λ ≤ −c′e(tlbe );

tlbe , If λ > −c′e(tlbe ).

(13.4)
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Proof. Please see Appendix 17.8.

In addition, (13.3) has a nice economic interpretation. As we have relaxed the hard

delay constraint, we penalize each edge e with a delay cost, which is the product of the

travel time te and the (per-unit) delay price λ. Then for a given delay price λ, each edge

selects the optimal travel time to minimize its generalized cost, including both fuel cost

ce(te) and delay cost λte. Thus, t∗e(λ) is the best response of edge e for a given delay price

λ.

In equality (E4), we(λ) is defined as

we(λ) , ce(t
∗
e(λ)) + λt∗e(λ), (13.5)

which can be interpreted as the minimal generalized cost (including both fuel cost and

delay cost) of edge e for a given delay price λ. Obviously, we(λ) is the generalized cost

under the best response t∗e(λ).

In equality (E5), since X restricts that an s−d path is selected, minx∈X
∑

e∈E xe ·we(λ)

is exactly a shortest path problem where each edge e has a generalized cost we(λ). We

define p∗(λ) as the resulting shortest-generalized-cost path.

In summary, (13.2) shows that for any dual variable λ, we only need to solve a shortest

path problem to obtain the dual function value D(λ), which is much easier than PASO.

13.3 The Heuristic Algorithm

Our heuristic scheme relies on one key observation. Define

δ(λ) ,
∑

e∈p∗(λ)

t∗e(λ), (13.6)

which is the total travel time of the resulting shortest-generalized-cost path p∗(λ) for a

given λ. Our key observation is the following theorem (see an example in Fig. 15.3).

Theorem 13.1. δ(λ) is non-increasing over λ ∈ [0,+∞).

Proof. Please see Appendix 17.9.

Theorem 13.1 shows that increasing λ will decrease the total travel time of the selected

path based on the best responses of all edges. Intuitively, since λ can be interpreted as
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a delay price, increasing λ will force all edges to select a shorter travel time and further

force the resulting shortest-generalized-cost path to have a shorter travel time.

Based on Theorem 13.1, we can use a simple dual variable λ to coordinate the total

travel time. For example, when δ(λ) > T , we can increase λ such that δ(λ) can be

decreased to finally satisfy the hard delay requirement. On the other hand, when δ(λ) < T ,

it means that the truck travels very fast and there still exists some room to increase the

travel time and thus decrease the fuel consumption. Then we decrease λ such that δ(λ)

can be increased to reach T . This is called a coordination mechanism [28, Ch. 5.1.6].

Therefore, we aim to find a λ0 such that δ(λ0) = T . However, our problem PASO is not

convex but has a combinatorial difficulty. Thus it is not guaranteed to find such a λ0. We

thus call our binary search for λ0 (Algorithm 5) as a heuristic scheme.

In Algorithm 5, we first set an initial lower bound λL = 0 and an initial upper bound

λU = λmax for the targeted λ0. We discuss how to set λmax in Sec. 13.4.1. Then we do

binary search in lines 3-19, where tol in line 3 is the tolerance level for termination which

is close to zero. During the binary search, based on the non-increasing property of δ(λ)

(Theorem 13.1), we keep updating the lower bound λL and its corresponding solution

(p∗(λL), {t∗e(λL) : e ∈ p∗(λL)}), as well as the upper bound λU and its corresponding

solution (p∗(λU ), {t∗e(λU ) : e ∈ p∗(λU )}).
This algorithm has two possible results:

� Case 1: If it returns in line 9, then we have found a λ0 such that δ(λ0) = T . We prove

that the returned solution is optimal for PASO in Theorem 13.2.

� Case 2: If it returns in line 20, then we have found a λ0 such that δ(λL) > T and

δ(λU ) < T . With a small enough tolerance level tol, λL = λ0 − tol/2 → λ−0 . Likewise,

λU = λ0+tol/2→ λ+
0 . Roughly speaking, this means that δ(λ) is not continuous at λ = λ0.

Although this return does not guarantee optimality, we prove in Theorem 13.3 that the

returned solutions (p∗(λL), {t∗e(λL) : e ∈ p∗(λL)}) and (p∗(λU ), {t∗e(λU ) : e ∈ p∗(λU )})
give a lower bound LB and an upper bound UB for OPT, respectively. We thus use

(p∗(λU ), {t∗e(λU ) : e ∈ p∗(λU )}) as the output solution to PASO in this case.

Theorem 13.2. If Algorithm 5 returns in line 9, then the returned solution

(p∗(λ0), {t∗e(λ0) : e ∈ p∗(λ0)}) is an optimal solution of PASO.

Proof. Please see Appendix 17.10.
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Algorithm 5 A Heuristic Scheme

1: Set λL = 0

2: Set λU = λmax

3: while λU − λL > tol do

4: Set λ0 = λL+λU
2

5: Get t∗e(λ0) from Lemma 13.1 for all e ∈ E
6: Get we(λ0) = ce(t

∗
e(λ0)) + λ0t

∗
e(λ0) for all e ∈ E

7: Get the shortest path p∗(λ0) in terms of we(λ0)

8: if δ(p∗(λ0)) = T then

9: return (p∗(λ0), {t∗e(λ0)})
10: else if δ(p∗(λ0)) > T then

11: Set λL = λ0

12: Set p∗(λL) = p∗(λ0)

13: Set t∗e(λL) = t∗e(λ0), ∀e ∈ E
14: else

15: Set λU = λ0

16: Set p∗(λU ) = p∗(λ0)

17: Set t∗e(λU ) = t∗e(λ0), ∀e ∈ E
18: end if

19: end while

20: return (p∗(λL), {t∗e(λL)}) and (p∗(λU ), {t∗e(λU )})

As a by-product, Theorem 13.2 also shows that the strong duality for the combinatorial

problem PASO holds in this case. Also, λ0 is the optimal solution to the dual problem

PASO-Dual.

Theorem 13.3. If Algorithm 5 returns in line 20, and define LB ,
∑

e∈p∗(λL) ce(t
∗
e(λL))

and UB ,
∑

e∈p∗(λU ) ce(t
∗
e(λU )), then we have LB ≤ OPT ≤ UB.

Proof. Please see Appendix 17.11.

Since (p∗(λU ), {t∗e(λU ) : e ∈ p∗(λU )}) is a feasible solution to PASO, we use it as the

output solution to our problem PASO if Algorithm 5 returns in line 20. Though this

solution is not optimal to PASO, we evaluate its performance later in Sec. 13.4.2.
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We should further note that the LB and UB returned by Algorithm 5 in line 20 can

be used for Step 1 of Algorithm 3. For the case that Algorithm 5 returns in line 9,

we use the returned optimal solution as both a lower bound and an upper bound with

LB = UB = OPT. After such unification, Algorithm 5 always outputs a LB and UB for

the optimal solution OPT.

Time Complexity: If we use Dijkstra’s shortest-path algorithm with a min-priority

queue in line 7 in Algorithm 5, Algorithm 5 has complexity

O((m+ n log n) log λmax), much faster than the FPTAS (Algorithm 3).

Remark: A similar dual-based heuristical approach for RSP is proposed in [63].

However, as mentioned in Chap. 12, different from RSP, our problem PASO has an extra

design space of speed optimization. Therefore, theoretically our contribution in this section

is to generalize the dual-based heuristical design from RSP [63] to PASO.

13.4 Discussions

13.4.1 How to Set λmax?

Since our heuristic algorithm has complexity O(log λmax(m+ n log n)), in this subsection,

we show how to set λmax.

Define P as the set of all s− d paths. Suppose each edge e ∈ E has a fixed travel time

tlbe and a fixed travel/fuel cost cube = ce(t
lb
e ).1 Define Cp ,

∑
e∈p c

ub
e and Tp ,

∑
e∈p t

lb
e as

the travel cost and travel time of any path p ∈ P. Define T lb as the smallest travel time

from s to d, i.e.,

T lb , min
p∈P

Tp. (13.7)

It is possible that there exist multiple fastest paths. We then define PF as the set of all

fastest s− d paths, i.e.,

PF , {p ∈ P : Tp = T lb}. (13.8)

Among all fastest paths, we define p∗ as an arbitrary path with minimal fuel cost, i.e.,

p∗ ∈ arg min
p∈PF

Cp. (13.9)

1 These are the travel time and fuel cost when the truck runs at the highest speed over edge e.
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Clearly, Tp∗ = T lb and Cp∗ ≤ Cp,∀p ∈ PF .

Now we define the following three λ values:

λ1 , max
e∈E

{
−c′e(tlbe )

}
, (13.10)

λ2 , max
p∈P\PF

Cp∗ − Cp
Tp − Tp∗

, (13.11)

λ̄ , max{λ1, λ2}. (13.12)

We has the following result.

Lemma 13.2. For all λ ≥ λ̄, δ(λ) = T lb.

