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Abstract—Many important network design problems can be
formulated as a combinatorial optimization problem. A large
number of such problems, however, cannot readily be tackledby
distributed algorithms. The Markov approximation framewo rk
studied in this paper is a general technique for synthesizing
distributed algorithms. We show that when using the log-sum-exp
function to approximate the optimal value of any combinatorial
problem, we end up with a solution that can be interpreted
as the stationary probability distribution of a class of time-
reversible Markov chains. Certain carefully designed Markov
chains among this class yield distributed algorithms that solve the
log-sum-exp approximated combinatorial network optimization
problem. By three case studies, we illustrate that Markov
approximation technique not only can provide fresh perspective
to existing distributed solutions, but also can help us generate
new distributed algorithms in various domains with provable
performance. We believe the Markov approximation techniques
will find application in many network optimization problems ,
and this paper serves as a call for participation of it.

I. Introduction

Many important network design and resource allocation
problems can be formulated as a combinatorial network opti-
mization problem. Two well-studied examples are

• The Maximum Weighted Independent Set (MWIS) prob-
lem of finding the independent set with the maximum
weight. MWIS problem is known to be a bottleneck of
the wireless utility maximization problem [1].

• The optimal path slection problem in traffic engineering
of finding the “best” set of paths for every user to
maximize the overall network throughput [2].

These formulations, while elegant, often suffer from two short-
comings: (i) the optimization problem could be intractable
when the network size is large (i.e., it is NP-complete); (ii)
the optimization problem could be amenable to centralized
implementation only.

This paper attempts to tackle issue (ii). Specifically, we
propose a general Markov approximation technique that allows
us to solve many combinatorial network optimization problems
in a distributed manner. This also addresses issue (i) to a
certain extent because the distributed implementation often
allows parallel processing by different network elements in the
network. Moreover, systems running distributed algorithms,
compared with those running centralized algorithms, are more
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adaptable to users joining and leaving the systems (e.g.,
peer churn in Peer-to-peer systems) and are more robust to
system/network dynamics (e.g., channel fading in wireless
networks).

Historically, our investigation of the Markov-approximation
technique was inspired by the recent progress in carrier-
sense multiple-access (CSMA) network design. In [3] [4],
it was shown that the throughput of links in a CSMA net-
work can be computed from a time-reversible Markov chain.
Refs. [5] [6] reverse-engineered to show that CSMA solves
the combinatorial MWIS problem asymptotically, off by an
entropy term. With this observation, Refs. [5] [6] made an
excellent contribution showing that a standard wireless utility
maximization problem [1] can be solved by running distributed
algorithms on top of CSMA, with an entropy term added to
the utility function. The appearance of the entropy term is a
consequence of solving the utility maximization problem on
top of CSMA. It turns out that similar entropy term also arises
in several other existing communication systems [7], [8].

These observations naturally lead to several interesting
forward-engineering questions. What is the fundamental cause
of the appearance of the entropy term in all these problems?
By adding an entropy term to the objective function of a
combinatorial optimization problem, can we get a distributed
solution out of it? If yes, how to do so systematically?

This work answers the above questions, and advocates
to use the entropy term as a forward-engineering device to
stimulate new algorithms for various network combinatorial
problems. This expands the usefulness of the approach origi-
nally expounded in the series of work in [3]–[7], [9] to many
other domains beyond CSMA networks. In particular, this
paper makes the following contributions:
• it shows that an entropy term appears as a direct con-

sequence of our approximating the optimal value ofany
combinatorial problem using a log-sum-exp function.

• it shows that as a result of the log-sum-exp approxima-
tion, the optimal solution can be realized by the stationary
distribution of a class of time-reversible Markov chains
(all with the same stationary distribution).

• it shows that certain carefully designed time-reversible
Markov chains among this class yield distributed algo-
rithms that solve the log-sum-exp approximated problem.

• it demonstrates the usage of the Markov approximation
technique by considering two specific problems that are
of much practical interest. The first is the optimal path se-
lection problem in multipath transmission. The second is
the problem of frequency channel assignment to Wireless
LANs located in the vicinity of each other.
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The rest of this paper is organized as follows. We first
present the Markov approximation in Section II. In Section III,
we apply the Markov approximation technique to the wireless
utility maximization problem and derive solutions similarto
those in [5] [6]. The goal of Section III is to provide a new
perspective to the design of an existing distribution solution.
In Sections IV and V, our goal shift to that of applying
Markov approximation to synthesize new distributed algo-
rithms in problem domains. Sections IV studies the optimal
path selection problem in multipath transmission over wireline
networks. Sections V investigates the problem of frequency
channel assignment to Wireless LANs. Section VI concludes
this paper.

II. Markov Approximation

A. Settings

Consider a network with a set of usersR, and a set of
configurationF . A network configurationf ∈ F consists of
individual users using one of its local configurations. When
the system operates underf , each user obtains certain perfor-
mance, denoted byxr ( f ) (r ∈ R)1. The problem of maximizing
the system performance, i.e., aggregate user performance,by
choosing the best configuration can then be cast as following
combinatorial optimization problem2

MWC : maxf∈F

∑

r∈R

xr ( f ). (1)

An equivalent formulation is

MWC − EQ : max
p≥0

∑

f∈F

pf

∑

r∈R

xr ( f ) (2)

s.t.
∑

f∈F

pf = 1,

where pf is the percentage of time the configurationf is
in use. Treating

∑

r∈R xr ( f ) in (1) as the “weight” of f , the
problemMWC is to find a maximum weighted configuration.

Many practical and important problems, or their subprob-
lems, can be formulated into the form of (1). Some well-
studied examples are listed at the very beginning of SectionI,
and we will study three concrete examples in Sections III, IV,
and V.

For many problems, formulation in (1) could be very chal-
lenging to solve, even in a centralized manner. For example,
the MWIS problem is known to be NP-hard. In practice, it is
often acceptable to solve the problem approximately, but ina
distributed manner. Systems running distributed algorithms are
more robust to user and system dynamics than those running
centralized algorithms.

In the following, we describe a framework, which we call
Markov approximation, to approach problem in (1). It often
leads to distributed algorithms that can be implemented in
practice with limited or no message passing among users, as
demonstrated in Section III, IV, and V.

1Notexr ( f ) can be some direct system measurement, e.g., throughput, under
configuration f , or a function of the measurement.

2There could be other forms of combinatorial optimization problem. In this
paper we focus on the standard form given in (1).

B. Log-sum-exp Approximation

To gain insights on the structure of the problemMWC ,
we approximate the max function in (1) by a differentiable
function as follows:

max
f∈F

∑

r∈R

xr ( f ) ≈
1
β

log



















∑

f∈F

exp















β
∑

r∈R

xr ( f )

































, gβ (x) , (3)

where β is a positive constant andx ,
[∑

r∈R xi( f ), f ∈ F
]

.
This approximation is known as the convex log-sum-exp
approximation to the max function . Its accuracy is known
as follows.

Proposition 1: For a positive constantβ andn non-negative
real variablesy1, y2, . . . , yn, we have

max(y1, . . . , yn) ≤
1
β

log
(

exp(βy1) + · · · + exp(βyn)
)

≤ max(y1, . . . , yn) +
1
β

logn. (4)

Hence, max(y1, . . . , yn) = lim
β→∞

1
β

log
(

exp(βy1) + · · · + exp(βyn)
)

.

Proof: Since for anyβ > 0,

exp(max(βy1, . . . , βyn)) ≤ exp(βy1) + . . . + exp(βyn)

≤ n exp(max(βy1, . . . , βyn)) . (5)

We have

max(βy1, . . . , βyn) ≤ log
(

exp(βy1) + . . . + exp(βyn)
)

≤ max(βy1, . . . , βyn) + log(n) (6)

By dividing β in both sides, we obtain inequality (4). When
β→ ∞, we get the desired equality.

We summarize some important observations ofgβ (x) in
the following theorem. Some of these observations were also
found relevant in the context of Geometric Programming [10].

Theorem 1: For the log-sum-exp functiongβ (x), we have

• its conjugate function3 is given by

g∗β (p) =















1
β

∑

f∈F pf log pf if p ≥ 0 and1T p = 1

∞ otherwise.
(7)

• it is a convex and closed function; hence, the conjugate
of its conjugateg∗

β
(p) is itself, i.e., gβ (x) = g∗∗

β
(x).

Specifically,

gβ (x) = max
p≥0

∑

f∈F

pf

∑

r∈R

xr ( f ) −
1
β

∑

f∈F

pf log pf (8)

s.t.
∑

f∈F

pf = 1.

Proof: The proof of (7) follows nearly the same way
as [11, pp.93].gβ (x) is a convex function because the log-
sum-exp function is a convex function [11]. Further,gβ (x) is
continuous, and its domain is a closed set, thusgβ (x) is a
closed function. Hence by [11, Section 3.3.2], the conjugate
of its conjugateg∗

β
(p) is itself, i.e., (8) holds.

3Definition of conjugate function is as follows: letg(y) be a R-value
function with domaindomg ∈ Rn, its conjugate function is defined as
g∗(z) = supy∈domg

(

zT y − g(y)
)

[11].
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Remark: Several observations can be made. First, by the
log-sum-exp approximation in (3), we are implicitly solving
an approximated version of the problemMWC − EQ, off by
an entropy term − 1

β

∑

f∈F pf log pf
4. The optimality gap is

thus bounded by1
β

log |F |, where |F | represents the size of
F . We emphasize that this is a direct consequence of we
theoretically approximating the max function by a log-sum-
exp function in (3). Practically, we argue in this paper that
adding this additional entropy term in fact opens new design
space for exploration. Second, the approximation becomes
exact asβ approaches infinity. However, as we will see in case
studies later, usually there are practical constraints or overhead
concerns of using largeβ. Third, we can derive a close-form
of the optimal solution of the problem in (8). Letλ be the
Lagrange multiplier associated with the equality constraint in
(8) and p∗f (x), f ∈ F be the optimal solution of the problem
in (8). By solving the Karush-Kuhn-Tucker (KKT) conditions
[11] of the problem in (8):

∑

r∈R

xr ( f ) −
1
β

log p∗f (x) −
1
β
+ λ = 0, ∀ f ∈ F , (9)

∑

f∈F

p∗f (x) = 1, (10)

λ ≥ 0, (11)

we have

p∗f (x) =
exp(β

∑

r∈R xr ( f ))
∑

f ′∈F exp(β
∑

r∈R xr ( f ′))
,∀ f ∈ F . (12)

By time-sharing among different configurationsf according
to their portionsp∗f (x), we solve the problemMWC − EQ,
and hence the problemMWC , approximately. We remark the
optimality gap is bounded by1

β
log |F |, which can be made

small by choosing largeβ.

C. Algorithm Design via Markov Chain

A key to create new algorithm designs is to treat
p∗f (x) ( f ∈ F ) as the stationary distribution of a time-
reversible Markov chain. Time-reversible Markov chains usu-
ally have structures that allows distributed implementation. As
the Markov chain converges to its stationary distribution,we
approachp∗f (x) in a distributed manner.

