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Abstract—Many important network design problems can be
formulated as a combinatorial optimization problem. A large
number of such problems, however, cannot readily be tackledy
distributed algorithms. The Markov approximation framewo rk
studied in this paper is a general technique for synthesizig
distributed algorithms. We show that when using the log-surrexp
function to approximate the optimal value of any combinatoiial
problem, we end up with a solution that can be interpreted
as the stationary probability distribution of a class of time-
reversible Markov chains. Certain carefully designed Markov
chains among this class yield distributed algorithms that slve the
log-sum-exp approximated combinatorial network optimizaion
problem. By three case studies, we illustrate that Markov
approximation technique not only can provide fresh perspetive
to existing distributed solutions, but also can help us gemate
new distributed algorithms in various domains with provable
performance. We believe the Markov approximation techniqes
will find application in many network optimization problems,
and this paper serves as a call for participation of it.

|. INTRODUCTION

adaptable to users joining and leaving the systems (e.g.,
peer churn in Peer-to-peer systems) and are more robust to
systeninetwork dynamics (e.g., channel fading in wireless
networks).

Historically, our investigation of the Markov-approxinat
technique was inspired by the recent progress in carrier-
sense multiple-access (CSMA) network design. In [3] [4],
it was shown that the throughput of links in a CSMA net-
work can be computed from a time-reversible Markov chain.
Refs. [5] [6] reverse-engineered to show that CSMA solves
the combinatorial MWIS problem asymptoticallyff dy an
entropy term. With this observation, Refs. [5] [6] made an
excellent contribution showing that a standard wireledgyut
maximization problem [1] can be solved by running distréalit
algorithms on top of CSMA, with an entropy term added to
the utility function. The appearance of the entropy term is a
consequence of solving the utility maximization problem on
top of CSMA. It turns out that similar entropy term also asise
in several other existing communication systems [7], [8].

Many important network design and resource allocation These observations naturally lead to several interesting
problems can be formulated as a combinatorial network opffrward-engineering questions. What is the fundamentagea

mization problem. Two well-studied examples are

of the appearance of the entropy term in all these problems?

. The Maximum Weighted Independent Set (MWIS) probBy adding an entropy term to the objective function of a

lem of finding the independent set with the maximu

weight. MWIS problem is known to be a bottleneck o

the wireless utility maximization problem [1].

. The optimal path slection problem in fii@ engineering
of finding the “best
maximize the overall network throughput [2].

These formulations, while elegant, ofterfien from two short-

rﬁombinatorial optimization problem, can we get a distréalt

§o|uti0n out of it? If yes, how to do so systematically?
This work answers the above questions, and advocates
to use the entropy term as a forward-engineering device to

" set of paths for every user tétlmulate new algorithms for various network combinatoria

problems. This expands the usefulness of the approach origi
nally expounded in the series of work in [3]-[7], [9] to many
other domains beyond CSMA networks. In particular, this

comings: (i) the optimization problem could be intr:’;\ctablst,:u:)er makes the following contributions:

when the network size is large (i.e., it is NP-complete)); (i

the optimization problem could be amenable to centralized

implementation only.

This paper attempts to tackle issue (ii). Specifically, we

propose a general Markov approximation technique thatvallo
us to solve many combinatorial network optimization prote

' . it shows that an entropy term appears as a direct con-
sequence of our approximating the optimal valueany
combinatorial problem using a log-sum-exp function.

« it shows that as a result of the log-sum-exp approxima-
tion, the optimal solution can be realized by the stationary
distribution of a class of time-reversible Markov chains

in a distributed manner. This also addresses issue (i) to a
certain extent because the distributed implementatioanoft
allows parallel processing byftierent network elements in the
network. Moreover, systems running distributed algorghm
compared with those running centralized algorithms, areemo

This work was supported General Research Funds (Projecbiiu4i1008,
411209, and 414507), Area of Excellence grant on InstititeNetwork
Coding, established under the University Grant Commitfeth® Hong Kong
Administative Region, China, Direct Grants (Project NumB850397 and
2050436) from the Chinese University of Hong Kong, and anal gift grants
from Microsoft and Cisco.