Proof. See Appendix 17.12

Lemma 13.2 suggests that when λ ≥ λ̄, δ(λ) will not change anymore. Therefore, we

can set λmax to be λ̄. However, it could be difficult to obtain λ2 (and also λ̄) because the

number of s − d paths, i.e., |P|, could exponentially increase when the the network size

increases. We then find an easy-to-compute upper bound for λ2,

λ2 = max
p∈P\PF

Cp∗ − Cp
Tp − Tp∗

≤ max
p∈P\PF

Cp∗

Tp − Tp∗
=

Cp∗

min
p∈P\PF

Tp − Tp∗
, λ3. (13.13)

Note that min
p∈P\PF

Tp is the minimal travel time among all s− d paths excluding those

fastest paths, namely, the second smallest travel time among all s− d paths. To compute

λ3, we can use the polynomial-time algorithm2 in [41] to find k shortest path in terms of

edge cost tlbe . As we do not know the number of fastest paths, i.e., |PF |, we cannot specify

k. Heuristically, we can try different k (e.g., increase k one by one) until we find a path

with the second smallest travel time. Note that we also find all fastest paths. Thus, we

can obtain Cp∗ ,Tp∗ and min
p∈P\PF

Tp, and therefore compute λ3.

We can then set λmax as

λmax , max{λ1, λ3} ≥ max{λ1, λ2} = λ̄. (13.14)

Remark: We note that λ3 (and also λmax) depends on (i) the fuel consumption of

the fastest path (when the truck runs at the highest speed), and (ii) the total travel time

2More specifically, the time complexity of the algorithm in [41] to find k shortest paths is O(m+n logn+

kn) for a directed graph with n nodes and m edges.
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difference between the fastest path and the second fastest path (when the truck runs at

the highest speed).

The analysis above is about how to set λmax theoretically. Practically, since we are

considering the fuel consumption and λ can be interpreted as a delay price, λmax can be

reasonably set to be an upper bound of the fuel consumption per hour. In our simulation

in Chap. 15, we set λmax = 100, which works for all settings.

13.4.2 How to Characterize the Optimality Gap of the Heuristic Algo-

rithm?

As we proved in Theorem 13.2, if our heuristic algorithm (Algorithm 5) returns in line 9,

then the returned solution (p∗(λ0), {t∗e(λ0) : e ∈ p∗(λ0)}) is an optimal solution of PASO.

But if Algorithm 5 returns in line 20, we only get a feasible (but not necessarily optimal)

solution to our problem PASO, i.e., (p∗(λU ), {t∗e(λU ) : e ∈ p∗(λU )}). In this subsection, we

evaluate the performance of this solution.

Suppose that our heuristic algorithm (Algorithm 5) returns in line 20. For simplicity,

we assume that tol = 0 and thus we have λL = λU = λ0. We further let p1 = p∗(λL) and

p2 = p∗(λU ) as the s − d path corresponding to the lower bound solution and the upper

bound solution, respectively. Denote Cp =
∑

e∈p ce(t
∗
e(λ0)) and Tp =

∑
e∈p t

∗
e(λ0) as the

fuel cost and travel time of path p when λ = λ0. Since δ(λ) function has a jump (switch

from Tp1 to Tp2) at the point λ = λ0, we must have3

Cp1 + λ0Tp1 = Cp2 + λ0Tp2 , (13.15)

i.e., the generalized cost of path p1 is equal to the generalized cost of path p2 when λ = λ0.

As proved in Theorem 13.3, we have that Cp1 = LB ≤ OPT ≤ UB = Cp2 . Therefore,

(13.15) implies that the performance gap (in terms of the total fuel cost) between the

output solution (p2, {t∗e(λU ) : e ∈ p2}) and the optimal solution can be upper bounded as

Cp2 − OPT ≤ Cp2 − LB = Cp2 − Cp1 = λ0(Tp1 − Tp2), (13.16)

3It is easy to prove that the edge-e generalized cost we(λ) defined in (13.5) is a continuous function

with respect to λ. Therefore, the path-p generalized cost
∑
e∈p we(λ) is also a continuous function with

respect to λ. Then we can show that the generalized cost of path p1 is equal to the generalized cost of

path p2 when λ = λ0.
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where (Tp1 − Tp2) is the jump range of δ(λ) at the point λ = λ0.

According to our simulations later in Chap. 15, both the jump range and the perfor-

mance gap are usually very small. For example, in Fig. 15.3, the jump range is only 0.2

and the performance gap λ0(Tp1 − Tp2) = 11.5 × 0.2 = 2.3, which is negligible to OPT,

usually more than 300 (gallons of fuels) for a 40-hour trip.

We should further note that the upper bound λ0(Tp1−Tp2) can only be determined after

we run our heuristic algorithm. To obtain an upper bound before running our heuristic

algorithm, we can further upper bound λ0(Tp1 − Tp2) as,

λ0(Tp1 − Tp2) ≤ λmax(T ub − T lb), (13.17)

where T ub , maxp∈P(
∑

e∈p t
ub
e ) is the maximal travel time, and T lb , minp∈P(

∑
e∈p t

lb
e )

is the minimal travel time (same as (13.7)). To avoid solving a NP-hard longest path

problem to obtain T ub, we can further upper bound T ub as T ub ≤ n ·maxe∈E t
ub
e . Thus,

the performance gap of our heuristic solution is upper bounded by

Cp2 − OPT ≤ λ0(Tp1 − Tp2) ≤ λmax(T ub − T lb) ≤ λmax(n ·max
e∈E

tube − T lb), (13.18)

which can be obtained before we run our heuristic algorithm.

13.4.3 How to Generalize Our Approach?

For our NP-complete mixed discrete-continuous problem PASO, our dual-based heuris-

tic algorithm has much lower complexity than the FPTAS, and it outputs an optimal

solution under a condition (see Theorem 13.2). It is interesting to see whether our ap-

proach/techinque can be generalized to solve other problems. In this subsection, we gen-

eralize Theorem 13.2 for a class of mixed discrete-continuous problems.

Consider a general mixed discrete-continuous optimization problem, called (P),

(P) : min f(x, t) (13.19)

s.t. (x, t) ∈ C (13.20)

g(x, t) ≤ 0 (13.21)

var. x ∈ {0, 1}m, t ∈ Rn (13.22)

Here we assume that m,n ∈ Z+. If m = 0, then (P) is a pure continuous optimization

problem. If n = 0, then (P) is a pure discrete optimization problem. Set C is a constraint
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set for the optimization variables (x, t). Also, f : {0, 1}m × R+ → R is the objective

function and g : {0, 1}m ×R+ → R is the extra constraint function. Note that we assume

that f, g, and C are general. We denote the optimal value of problem (P) as OPT. One

can easily see that our problem PASO in (11.3)-(11.4) is a concrete example in the format

of problem (P) where the hard delay constraint (11.4) is the extra constraint (13.21).

We assume that problem (P) is hard to solve due to the extra constraint (13.21), but

becomes easy to solve if we relax (13.21). More specifically, we define another mixed

discrete-continuous optimization problem, called (P̃(λ)),

(P̃(λ)) : min f(x, t) + λg(x, t) (13.23)

s.t. (x, t) ∈ C (13.24)

var. x ∈ {0, 1}m, t ∈ Rn (13.25)

The only difference between (P̃(λ)) and (P) is that we put the extra constraint (13.21)

in (P) into the objective function in (P̃(λ)). We denote the optimal value of (P̃(λ)) as

˜OPT(λ). We assume that it is easy to solve (P̃(λ)) for any λ ≥ 0 in the sense that we

can find an α-approximate (α ≥ 1) solution (x∗(λ), t∗(λ)) to (P̃(λ)) in polynomial time.

Namely, (x∗(λ), t∗(λ)) is a feasible solution to (P̃(λ)) and

f(x∗(λ), t∗(λ)) + λg(x∗(λ), t∗(λ)) ≤ α ˜OPT(λ). (13.26)

Now we try to solve the hard problem (P) by solving the easy problem (P̃(λ)). We

relax (13.21) for (P) by introducing a dual variable λ ≥ 0. The corresponding dual

function becomes

D(λ) , min
(x,t):(x,t)∈C,x∈{0,1}m,t∈Rn

[f(x, t) + λg(x, t)]. (13.27)

Clearly, for any given λ, D(λ) can be computed by solving the easy problem (P̃(λ)). Then

we have the following generalized result of Theorem 13.2.

Theorem 13.4. If we can find a λ0 such that λ0·g(x∗(λ0), t∗(λ0)) = 0 and g(x∗(λ0), t∗(λ0)) ≤
0, then (x∗(λ0), t∗(λ0)) is an α-approximate solution to problem (P).

Proof. Please see Appendix 17.13.
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Note that if we can find an optimal solution (x∗(λ), t∗(λ)) to problem (P̃(λ)), i.e.,

α = 1, then (x∗(λ0), t∗(λ0)) is optimal to problem (P) in Theorem 13.4. This is the case

for our problem PASO.

Theorem 13.4 is based on the condition that we can find a λ0 such that λ0·g(x∗(λ0), t∗(λ0)) =

0 and g(x∗(λ0), t∗(λ0)) ≤ 0. But there are two major challenges by applying Theorem

13.4 to solve the hard problem (P):

• First, it is possible that such a λ0 does not exist;

• Second, it is highly non-trivial to find such a λ0.

For our problem PASO, indeed, it is possible that such a λ0 does not exist (see Fig. 15.3

with T ∈ (37.62, 37.83) as an example). If such a λ0 exists, since we have found a mono-

tonic property of the extra constraint g(x∗(λ), t∗(λ)) = δ(λ) − T with respect to λ (see

Theorem 13.1), we can design an efficient binary search scheme to find this λ0. However,

for general problem (P), it is not clear whether there also exists such a monotonic property

for the extra constraint g(x∗(λ), t∗(λ)) with respect to λ. We should exploit the problem

structure to design an efficient algorithm to find such a λ0.