Lemma 1: For any probability distribution of the product
form p∗f (x) in (12), there exists at least one continuous-
time time-reversible ergodic Markov chain whose stationary
distribution is p∗f (x). Further, for any continuous-time time-
reversible ergodic Markov chain, its stationary distribution can
be expressed by the product formp∗f (x) in (12).

The proof is relegated to Appendix-A.
To construct a time-reversible Markov chain with its station-

ary distributionp∗f (x) ( f ∈ F ), we let f ∈ F be the state of the
Markov chain, and denoteqf , f ′ as the nonnegative transition
rate between two statesf and f ′. It is sufficient to designqf , f ′

so that

4Under the context of CSMA scheduling, Jiang and Walrand [5] arrive a
similar observation using a different approach. We will discuss more details
when we come to CSMA utility maximization in Section III.

• the resulting Markov chain is irreducible, i.e., any two
states are reachable from each other,

• and the detailed balance equation is satisfied: for allf
and f ′ in F and f , f ′, p∗f (x) qf , f ′ = p∗f ′ (x) qf ′, f , i.e.,

exp















β
∑

r∈R

xr ( f )















qf , f ′ = exp















β
∑

r∈R

xr ( f ′)















qf ′, f . (13)

We remark that the above two sufficient requirements allow a
large degree of freedom in design.

First, it allows us to set the transition rates between any two
states to be zero, i.e., cutting off the direct transition between
them, given that they are still reachable from any other states.
The modified Markov chain is still time-reversible and its
stationary distribution is stillp∗f (x) ( f ∈ F ). For example, as-
sume the 4-states Markov chain in Fig. 1.(a) is time-reversible.
The “sparse” Markov chains in Fig. 1.(b)-(d), modified from
the “dense” one in Fig. 1.(a) by adding/removing transition
edge-pair between two states, are also time-reversible. Further-
more, all Markov chains share the same stationary distribution.

f

f ′′′

f ′

f ′′

(a)

f

f ′′′

f ′

f ′′

(b)

f

f ′′′

f ′

f ′′

(c)

f

f ′′′

f ′

f ′′

(d)

Fig. 1. The Markov chains in (b), (c), (d), by adding/removing transition
edge-pair between two states in the time-reversible Markovchain in (a), are
also time-reversible. All Markov chains have the same stationary distribution.

Second, for two statesf and f ′ that have direct transitions,
there are many options in designingqf , f ′ and qf ′, f . These
options include, but are not limited to, the following ones:
let α be a positive constant,

OPT1: letqf , f ′ be negative correlated to the system perfor-
mance

∑

r∈R xr ( f ) under configurationf , specifically,

qf , f ′ = α















exp















β
∑

r∈R

xr ( f )





























−1

. (14)

qf ′ , f is defined in a symmetric way.
OPT2: letqf , f ′ be positive correlated to the system perfor-

mance under the targeting configurationf ′, specifi-
cally,

qf , f ′ = αexp















β
∑

r∈R

xr
(

f ′
)















. (15)

qf ′ , f is defined in a symmetric way.
OPT3: let qf , f ′ be positive correlated to the difference of

system performance under configurationf and f ′,
in particular,

qf , f ′ = αexp















1
2
β
∑

r∈R

(

xr
(

f ′
)

− xr ( f )
)















. (16)

qf ′ , f is defined in a symmetric way.
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OPT4: letqf ′ , f = α, and qf , f ′ be positive correlated to the
difference of system performance under configura-
tion f and f ′, i.e.,

qf , f ′ = αexp















β
∑

r∈R

(

xr
(

f ′
)

− xr ( f )
)















. (17)

Design option OPT1 implies the transition rate fromf to f ′,
i.e., qf , f ′ , is independentof the performance under targeting
configurationf ′. In contrast,qf , f ′ in OPT2 depends only on the
performance of targeting configurationf ′. Design ofqf , f ′ in
OPT3 combines flavors from previous two options, where the
system is more likely to switch to a configuration with better
performance. In practice, both OPT2 and OPT3 require the
system to know the performance under targeting configuration
f ′ a prior, or through a probing phase. Option OPT4 is similar
to OPT3, butqf , f ′ and qf ′, f are no longer symmetric. As we
will discuss in Section III, CSMA protocol in fact implements
a Markov chain with transition rate fitting into option OPT4.

Recalled in our setting, a configurationf consists of each
individual user using one of its local configurations. Transi-
tions betweenf and f ′ are done via users switching their
local configurations accordingly. By users running individual
continuous-time clock and wait for a random amount of time
before they switching local configurations, we can design
transition to happen only between two configurationsf and
f ′ that differ by one user’s local configuration. If individual
users can collect system performance that its switching can
affect in a distributed manner, then the Markov chain can be
implemented in a distributed manner.

Note Simulated Annealing [12] also uses Markov chain
for algorithm design. The difference between Simulated An-
nealing and our work is that Simulated Annealing in general
focuses on solving the problem exactly using centralized algo-
rithms, while we focus on designing distributed algorithm to
solve the optimization problem approximately. In the following
sections, we study three cases to illustrate how such designare
done.

III. Case 1: Utility Maximization in CSMA Networks

In this section, we apply the Markov approximation tech-
nique to the wireless utility maximization problem. We derive
solutions similar to those in [5] [6]. By doing so, we wish to
provide new perspective to the design of existing distributed
solutions.

A. Settings

Consider a hidden-node-free5and collision-free CSMA
wireless network, denoted byG = (N, L) whereN is the set of

5In CSMA networks, two links are allowed to transmit simultaneously
if they are considered to be feasible under CSMA protocol. However,
CSMA protocol schedules transmissions based on carrier sensing mechanism,
independent of the underlying interference model. Consequently, simultaneous
transmissions allowed by CSMA may still interfere with eachother, resulting
in the infamous hidden-node problem. As compared to CSMA networks
with hidden nodes, hidden-node-free CSMA networks are attractive not only
because they are more fair, but also because its throughput analysis is more
tractable. As studied in [13], a CSMA network can always be made hidden-
node-free, by setting the carrier sensing threshold properly. Hence, we focus
on hidden-node free CSMA networks in our analysis.

nodes andL is the set of links, each having unit capacity. Note
the results can be readily extended to the case where links have
heterogeneous capacities. Let its corresponding conflict graph
beGc = (L,A), whereA is the set of arcs inGc. Let F be the
set of all independent sets overGc.

Let S be the set of all users, where a users ∈ S is associated
with the single route connecting its source and destination
nodes. Letz = [zs, s ∈ S]T be the vector of user rates. Let
p = [pf , f ∈ F ]T be the vector of percentages of time an
independent set is active. LetUs(zs) be the utility function of
users upon sending at ratezs. We assume the utility functions
to be twice differentiable, increasing and strictly concave.

B. Wireless Utility Maximization Problem

Consider the following utility maximization problem over
Gc. Note here no wireless protocol is assumed.

MP : max
z≥0,p≥0

∑

s∈S

Us(zs) (18)

s.t.
∑

s:l∈s,s∈S

zs ≤
∑

f :l∈ f

pf , ∀l ∈ L

∑

f∈F

pf = 1

where
∑

s:l∈s,s∈S zs is the aggregate rate passing through link
l, and the first set of constraints says aggregate incoming rate
of every link can not exceed the average link throughput. By
relaxing the first set of inequality constraints, we get its partial
Lagrangian as follows

L(z, p, λ) =
∑

s∈S

Us(zs) −
∑

l∈L

λl

















∑

s:l∈s,s∈S

zs −
∑

f :l∈ f

pf

















, (19)

whereλ = [λl , l ∈ L]T is the vector of Lagrange multipliers.
We notice

∑

l∈L λl
∑

f :l∈ f pf =
∑

f∈F pf
∑

l∈ f λl .

Since the problemMP is a concave optimization one
and the Slater’s condition holds, the strong duality holds.
Consequently, the optimal solution of problemMP can be
found by solving the following problem successively inp, z,
andλ:

min
λ≥0

max
z≥0
p≥0

∑

s∈S

Us(zs) −
∑

l∈L

λl

∑

s:l∈s,
s∈S

zs +
∑

f∈F

pf

∑

l∈ f

λl (20)

s.t.
∑

f∈F

pf = 1.

The key challenge lies in solving the combinatorial sub-
problem in p, which is the NP-hard MWIS problem [1]:

MWIS : maxp≥0

∑

f∈F

pf

∑

l∈ f

λl (21)

s.t.
∑

f∈F

pf = 1.

The optimal value of the problemMWIS is given by comput-
ing the max function: maxf∈F

∑

l∈ f λl .
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C. Approach by Markov Approximation

Observing the problemMWIS is a combinatorial optimiza-
tion problem, we apply the Markov Approximation. First, we
apply the log-sum-exp approximation

max
f∈F

∑

l∈ f

λl ≈
1
β

log



















∑

f∈F

exp

















β
∑

l∈ f

λl



































, (22)

whereβ is a positive constant. According to Theorem 1, we
are implicitly solving an approximated version of the problem
MWIS , off by an entropy term− 1

β

∑

f∈F pf log pf , as follows

maxp≥0

∑

f∈F

pf

∑

l∈ f

λl −
1
β

∑

f∈F

pf log pf (23)

s.t.
∑

f∈F

pf = 1,

and the corresponding (unique) optimal solution is

pf (λ) =
exp

(

β
∑

l∈ f λl

)

∑

f ′∈F exp
(

β
∑

l∈ f ′ λl

) ,∀ f ∈ F . (24)

We first study the impact of solving the subproblemMWIS
approximately by (22).

1) Entropy Term as A Consequence of Log-sum-exp Ap-
proximation: It is unlikely that we are still solving the original
problemMP. After we approximate problemMWIS by the
problem in (23), the partial Lagrangian problem in (20) turns
into

min
λ≥0

max
z≥0,p≥0

∑

s∈S

Us(zs) −
1
β

∑

f∈F

pf log pf (25)

−
∑

l∈L

λl

















∑

s:l∈s,s∈R

zs −
∑

f :l∈ f

pf

















s.t.
∑

f∈F

pf = 1. (26)

It can be verified to be the partial Lagrangian problem of the
following primal problem:

MP −MA : max
z≥0,p≥0

∑

s∈S

Us(zs) −
1
β

∑

f∈F

pf log pf (27)

s.t.
∑

f :l∈ f

pf ≥
∑

s:l∈s,s∈R

zs, ∀l ∈ L

∑

f∈F

pf = 1.

Comparing problemsMP −MA and MP, we observe that
when we approximate the subproblemMWIS by the one
in (23), we are in effect approximating the problemMP by
problemMP −MA , which has an additional entropy term in
its objective function. We remark that the entropy term appears
as a direct consequence of our approximating the max function
with the log-sum-exp function in (22), independent of any
wireless protocol, e.g., CSMA, to be used.