(all with the same stationary distribution).

. it shows that certain carefully designed time-reversible

Markov chains among this class yield distributed algo-
rithms that solve the log-sum-exp approximated problem.

. it demonstrates the usage of the Markov approximation

technique by considering two specific problems that are
of much practical interest. The first is the optimal path se-
lection problem in multipath transmission. The second is
the problem of frequency channel assignment to Wireless
LANSs located in the vicinity of each other.



The rest of this paper is organized as follows. We fir&. Log-sum-exp Approximation

present the Markov approximation in Section Il. In Sectibp | 1, gain insights on the structure of the problewtwcC

we apply the Markov approximation technique to the wireleggg approximate the max function in (1) by afférentiable
utility maximization problem and derive solutions simif&@ ¢,4ction as follows:

those in [5] [6]. The goal of Section Il is to provide a new

perspective to the design of an existing distribution sotut maxz % (f) ~ }Iog Z exp BZ xOll20m0. @

In Sections IV and V, our goal shift to that of applying ter - B v £ r B \X)»

Markov approximation to synthesize new distributed algo-

rithms in problem domains. Sections IV studies the optimaiheres is a positive constant and = [¥, g X (f), f € 7.
path selection problem in multipath transmission over kiviee This approximation is known as the convex log-sum-exp
networks. Sections V investigates the problem of frequengpproximation to the max function . Its accuracy is known
channel assignment to Wireless LANs. Section VI concludés follows.

this paper. Proposition 1: For a positive constagtandn non-negative

real variablesy1, yo, . .., Yn, We have

% l0g (eXpy1) + - + eXpByn)

Il. M ARKOV APPROXIMATION

IA

maxfys, . ..,

A. Settings b )

Consider a network with a set of uselRs and a set of
configuration¥. A network configurationf € ¥ consists of
individual users using one of its local cor.1f|gurat|o.ns. WheRence, maxti, . . ., yn) il'f!jf log (exp@By:) + - - - + eXpByn)) -
the system operates undereach user obtains certain perfor- Proof: Since for anys > 0
mance, denoted by (f) (r € R)%. The problem of maximizing ' Y '
the system performance, i.e., aggregate user performagce, exp(max@yi,...,B8Yyn)) < exp(Bys) + ... + exp(Byn)
choosing the best configuration can then be cast as following < n exp(max 5
combinatorial optimization probletn - pmax@ys...... %)) (3)

IA

maxgs, . .., Yn) + é logn. 4)

We have
MWC : maxier Z % (f). (1)
reR maxyi, . .., BYyn) < log(exp(By1) + ... + exp(Byn))
An equivalent formulation is < maxgyx, . ..,BYyn) + log(n) (6)
MWC —EQ: max Z oF Z X () (2) By dividing g8 in both sides, we obtain inequality (4). When
S = B — oo, we get the desired equality. ]
st Z pr =1, We sur_nmarize some important observation_sgp(x) in
& the following theorem. Some of these observations were also

found relevant in the context of Geometric Programming [10]
Theorem 1: For the log-sum-exp functiogs (x), we have