We leave it as an interesting future direction to use/generalize our approach to solve

other concrete problems in the format of (P).



Chapter 14

Extensions

The algorithmic solutions can be extended for consideration of other constraints in long-

haul heavy-duty truck operations, including: (i) truck-restricted roads and toll fees, (ii) a

set of destinations instead of one single destination, (iii) hours of service restriction rules

for truck drivers, and (iv) real-time traffic information.

In this section, we discuss several extensions of our solutions by considering more

realistic constraints for long-haul heavy-duty trucks.

14.1 Truck-Restricted Roads and Toll Fees

In our problem PASO, we only consider fuel consumption. However, in reality, some

highways have restrictions for truck’s weight and size (e.g., [13]) and/or toll fees. Our

solutions can be optimally extended to both cases.

For any truck-restricted road, we just check whether our heavy-duty truck meets its

restrictions. If not, this road cannot be selected during the routing, and we can remove it

from the graph and solve the problem using the remaining graph. For road-dependent toll

fees, we should consider a monetary cost including both fuel cost and toll fees. However,

the toll fee for each road is fixed and independent with speed optimization. Thus we can

define the monetary cost for road e ∈ E as me(te) = P fuelce(te) + P toll
e where P fuel is the

price per gallon of fuel and P toll
e is the toll fee of road e, which is 0 if e is free. Since me(te)

is still polynomial and strictly convex, we can use both the FPTAS and the heuristic

scheme to solve PASO where the objective is replaced by min
∑

e∈E xe ·me(te).

14.2 Balance Fuel Cost and Time Cost

In our problem PASO, we aim to minimize the fuel cost as long as the travel time is within

the delay constraint T . However, in reality, the driver may prefer to finish the delivery as

93
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soon as possible such that he or she can have more leisure time. Our solution can also be

optimally extended to this case.

Similar to Sec. 14.1, we can model the edge cost as c̃e(te) = ce(te) + wte, where ce(te)

is the fuel cost, te is the time cost, and w ≥ 0 is a parameter to balance the fuel cost and

the time cost. The constraints are still the same as that in PASO where a path should be

selected and the travel time is within the hard delay requirement T . Since the new cost-

time function c̃e(te) is still polynomial and strictly convex, all our results hold optimally.

Note that letting w = 0 (i.e., only considering the fuel cost) reduces to our problem PASO,

and letting w →∞ (i.e., only considering the time cost) leads to the result that the fastest

path with maximal speed is the optimal solution.

14.3 A Set of Destinations

Another natural extension of PASO is to take into account multiple destinations. In this

case, a set of destinations are given as the inputs to the problem, each with an individual

hard delay. The problem is to select a path and optimize the speed so as to reach every

destination within its hard delay, while minimizing the fuel consumption. First, note that

this extended problem without speed optimization is the well-known traveling salesman

problem (TSP) [22] and vehicle routing problems (VRP) [47], both of which are known

to be NP-complete. Second, to the best of our knowledge, there is no FPTAS solutions

for TSP or VRP in their basic formulations. Consequently, as a heuristic approach, one

way to tackle the problem is to decompose the general problem into a set of sub-problems,

each with one source-destination pair. We can solve any sub-problem using our approach,

and then solve the next sub-problem by contemplating the destination of the current

sub-problem as the source of next sub-problem.

14.4 Hours of Service Restriction Rules

Another extension to our problem originates from the real world regulations. In several

countries there are so-called hours-of-service (HOS) [5] safety rules issued by governmental

organizations (like Federal Motor Carrier Safety Administration in USA), regarding the

limits on non-stop driving hours for the truck driver. As an example, in Australia the
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driver must rest for 30 minutes every 5 hours and stop for 10 hours of sleep for every

14 hours of work [9]. In this scenario, the path and the speed must be chosen not only

to meet the deadline and minimize the fuel consumption, but also to satisfy the HOS

constraints. In the most general scenario, one may consider that a subset of nodes (cities)

in the highway transportation network are the resting nodes. And during traveling from

source to destination, the non-stop driving duration between two resting node must respect

HOS constraint (5 hours, say). As a heuristic approach, similar to Sec. 14.3, we divide

the problem into some sub-problems. More specifically, we follow three steps: (i) we first

select some rest nodes to form a rest-node-line; (ii) we then divide the total delay into all

segments in the rest-node-line such that the HOS constraint is satisfied for each segment;

(iii) we finally use our solution to solve the sub-problem for each segment. Note that steps

(i) and (ii) could be done reasonably according to experience or any other criteria (e.g.,

distance).

14.5 Real-Time Traffic

In our problem formulation, we consider a static speed limit for any road segments. It is

a reasonable first-order model for highway scenarios. However, in reality, some highways

near urban cities could also suffer from the traffic congestion, which significantly affects

the travel delay and also the fuel consumption. Therefore, taking real-time speed limits

into account is also an important extension. Since real-time traffic is generally unknown

in advance, this is an online problem. One nature approach is to solve the online problem

in an offline manner. Namely, we can use our approach to solve the problem based on the

current speed limits and then follow the selected path and speed. After traveling some

time or distance, we use our approach to solve the problem again with the updated speed

limits.



Chapter 15

Performance Evaluation

In this section, we use real-world data to evaluate the performance of our algorithms.

Our objectives are three-fold: (i) collect realistic dataset and model the fuel-rate-speed

function, (ii) evaluate and compare the performance of our FPTAS and heuristic, (iii)

compare our algorithms with baseline algorithms, including both shortest path algorithm

and fastest path algorithm adapted from common practice, and (iv) investigate the energy-

delay tradeoff of long-haul heavy-duty trucks by evaluating how much fuel can be saved

by increasing the hard deadline.

15.1 Dataset

Transportation Network: We construct the U.S. National Highway Systems (NHS)

from the dataset of Clinched Highway Mapping (CHM) Project [90]. The whole highway

network graph file is specified in [2], which consists of 84504 nodes (waypoints) and 89119

(one-direction) edges.

Elevation: In this thesis, we consider the grade/slope effect when modeling the road-

dependent fuel-rate-speed function. To obtain the road grades, we use the Elevation Point

Query Service [18] provided by the U.S. Geological Survey (USGS) to query elevations of

all nodes in the NHS graph.

Speed Limits: We use the historical average speed as the maximal speed Rub
e for

each road e. HERE map [15] has put speed detectors over many countries including U.S.,

and it provides APIs to query location-based real-time speed information. We collect the

real-time speed information from HERE map [15] for two weeks and use the average as

Rub
e for each road e in the NHS graph1. For the minimal speed limit Rlb

e , we manually set

it to be Rlb
e = min{30, Rub

e }.
1 Due to the truck’s gradeability, it may not achieve the average speed and thus later we also update

Rub
e based on the maximal speed that the truck can achieve at road e’s grade.
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Figure 15.1: U.S. map and 22 regions.

Fuel Consumption Data: It is hard for us to get suitable real-world fuel consump-

tion data. In this thesis, we instead leverage the widely-used ADVISOR simulator [73] to

collect fuel consumption data (see Sec. 15.2).

Heavy-Duty Truck: Fuel consumption highly depends on the truck type. Another

benefit of using ADVISOR is that it also provides some heavy-duty truck configurations.

In this simulation, we use the Kenworth T800 Vehicle [8], a Class 8 heavy-duty truck, with

36-ton full load. It is specified in files VEH KENT800Trailer.m and HeavyTruck in.m2 in

ADVISOR with the following parameters in Tab. 15.1.

Table 15.1: Truck parameters (Kenworth T800).
Drag Coefficient

cd

Frontal area

Af

Glider

Mass

Cargo

Mass

0.7 8.5502 m2 2,552kg 33,234kg

Preprocessing Highway Network: In the original NHS graph from CHM [2], we

observe that: (i) most roads are in the “eastern” U.S., and (ii) many roads are very short

with degree-1 endpoints (non-intersection roads). To create a network with more diverse

paths, we first cut the whole NHS graph to the “eastern” part with longitude to the east of

100◦W (see Fig. 15.1). We further merge the non-intersection roads with the same level of

grades3 into a single road. Some network statistics after these two kinds of preprocessing

2 We replace vinf.vehicle.name by VEH KENT800Trailer.
3 In this simulation, we use 0.4% as the span of a grade level.
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Table 15.2: Network statistics. “O” is the original NHS graph, “E” is the “eastern” graph

(to the east of 100◦W ), and “M” is the merged one. θ is the grade.

G n m
avg De

(mile)

avg Rlb
e

(mph)

avg Rub
e

(mph)

avg |θ|
(%)

O 84504 178238 2.08 37.4 55.97 0.64

E 65520 137521 1.97 37.3 55.55 0.58

M 38213 82781 3.26 36.43 54.19 0.82

are shown in Tab. 15.2. Note that since the average distance for each edge is 3.26 miles

after preprocessing, it is reasonable to ignore the speed transition over two adjacent edges,

which justifies the assumption in our fuel consumption model.