Historically, by modeling and studying the carrier sensing
behavior, the authors of [3], [4] showed that the percentage
of the active time of independent sets, under the CSMA
scheduling with transmission aggressive vectorλ, is given by

pf (λ) in (24). The authors of [5], [6] then reverse-engineered
pf (λ) in (24) to be the optimal solution to the problem in (23).
With this observation, the authors of [5], [6] design distributed
algorithms on top of CSMA to solve problemMP −MA , an
entropy term away from problemMP.

2) CSMA as Distributed Implementation of Markov Chain:
¿From a forward engineering perspective, imagine that the
CSMA protocol was not invented and did not exist yet.
Then following the Markov approximation technique, we
now design a time-reversible Markov chain whose stationary
distribution is given by (24) and work out its distributed
implementation.

The states of the Markov chain are the independent sets
over Gc. To make sure the network operates over only the
independent sets, any two interfered links (in particular their
transmitters) must be able to sense each other so one will
keep silence while the other is transmitting. This can be done
distributedly by each transmitter sensing its receiving power
and only starting its transmission if the power is below a
properly selected threshold [13].

We follow OPT4 (discussed in Section II-C) to design the
transition rates. We start by only allowing direct transitions
between two “adjacent” states (independent sets)f and f ′ that
differ by one and only link. That is,

a) we setqf , f ′ to zero, if one off or f ′ is not a subset
of the other (i.e.,| f |− | f ′| = ±1 is not satisfied). Here
| · | represents the size of a set.

By this design, the transition fromf to f ′ = f∪{l′} corresponds
to link l′ starting its transmission. Similarly, the transition
from f ′ to f corresponds to linkl′ finishing its on-going
transmission.

Now, consider two statesf and f ′ where f ′ = f ∪ {l′},

b) we setqf ′ , f to 1, and

qf , f ′ = exp

















β

















∑

l∈ f ′
λl −

∑

l∈ f

λl

































= exp(βλl′ ) . (28)

To achieve transition rateqf , f ′ , the transmitter of linkl′ waits
for a back-off time that follows exponential distribution with
rate exp(βλl′ ) before it starts to transmit. During the count-
down, if the linkl′ (in particular its transmitter) senses another
interfering link is in transmission, linkl′ will freeze its count-
down process. When the transmission is over, linkl′ count-
down according to the residual back-off time, which is still
exponential distributed with the same rate exp(βλl′ ) because
of the memoryless property of exponential distribution.

The transition rate only depends on the lagrange multiplier
λl′ (called transmission aggressiveness in [5]) and is propor-
tional to the local queue length of linkl′, as discussed in [5]
[6] and in Section III-C4.

Similarly, the transition rateqf ′, f can be achieved by linkl′

setting its transmission time to follow exponential distribution
with unit rate.

In the end, this distributed implementation leads to the
discovery of the CSMA protocol, with adjustable transmission
aggressiveness. This thought exercise raises out a significant
point. Namely, had the CSMA protocol not been invented
previously, the Markov Approximation technique might have
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led us to it, starting with the premise that we wanted to find an
approximate distributed algorithm to problemMP. A similar
exercise on other problem domains in which a satisfactory
distributed solution is still lacking may help us to discover
new distributed algorithms. That is, the Markov approximation
technique is a general framework.

3) Approximation Accuracy Limited by Physical Con-
straints: Mathematically, asβ approaches infinity, we should
be able to solveMWIS exactly. However, there are certain
physical constraints preventingβ to be too large. In CSMA
networks, The value of exp(βλl′ ) corresponds to the ratio of
average packet duration to average backoff time [3]. For
a given fixed packet duration (e.g., that corresponds to the
maximum size of an Internet packet), increasingβ basically
means decreasing the average back off time. However, the av-
erage backoff time cannot be arbitrarily decreased. In practical
situation, the backoff process is actually time-slotted. Each
backoff time slot σ must be sufficient large either due to
circuit design considerations, or more fundamentally the radio
propagation delay. For a WLAN in which the largest distance
between two stations isd, as a rule of thumbσ ≥ 2d/c(the
round-trip progagation delay) for CSMA to operate properly.
If we assume the radius of a WLAN coverage is 75m and the
speed of lightc = 3 × 108 m/s, thenσ ≥ 1µs. In 802.11b,
σ = 20µs , but here we will assume the fundamental limit of
σ = 1µs.

Typically, we should allow for enough number of slots in
the average backoff time to avoid excessive packet collisions
due to simultaneous backoff countdown to zero by two or more
transmitters. In 802.11b, for example, the average number of
backoff countdown is around 15 time slots. Using this number,
the average backoff time is therefore 15× 1µs= 15µs.

Now suppose that the data rate of the WLAN is 10 Mbps,
and the average packet size is 1kB. The packet duration is
then in the ballpark of 800µs (ignoring DIFS and ACK). The
largest possible value for exp(βλl′ ) is then 800/15 = 53 (or
βλl′ ≤ 4). In 802.11e, we could use the TXOP option to bundle
packet transmissions together. Assume we bundle 10 packets
together for transmissions, then instead of 53, exp(βλl′ ) ≤ 530
(or βλl′ ≤ 6.3). That is, the backoff rate of link l′ (l′ ∈ L) is
exp(βλl′ ), which cannot go beyond 530.

4) Solving ProblemMP −MA by CSMA and Primal-dual
Algorithm: With the approximated optimal value to problem
MWIS in Equation , we can solve the following problem to
get the optimal solutionz∗ andλ∗ (and thusp∗):

∑

s∈S

Us(zs) −
∑

l∈L

λl

∑

s:l∈s,s∈S

zs +
1
β

log



















∑

f∈F

exp

















β
∑

l∈ f

λl



































. (29)

This problem can be solved by either a dual algorithm or a
primal-dual algorithm. Dual algorithms has been studied for a
slightly different formulation in [5], [6]. We study a primal-
dual algorithm as follows



















λ̇l = kl

[

∑

s:l∈s,s∈S zs −
∑

l∈ f pf (βλ)
]+

λl

żs = αs

[

U
′

s(zs) −
∑

l∈sλl

]+

zs

, (30)

where kl(l ∈ L) and αs(s ∈ S) are positive constants and
function [b]+a = max(0, b) if a ≤ 0 and equalsb otherwise. The

advantage of the primal-dual algorithm is that the changes in
sending ratezs (and correspondinglyλl) is smoother than that
in the dual algorithm.

Note
∑

l∈s ps(βλ) is the stationary throughput of linkl, by
running CSMA protocol network-widely with transmission
aggressive vectorβλ. This is a key observation made in [3]
[5] [6]. The Lagrange dual variableλl can then be updated
based on information of the local queue at linkl.

Given the Markov chain converges to its stationary distribu-
tion instantaneously, proving the convergence of the algorithm
in (30) can be done by a standard technique using Lyapunov
function [14],

In practice, however, the Markov chain may not converge
before the primal-dual algorithm (30) evolves. the algorithm
then turns into a stochastic primal-dual algorithm, given as
follows:

λl(m+ 1) =

















λl(m) + ǫ(m)

















∑

s:l∈s,s∈S

zs(m) − θ̄l(m)

































+

∀l ∈ L,

zs(m+ 1) =















zs(m) + ǫ(m)















U
′

s(zs(m)) −
∑

l:l∈s

λl(m)





























+

∀s ∈ S,

(31)

whereǫ(m) is the step size,̄θl(m) is the average link rate mea-
sured by linkl within the update intervalTm, andTm is the time
interval between the system updating (λ(m− 1), z(m− 1)) and
(λ(m), z(m)). The primal-dual algorithm (30) can be considered
a continuous time approximation of (31) with smallǫ(m) and
Tm.

Under suitable choices of step sizes and update intervals,
we establish the convergence of the stochastic primal-dual
algorithm (31) with probability one in the following theorem.

Theorem 2: Assume that U
′

s(0) < ∞,∀s ∈ S,
maxs,m zs(m) < ∞ and maxl,mλl(m) < ∞. The stochastic
primal-dual algorithm in (31) converges to the optimal solu-
tions of MP −MA asymptotically with probability one under
the following conditions on step sizes and update intervals:

{Tm} is non-decreasing with m, (32)

ǫ(m) > 0 ∀m,
∑∞

m=1
ǫ(m) = ∞,

∑∞

m=1
ǫ2(m) < ∞, (33)

∑∞

m=1

ǫ(m)
Tm
< ∞. (34)

Further, the settingǫ(1) = T(1) = 1, ǫ(m) = 1
m, Tm = m, m≥ 2

is one specific choice satisfying conditions (32)-(34).
The proof is relegated to Appendix-B. Inspired by and

similar to [15], we also adopt the standard methods of stochas-
tic approximation [16] and Markov chain [17], [18]. The
difference between our proof and [15] is that, our proof studies
the saddle points of Lagrangian function, while [15] studies
the optimal dual solutions directly.

IV. Case 2: Path Selection inWireline Networks

A. Settings

Consider a wireline networkG=(V, L), the capacity of link
l ∈ L is denoted byCl . Let Js denote the set of paths available
for user s ∈ S. For each path a users selects fromJs, it
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opens a connection to transfer data. Maintaining connections
and paths consume users’ resources and incur overhead. Due
to the limited system resource or concern on overhead, each
users ∈ S operates at mostDs connections overDs paths.

Let F denote the set of all possible configurations of paths
used by users. A configurationf ∈ F represents the set of
paths used by alls ∈ S. Given an f ∈ F , we denote those
used by users to be Js, f ⊆ Js, where |Js, f | = Ds. Similar
to [2], we assume that there exists at most one bottleneck along
each path, where “bottleneck” is defined as the link shared
among multiple paths. Therefore, at most one link of a path
will be shared with other paths. While a limited assumption
that may not hold in practice, it is a reasonable model for
some realistic scenarios [19]. Even under this assumption,path
selection is still a challenging problem [2]. We also assume
the utility functions to be twice differentiable, increasing and
strictly concave.

B. Joint Path Selection and Multipath Utility Maximization

Consider the following utility maximization problem based
on path selection, where we time-share among a set of
configurations to maximize the aggregate user utility of the
long-term throughputs:

PS : maxz≥0,p≥0

∑

s∈S

Us(zs) (35)

s.t. zs ≤
∑

f∈F

Rs, f pf ∀s ∈ S

∑

f∈F

pf = 1,

wherezs is the long-term throughput of users ∈ S, pf is the
probability (or time fraction) of the configurationf, andRs, f

is named “equilibrium rate” for users in configurationf. It is
the aggregate rate sources obtained at the optimal solution
to the following multipath utility maximization problem with
uncoordinated congestion control [2]:

MP − UCC : maxy≥0

∑

s∈S

∑

j∈Js, f

Us(y j) (36)

s.t.
∑

j:l∈ j

y j ≤ Cl , ∀l ∈ L f

where L f is the set of links used by all users under config-
uration f, y j is the path rate for pathj ∈ Js, f , s ∈ S, and
y = [y j ,∀ j ∈ Js, f , s ∈ S]T is the vector of rates of all paths.
Let optimal solutions of the problemMP − UCC denoted by
ŷ j , j ∈ Js, f , s ∈ S, the equilibrium capacity is given by

Rs, f =
∑

j∈Js, f

ŷ j . (37)

By (37), we implicitly assume a timescale separation be-
tween solving the problemsMP − UCC and PS [2]. Such
assumption is justified to some extend by the following obser-
vations. Given the configurationf ∈ F , problemMP − UCC
can be solved by standard distributed flow control algorithms
[2], in a timescale on the order of round trip time. On the
other hand, the path selection is likely to operate at a much

slower timescale due to the overhead involved in configuring
paths and setting up connections.