. its conjugate functiohis given by

where ps is the percentage of time the configuratidnis
in use. Treating},,.g X% (f) in (1) as the “weight” off, the
problemMWC is to find a maximum weighted configuration.
Many practical and important problems, or their subprob- . 1y prlogps if p>0andi’p=1
lems, can be formulated into the form of (1). Some well- 95 (P) = ﬁo otherwise
studied examples are listed at the very beginning of Settion '
and we will study three concrete examples in Sections Il], IV . it is a convex and closed function; hence, the conjugate
and V. of its conjugateg;(p) is itself, i.e., gz (X) = 95 (x).
For many problems, formulation in (1) could be very chal-  Specifically,
lenging to solve, even in a centralized manner. For example, 1
the MWIS problem is known to be NP-hard. In practice, itis ~ 9s(X) = m%xz Ps Z x(f) - 3 Z prlogps  (8)
often acceptable to solve the problem approximately, bat in g R fer
distributed manner. Systems running distributed algoritlare s.t. Z pr = 1.
more robust to user and system dynamics than those running ter
centralized alg_onthms. . . Proof: The proof of (7) follows nearly the same way
In the following, we describe a framework, which we call : .
2 . as [11, pp.93]gs (x) is a convex function because the log-
Markov approximation, to approach problem in (1). It Oftegum-exp function is a convex function [11]. Furthgs (x) is
leads to distributed algorithms that can be implemented in ) .

practice with limited or no message passing among users,c%agtmuous, _and its domain is a cIo§ed set, tguex) is a
demonstrated in Section Il 1V. and V closed function. Hence by [11, Section 3.3.2], the conjegat

of its conjugateg[’;(p) is itself, i.e., (8) holds. [ ]

()

INote x () can be some direct system measurement, e.g., throughmler u
configurationf, or a function of the measurement. SDefinition of conjugate function is as follows: l&i(y) be a R-value
2There could be other forms of combinatorial optimizationigem. In this ~ function with domaindomg € R", its conjugate function is defined as
paper we focus on the standard form given in (1). 9"(2) = SURedomg (zTy— g(y)) [11].



Remark: Several observations can be made. First, by the. the resulting Markov chain is irreducible, i.e., any two

log-sum-exp approximation in (3), we are implicitly solgin states are reachable from each other,
an approximated version of the probletWWC — EQ, off by . and the detailed balance equation is satisfied: forfall
an entropy term —[—% S ter Pslogps®. The optimality gap is andf”in # and f # ', p} (X)dr.+ = p}, (X) Qs.1, i.€.,

thus bounded b)é log|F1, where|F| represents the size of
¥. We emphasize that this is a direct consequence of we ,
theoretically approximating the max function by a log-sum- exp(,BZ X'(f)]q”’ - exp[,BZ x(f )]qf’vf' (13)
exp function in (3). Practically, we argue in this paper that reR R
adding this additional entropy term in fact opens new desigile remark that the above two figient requirements allow a
space for exploration. Second, the approximation becomggge degree of freedom in design.
exact ag approaches infinity. However, as we will see in case First, it allows us to set the transition rates between ary tw
studies later, usually there are practical constraintsrerfiead  states to be zero, i.e., cuttingfdhe direct transition between
concerns of using large. Third, we can derive a close-formthem, given that they are still reachable from any otheestat
of the optimal solution of the problem in (8). Latbe the The modified Markov chain is still time-reversible and its
Lagrange multiplier associated with the equality conatra  stationary distribution is stilp; (x) (f € 7). For example, as-
(8) andpi(x), f € ¥ be the optimal solution of the problemsyme the 4-states Markov chain in Fig. 1.(a) is time-rebéesi
in (8). By solving the Karush-Kuhn-Tucker (KKT) conditionsThe “sparse” Markov chains in Fig. 1.(b)-(d), modified from
[11] of the problem in (8): the “dense” one in Fig. 1.(a) by addimgmoving transition

1 1 edge-pair between two states, are also time-reversibtéhéiu
Z X (f) - B log pt(x) - B +4=0, VfeF, (9 more, all Markov chains share the same stationary distebut

reR
; pr(x) =1, (10) () ()=—=() () (1) (D—=)
120, (12) IA I / I ‘
we have (== =) =) ) ()
(a) (b) (c) (d)
coy _ eXp(B Yrer X% (F))
Pi (x) = Ster exp(B ZreRXr(f'))’Vf €. (12) Fig. 1. The Markov chains in (b), (c), (d), by addirgmoving transition

edge-pair between two states in the time-reversible Madtwin in (a), are
By time-sharing among fierent configurationd according also time-reversible. All Markov chains have the sameatatiy distribution.
to their portionsp; (x), we solve the problenMWC — EQ,
and hence the probleMWC, approximately. We remark the Second, for two statef and f’ that have direct transitions,
optimality gap is bounded bg log|F 1, which can be made there are many options in designirg s and g ;. These
small by choosing largg. options include, but are not limited to, the following ones:
let @ be a positive constant,