Moreover, to better visualize and evaluate the results, we divide the major “eastern”

U.S. into 22 regions, as shown in Fig. 15.1. In each region i ∈ [1, 22], we find the node in

the graph which is nearest to the region’s center. We also call it node i for convenience.

Later on, we will use these 22 nodes as the source and destination nodes.

15.2 Model Fuel-Rate-Speed Function

We model the fuel-rate-speed function as

fe(x) = aex
3 + bex

2 + cex+ de,∀e ∈ E . (15.1)

Here x is the speed (unit: mph) and fe(x) is the fuel rate consumption (unit: gph (gallons

per hour)). Although our model (15.1) can capture any road-dependent features/factors,

e.g., grade, rolling resistance, and air density, etc., we only consider the road grade θ in

this simulation, which is the major factor for truck fuel consumption [19].

To learn the parameters ae, be, ce and de in (15.1) in terms of functions of θ, we use AD-

VISOR by invoking function adv no gui(action,input) where we specify action=drive cycle

to run a driving cycle test [1, Ch. 2.3]. As mentioned in Sec. 15.1, we choose the default

vehicle file HeavyTruck in where we use vehicle type VEH KENT800, which specifies Ken-

worth T800 in Tab. 15.1. For our purpose, we generate a driving cycle file where we use

a constant speed (say x (mph)) profile over a total of 4 hours and a constant grade (say

θ) over the whole speed profile. Then after running ADVISOR, we can get the total fuel

consumption (say w (gallons)) over a 4-hour driving time with speed x over a grade-θ
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Table 15.3: Fitting parameters. For the convex region, ≤ x is the interval [0, x] and ≥ x

is the interval [x,∞).

Grade

(%)
ae be ce de

Convex

Region

-2.0 5.5679e-06 -1.0839e-04 -0.0064 1.0655 ≥6.49

-1.0 1.0778e-05 1.2960e-03 -0.0456 1.2879 ≥0.00

0.0 3.3057e-05 -1.4102e-03 0.1476 0.5985 ≥14.22

1.0 4.9559e-05 -2.3563e-03 0.2583 0.6624 ≥15.85

2.0 5.9418e-05 -2.2194e-03 0.3404 0.8741 ≥12.45

road. Since almost all the time the truck runs with constant speed x, we can get the

corresponding fuel-rate consumption as w/4 (gph). By enumerating x from 10 mph to 70

mph with a step of 0.2 mph, and enumerating θ from -10.0% to 10.0% with a step of 0.1%,

we collect many (x, θ, w/4) data points.

For each grade θ from −10.0% to 10.0% with a step of 0.1%, we use all (x,w/4) points

to fit the model (15.1) by invoking MATLAB’s fit function. We sample several grade

points in Tab. 15.3, where we also put the strictly convex region for the fitted fuel-rate-

speed function fe(x). As we can see, all fuel-rate-speed functions fe(·) are strictly convex

in reasonable speed limit regions. For example, when grade is 0 (a flat road), fe(·) is

strictly convex if the speed is larger than 14.22 mph, which holds generally in reality.

This justifies our assumption that the fuel-rate-speed function is polynomial and strictly

convex over the speed limit region.

More concretely, we visualize the fuel-rate-speed function fe(x) and fuel-time function

ce(te) for three sampled grades, −1.0%, 0.0%, and 1.0%, as shown in Fig. 15.2. We can see

that both of them are strictly convex in reasonable regions. We also verify that ce(te) will

first strictly decrease and then strictly increasing and thus we only need to focus on the

decreasing interval without loss of optimality, as discussed in Sec. 11.2. From Fig. 15.2(b),

we also observe that the fuel-time curve is not smooth but has some glitches. This is due

to the gear switch of the truck.
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Figure 15.2: Fit curve vs. data for grades 0%, ±1%.

15.3 Evaluate/Compare FPTAS and Heuristic

We implement our algorithms with C++ where we use the SNAP graph structure [69]. We

evaluate on a server with an 8-core Intel Core-i7 3770 3.4 Ghz CPU and 16 GB memory,

running CentOS 6.4. To evaluate and compare our FPTAS (Algorithm 3) and heuristic

scheme (Algorithm 5), we consider 4 different settings, S1, S2, S3, and S4, as shown in

Tab. 15.4. Note that since we aim to compare them, we use LB = 1 and UB = 1000 in

Step 1 of Algorithm 3.

In terms of the minimized fuel cost of the algorithms, Tab. 15.4 shows that the heuristic

scheme always outputs the optimal solution (LB = UB, hence LB = UB = OPT), and the

FPTAS also outputs a near-optimal solution (e.g., in S1, 74.812 is only a little bit larger

than OPT = 74.811). This demonstrates that both FPTAS and the heuristic scheme have

good performance. However, in terms of time/space complexity, the heuristic scheme is

much better than FPTAS. As we can see, the FPTAS only works fine for the small-scale

settings (S1 and S4), where the transportation network in regions 1 and 2 in Fig. 15.1 is

considered, with only 1185 nodes and 2568 edges. When we use a little bit larger scale

setting S2, it runs for nearly 1 hour and consumes 14.76 GB memory (out of 16 GB in

total). Our server cannot run any other setting whose scale is larger than S2. We also note

that the complexity of the FPTAS increases significantly as we decrease ε from 0.1 to 0.05,
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Table 15.4: Comparisons of FPTAS and heuristic. Here an instance is the tuple (source,

destination, delay), i.e., (s, d, T ). For example, in S1, (1,2,8) means that the source (resp.

destination) node is 1 (resp. 2), which is the nearest node to the center of region 1 (resp.

region 2) in Fig. 15.1, and the total delay is 8 hours.

No.
Network Input Performance (gallon) Time (second) Memory (GB)

Reg. n m Instance ε Heuri. LB/UB FPTAS Heuri. FPTAS Heuri. FPTAS

S1 1&2 1185 2568 (1,2,8) 0.1 74.811/74.811 74.812 1 50 0.29 2.73

S2 17&18 3274 7465 (18,17,10) 0.1 60.2795/60.2795 60.2798 2 3511 0.29 14.76

S3 1-22 38213 82781 (4,22,40) 0.1 290.744/290.744 - 365 - 0.29 -

S4 1&2 1185 2568 (1,2,8) 0.05 74.811/74.811 74.812 1 126 0.29 6.84

as shown in settings S1&S4. Contrarily, our heuristic scheme can handle all 22 regions

(setting S3) with 38213 nodes and 82781 edges easily with low time/space complexity.

Tab. 15.4 verifies that the FPTAS is not necessarily scalable to practical large-scale

highway networks, but our heuristic scheme works very well in terms of both performance

and complexity. To see why the heuristic scheme performs well, we examine an example

source-destination pair in the setting S3, (s, d) = (4, 22), and plot its δ(λ) function (the

total travel time of the shortest-generalized-cost path, see (13.6)) in Fig. 15.3. We observe

that function δ(λ) is non-increasing, which verifies Theorem 13.1. Moreover, δ(λ) has only

a few small non-continuous jumps (e.g., a jump at point λ = 11.47 from 37.83 to 37.62).

Whenever a (feasible) delay is not within such jump regions, we can always find a λ0 such

that δ(λ0) = T . According to Theorem 13.2, the output solution must be optimal. For

example, when T = 40, we can find λ0 = 4.48 such that δ(λ0) = 40, as shown in Fig. 15.3.

The optimal solution can be derived as (p∗(λ0), {t∗e(λ0)}). Even when T is within one

of such jump regions (e.g., T ∈ (37.62, 37.83)), since the length of the delay region (e.g.,

(37.62, 37.83) has a length of 0.21 hours) is often negligible as compared to a nearly 40-hour

travel, the output LB and UB would be very close. Hence, our heuristic scheme outputs

an optimal (at least near-optimal) solution for any input T . We will further justify this

observation with more instances in Sec. 15.4.

15.4 Compare Performance with Baselines

In this section, we compare the performance of our heuristic scheme with the following 4

baseline algorithms: (i) fastest (time) path algorithm with maximal speed, (ii) fastest path
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Table 15.5: Description of 6 solutions.

Solution Description Benchmark

F Sol. of fastest path with maximal speed Time

F-SO Sol. of fastest path with optimal speed -

S Sol. of shortest path with maximal speed Distance

S-SO Sol. of shortest path with optimal speed Distance

OPT-LB Sol. of LB of our heuristic scheme Fuel

OPT-UB Sol. of UB of our heuristic scheme -

algorithm with optimal speed, (iii) shortest (distance) path algorithm with maximal speed,

and (iv) shortest path algorithm with optimal speed. Each of them outputs one solution

for PASO. Since our heuristic scheme outputs two solutions respectively corresponding to

the LB and UB, we have 6 solutions in total, as summarized in Tab. 15.5.

In later comparison, since the travel time of F is the minimal time for any feasible solu-

tion of PASO, we will use it as the time benchmark. For example, a solution SOL (e.g., SOL

could be OPT-UB) with time increment 10% means that Travel time of SOL−Travel time of F
Travel time of F =

10%. Similarly, we use the travel distance of S/S-SO as the distance benchmark, and use

the fuel consumption of OPT-LB as the fuel benchmark.

Now we input all 22 regions in Fig. 15.1 as the underlaying highway network and use
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Table 15.6: Value ranges for (s, d, T ) tuples.