With the two timescale separation in place, we focus on
solving the combinatorial problemPS in the slow timescale.

C. Approach by Markov Approximation

Following similar procedure in Section III, we apply
Markov approximation and at the end turn to solve an ap-
proximated version of problemPS as follows:

PS−MA : maxz≥0,p≥0

∑

s∈S

Us(zs) −
1
β

∑

f∈F

pf log pf (38)

s.t. zs ≤
∑

f∈F

Rs, f pf ∀s ∈ S

∑

f∈F

pf = 1.

To proceed, we relax the first set of constraints and denote
λ = [λs, s ∈ S] as the vector of Lagrange multipliers. Follow-
ing a similar analysis as in Section III, the optimal solution of
the problem in (38) can be obtained by searching the saddle
point of the following function

∑

s∈S

Us(zs) −
∑

s∈S

λszs +
1
β

log



















∑

f∈F

exp















β
∑

s∈S

Rs, f λs

































, (39)

and at the same time setting

pf (βλ) =
exp

(

β
∑

s∈S Rs, f λs

)

∑

f∈F exp
(

β
∑

s∈S Rs, f λs

) ,∀ f ∈ F . (40)

We explore algorithm design based on this observation in the
following subsections. Thepf (βλ) in (40) can be interpreted as
the stationary distribution of a time reversible Markov chain,
whose states are the configurations inF . We first discuss how
to design and implement such a Markov chain in a distributed
manner, and then design stochastic algorithms to pursue the
saddle point of the function in (39).

D. Design and Implementation of Markov Chain

First, we set the transition rateqf , f ′ between two configu-
rations f and f ′ to be zero, unlessf and f ′ satisfy that

C1: | f ∪ f ′ − f ∩ f ′| = 2;
C2: there exists a user, denoted bys( f , f ′), so that f ∪

f ′ − f ∩ f ′ ∈ Js( f , f ′).
This way, the transition fromf to f ′ corresponds to a single
users( f , f ′) switching a single path.

Second, for f and f ′ that satisfyC1 and C2, we follow
OPT1 discussed in Section II-C to design their transition
rate qf , f ′ . Direct implementation of OPT1, however, usually
requires users( f , f ′) to know global information

∑

s∈S Rs, fλs,
a term difficult to acquire in practice. To this extend, we
find that a unique structure of our problem can simplify the
implementation.

First, we introduce a new concept. Given a pathj, its
neighboring path setN( j) is defined as the set of paths that
share links withj, i.e.,N( j) = { j′ : j′ ∩ j , ∅}. Since there is
at most one bottleneck link per path, we have 1) only one link
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of path j is shared with other paths inN( j); 2) this particular
path must be the only bottleneck link of any pathj′ ∈ N( j).
Consequently, all paths inN( j) have identical neighboring set,
i.e.,N( j′) = N( j) for all j′ in N( j). For any pathj′ < N( j),
N( j′) ∩ N( j) = ∅.

Then we have the following observation:
Lemma 2: Under the setting of uncoordinate congestion

control, the equilibrium rates of a users′ under f and f ′

are the same ifs′ does not change paths, and for any path
j′ ∈ f ∪ f ′ − f ∩ f ′, all paths of s′ do not belong to the
neighboring path set ofj′, i.e.,

Rs′, f = Rs′, f ′ , if Js′, f = Js′, f ′ and Js′, f ∩ N( j′) = ∅,

∀ j′ ∈
(

f ∪ f ′ − f ∩ f ′
)

.

Proof: Under the setting of uncoordinate congestion
control, each path has its own utility function to maximize.
Two paths are independent to each other if they are disjoint.
Therefore the optimal rate of pathj depends only on its
neighboring paths setN( j). If the user s′ does not change
paths, and all its paths are disjoint with paths in the set
⋃

j′ N( j′), j′ ∈ f ∪ f ′ − f ∩ f ′, then paths inJs′, f and their
neighboring path sets will not be affected by path swapping,
thus by (36) and (37), the equilibrium rateRs′, f is invariant
and equals toRs′, f ′ .

Let H( f , f ′) be the set of such “invariant” users under
configurationsf and f ′. Then to satisfy the detailed balance
equationqf , f ′ pf (βλ) = qf ′, f pf ′(βλ) for f and f ′ that satisfy
C1 andC2, it is sufficient to let



















qf , f ′ =
[

exp
(

β
∑

s∈S−H( f , f ′) Rs, fλs

)]−1
,

qf ′ , f =
[

exp
(

β
∑

s∈S−H( f , f ′) Rs, f ′λs

)]−1
.

(41)

The common part exp
(

β
∑

s∈H( f , f ′) Rs, fλs

)

appears on both
sides of the detailed balance equation and gets canceled. Now,
to implement transition rateqf , f ′ in (41), the users( f , f ) needs
to collect the informationRs, fλs from s in S − H( f , f ′).

Noticed thatS − H( f , f ′) is the set of users whose paths
share links withs( f , f ′), userss in S−H( f , f ′) can then leave
the informationRs, fλs at each router, and users( f , f ′) can
fetch them from the routers when its own packets pass by.
The shared routers can be thought as shared memory between
s( f , f ′) and s in S − H( f , f ′). In this way, s( f , f ′) acquires
the needed information to computeqf , f ′ andqf ′, f in (41) in a
distributed manner.

We briefly describe the distributed implementation as fol-
lows.

Stag0: Initially, every users randomly selectsDs paths from
its path setJs.

Stag1: Users randomly selects one path out of its not-
in-use |Js| − Ds paths, and randomly selects one
path out of itsDs in-use path. Users then counts
down according to a random number and swaps these
two paths when the count-down expires. Denote the
current configuration asf and the targeting con-
figuration as f ′. The random number is generated
following an exponential distribution with parameter

Ds (|Js| − Ds)
[

exp
(

β
∑

s′∈S−H( f , f ′) Rs′, fλs′
)]−1

, where

∑

s′∈S−H( f , f ′) Rs′, fλs′ can be acquired in the following
way. For all s′ in S and j ∈ Js′, f , user s′ adds
a header containingRs′, fλs′ to data packets before
sending them out along pathj. Every router on pathj
records the information ofRs′, fλs′ for everys′ whose
traffic passing through them. Assuming the reverse
direction traffic (e.g., ACK packets) uses the same
paths as forward direction traffic, the ACK packets
can collect theRs′, fλs′ (s ∈ S − H( f , f ′)) information
from the routers on their way to users.

Stag2: During the count-down, each users also continu-
ously senses whether other users sharing links with
them undertake a path swapping. This can be done by
the users who swap paths leave a one-bit of informa-
tion at the routers, and all users whose traffic passing
by this router can collect this bit of information. If a
users senses a path swapping, it will reset its counter
and jump toStag1.

Stag3: When users’s count-down expires, it will swap the
selected two paths, and jump toStag1.

Corresponding pseudocode is shown in Algorithm 1.

Next we establish that the above distributed procedure in
fact implements a time-reversible Markov chain with station-
ary distribution in (40).

Proof: By C1 and C2, we know that all configurations
can reach each other within a finite number of transitions,
thus the constructed Markov chain is irreducible. Further,it is
a finite state ergodic Markov chain with a unique stationary
distribution. We now show that the stationary distributionis
indeed (40).

Given the current configurationf , the users( f , f ′) chooses
f ′ to be its targeting configuration by random selec-
tion,, then it counts down according to a random num-
ber that follows an exponential distribution with parameter

Ds( f , f ′)

(

|Js( f , f ′)| − Ds( f , f ′)

) [

exp
(

β
∑

s′∈S−H( f , f ′) Rs′, fλs′
)]−1

.

Now we want to compute the corresponding transition
rate qf , f ′ . We first use a counting argument to compute the
probability that users( f , f ′) selects the particular targeting
path that leads to configuration swapping from f tof ′. Given
a configurationf , the total number of targeting configurations
it can swap to is

∏

s′∈S Ds′(|Js′ | − Ds′). Among these target-
ing configurations, the number of targeting configurations is
∏

s′∈S−{s( f , f ′)} Ds′ (|Js′ | − Ds′ ). Thus the desired probability is

Pr( f → f ′ with users( f , f ′))

=

∏

s′∈S−{s( f , f ′)} Ds′(|Js′ | − Ds′)
∏

s′∈S Ds′(|Js′ | − Ds′)
(42)

=
1

Ds( f , f ′)(|Js( f , f ′)| − Ds( f , f ′))
(43)

Upon selecting the particular path, the user
s( f , f ′) performs the path switching with rate

Ds( f , f ′)

(

|Js( f , f ′)| − Ds( f , f ′)

) [

exp
(

β
∑

s′∈S−H( f , f ′) Rs′, fλs′
)]−1

.
Thus overall the transition rate fromf to f ′ is given by the
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Algorithm 1
1: The following procedure runs on each individual user

independently. We focus on a particular users.

2: procedure Initialization
3: Js, f ← Ds paths random picked fromJs

4: index← 0
5: Invoke Procedure Selection(s)
6: end procedure

7: procedure Selection(s)
8: randomly selects one pathj(s) from Js, f

9: randomly selects one targeting pathj′(s) from Js−Js, f

10: acquires
∑

s′∈S−H( f , f ′) Rs′, fλs′

11: generates a timer

Ts ∼ exp



















Ds (|Js| − Ds)

















exp

















β
∑

s′∈S−H( f , f ′)

Rs′, fλs′

































−1
















and begin counting down
12: while the timerTs does not expiredo
13: if Senses the existence of path swapping activity

then
14: index← 1
15: break
16: end if
17: end while
18: if index= 1 then
19: Terminates current countdown process and invoke

Procedure Selection(s)
20: index← 0
21: else Invoke Procedure Swap(s, j(s), j′(s))
22: end if
23: end procedure

24: procedure Swap(s, j(s), j′(s))
25: users switches from pathj(s) to path j′(s)
26: leaves one bit information at routers along pathj(s)

and j′(s)
27: end procedure

following equation

qf , f ′ = Ds( f , f ′)

(

|Js( f , f ′)| − Ds( f , f ′)

)

















exp

















β
∑

s′∈S−H( f , f ′)

Rs′, fλs′

































−1

× Pr( f → f ′with users( f , f ′)) (44)

=

















exp

















β
∑

s′∈S−H( f , f ′)

Rs′, fλs′

































−1

(45)

With (40), we see thatpf ·qf , f ′ = pf ′ ·qf ′, f , i.e., the detailed
balance equations hold. Thus the constructed Markov chain
is time-reversible and its stationary distribution is indeed (40)
according to Theorem 1.3 and Theorem 1.14 in [20].