C. Algorithm Design via Markov Chain OPT1:letqs .+ be negative correlated to the system perfor-

A key to create new algorithm designs is to treat mancey;c X (f) under configuratiort, specifically,

p; (x) (f e F) as the stationary distribution of a time- -1
reversible Markov chain. T|me-rgver5|ble Markov chamls-us ar.f = a[eXp(ﬂZ X (f)]} . (14)
ally have structures that allows distributed implemenotatiAs
the Markov chain converges to its stationary distributiove, . ] ) )
approachpy (x) in a distributed manner. Q.1 is defined in a symmetric way.

Lemma 1: For any probability distribution of the product OPT2:letqr be positive correlated to the system perfor-

form p:(x) in (12), there exists at least one continuous- mance under the targeting configuratiéh specifi-

reR

time time-reversible ergodic Markov chain whose statignar cally,

distribution is p; (x). Further, for any continuous-time time- ,

reversible ergodic Markov chain, its stationary distribotcan .t = @ €Xp ﬂz x (). (15)
be expressed by the product form (x) in (12). reR

The proof is relegated to Appendix-A. g¢-.¢ is defined in a symmetric way.

To construct a time-reversible Markov chain with its statio  OPT3:letqsr be positive correlated to the fiitrence of
ary distributionp; (x) (f € ), we letf € # be the state of the system performance under configuratibrand f,
Markov chain, and denotey s as the nonnegative transition in particular,
rate between two statdsand f'. It is suficient to desigrs ¢
so that

v = aexp[;ﬁz 04 (1) = % (f))]. (16)

4Under the context of CSMA scheduling, Jiang and Walrand @ a rerR

similar observation using a ftiérent approach. We will discuss more details ) ) . .
when we come to CSMA utility maximization in Section IIl. gs.. is defined in a symmetric way.



OPT4:letqgs s = a, and (st be positive correlated to thenodes and. is the set of links, each having unit capacity. Note
difference of system performance under configur#iie results can be readily extended to the case where links ha

tion f and f’, i.e., heterogeneous capacities. Let its corresponding confiagitg
beG. = (L, A), whereA is the set of arcs iG.. Let ¥ be the

dre =aexp|f Y (% ()= x (). (17) setof all independent sets 0v@k.
rer Let S be the set of all users, where a user S is associated

Design option OPT1 implies the transition rate frérto f/, with the single route connecting its source and destination
i.e., gr.r/, is independendf the performance under targetingiodes. Letz = [z, s € S]" be the vector of user rates. Let
configurationf’. In contrastg - in OPT2 depends only onthep = [pr. f € F]T be the vector of percentages of time an
performance of targeting configuratidn. Design ofqy . in  independent set is active. Liy(zs) be the utility function of
OPT3 combines flavors from previous two options, where thgers upon sending at rate. We assume the utility functions
system is more likely to switch to a configuration with betteio be twice diferentiable, increasing and strictly concave.
performance. In practice, both OPT2 and OPT3 require the
system to know the performance under targeting configuratio
f a prior, or through a probing phase. Option OPT4 is simil&- Wireless Utility Maximization Problem
to OPT3, butgr,+- andqy. 1 are no longer symmetric. As We  consider the following utility maximization problem over
will discuss |n.Sec_t|on I, (;_SMA prot.opol in fact mplemsnt Ge. Note here no wireless protocol is assumed.

a Markov chain with transition rate fitting into option OPT4.