Parameter Value Range

s [1, 22]

d [1, 22]

T
[
dT fe, dT fe+ 9

]
Note: T f is the fastest travel time from s to d.

all permutations of the 22 nodes (the nearest points to each individual region’s center)

as (s, d) pairs. For each (s, d) pair, we use ten different deadlines, from dT fe to dT fe + 9

where T f is the fastest travel time from s to d. In total, we have 2704 valid (s, d, T ) tuples,

as shown in Tab. 15.6.

A Single Instance: We first consider one instance (s, d, T ) = (9, 22, 40). Tab. 15.7

compares the 6 solutions4. As we can see, our heuristic scheme again outputs the optimal

solution. It consumes 300.1 gallons of fuel, runs 10.76% slower than the time benchmark

(F), and 0.3% longer than the distance benchmark (S/S-SO). Also, without speed opti-

mization, the fastest path (F) consumes 32 more gallons (10.67%) and the shortest path

(S) consumers 18 more gallons (5.99%). But with speed optimization, both fastest path

and shortest path have near-optimal performance.

For (s, d) = (9, 22), we also evaluate the effect of input delay T as shown in Fig. 15.4.

Considering speed optimization, when the input delay T ∈ [36.11, 38.58), the shortest path

is infeasible, which shows that fastest path outperforms shortest path. The shortest path

becomes feasible when T ≥ 38.58, and it outperforms the fastest path when T > 39. This

figure thus shows that the shortest path becomes better and better as the delay constraint

increases. Intuitively, when the hard delay constraint can be satisfied, the travel distance

would be critical for the total fuel consumption.

The OPT-UB curve in Fig. 15.4 is the energy-delay tradeoff of (s, d) = (9, 22). We

see that increasing delay can save fuel consumption, and the saving has a “diminishing”

property. For example, the truck can save 6.6 gallons of fuel if it increases its delay from

37 to 38 hours, but the saving reduces to 1.46 gallons if its delay is relaxed from 45 to 46

hours. We give a more complete study on energy-delay tradeoff in Sec. 15.5.

4 Readers can visualize our solutions in [10] in the HERE map.
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Table 15.7: Performance of instance (s, d, T ) = (9, 22, 40).

Sol.
Time

(hour)

Incre.

(%)

Dist.

(mile)

Incre.

(%)

Fuel

(gal.)

Incre.

(%)

F 36.11 - 1821 2.71 332.1 10.67

F-SO 40 10.76 1821 2.71 308.3 2.73

S 38.58 6.85 1773 - 318.0 5.99

S-SO 40 10.76 1773 - 307.0 2.30

OPT-LB 40 10.76 1778 0.30 300.1 -

OPT-UB 40 10.76 1778 0.30 300.1 0

Table 15.8: Average performance of all instances.

Sol.
Avg Time

Incre.(%)

Avg Dist.

Incre.(%)

Avg Fuel

Incre.(%)

Avg Fuel

Econ.(mpg)

F - 1.71 20.14 5.05

F-SO 32.80 1.71 2.00 5.94

S 2.82 - 16.40 5.13

S-SO 32.80 - 0.31 5.94

OPT-LB 32.95 0.17 - 5.96

OPT-UB 32.89 0.18 0.02 5.96

All Instances: Similar to Tab. 15.7, we can get the time, distance, and fuel of the

6 solutions for all source-sink pairs. We evaluate the average performance of all running

instances in terms of time/distance/fuel increments compared to the benchmark numbers,

as summarized in Tab. 15.8. Note that in 4.84% of instances, shortest path is infeasible.

Tab. 15.8 only has the average performance over the instances where the shortest path is

feasible.

Tab. 15.8 shows that on average OPT-UB only consumes 0.02% more fuels than the fuel

benchmark (OPT-LB). This again shows that our heuristic scheme outputs a near-optimal

solution in all instances.

For the baseline algorithms, Tab. 15.8 shows that the fastest path (resp. shortest path)

algorithm without speed optimization consumes 20.14% (resp. 16.40%) of more fuels than
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Figure 15.5: The energy-delay tradeoff.

our solution. In other words, our heuristic solution achieves 16.76% (resp. 14.09%) fuel

consumption reduction, as compared to the fastest path (resp. shortest path) algorithm.

Our heuristic solution also improves the 36-ton-truck’s fuel economy from 5.05 for the

fastest path and 5.13 for the shortest path to 5.96. Considering its significant portion

of energy consumption, our solution can indeed save much fuel cost for the long-haul

heavy-duty trucks.

When we allow speed optimization for the fastest path and the shortest path, we find

that on average both of them are close to the optimal solution. More specifically, F-SO

consumes 2.00% of more fuels and S-SO only consumes 0.31% of more fuels than OPT-LB.

This apparently suggests that in the U.S., it is good enough to first choose the shortest or

fastest path and then do speed optimization. However, in our simulation, the shortest path

is infeasible among 4.84% of all instances, and the fastest path with speed optimization

can consume 21.32% of more fuels in the worst instance. As opposed to them, our PASO

solution is robust in the sense that it always outputs a solution that is both feasible and

near-optimal. We also leave it as a future work to understand under which conditions the
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fastest/shortest path with speed optimization is close to the optimal solution.

15.5 Energy-Delay Tradeoff

In this subsection, we evaluate all (s, d) pairs where s and d range from 1 to 22. For

each (s, d) pair, we first get the fastest travel time T f and get the corresponding fuel

consumption C f. Now we increase the deadline by x% and evaluate the fuel consumption

C(x%) when T = (1 + x%)T f, and get the fuel consumption reduction Cf−C(x%)
Cf . By

changing the percentage of delay increase, i.e., x, we get different percentages of fuel

consumption reduction. The average energy-delay tradeoff performance among all (s, d)

pairs is shown in Fig. 15.5.

As we can see, the fuel consumption reduction has a “diminishing” property. As

compared to the fastest travel time, if we increase the hard deadline by 10%, we can

reduce the fuel consumption by 10%. If we increase the hard deadline by 50%, we can

reduce the fuel consumption by 20%. If we further increase the hard deadline after 70%,

there is little extra benefit, mainly because of the lower bound of the speeds over all edges.



Chapter 16

Conclusion and Future Work

Provisioning both energy-efficient and timely delivery is of great importance for logistic

operators. This part (Chap. 10–17) presents a first step to study the energy-efficient

timely transportation problem with an emphasis for long-haul heavy-duty trucks. We

propose two algorithms: the first one is an FPTAS and the second one is a heuristic with

lower complexity and near-optimal empirical performance. Our real-world data-driven

simulations show that our solution guarantees timely delivery and can save up to 17% of

fuel consumption as compared to a fastest/shortest path algorithm adapted from common

practice. An interesting and important future direction is to generalize our results beyond

the highway setting to cover more sophisticated local driving scenarios.
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Appendix

17.1 Physical Interpretation of Fuel-Rate-Speed Function

A truck running on a road with grade/slope θ (positive if moving up and negative if moving

down) faces three resistances: aerodynamic (air) resistance, rolling resistance and grade

resistance [72]. The air resistance is the friction of air, which is modeled as

Fa(v) =
1

2
ρAfcdv

2, (17.1)

where ρ is the air density and Af the frontal area of the truck and cd is drag coefficient

of the truck (see Tab. 15.1 for cd and Af ) and v is the speed of the truck. The rolling

resistance is the friction between the tires and the ground, which is modeled as

Fr = crmg cos θ, (17.2)

where cr is the coefficient of rolling resistance (friction coefficient) between the tires and

the ground, m is the truck mass and g is gravitational acceleration. The grade resistance

is the force of the gravity on the opposite direction of truck movement, i.e.,

Fg = mg sin θ. (17.3)

Then the tractive force is

Ft(v) = Fa(v) + Fr + Fg, (17.4)

which yields to the power consumption

Pf (v) = Ft(v) · v =
1

2
ρAfcdv

3 + (cr cos θ + sin θ)mgv. (17.5)

We can regard Pf (v) as the power demand to move the truck on the road with constant

speed v. To provision such power demand, the internal combustion engine (ICE) needs

to convert fuel into mechanical energy. There are a substantial number of models for ICE
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[75]. For the purpose of this physical interpretation, we use the following relationship (see

[75, Equation 10]),

Pf = f(v) · LHV · η, (17.6)

where f(v) is the fuel rate consumption (unit: gallon per hour), LHV is the lower heating

value of the fuel (unit: KJ per gallon), and η is the fuel efficiency1. Eq. (17.6) gives the

fuel-rate-speed function f(v) as follows,

f(v) =
Pf

LHV · η =
1
2ρAfcdv

3 + (cr cos θ + sin θ)mgv

LHV · η , (17.7)

which shows that the fuel-rate-speed function is polynomial with speed v and also strictly

convex.

Therefore, such physical interpretation justifies our assumption for the fuel-rate-speed

function in Sec. 11.1.

17.2 Proof of Lemma 11.1

We can prove this lemma by using the Jensen’s inequality. For any speed profile v :

[0, te] → R+ over road/edge e, the incurred fuel consumption is
∫ te

0 fe(v(t))dt, and the

travelled distance is
∫ te

0 v(t)dt. As we require that the truck must pass edge e with exactly

te hours, we must have ∫ te

0
v(t)dt = De. (17.8)

Since fe(·) is convex, according to the continuous Jensen’s inequality [61, Ch. 12.411], we

have ∫ te
0 fe(v(t))dt

te
≥ fe

(∫ te
0 v(t)dt

te

)
= fe

(
De

te

)
, (17.9)

which means ∫ te

0
fe(v(t))dt ≥ tefe

(
De

te

)
, (17.10)

with equality when v(t) = De
te

for all t ∈ [0, te].