E. Solving ProblemPS−MA by Running An Primal-dual
Algorithm over Markov Chain

Following a procedure similar to that in Section III-C4, we
design a distributed stochastic primal-dual algorithm to pursue
the saddle points of the function in (39), on top of the Markov
chain implemented in the previous subsection, as follows:

zs(m+ 1) =
[

zs(m) + ǫ(m)
(

U
′

s(zs(m)) − λs(m)
)]

+
, ∀s ∈ S

(46)

λs(m+ 1) =
[

λs(m) − ǫ(m)
(

θ̄s(m) − zs(m)
)]

+
, ∀s ∈ S (47)

whereǫ(m) is the step size,̄θs(m) be the average service rate
users actually obtains within the update intervalTm, andTm is
the time interval between the system updating (λ(m−1), z(m−
1)) and (λ(m), z(m)).

Again, under suitable choices of step sizes and update in-
tervals, we establish the convergence of the stochastic primal-
dual algorithm (46)-(47) as follows.

Theorem 3: Assume that U
′

s(0) < ∞,∀s ∈ S,
maxs,m zs(m) < ∞ and maxs,mλs(m) < ∞. The stochastic
primal-dual algorithm in (46)-(47) converges to the optimal
solution of problemPS−MA with probability one if the
following conditions for step sizes and update intervals hold:

{Tm} is non-decreasing with m, (48)

ǫ(m) > 0 ∀m,
∑∞

m=1
ǫ(m) = ∞,

∑∞

m=1
ǫ2(m) < ∞, (49)

∑∞

m=1

ǫ(m)
Tm
< ∞. (50)

Further, the settingǫ(1) = T(1) = 1, ǫ(m) = 1
m, Tm = m, m≥ 2

is one specific choice satisfying conditions (48)-(50).
The proof of this theorem 3 is very similar to the proof of

theorem 2. We omit details here.

V. Case 3: Channel Assignment inWireless LANs

A. Settings

Consider a wireless 802.11 LAN withN access points (AP).
Each AP is associated with a set of clients that access the Inter-
net via this AP. In our setting, APs are connected via wireline
backbone, e.g., Ethernet, so that they can communicate with
each other with negligible cost. This corresponds to the case
where APs belong to the same administrative zone and can
coordinate. Each AP can choose one channel to operate from a
set ofM available channels, denoted byC = {c1, c2, . . . cM}. We
define a channel-assignment configuration as the vector indi-
cating the channel choice of every APs, i.e.,f ,

[

f1, f2, . . . , fN
]

,

where fi ∈ C denotes the channel choice of thei-th AP. Let
F be the set of all feasiblef .

Given a configurationf , the wireless stations compete to
access the wireless channels according to standard 802.11
protocol. We denote the downlink throughputs observed by
AP i under configurationf by Rf

i . Upon observingRf
i , AP

i obtains a utility ofUi

(

Rf
i

)

. We assume functionUi to be
strictly increasing and concave, and twice differentiable. The
problem of finding the best channel assignment to maximize
system-wide utility is as follows:
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CA : maxf∈F

N
∑

i=1

Ui

(

Rf
i

)

. (51)

This problem is a combinatorial problem, and the size of
feasible setF is very large even for a network of modest
size, making the problem hard to solve. Furthermore, even if
we could handle problems of this size, we may not knowRf

i
a priori because they can only be measured in real time in the
field, and accurate analytical estimates of them are lacking6.
Thus, we assume a measurement-based approach in whichRf

i
is obtained from real-time measurements. We also assume that
the measurement interval is much smaller than the timescale
on which the APs perform channel assignments.

Let pf be the percentage of the time that configurationf is
activated, i.e., APi chooses channelfi . We could reformulate
problemCA as follows:

CA − AVG : maxp≥0

∑

f∈F

pf

N
∑

i=1

Ui

(

Rf
i

)

(52)

s.t.
∑

f∈F

pf = 1.

We remark that the problemCA − AVG is still hard to solve
as the number of variables is still combinatorial.

B. Approach by Markov Approximation

We apply Markov approximation and turnCA − AVG to the
following CA −MA optimization problem:

CA −MA : maxp≥0

∑

f∈F

pf

N
∑

i=1

Ui

(

Rf
i

)

−
1
β

∑

f∈F

pf log pf (53)

s.t.
∑

f∈F

pf = 1.

Its optimal solution is

p∗f =
exp

(

β
∑N

i=1 Ui

(

Rf
i

))

∑

f ′∈F exp
(

β
∑N

i=1 Ui

(

Rf ′

i

)) ,∀ f ∈ F (54)

We consider a continuous time-reversible Markov chain that
has the stationary distribution given byp∗f ( f ∈ F ). We call
it a channel-hopping Markov chain. Its states are the feasible
configurations. Letqf , f ′ andqf ′, f be the transition rates from
a statef to another statef ′. To achieve the desired stationary
distribution, we follow OPT1 discussed in Section II-C, and
set

qf , f ′ =















exp















β

N
∑

i=1

Ui

(

Rf
i

)





























−1

. (55)

We do not consider OPT2-4 because they all involve probing
the performance of the target configuration before making the
channel hopping decision, complicating the system design.

6Indeed, the problem of finding the analytical expression ofRf
i that fully

accounts for the effects of the carrier-sensing relationships among the links,
hidden-node effects, back-off collisions, and channel fading is particularly
challenging and largely open.

fi

fi

Fig. 2. State machine of a particular link in “Wait-and-Hop”algorithm

C. Implementation

We implement a channel-hopping Markov chain with tran-
sition rate in (55) as follows. Initially, the APs randomly pick
their channels. Each AP keeps track of its ownUi(R

f
i ) based

on the measurement ofRf
i under current configurationf , and

periodically broadcasts it to all the other APs. This broadcast
can be done using the backbone Ethernet connecting the APs.

Each AP also generates an exponentially distributed random
number with mean equal to

exp















β

N
∑

i=1

Ui

(

Rf
i

)















/(M − 1) (56)

and counts down according to this number. When the count
down of an AP expires, this APrandomly switches to one
of its (M − 1) not-in-use channels. This AP also informs the
other APs to terminate their current count down processes
and start fresh ones using new measurements under the new
configuration f ′. We name this implementation “Wait-and-
Hop” algorithm for ease of reference.

1) Pseudocode of the “Wait-and-Hop” algorithm:In the
“Wait-and-Hop” algorithm, each AP runs a procedure which
operates according to the state machine shown in Fig.2. We
focus on a particular APi. The pseudocode under each state
is shown in Algorithm 2.

2) Correctness of the “Wait-and-Hop” implementation:
We verify that the “Wait-and-Hop” algorithm realizes a
continuous-time channel-hopping Markov chain with station-
ary probability shown in (54).

In the “Wait-and-Hop” algorithm, the state sojourn time
is exponentially distributed and the transition probability is
independent of timet, so the state transition process forms a
homogeneous continuous-time Markov chain.

Denote the probability that the process will enter statef ′

when leaving statef by pf , f ′ . Let L = MN be the number of
feasible channel assignment states andN( f ) be the set of states
which are directly connected to statef . In the “Wait-and-Hop”
algorithm, the next state off has equal probability to be any
statef ′ where f ′ ∈ N( f ). Specifically, since|N ( f )| = (M−1)N
, we have

pf , f ′ =
1

|N ( f )|
=

1
(M − 1)N

, ∀ f ′ ∈ N( f ). (57)
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Algorithm 2 “Wait-and-Hop” algorithm
1: C = {c1, c2, . . . cM}

2: procedure code 1
3: fi ← a channel randomly picked fromC
4: Transit to State WAIT (fi)
5: end procedure

6: procedure code 2
7: Measure Rf

i , compute and periodically broadcast
Ui

(

Rf
i

)

8: Collect U j

(

Rf
j

)

, j ∈ {{1, · · · ,N} − {i}}
9: Generate a timer with initial valueτi that fol-

lows exponential distribution with mean equal to

exp

(

β
N
∑

i=1
Ui

(

Rf
i

)

)

/(M − 1) and begin counting down

10: end procedure

11: procedure code 3
12: Terminate its current count down process
13: Transit to State WAIT (fi)
14: end procedure

15: procedure code 4
16: fi ← a channel randomly picked fromC − { fi}
17: Broadcast a RESET message to other APs
18: end procedure

In the following, we show the “Wait-and-Hop” implementa-
tion realizes a channel-hopping Markov chain with transition
rate shown in (55).

• First, all the transition rates of the channel-hopping pro-
cess are finite;

• Second,∀ f , f ′ ∈ F , f and f ′ communicate with each
other. To see this, we transform the state transition dia-
gram of the channel-hopping Markov chain to a directed
graph G, in which the vertices represent the channel-
assignment states and the arcs represent the transition
edges in the state transition diagram, respectively. Now
it is sufficient to show that there exists a path onG
betweenf and f ′,∀ f , f ′ ∈ F . Let m = SP( f , f ′) denote
the length of the shortest path for the process to reach
state f ′ starting from statef . Then we construct a path
composed of a sequence of statesf 1, · · · , f m−1, such that
SP( f ′, f 1) = m−1,SP( f ′, f 2) = m−2,SP( f ′, f m−1) = 1.
That is, starting fromf , the process approaches statef ′

by changing one element corresponding to statef ′ upon
each transition.

• Third, the transition rate from statef to f ′ satisfies (55).
Given the current state isf , according to the “Wait-
and-Hop” algorithm, allN APs count down with rate

(M − 1)

(

exp

(

β
N
∑

i=1
Ui

(

Rf
i

)

))−1

. Consequently, the rate the

process leaves statef is N(M − 1)

(

exp

(

β
N
∑

i=1
Ui

(

Rf
i

)

))−1

.

With probability pf , f ′ =
1

(M−1)N the process jumps to state
f ′ when leaving statef . Hence, the transition rate from

state f to state f ′ is given by

1
(M − 1)N

× N(M − 1)















exp















β

N
∑

i=1

Ui

(

Rf
i

)





























−1

=















exp















β

N
∑

i=1

Ui

(

Rf
i

)





























−1

. (58)

With (54), we obtainp∗f qf , f ′ = p∗f ′qf ′, f . That is, the detailed
balance equation holds between any two adjacent states. Ac-
cording to [20, Theorem 1.2], the constructed Markoc Chain
is time-reversible and its stationary distribution is (54).

D. Evaluation

We evaluate the performance of the proposed “Wait-and-
Hop” algorithm through extensive simulations. We setUi(·) =
log(·) and β = 10. As the benchmark, the optimal channel
assignment state is obtained by exhaustively searching the
feasible channel assignment states.