Recalled in our setting, a configuratidnconsists of each MP :  max Z Us(zs) (18)
individual user using one of its local configurations. Tians 20p20 4
tions betvyeenf_ and f/ are done via users sw.|tch|.ng.t.he|r st Z 7 < Z pr, Vel
local configurations accordingly. By users running indiad slesees P!
continuous-time clock and wait for a random amount of time
before they switching local configurations, we can design Z pr=1

transition to happen only between two configuratidnand fer

f” that difer by one user's local configuration. If ir.‘div.idua|Wheers;|egses zs is the aggregate rate passing through link
users can collect system performance that its switching cgmyng the first set of constraints says aggregate incomieg rat

implemented in a distributed manner. relaxing the first set of inequality constraints, we get stjal
Note Simulated Annealing [12] also uses Markov Cha'ﬂagrangian as follows

for algorithm design. The flierence between Simulated An-

nealing and our work is that Simulated Annealing in general

focuses on solving the problem exactly using centralizgd-al ~L(ZP.4) = Z Us(zs) - Z A Z Zs— Z pr|, (19)
rithms, while we focus on designing distributed algorithon t S leL  \slesssS fef

solve the optimization problem approximately. In the faling
sections, we study three cases to illustrate how such desgn
done.

whered = [4;,1 € L]" is the vector of Lagrange multipliers.
We noticeYieL Al et Pt = Xter Pt Dier A

Since the problemMP is a concave optimization one
and the Slater's condition holds, the strong duality holds.

Consequently, the optimal solution of problewP can be

_In this section, we apply the Markov approximation techg, g by solving the following problem successively iz,
nique to the wireless utility maximization problem. We deri 54 ).

solutions similar to those in [5] [6]. By doing so, we wish to
provide new perspective to the design of existing distebdut  min  max Us(ze) - Z/I'ZZS n Z P Z’l' (20)

I1l. Case 1: Uriiry Maximvizarion IN CSMA NETWORKS

solutions. A= leL sles  fer  lef
- s€S
A. Settings S.t. Z pr =1
Consider a hidden-node-frezand collision-free CSMA fer

wireless network, denoted Iy = (N, L) whereN is the set of  Thg Key challenge lies in solving the combinatorial sub-
5In CSMA networks, two links are allowed to transmit simukansly problem np, which is the NP-hard MWIS prOblem [1]

if they are considered to be feasible under CSMA protocolweéier,

CSMA protocol schedules transmissions based on carrigirggemechanism, MWIS : maXg=o Z o Z A (21)
independent of the underlying interference model. Conseity) simultaneous o T

transmissions allowed by CSMA may still interfere with eather, resulting

in the infamous hidden-node problem. As compared to CSMAvords s.t. Z ps =

with hidden nodes, hidden-node-free CSMA networks arecttite not only
because they are more fair, but also because its througaiysés is more
tractable. As studied in [13], a CSMA network can always belenhidden- . . .
node-free, by setting the[ celrrier sensing threshold pty)ﬂe)l/ence, we focus The optlmal value of the probIeIMWIS IS given by comput-

on hidden-node free CSMA networks in our analysis. ing the max function: mags Y A



C. Approach by Markov Approximation ps(A) in (24). The authors of [5], [6] then reverse-engineered

Observing the problemMWIS is a combinatorial optimiza- Pf(4) in (24) to be the optimal solution to the problem in (23).
tion problem, we apply the Markov Approximation. First, wa/Vith this observation, the authors of [5], [6] design distried
apply the log-sum-exp approximation algorithms on top of CSMA to solve probleMP - MA, an

entropy term away from problemP.

2) CSMA as Distributed Implementation of Markov Chain:
Zexp 'Bzﬂ'] ¢From a forward engineering perspective, imagine that the
fer <t CSMA protocol was not invented and did not exist yet.
whereg is a positive constant. According to Theorem 1, wehen following the Markov approximation technique, we
are implicitly solving an approximated version of the pebl now design a time-reversible Markov chain whose stationary
MWIS,, off by an entropy term-; Y.+ ps log py, as follows distribution is given by (24) and work out its distributed

1 implementation.