The proof is completed.

1The unit of power demand Pf would be KW. We can appropriately make all units consistent.
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17.3 Proof of Lemma 11.2

Since the fuel-rate-speed function fe(v) is a polynomial function (and thus twice differ-

entiable) with respect to v, we can thus obtain the first and second-order derivative of

ce(te) = tefe

(
De
te

)
with respect to te, i.e.,

c′e(te) = fe

(
De

te

)
− De

te
f ′e

(
De

te

)
, (17.11)

and

c′′e(te) = f ′e

(
De

te

)(
−De

t2e

)
−
[(
−De

t2e

)
f ′e

(
De

te

)
+
De

te
f ′′e

(
De

te

)(
−De

t2e

)]
=
D2
e

t3e
f ′′e

(
De

te

)
. (17.12)

Since fe(·) is strictly convex over the speed limit region, we have f ′′e (Dete ) > 0 and thus we

conclude that

c′′e(te) > 0, (17.13)

which proves that ce(·) is strictly convex with respect to te over [tlbe , t
ub
e ].

For the second part of this lemma, we first observe that c′e(te) is a differentiable (and

thus continuous) and strictly increasing function. Thus we will consider the following

three cases.

Case 1 0 ≤ c′e(tlbe ): In this case, we know that ce(te) is strictly increasing over [tlbe , t
ub
e ]

and we can set t̂e = tlbe .

Case 2 0 ∈ (c′e(t
lb
e ), c′e(t

ub
e )): In this case, we can find a t̂e ∈ (c′e(t

lb
e ), c′e(t

ub
e )) such that

c′e(t̂e) = 0 due to the continuity of c′e(te).

Case 3 0 ≥ c′e(tube ): In this case, we know that ce(te) is strictly decreasing over [tlbe , t
ub
e ]

and we can set t̂e = tube .

In all three cases, we obtain that ce(te) is first strictly decreasing over [tlbe , t̂e] and then

strictly increasing over [t̂e, t
ub
e ]. Note that t̂e could be on the boundary of [tlbe , t

ub
e ], as

shown in Case 1 and Case 3.

The proof is completed.
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17.4 Proof of Lemma 12.1

First, since p and tp is a feasible solution to PASO, we have OPT ≤ c(p, tp).
Second, since Algorithm 2 returns in line 13, the path cost will be no greater than

some c ≤ N , thus we have

c̃(p, tp) ,
∑
e∈p

c̃e(te) =
∑
e∈p

min{bce(te)
V
c+ 1, N + 1} ≤ N,

which clearly implies that

c̃e(te) = bce(te)
V
c+ 1, ∀e ∈ p.

Then we have

c̃(p, tp) =
∑
e∈p

c̃e(te) =
∑
e∈p

[
bce(te)

V
c+ 1

]
≥
∑
e∈p

ce(te)

V
=
c(p, tp)

V
,

which yields to

c(p, tp) ≤ c̃(p, tp)V ≤ NV =

(
bU
V
c+ n+ 1

)
V

≤
(
U

V
+ n+ 1

)
V = U + (n+ 1)V = U + Lδ.

The proof is completed.

17.5 Proof of Lemma 12.2

For PASO, let us denote (p∗, tp∗) as an optimal solution. Namely, p∗ is an optimal path

and tp∗ is the corresponding optimal travel time set. For each edge e ∈ p∗, we must have

min{bce(te)
V
c+ 1, N + 1} = bce(te)

V
c+ 1.

Suppose not. Then

bce(te)
V
c+ 1 > N + 1,

which means

ce(te) ≥ V b
ce(te)

V
c > VN = V (bU

V
c+ n+ 1) > U ≥ OPT.
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This is a contradiction to ce(te) ≤
∑

e∈p∗ ce(te) = OPT.

Then we have

c̃(p∗, tp∗) =
∑
e∈p∗

c̃e(te) =
∑
e∈p∗

min{bce(te)
V
c+ 1, N + 1}

=
∑
e∈p∗

[
bce(te)

V
c+ 1

]
≤
∑
e∈p∗

[
ce(te)

V
+ 1

]
≤ OPT

V
+ n ≤ U

V
+ n ≤ (bU

V
c+ 1) + n = N. (17.14)

Here is a critical step which is different from Lemma 3 in [70] for RSP problem. For each

edge e ∈ p∗, te may not be a representative point in vector τ e. However, we can consider

the representative point t̃e = τ ie where i , c̃e(te), which incurs the same fuel cost, i.e.,

c̃e(te) = c̃e(t̃e). Clearly, we also have c̃(p∗, t̃p∗) ≤ N and t̃e ≤ te where t̃p∗ , {t̃e : e ∈ p∗}.
Therefore path p∗ and travel time t̃p∗ must be examined by Algorithm 2, which com-

pletes the proof of the first part, i.e., Algorithm 2 must return a feasible path p and travel

time tp. Moreover, we have

c̃(p, tp) ≤ c̃(p∗, t̃p∗) = c̃(p∗, tp∗). (17.15)

From (17.14), we first note that

c̃(p∗, tp∗) ≤
OPT

V
+ n. (17.16)

Second, since Algorithm 2 returns in line 13, we must have

c̃(p, tp) ,
∑
e∈p

c̃e(te) =
∑
e∈p

min{bce(te)
V
c+ 1, N + 1} ≤ N,

which clearly implies that

c̃e(te) = bce(te)
V
c+ 1, ∀e ∈ p.

We then note that

c̃(p, tp) =
∑
e∈p

ce(te) =
∑
e∈p

min{bce(te)
V
c+ 1, N + 1}

=
∑
e∈p

(
bce(te)

V
c+ 1

)
≥
∑
e∈p

(
ce(te)

V

)
=
c(p, tp)

V
. (17.17)
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Inserting inequalities (17.16) and (17.17) into (17.15), we obtain

c(p, tp)

V
≤ OPT

V
+ n,

which means

c(p, tp) ≤ OPT + nV ≤ OPT + Lδ.

The proof is competed.

17.6 Proof of Theorem 12.1

The first part of this theorem directly follow the analysis of Steps 1-3 in Sec. 12.3. Namely,

Algorithm 3 returns a (1 + ε)-approximate solution for PASO in time

O((mn log ξ +mn2) log log
UB

LB
+
mn log ξ

ε
+
mn2

ε2
). (17.18)

Now we prove the second part of this theorem. Namely, if we use LB = Clb and

UB = nCub where Clb , mine∈E ce(t
ub
e ) and Cub , maxe∈E ce(t

lb
e ), Algorithm 3 has time

complexity polynomial in the input size of the problem PASO and therefore is an FPTAS.

According to (17.18), we only need to show log log UB
LB = log log nCub

Clb is polynomial in the

input size.

Suppose that Cub , maxe∈E ce(t
lb
e ) = ce1(tlbe1). For edge e1, we should input all its

properties, i.e., {De1 , R
lb
e1 , R

ub
e1 , fe1} where fe1 is a polynomial function. Suppose that

fe1(x) = a1x
k1 + a2x

k2 + · · ·+ aqx
kq .

Then to input fuel-rate-speed function fe1 , we only need to input a1, k1, a2, k2, · · · , aq, kq.
Therefore, for edge e1, we should input the following real numbers,

{De1 , R
lb
e1 , R

ub
e1 , a1, k1, a2, k2, · · · , aq, kq}.

The input size for edge e1 is

Ie1 ≥ log

(
De1 +Rlb

e1 +Rub
e1 + a1 + k1 + a2 + k2 + · · ·+ aq + kq

eps

)
,

where eps � 1 is the machine epsilon, i.e., the maximum relative error of for rounding

a real number to the nearest floating point number that can be represented by a digital

machine. Now let us show that log log Cub

eps is polynomial in Ie1 .
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According to the definition of the fuel-time function ce1(·) in (11.2), we get

log log

(
Cub

eps

)
= log log

(
ce1(tlbe1)

eps

)

= log log

 tlbe1 · fe1(
De1
tlbe1

)

eps

 = log log

 De1
Rub
e1

· fe1(Rub
e1 )

eps


= log

[
log

(
De1

Rub
e1

)
+ log

(
fe1(Rub

e1 )

eps

)]

= log

[
log

(
De1

eps

)
− log

(
Rub
e1

eps

)
+ log

(
fe1(Rub

e1 )

eps

)]

≤ log

[
Ie1 + log

(
fe1(Rub

e1 )

eps

)]
(Since Rub

e1 > 0 and thus Rub
e1 ≥ eps)

= log

[
Ie1 + log

(
a1(Rub

e1 )k1 + · · ·+ aq(R
ub
e1 )kq

eps

)]

≤ log

[
Ie1 + log

(
qai(R

ub
e1 )ki

eps

)]
(

Define i ∈ arg max
j∈[1,q]

aj(R
ub
e1 )kj

)
= log

[
Ie1 + log q + log

(
ai

eps

)
+ log

(
(Rub

e1 )ki

epski
· epski

)]

≤ log

[
Ie1 + Ie1 + Ie1 + ki log

(
Rub
e1

eps

)]
(Since log eps < 0)

≤ log

[
Ie1 + Ie1 + Ie1 +

ki
eps

log

(
Rub
e1

eps

)]
(Since eps < 1)

≤ log

[
Ie1 + Ie1 + Ie1 +

ki
eps
· Ie1

]
≤ log

[
Ie1 + Ie1 + Ie1 + 2Ie1 · Ie1

]
= log Ie1 + log(3 + 2Ie1 )

≤ log Ie1 + log(3 · 2Ie1 + 2Ie1 )

= log Ie1 + Ie1 + 2 = O(Ie1),
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which is thus polynomial in Ie1 .