1) Simulation Setup:Typical 802.11b parameter settings
are used in the simulation (e.g.,M = 3). Each AP tries to
access the channel according to the standard 802.11 protocol.

In each simulation run, we gather the statistics of two
metrics: i) normalized aggregate throughput; ii) system utility.
We define∆T as the ratio between the achieved normalized
aggregate throughput and the optimal normalized aggregate
throughput. We further define Utility gap∆U as the difference
between the system utility achieved and the optimal utility.

2) Aggregate Throughputs and Utilities:In this section we
evaluate the achieved normalized aggregate throughputs and
the achieved utilities of “Wait-and-Hop” algorithm in networks
with different contention graphs.

a) Six-AP full clique network:In a network in which
six APs form a clique, it is easy to see that the optimal
configuration should be the one in which two APs share a
channel. In this way, each AP obtains half of the normalized
throughput. The normalized throughput of each AP and the
utility gap of “Wait-and-Hop” are presented in Table I.

As shown in Table I, “Wait-and-Hop” can achieve roughly
99% of the optimal throughput and near optimal utility.

b) Eight-AP random networks:We generate ten eight-
AP random networks, in which each AP has on average three
neighbors in the contention graph.∆T and∆U of “Wait-and-
Hop” are given in Table II. Averaging over ten networks, we
find that the “Wait-and-Hop” algorithm can achieve 99.85% of
the optimal aggregate throughput and the average utility gap
is -0.002.

TABLE I
Normalized Throughput and Utility Gap of the “Wait-and-Hop” algorithm

in a six-AP full clique network.

Link No. 1 2 3 4 5 6 ∆U
Wait-and-Hop 0.543 0.543 0.543 0.543 0.542 0.541 -0.001

For further details, we show two of these ten networks in
Fig.3. Network 1 in Fig.3(a) is a three-colorable network. The
optimal channel assignment should guarantee that each AP
has a normalized throughput of one. Network 2 in Fig.3(b)
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TABLE II
Normalized Throughput and Utility Gap of the “Wait-and-Hop” algorithm in ten eight-AP random networks

Network Number #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Averaged
∆U -0.001 -0.002 -0.001 -0.001 -0.002 -0.003 -0.001 -0.002 -0.003 -0.002 -0.002
∆T 99.87% 99.85% 99.90% 99.88% 99.84% 99.80% 99.78% 99.85% 99.85% 99.89% 99.85%

(a) Network 1 (b) Network 2

Fig. 3. Two random eight-AP networks

has a four-APs clique and hence the contention graph is not
three-colorable. The optimal channel assignment state should
be such that two of the APs in the four-APs clique share
a channel and all the other APs enjoy an unshared channel.
One such assignment isf = [1, 1, 2, 3, 2, 3, 1, 3]. The achieved
normalized throughput of each AP for Network 1 and Network
2 given in Table III.

TABLE III
Normalized Throughput of “Wait-and-Hop” in two random eight-AP

networks in Fig.3.

Link No. 1 2 3 4 5 6 7 8
Network 1 1.00 0.99 1.00 0.99 0.99 0.99 0.99 1.00
Network 2 0.99 0.72 0.72 0.79 0.99 0.99 0.99 0.79

As shown in Table III, “Wait-and-Hop” can achieve 99.38%
and 99.71% of the optimal aggregate throughputs for Network
1 and Network 2, respectively. The utility gaps of “Wait-and-
Hop” for Network 1 and Network 2 are -0.002 and -0.001,
respectively.

3) Utility loss bound:Eqn. (4) provides a performance loss
bound for our Markov approximation. In the worst case, the
Log-sum-exp approximation can incur a performance loss of
1
β

logn, wheren is the number of feasible configurations. In
our simulation setup, we have

1
β

logn =

{

1
10 log 36 = 0.6592 for Six− AP clique network
1
10 log 38 = 0.8789 for Eight− AP random networks

Simulation results presented in Table I and Table II show
that “Wait-and-Hop” can achieve a utility loss of 0.001 and
0.002 for the Six-AP full clique network and Eight-AP random
networks, respectively.

Comparing the computed performance loss bound with the
actual observed utility loss in simulation, we see that the
performance loss bound is guaranteed. More importantly, the
actual loss can be much smaller than the bound. For all the
scenarios tested, “Wait-and-Hop” can actually achieve near-
optimal utility.

VI. Conclusions
This paper has presented a Markov approximation frame-

work for solving combinatorial network optimization prob-
lems. In particular, we show that the log-sum-exp approxima-
tion of the optimal value of a combinatorial problem gives rise

to a solution that can be realized by time-reversible Markov
chains. These Markov chains usually have desirable structure
that can yield distributed algorithms for solving the network
optimization problem approximately.

To illustrate our approach, we first apply the Markov
approximation technique to the utility maximization problem
in the domain of CSMA networks. This example offers a fresh
perspective to a known distributed algorithm. Going beyond,
we then show that the Markov approximation technique can
help us synthesize new distributed algorithms in new problem
domains. We illustrate this by applying the technique to design
new distributed algorithms with provable performance for two
important practical problems: 1) optimal path selection in
multipath transmission; 2) frequency channel assignment to
WLANs. Based on the promising results out of our preliminary
investigation, we believe the Markov approximation tech-
niques will also find application in many network optimization
problems in other domains.

Appendix

A. Proof of the Lemma 1

Proof: First, we will construct a continuous-time time-
reversible ergodic Markov chain and show that its stationary
distribution is p∗f (x) in (12). In particular, we construct a
continuous-time Markov chainY with a finite state spaceF .
We design the Markov chainY such that any two statesf and
f ′ can communicate directly with each other, i.e., the transition
rate fromf to f ′ is qf , f ′ , 0 for any f , f ′ ∈ F . Furthermore,
for any f , f ′ ∈ F , we set

qf , f ′ = α















exp















β
∑

r∈R

xr ( f )





























−1

. (59)

Thus Y is an ergodic Markov chain with unique stationary
distribution. By (59) and (12), we can check that detailed
balance equations hold, by Theorem 1.3 and Theorem 1.14
in [20], we know that thisY is reversible, and its stationary
distribution is indeedp∗f (x) in (12).

Next, we will establish that for any continuous-time time-
reversible ergodic Markov chainX, its stationary distribution
π can be expressed by the product formp∗f (x) in (12). For
the state-transition diagram for the Markov chainX, we map
it to an undirected graphG=(V,E), where the node setV = F
is the set of states and any edgee(i, j) ∈ E, i, j ∈ V represents
the state-pair(i,j) with qi, j , 0.

Let the stationary distribution of statej be denoted byπ j,
and transition rate from statej to state j′ is denoted byq j, j′,
then by detailed balance equation of time-reversible Markov
chain, we know thatπ jq j, j′ = π j′q j′, j . Let ρ j, j′ = q j, j′/q j′, j for
any q j′, j , 0, thenπ j′ = π jρ j, j′ .

Since X is an ergodic Markov chain, any two states can
reach each other within finite transitions, andG is a connected
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graph. We can always find a spanning tree to connect all nodes
in G and there exists only one path between any pair of nodes.
Suppose we have constructed a spanning tree onG. Then we
denote the root state as state 0, and denote nodes inV as
state 1, 2, . . . , |V| − 1, according to the result of the breadth-
first search on the spanning tree. Let PATH(0, i) be the path
between state0 and the statei (1 ≤ i ≤ |V| − 1 ), passing
mi + 1 number of states (including states0 and i). We order
the nodes on the path PATH(0,i) according to their distancesto
state 0, and denoted them asv j

0,i(0 ≤ j ≤ mi). Then according
to detailed balanced equations along the PATH(0, i), we have
the following:

πi = π0 ·

mi−1
∏

j=0

ρv j
0,i ,v

j+1
0,i
, 1 ≤ i ≤ |V| − 1 (60)

π0 +

|V|−1
∑

i=1

πi = 1 (61)

Then we get the distribution

π0 =
1

1+
|V|−1
∑

k=1

mk−1
∏

j=0
ρv j

0,k,v
j+1
0,k

(62)

πi =

∏mi−1
j=0 ρv j

0,i ,v
j+1
0,i

1+
|V|−1
∑

k=1

mk−1
∏

j=0
ρv j

0,k,v
j+1
0,k

, 1 ≤ i ≤ |V| − 1 (63)

We now verify the distribution computed based on the span-
ning tree , i.e., (62)-(63), is the correct stationary distribution,
by testing the detailed balance equations between any two
statesj, j′ ∈ V.

1) If q j, j′ = 0, then the detailed balance equation trivially
holds.

2) If q j, j′ , 0 and the edgee( j, j′) belongs to the spanning
tree, then by (63), we know thatπ j′ = π jρ j, j′ , i.e., the
detailed balance equation holds.

3) If q j, j′ , 0 and the edgee( j, j′) does not belong to
the spanning tree, then we focus on the cycle con-
sisting of PAT H( j′, j) and e( j, j′). Starting from node
j′ = v0

j′, j, we can visit nodesvk
j′ , j, 1 ≤ k ≤ mj′, j − 1 and

node j = v
mj′ , j

j′, j in sequence along thePAT H( j′, j). By
Kolmogorov’s criteria for time-reversible Markov chain
[20], we have

ρ j′ , j =

mj′ , j−1
∏

k=0

ρvk
j′ , j
,vk+1

j′ , j
(64)

By (63) and (64) we have

π j

π j′
=

mj′ , j−1
∏

k=0

ρvk
j′ , j
,vk+1

j′ , j
= ρ j′ , j (65)

Therefore, the detailed balance equation betweenj and
j’ holds.

Combining above scenarios, we know that the detailed
balance equations between any two statesj, j′ ∈ V hold. So
the distribution shown in (62)-(63) is indeed the stationary
distribution.

Further, the stationary distributionπ shown in (62)-(63) can
be expressed in the product form in (12) as follows:

π0 =
exp(0)

exp(0)+
|V|−1
∑

k=1
exp

(

mk−1
∑

j=0
logρv j

0,k,v
j+1
0,k

) (66)

πi =

exp

(

mi−1
∑

j=0
logρv j

0,i ,v
j+1
0,i

)

exp(0)+
|V|−1
∑

k=1
exp

(

mk−1
∑

j=0
logρv j

0,k,v
j+1
0,k

) , 1 ≤ i ≤ |V| − 1. (67)

So we get the desired conclusion.

B. Proof of the Theorem 2

Before the further illustration, we need some notation. The
vector z and the vectorλ are updated at timetm, m= 1, 2, . . . .
with t0 = 0. DefineTm = tm+1 − tm, and the “period m” as the
time betweentm and tm+1, m = 0, 1, 2, . . . .. z(t), λ(t) remain
the same in periodm. Let z(m), λ(m) be the value ofz(t), λ(t)
for all t ∈ [tm, tm+1). To begin with, we assumez(0) = 1 and
λ(0) = 0 for simplicity. Let θl(m) =

∑

l∈ f pf (βλ(m)) denote the
link rate for link l in periodm. Then letθ̄l(m) be the average
link rate measured by linkl within periodm. For convenience,
we also let

Lβ(z, λ) =
∑

s∈S

Us(zs)−
∑

l∈L

λl

∑

s:l∈s,s∈S

zs+
1
β

log



















∑

f∈F

exp

















β
∑

l∈ f

λl



































.