Then

log log
nCub

Clb
= log log

nCub

eps

Clb

eps

≤ log log
nCub

eps
= log

(
log n+ log

Cub

eps

)

≤ 2 max

{
log log n, log log

Cub

eps

}
= max{O(log log n), O(Ie1)}, (17.19)

which is polynomial in the input size of PASO because both O(log log n) and O(Ie1) are

polynomial in the input size of PASO. We thus prove the second part of this theorem.

The proof is completed.

17.7 Proof of Theorem 12.2

The time complexity has been shown in the three-step analysis above Theorem 12.2. Next

we show the approximate ratio.

After quantizing in Step 1 (lines 1-6), each edge e ∈ E is associated with a quantized

fuel-time function c̃e(te). According to (12.1), the quantized fuel-time function is

c̃e(te) = min

{⌊
ce(te)

V

⌋
+ 1, N

}
. (17.20)

Since Cub , maxe∈E ce(t
lb
e ), we have⌊

ce(te)

V

⌋
+ 1 ≤

⌊
Cub

V

⌋
+ 1 = N, ∀te ∈ [tlbe , t

ub
e ]. (17.21)

Thus, the quantized fuel-time function is

c̃e(te) = min

{⌊
ce(te)

V

⌋
+ 1, N

}
=

⌊
ce(te)

V

⌋
+ 1. (17.22)

Considering problem PASO for graph G = (V, E) with original fuel-time function ce(te),

we denote (p∗, tp∗) as an optimal solution. Namely, p∗ is an optimal path and tp∗ =

{te : e ∈ p∗} is the corresponding optimal travel time set. Clearly we have c(p∗, tp∗) ,∑
e∈p∗ ce(te) = OPT.

Considering problem PASO for graph G = (V, E) with quantized fuel-time function

c̃e(te), we define ˜OPT as the optimal value.
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Since (p∗, tp∗) is also a feasible solution to problem PASO for graph G = (V, E) with

quantized fuel-time function c̃e(te), we have

˜OPT ≤
∑
e∈p∗

c̃e(te) =
∑
e∈p∗

{⌊
ce(te)

V

⌋
+ 1

}
≤
∑
e∈p∗

{
ce(te)

V
+ 1

}
≤ OPT

V
+ n. (17.23)

Considering problem PASO for graph G = (V, E) with quantized fuel-time function

c̃e(te), since c̃e(te) is a staircase function as discussed in Sec. 12.1, we can always find an

optimal solution where the travel time of any edge e over the optimal path belongs to

one of the representative points. Therefore, solving problem PASO for graph G = (V, E)

with quantized fuel-time function c̃e(te) is equivalent to solving problem PASO for the new

constructed graph G̃ = (V, Ẽ) in Step 2 (lines 7-14). Note that in the new constructed

graph G̃ = (V, Ẽ), every edge has a fixed travel time and a fixed travel cost, thus problem

PASO is exactly problem RSP. Therefore the optimal value of problem RSP for graph

G̃ = (V, Ẽ) is also ˜OPT.

We denote (p̃, t̃p1) as the output (1+ε2)-approximate solution to problem RSP for graph

G̃ = (V, Ẽ) in Step 3 (lines 15-16). Namely p̃ is the output path and t̃p̃ = {t̃e : e ∈ p̃} is

the corresponding travel time set. Since (p̃, t̃p1) is (1 + ε2)-approximate, we have∑
e∈p̃

c̃e(t̃e) ≤ (1 + ε2) ˜OPT. (17.24)

In addition, we have

∑
e∈p̃

c̃e(t̃e) =
∑
e∈p̃

{⌊
ce(t̃e)

V

⌋
+ 1

}
≥
∑
e∈p̃

ce(t̃e)

V
=

∑
e∈p̃ ce(t̃e)

V
. (17.25)

Combining (17.23), (17.24), and (17.25), we obtain∑
e∈p̃

ce(t̃e) ≤ (1 + ε2)(OPT + nV ) = (1 + ε2)(OPT + n · LB · ε1
n

)

= (1 + ε2)(OPT + LB · ε1) ≤ (1 + ε2)(OPT + OPT · ε1)

= (1 + ε1)(1 + ε2)OPT = (1 +
ε

2
)(1 +

ε

2 + ε
)OPT

= (1 + ε)OPT. (17.26)

Therefore, (p̃, t̃p1) is a (1+ε)-approximate solution to our original problem PASO for graph

G with original fuel-time function ce(te).
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17.8 Proof of Lemma 13.1

Define function h(te) = ce(te) + λte. Then we can get the first derivative as

h′(te) = c′e(te) + λ. (17.27)

Since ce(te) is a strictly convex and strict decreasing function, we know that c′e(te) (and

also h′(te)) is a strictly increasing function and c′e(te) < 0 at interval [tlbe , t
ub
e ]. We then

consider the following three cases.

Case 1: If 0 ≤ λ < −c′e(tube ), we get that c′e(t
ub
e ) + λ < 0 and thus

h′(te) ≤ h′(tube ) < 0,∀, t ∈ [tlbe , t
ub
e ]. (17.28)

This shows that h(te) is strictly decreasing at [tlbe , t
ub
e ] and the minimal value is attained

at t∗e(λ) = tube .

Case 2: If −c′e(tube ) ≤ λ ≤ −c′e(tlbe ), then we can get that c′−1
e (−λ) ∈ [tlbe , t

ub
e ]. Clearly,

the monotonic increasing property of h′(te) implies that h′(te) < 0 at [tlbe , c
′−1
e (−λ)) and

h′(te) > 0 at (c′−1
e (−λ), tlbe ]. This means that the minimal value is attained at t∗e(λ) =

c′−1
e (−λ).

Case 3: If λ > −c′e(tlbe ), we get that c′e(t
lb
e ) + λ > 0 and thus

h′(te) ≥ h′(tlbe ) > 0, ∀, t ∈ [tlbe , t
ub
e ]. (17.29)

This shows that h(te) is strictly increasing at [tlbe , t
ub
e ] and the minimal value is attained

at t∗e(λ) = tlbe .

The proof is completed.

17.9 Proof of Theorem 13.1

Let us consider any two λ1, λ2 with 0 ≤ λ1 < λ2. We need to prove δ(λ1) ≥ δ(λ2). Suppose

that the optimal path at λ1 is p∗(λ1) = p1 and the optimal path at λ2 is p∗(λ2) = p2
2.

For any path p and any λ ≥ 0, we denote its (optimal) generalized path cost as

Wp(λ) ,
∑
e∈p

we(λ) =
∑
e∈p

[ce(t
∗
e(λ)) + λt∗e(λ)] , (17.30)

2Paths p1 and p2 could be the same.
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and denote its corresponding path fuel cost as

Cp(λ) ,
∑
e∈p

ce(t
∗
e(λ)). (17.31)

and denote its corresponding path delay

Tp(λ) ,
∑
e∈p

t∗e(λ). (17.32)

Clearly, we have Wp(λ) = Cp(λ) + λTp(λ).

Based on such notations, we have δ(λ1) = Tp1(λ1) and δ(λ2) = Tp2(λ2), and we need

to prove Tp1(λ1) ≥ Tp2(λ2).

When λ = λ1, the optimal path is p1, which means that

Wp1(λ1) = Cp1(λ1) + λ1Tp1(λ1) ≤Wp2(λ1) = Cp2(λ1) + λ1Tp2(λ1) (17.33)

Similarly, when λ = λ2, the optimal path is p2, which means that

Wp2(λ2) = Cp2(λ2) + λ2Tp2(λ2) ≤Wp1(λ2) = Cp1(λ2) + λ2Tp1(λ2) (17.34)

Now we will use the fact that t∗e(λ) minimizes we(λ), as defined in (13.3). Since both

t∗e(λ1) and t∗e(λ2) are feasible, i.e., in the interval [tlbe , t
ub
e ], we get that

Wp2(λ1) = Cp2(λ1) + λ1Tp2(λ1) =
∑
e∈p2

(ce(t
∗
e(λ1)) + λ1t

∗
e(λ1))

=
∑
e∈p2

min
tlbe≤te≤tube

(ce(te) + λ1te) ≤
∑
e∈p2

(ce(t
∗
e(λ2)) + λ1t

∗
e(λ2))

= Cp2(λ2) + λ1Tp2(λ2). (17.35)

Similarly, we have

Wp1(λ2) = Cp1(λ2) + λ2Tp1(λ2) ≤ Cp1(λ1) + λ2Tp1(λ1). (17.36)

Inserting (17.35) into (17.33), we get that

Cp1(λ1) + λ1Tp1(λ1) ≤ Cp2(λ2) + λ1Tp2(λ2),

which implies that

λ1 [Tp1(λ1)− Tp2(λ2)] ≤ Cp2(λ2)− Cp1(λ1). (17.37)
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Similarly, inserting (17.36) into (17.34), we get that

Cp2(λ2) + λ2Tp2(λ2) ≤ Cp1(λ1) + λ2Tp1(λ1),

which implies that

− λ2 [Tp1(λ1)− Tp2(λ2)] ≤ Cp1(λ1)− Cp2(λ2). (17.38)

Summing (17.37) and (17.38), we get that

(λ1 − λ2) [Tp1(λ1)− Tp2(λ2)] ≤ 0. (17.39)

Since we assume that λ1 < λ2, we must have

Tp1(λ1) ≥ Tp2(λ2). (17.40)

The proof is completed.

17.10 Proof of Theorem 13.2

At the point λ0, the dual function has value

D(λ0) = −λ0T + min
x∈X

∑
e∈E

xe · min
tlbe≤te≤tube

(ce(te) + λ0te)

= −λ0T + min
x∈X

∑
e∈E

xe · (ce(t∗e(λ0)) + λ0t
∗
e(λ0))

= −λ0T +
∑

e∈p∗(λ0)

[ce(t
∗
e(λ0)) + λ0t

∗
e(λ0)]

= −λ0T +
∑

e∈p∗(λ0)

ce(t
∗
e(λ0)) + λ0

∑
e∈p∗(λ0)

t∗e(λ0)

= −λ0T + λ0δ(λ0) +
∑

e∈p∗(λ0)

ce(t
∗
e(λ0))

= −λ0T + λ0T +
∑

e∈p∗(λ0)

ce(t
∗
e(λ0))

=
∑

e∈p∗(λ0)

ce(t
∗
e(λ0)). (17.41)

On one hand, we know that any dual function value will be a lower bound of OPT according

to the weak duality. Thus,

D(λ0) ≤ OPT. (17.42)
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On the other hand, we know that p∗(λ0) is a feasible path and {t∗e(λ0), e ∈ p∗(λ0)} satisfies∑
e∈p∗(λ0)

t∗e(λ0) = T. (17.43)

Here p∗(λ0) and {t∗e(λ0), e ∈ p∗(λ0)} is a feasible solution to PASO with the objective

value
∑

e∈p∗(λ0) ce(t
∗
e(λ0)) = D(λ0), which is an upper bound of OPT, i.e.,

D(λ0) ≥ OPT. (17.44)

Eq. (17.42) and (17.44) conclude that D(λ0) = OPT, and p∗(λ0) and {t∗e(λ0), e ∈ p∗(λ0)}
is an optimal solution to PASO.

The proof is completed.

17.11 Proof of Theorem 13.3

First, if we let total travel delay be T ′ =
∑

e∈p∗(λL) t
∗
e(λL) > T , we get a relaxed version

of PASO. According to Theorem 13.2, we know that LB =
∑

e∈p∗(λL) ce(t
∗
e(λL)) is the

optimal solution of the relaxed version, and thus we have LB ≤ OPT.

Second, since
∑

e∈p∗(λU ) t
∗
e(λU ) < T , we know that p∗(λU ) and {t∗e(λU ) : e ∈ p∗(λU )}

is a feasible solution to PASO. Thus, UB =
∑

e∈p∗(λL) ce(t
∗
e(λU )) ≥ OPT.

The proof is completed.

17.12 Proof of Lemma 13.2

Based on Lemma 13.1 and definition of λ1 in (13.10), for any edge e ∈ E , when λ ≥ λ̄ ≥
λ1 ≥ −c′e(tlbe ), we have

t∗e(λ) = tlbe , (17.45)

which means that the truck will run at the highest speed over edge e and the resulting

fuel cost is cube = ce(t
lb
e ). Then when λ ≥ λ̄, any edge e has a generalized cost we(λ) =

ce(t
∗
e(λ))+λt∗e(λ) = cube +λtlbe and any s−d path p ∈ P has a generalized cost

∑
e∈pwe(λ) =

Cp + λTp.

To obtain δ(λ) =
∑

e∈p∗(λ) t
∗
e(λ) (see (13.6)), we now need to get a shortest-generalized-

cost path p∗(λ), i.e,

p∗(λ) ∈ arg min
p∈P

[Cp + λTp]. (17.46)
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Next we show that p∗ defined in (13.9) is such a shortest-generalized-cost path. Since

p∗ has the minimal travel cost among all fastest path in PF , we have

Cp∗ + λTp∗ = Cp∗ + λT lb ≤ Cp + λT lb = Cp + λTp, ∀p ∈ PF . (17.47)

In addition, based on the definition of λ2 in (13.11), when λ ≥ λ̄, we have

λ ≥ λ̄ ≥ λ2 ≥
Cp∗ − Cp
Tp − Tp∗

, ∀p ∈ P\PF , (17.48)

implying that

Cp∗ + λTp∗ ≤ Cp + λTp, ∀p ∈ P\PF . (17.49)

From (17.47) and (17.49), when λ ≥ λ̄, we obtain

Cp∗ + λTp∗ ≤ Cp + λTp ≤ Cp + λTp, ∀p ∈ P, (17.50)

Therefore p∗ is a shortest-generalized-cost path. We then let p∗(λ) = p∗ when λ ≥ λ̄.3

Therefore,

δ(λ) =
∑

e∈p∗(λ)

t∗e(λ) =
∑
e∈p∗

tlbe = Tp∗ = T lb, ∀λ ≥ λ̄. (17.51)

The proof is completed.

17.13 Proof of Theorem 13.4

First of all, according to the week duality, we have

˜OPT(λ) ≤ OPT, ∀λ ≥ 0, (17.52)

Then for λ0, since λ0 · g(x∗(λ0), t∗(λ0)) = 0, we have

f(x∗(λ0), t∗(λ0)) = f(x∗(λ0), t∗(λ0)) + λ0g(x∗(λ0), t∗(λ0))

≤ α ˜OPT(λ0) (see (13.26))

≤ αOPT. (see (17.52)) (17.53)

3 It is possible that there exists multiple shortest-generalized-cost paths, but we can easily show that

all of them are fastest paths, i.e., in PF . Therefore, any p∗(λ) has the same path travel time T lb and thus

δ(λ) = T lb. Therefore, we can safely set p∗(λ) = p∗.
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In addition, since (x∗(λ0), t∗(λ0)) is a feasible solution to problem (P̃(λ0)) and g(x∗(λ0), t∗(λ0)) ≤
0, (x∗(λ0), t∗(λ0)) is also a feasible solution to problem (P). Therefore, (x∗(λ0), t∗(λ0))

is an α-approximate solution to problem (P).

The proof is completed.
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Motivated by the importance of provisioning delay-constrained services in the com-

munication and transportation systems, in this thesis, we study two delay-constrained

problems: one is the timely wireless flow problem and the other is the energy-efficient

timely transportation problem.

For the first timely wireless flow problem, we develop an MDP-based framework to

characterize the timely capacity region and design scheduling policies to maximize the

network utility for general traffic patterns. Our characterization for the timely capacity

region generalizes the LP formulation of stationary MDPs to cyclostationary MDPs. We

believe that our MDP-based framework can solve other problems in the timely wireless

flow research area, because it is a systematic way to explore the full design space. The

major drawback of our MDP-based framework is the curse of dimensionality rooted in

the MDP itself, which prevents it from being applied in large-scale wireless networks.

Although we take a first step to address the curse of dimensionality in this thesis, it still

has a long way to go to obtain performance-guaranteed efficient solutions.

For the second energy-efficient timely transportation problem, we design an FPTAS

to solve this NP-complete problem, which actually generalizes the FPTAS design for the

classical Restricted-Shortest-Path (RSP) problem [50] with an extra design space of speed

planning. Moreover, by leveraging elegant insights from studying the dual problem, we

design a heuristic algorithm with much lower complexity. Though such a heuristic gen-

erally does not provide performance guarantee, interestingly, we characterize a condition

under which our heuristic generates an optimal solution. Such a condition holds on most

of practical instances in our simulations based on real-world dataset. We believe that

our dual-based heuristic design is not limited to our energy-efficient timely transportation

problem, but can be applied to more mixed discrete-continuous problems, as we discussed

in Sec. 13.4.3. It is thus an interesting future direction to generalize our approach to solve

other concrete problems with a similar structure, or even develop a general dual-based

framework to solve a class of mixed discrete-continuous problems.

In summary, we observe that both the problem structure and the problem-solving

methodology of delay-constrained problems in the communication and transportation sys-

tems are completely different from those of the well-understood delay-unconstrained ones.

Many other questions that were asked for delay-unconstrained systems can also be asked
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for delay-constrained systems, such as how to design distributed solutions in a communi-

cation network and how to do traffic assignment in a transportation network. Therefore,

there are a lot of opportunities in the delay-constrained research area and we call for

investigation participation.
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[37] E. Demir, T. Bektaş, and G. Laporte. A comparative analysis of several vehicle

emission models for road freight transportation. Transportation Research Part D:

Transport and Environment, 16(5):347–357, 2011.
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