(68)
Then the stochastic primal-dual algorithm is given as fol-

lows:






































zs(m+ 1) =
[

zs(m) + ǫ(m)
(

U
′

s(zs(m)) −
∑

l:l∈sλl(m)
)]

+

∀s ∈ S user rates updating

λl(m+ 1) =
[

λl(m) − ǫ(m)
(

θ̄l(m) −
∑

s:l∈s zs(m)
)]

+

∀l ∈ L link prices updating

,

(69)
Whereǫ(m) is the step size. In general, step size for both

source rate and link price updating should be at the same order,
though can be different. Here without loss of generality, we
use the same step size for both source rate and link price
updating.

In the following, we will show that the stochastic primal-
dual algorithm converges with probability one to the optimal
solution ofMP −MA (29). Thus whenβ→ ∞, the stochastic
primal-dual algorithm (31) (or (69)) converges with probability
one to the optimal solution of problemMP (18).

Now we state the convergence theorem as follows, which
is similar to [15, Theorem 7].

Theorem 4: Assume that U
′

s(0) < ∞, ∀s ∈ S,
maxs,m zs(m) < ∞ and maxl,mλl(m) < ∞. If the sequence
of step size{ǫ(m)} and the sequence of update interval{Tm}

satisfy the following conditions:

{Tm} is non-decreasing with m (70)

ǫ(m) > 0 ∀m,
∑∞

m=1
ǫ(m) = ∞,

∑∞

m=1
ǫ2(m) < ∞ (71)

∑∞

m=1

ǫ(m)
Tm
< ∞ (72)
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Then by running the stochastic primal-dual algorithm (31),
z andλ converge toẑ and λ̂ respectively with probability 1.
Here (̂z, λ̂) is the optimal solution to the problemMP −MA
(29).

It is not hard to see that settingT1 = ǫ(1) = 1,Tm =

m, ǫ(m) = 1
m,∀m ≥ 2 satisfies conditions (70)-(72). Further,

this setting only depends on the indexm, and thus can be
generally applied to any network.

Thus by theorem 4, we prove that theorem 2 holds.
Now we state the proof of theorem 4, i.e., the convergence

on the stochastic primal-dual algorithm.
Proof: In brief, we prove the convergence by showing

that the estimators of stochastic gradients in (69) are unbiased,
a standard method of stochastic approximation [16]. The
difference between our proof and [15] is that, our proof studies
the saddle points of Lagrangian function, while [15] studies
the optimal dual solutions directly.

Let y0(m) be the state of the CSMA Markov chain
at the beginning of periodm. Define the random vector
U(m) = (θ̄(m− 1), z(m), λ(m), y0(m)) for m ≥ 1 andU(0) =
(z(0), λ(0), y0(0)). For m ≥ 1, let Fm be theσ-filed generated
by U(0),U(1), . . . ,U(m), denoted by

Fm = σ(U(0),U(1), . . . ,U(m)). (73)

Given z(m), λ(m) at the beginning of periodm. Let the
vector f (m) be the gradient vector ofLβ(z, λ) with respect
to z, and the vectorg(m) be the gradient vector ofLβ(z, λ)
with respect toλ. Then we have















fs(m) = U
′

s(zs(m)) −
∑

l:l∈sλl(m), ∀s ∈ S

gl(m) = θl(m) −
∑

s:l∈s zs(m), ∀l ∈ L
, (74)

However, in stochastic primal-dual algorithm (31), we only
have an estimation ofgl(m) for all l ∈ L, denoted by

ḡl(m) = θ̄l(m) −
∑

s:l∈s

zs(m),∀l ∈ L (75)

Then ∀l ∈ L, ḡl(m) can be decomposed into three parts:
ḡl(m) = gl(m)+ (E[ḡl(m)|Fm] − gl(m))+ (ḡl(m) − E[ḡl(m)|Fm]).

The first part is the exact gradientgl(m). The second part
is the biased estimation error ofgl(m), denoted by

Bl(m) , E[ḡl(m)|Fm] − gl(m) = E[θ̄l(m)|Fm] − θl(m) (76)

The third part is a zero-mean martingale difference noise,
denoted by

ηl(m) , ḡl(m) − E[ḡl(m)|Fm] = θ̄l(m) − E[θ̄l(m)|Fm] (77)

Therefore,

ḡl(m) = gl(m) + Bl(m) + ηl(m),∀l ∈ L (78)

Remind that (̂z, λ̂) is the optimal solution to the problem
MP −MA (29). Thus (̂z, λ̂) is a saddle point forLβ(z, λ).

By using ‖ to denote theEuclideannorm, we define the
Lyapunov functionV(·, ·) as follows:

V(z, λ) ,‖ z − ẑ ‖2 + ‖ λ − λ̂ ‖2 (79)

For any givenµ > 0, We also define the set

Hµ , {(z, λ) : Lβ( ẑ, λ) − Lβ(z, λ̂) ≤ µ} (80)

Since (̂z, λ̂) is a saddle point forLβ(z, λ), it follows that

Lβ(z, λ̂) ≤ Lβ( ẑ, λ̂) ≤ Lβ( ẑ, λ) (81)

In the following, we need two steps to establish the conver-
gence result.

• Step 1: we will show that∀µ > 0, Hµ is recurrent for
{z(m), λ(m)}.

• Step 2: we will show that for a sufficient large number
m, and anyn ≥ m+1, {z(n), λ(n)} will reside inHµ almost
surely.

Before the further illustrate ofStep 1andStep 2, we need
the following two lemmas. Proofs of them are given at the end
of this subsection.

Lemma 3:
∑∞

m=1 |ǫ(m) · [λ̂ − λ(m)]T B(m)| < ∞
Lemma 4: Let W(n) ,

∑n−1
i=1 {ǫ(i)·[λ̂−λ(i)]

Tη(i)}, thenW(n)
converges with probability 1.

Step 1: Since

zs(m+ 1) =
[

zs(m) + ǫ(m) · fs(m)
]

+ , ∀s ∈ S

λl(m+ 1) =
[

λl(m) − ǫ(m) · ḡl(m)
]

+ , ∀l ∈ L

by using the fact that the projection [·]+ is non-expansive
[11], we have

‖ z(m+ 1)− ẑ ‖2≤ ‖ z(m) + ǫ(m) · f (m) − ẑ ‖2

= ‖ z(m) − ẑ ‖2 +2ǫ(m) · [ z(m) − ẑ]T f (m)

+ ǫ2(m) ‖ f (m) ‖2

and with (78), we have

‖ λ(m+ 1)− λ̂ ‖2≤ ‖ λ(m) − ǫ(m) · ḡ(m) − λ̂ ‖2

= ‖ λ(m) − λ̂ ‖2 −2ǫ(m) · [λ(m) − λ̂]T ḡ(m)

+ ǫ2(m) ‖ ḡ(m) ‖2

= ‖ λ(m) − λ̂ ‖2 −2ǫ(m) · [λ(m) − λ̂]T [ g(m)

+ B(m) + η(m)] + ǫ2(m) ‖ ḡ(m) ‖2

SinceU
′

s(·), zs(m) andλl(m) are bounded, by (74) and (75),
we know that both‖ f (m) ‖2 and ‖ ḡ(m) ‖2 are bounded,
we can write that‖ f (m) ‖2≤ C1 and ‖ ḡ(m) ‖2≤ C2, where
C1 and C2 are positive constants. Using this and the above
inequalities, we have that

V(z(m+ 1), λ(m+ 1))

=‖ z(m+ 1)− ẑ ‖2 + ‖ λ(m+ 1)− λ̂ ‖2

≤ V(z(m), λ(m)) + 2ǫ(m) · [( z(m) − ẑ)T f (m)

− (λ(m) − λ̂)T g(m)] − 2ǫ(m) · [λ(m) − λ̂]T [B(m) + η(m)]

+ ǫ2(m) · (C1 +C2) (82)

Assuming that (z(m), λ(m)) < Hµ (recall the definition ofHµ
in (80)). Then we have

Lβ( ẑ, λ(m)) − Lβ(z(m), λ̂) ≥ µ (83)
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Since Lβ(z, λ) is concave inz and convex inλ, f (m) and
g(m) are the gradient vectors ofLβ(z, λ) with respect toz and
λ respectively, it follows that

Lβ(z(m), λ(m)) − Lβ( ẑ, λ(m)) ≥ (z(m) − ẑ)T f (m) (84)

Lβ(z(m), λ̂) − Lβ(z(m), λ(m)) ≥ −(λ(m) − λ̂)T g(m) (85)

By the summation of (84) and (85), and combining (83),
we have

(z(m) − ẑ)T f (m) − (λ(m) − λ̂)T g(m)

≤ Lβ(z(m), λ̂) − Lβ( ẑ, λ(m)) (86)

≤ −µ

Combining with (82) yields that

V(z(m+ 1), λ(m+ 1))

≤ V(z(m), λ(m)) − 2ǫ(m)µ

+ 2ǫ(m) · [λ̂ − λ(m)]T[B(m) + η(m)] + ǫ2(m) · (C1 +C2) (87)

Further,

E[V(z(m+ 1), λ(m+ 1))|Fm]

≤ V(z(m), λ(m)) − 2ǫ(m)µ

+ 2ǫ(m) · [λ̂ − λ(m)]T[B(m)] + ǫ2(m) · (C1 +C2) (88)

By lemma 3 and condition (71),|Σm{ǫ(m) · [λ̂ −
λ(m)]T B(m)}| < ∞ and Σmǫ

2(m) · (C1 + C2) < ∞. Then by
supermartingale convergence lemma [21], we can conclude
that the setHµ is recurrent for{z(m), λ(m)}.

Step 2: By (82) we have that forn ≥ m+ 1,

V(z(n), λ(n))

≤ V(z(m), λ(m)) + 2
∑n−1

i=m
{ǫ(i) · [( z(i) − ẑ)T f (i)

− (λ(i) − λ̂)T g(i)]} + 2
∑n−1

i=m
{ǫ(i) · [λ̂ − λ(i)]T [B(i) + η(i)]}

+ (C1 +C2)
∑n−1

i=m
ǫ2(i) (89)

Since (C1+C2)
∑∞

i=1 ǫ
2(i) < ∞,

∑∞
i=1 |ǫ(i)·[λ̂−λ(i)]

T B(i)| < ∞
by lemma 3, and

∑∞
i=1 |ǫ(i) · [λ̂− λ(i)]

Tη(i)| < ∞ by lemma 4 ,
then

lim
m→∞

(C1 +C2)
∑∞

i=m
ǫ2(i) = 0 (90)

lim
m→∞

∑∞

i=m
|ǫ(i) · [λ̂ − λ(i)]T B(i)| = 0 (91)

lim
m→∞

∑∞

i=m
|ǫ(i) · [λ̂ − λ(i)]Tη(i)| = 0 (92)

Combining (90), (91), and (92), we know that with prob-
ability 1, for any ζ > 0, after (z(m), λ(m)) returns toHµ for
some sufficiently largem (due to recurrence ofHµ),

2
∑n−1

i=m
{ǫ(i) · [λ̂ − λ(i)]T [B(i) + η(i)]}

+ (C1 +C2)
∑n−1

i=m
ǫ2(i) ≤ ζ (93)

for any n ≥ m+ 1.
Combining (81) and (86), we have that

[( z(i) − ẑ)T f (i) − (λ(i) − λ̂)T g(i)] ≤ 0 (94)

Therefore, applying (93) and (94) to (89), we have

V(z(n), λ(n)) ≤ V(z(m), λ(m)) + ζ, ∀n ≥ m+ 1.

Thus (z(n), λ(n)) can not move far away fromHµ. Since this
holds for Hµ with arbitrarily smallµ > 0 and anyζ > 0, it
follows that (z, λ) converges to the optimal solution (ẑ, λ̂) with
probability 1. This concludes the proof.

Lemma 3:
∑∞

m=1 |ǫ(m) · [λ̂ − λ(m)]T B(m)| < ∞
The proof is very similar to the one in [15]. It is done by

combining two standard methods in Markov chain: bounds
on mixing time [18] and uniformization [17]. We provide the
proof here for completeness reason.

Proof: In the following, we consider the periodm, i.e.,
from tm to tm+1. At time tm with the transmission aggressive-
ness vectorλ(m), denote the corresponding CSMA Markov
chain byY(t). Y(t) is a continuous time Markov chain.

Each statey is a |L|-dimensional vector, withl-th element
yl ∈ {0, 1} denote the capacity of linkl at statey, ∀l ∈ L. The
number of states is|Y| ≤ 2|L|.

By (24), ∀y, the stationary distribution of statey is

πy(λ(m)) = py(βλ) =
exp

(

β
∑

l∈L yl λl
)

∑

y′ exp
(

β
∑

l∈L y′l λl

) =
exp

(

β
∑

l∈L yl λl
)

C(λ(m))
,

(95)
WhereC(λ(m)) =

∑

y′ exp
(

β
∑

l∈L y′l λl

)

.
Since λ(m) ≥ 0, C(λ(m)) ≤

∑

y′
exp(β1Tλ(m)) ≤

2|L| exp(β1Tλ(m)).
Thus the minimal probability in the stationary distribution

πmin(λ(m)) , min
y
πy(λ(m)) ≥

1
C(λ(m))

= exp(−|L| · log 2− β1Tλ(m)).

Sinceλmax = maxl,mλl(m) < ∞, we have

πmin(λ(m)) ≥ exp(−|L| · log 2− β|L|λmax

= exp(−|L| · (log 2+ βλmax)) (96)

To utilize the existing bounds on convergence to the station-
ary distribution of discrete-time Markov chain, we uniformize
the continuous-time Markov chainY(t). Uniformization [17]
plays the role of bridge between discrete-time Markov chain
and continuous-time Markov chain.

Let the transition rate matrix ofY(t) is denoted by
Q={Q(y, y′)}. Construct a discrete-time Markov chainZ(n)
with its probability transition matrixP= I +Q/vm, whereI is the
identity matrix. Then consider a system that successive states
visited form a Markov chainZ(n) and the times at which the
system changes its state form a Poisson processN(t). Here
N(t) is an independent Poisson process with ratevm. Then the
state of this system at timet is denoted byZ(N(t)), which is
called asubordinated Markov chain.

Let
vm = |L| · exp(βλmax). (97)

Since ∀y, y′, Q(y, y′) ≤ exp(βλl(m)) ≤ exp(βλmax), and y
can at most transit to|L| other states, thusΣy,y′Q(y, y′) ≤
|L| · exp(βλmax) = vm. Then by uniformization theorem [17],
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Y(t) andZ(N(t)) has the same distribution, denoted byY(t)
d
=

Z(N(t)).
Now let the vectorωm(t) = {ωm(t, y)} be the probabilities of

all states at timetm+ t (0 ≤ t ≤ Tm), given that the initial state
at time tm is y0(m) and that the transmission aggressiveness
during periodm ([tm, tm+1)) areλ(m). Let y(tm+ t) be the state
at time tm+ t, then

E[θ̄l(m)|Fm]]

= E[
∫ Tm

0
1 · I (yl(tm+ t) = 1)dt/Tm]

=

∫ Tm

0
1 · P(yl(tm+ t) = 1)dt/Tm

=

∫ Tm

0
E[yl(tm+ t)|Fm]dt/Tm

=

∫ Tm

0

∑

y′
y′ · ωm(t, y′)dt/Tm

=
∑

y′
y′ ·

∫ Tm

0
ωm(t, y′)dt/Tm

=
∑

y′
y′ · ω̄m(y′) (98)

Where ω̄m(y′) =
∫ Tm

0
ωm(t, y′)dt/Tm is the time-averaged

probability of statey′ in the interval.
Since the initial distribution is concentrated at a single

definite starting statey0(m), we denote this distribution byδy0.
We let πy0(λ(m)) be the probability ofy0(m) in the stationary
distribution ofY(t). Let π(λ(m)) , {πy(λ(m)} be the stationary
distribution of Y(t), then by uniformization theorem [17],
π(λ(m)) is also the stationary distribution ofZ(n).

We use|| · ||TV to denote the total variation distance between
two distributions [18], which satisfies triangle inequality. We
use ρ2 to denote the second largest eigenvalue of transition
matrix P. Thus for reversible discrete-time Markov chainZ(n)
with transition matrixP, and for anyn ≥ 0 ,we have the
following inequality [18]:

||δy0Pn − π(λ(m))||TV ≤
1
2

√

1− πy0(λ(m))

πy0(λ(m))
· ρn

2

Therefore,

||ωm(t) − π(λ(m))||TV

= ||
∑∞

n=0

(vmt)n

n!
exp(−vmt)δy0Pn − π(λ(m))||TV

≤
∑∞

n=0

(vmt)n

n!
exp(−vmt)||δy0Pn − π(λ(m))||TV

≤
1
2

√

1− πy0(λ(m))

πy0(λ(m))
·
∑∞

n=0

(vmtρ2)n

n!
exp(−vmt)

=
1
2

√

1− πy0(λ(m))

πy0(λ(m))
· exp(−vm(1− ρ2)t)

≤
1
2

√

1
πmin(λ(m))

· exp(−vm(1− ρ2)t)

Further,

||ω̄m − π(λ(m))||TV (99)

= ||

∫ Tm

0
[ωm(t) − π(λ(m))]dt/Tm||TV

≤

∫ Tm

0
||ωm(t) − π(λ(m))||TVdt/Tm

≤
1
2

√

1
πmin(λ(m))

1
vm(1− ρ2)Tm

(100)

Now we boundρ2 by Cheeger’s inequality [18]

ρ2 ≤ 1 − φ2/2

Whereφ is the “Conductance” ofP, defined as

φ , min
N⊂Ω,π(N)∈(0,1/2]

F(N,Nc)
πN(λ(m))

HereΩ is the state space,πN(λ(m)) = Σy∈N πy(λ(m)) and
F(N,Nc) = Σy∈N,y′∈Nc πy(λ(m))P(y, y′).

Thus

φ ≥ min
N⊂Ω,π(N)∈(0,1/2]

F(N,Nc)

≥ min
y,y′ ,P(y,y′)>0

F(y, y′)

= min
y,y′ ,P(y,y′)>0

πy(λ(m))P(y, y′)

≥ min
y
πy(λ(m))/vm

= πmin(λ(m))/vm

then
1

1− ρ2
≤

2
φ2
= 2 · v2

m[πmin(λ(m))]−2. (101)

Combing (101), (96) , (97) with (100), it follows that

||ω̄m − π(λ(m))||TV

≤
vm

Tm
[πmin(λ(m))]−5/2

= (|L|/Tm) · exp[(5/2|L| + 1)βλmax + 5/2|L| log2]

= (|L| · τ)/Tm,

whereτ = exp[(5/2|L| + 1)βλmax + 5/2|L| log2].
So by (76) and (98), we have

|Bl(m)| = |E[θ̄l(m)|Fm] − θl(m)|

= |
∑

y′
y′ · ω̄m(y′) −

∑

y′
y′ · πy′ (λ(m)))|

≤ 2 · ||ω̄m − π(λ(m))||TV

≤ (2|L| · τ)/Tm,∀l ∈ L

Since∀l ∈ L, λ̂l is bounded and̂λl < r̄ for some ¯r > 0, then
we have

|[λ̂l − λl(m)]| ≤ r̄ + λmax,∀l ∈ L
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Therefore
∑∞

m=1
|ǫ(m) · [λ̂ − λ(m)]T B(m)|

≤ 2|L|2
∑∞

m=1
ǫ(m) · [ r̄ + λmax] · τ/Tm

= 2|L|2[ r̄ + λmax]τ
∑∞

m=1

ǫ(m)
Tm

< ∞

where the last step follows from condition (72).

Lemma 4: Let W(n) ,
∑n−1

i=1 {ǫ(i) · [λ̂−λ(i)]
Tη(i)}, then W(n)

converges with probability 1.
Proof:

First, we prove thatW(n) is a martingale. By (73) and (77),
we know thatη(n − 1) ∈ Fn, E[η(n − 1)|Fn−1] = 0. Further,
∀l ∈ L, |ηl(n)| is bounded and|ηl(n)| < c3 for somec3 > 0. Thus
W(n) ∈ Fn, E|W(n)| < ∞,∀n and E(W(n)|Fn−1) −W(n− 1) =
ǫ(n− 1) · [λ̂ − λ(n− 1)]TE[η(n− 1)|Fn−1] = 0.

Then we prove that supn E(W(n)2) < ∞.
Since∀l ∈ L, λ̂l is bounded and̂λl < r̄ for some ¯r > 0, then

we have

|[λ̂ − λ(m)]Tη(m)| ≤ |L| · c3[ r̄ + λmax]

Thus

sup
n

E(W(n)2)

= sup
∑n−1

m=1
E{[ǫ(m) · [λ̂ − λ(m)]Tη(m)]2}

≤
∑∞

m=1
E{[ǫ(m) · [λ̂ − λ(m)]Tη(m)]2}

≤
∑∞

m=1
{ǫ(m)2|L|2c2

3[ r̄ + λmax]
2}

= |L|2c2
3[ r̄ + λmax]

2
∑∞

m=1
{ǫ(m)2}

< ∞

where the last step follows from condition (71). By Martin-
gale Convergence Theorem [16],W(n) converges with proba-
bility 1.
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