MaXy=0 Z [of} Z/h _E Z ps log ps (23) The states of the Markov chain are the independent sets

1
max » 4 ~ =log , (22)
fer T ,3

fer  lef fer over G.. To make sure the network operates over only the
st Z pr =1, indepe_ndent sets, any two interfered links (in particulbeairt _
o transmitters) must be able to sense each other so one will

keep silence while the other is transmitting. This can beedon

and the corresponding (unique) optimal solution is distributedly by each transmitter sensing its receivingv@o

exp(ﬁ2|ef/l|) and only starting its transmission if the power is below a
pe(d) = NVfeF. (24) properly selected threshold [13].
Ler exp(ﬂ&ef, ’1') We follow OPT4 (discussed in Section II-C) to design the
We first study the impact of solving the subprobléwIS transition rates. We start by only allowing direct trarsis
approximately by (22). between two “adjacent” states (independent setshd f” that

1) Entropy Term as A Consequence of Log-sum-exp Agitfer by one and only link. That is,
proximation: It is unlikely that we are still solving the original  a) we setgs ¢ to zero, if one off or f’ is not a subset

problemMP. After we approximate probleriViWIS by the of the other (i.e.|f|—|f’| = £1 is not satisfied). Here
problem in (23), the partial Lagrangian problem in (20) &irn | -| represents the size of a set.
into By this design, the transition fromto f’ = fu{l’} corresponds
. 1 to link I’ starting its transmission. Similarly, the transition
TZ'Q 253% ZUS(ZS)_ _Z prlog ps (25) from f’ to f corresponds to link’ finishing its on-going
=S BiF o
transmission.
_Z’l'{ Z Zo— Z pf] Now, consider two states and f” wheref’ = f U {l’},
leL sles,seR flef b) we Setqf’,f to 1, and
st > pr=1 (26)

feF s, = exp[,B {Z /l| - Z /l|]] = exp(ﬂ,{l,). (28)
It can be verified to be the partial Lagrangian problem of the let lef

following primal problem: To achieve tra_nsition ratgs ¢/, the transmiFter pf IinH'_wait;
1 for a back-df time that follows exponential distribution with
MP —MA : max Z Us(zs) - 3 Z pilogps  (27) rate expgBAr) before it starts to transmit. During the count-
seS

20,p=0 ter down, if the linkl” (in particular its transmitter) senses another
interfering link is in transmission, link will freeze its count-
s.t. > , Ylel o .
;Ef Pt s-|§eRZS down process. When the transmission is over, linkount-
: ' down according to the residual back-dime, which is still
Z pr=1 exponential distributed with the same rate éxp) because

fer of the memoryless property of exponential distribution.

Comparing problemsvP — MA and MP, we observe that The transition rate only depends on the lagrange multiplier

when we approximate the subproblediWVIS by the one A (called transmission aggressiveness in [5]) and is propor-

in (23), we are in ffect approximating the problemP by tional to the local queue length of link, as discussed in [5]

problemMP — MA, which has an additional entropy term in[6] and in Section IlI-C4.

its objective function. We remark that the entropy term eggpe  Similarly, the transition rate ¢ can be achieved by linkK

as a direct consequence of our approximating the max fumctigetting its transmission time to follow exponential distition

with the log-sum-exp function in (22), independent of anwith unit rate.

wireless protocol, e.g., CSMA, to be used. In the end, this distributed implementation leads to the
Historically, by modeling and studying the carrier sensindiscovery of the CSMA protocol, with adjustable transnassi

behavior, the authors of [3], [4] showed that the percentagggressiveness. This thought exercise raises out a sagtific

of the active time of independent sets, under the CSMpoint. Namely, had the CSMA protocol not been invented

scheduling with transmission aggressive vectois given by previously, the Markov Approximation technique might have



led us to it, starting with the premise that we wanted to find advantage of the primal-dual algorithm is that the changes i
approximate distributed algorithm to probldwP. A similar sending rates (and correspondingly;) is smoother than that
exercise on other problem domains in which a satisfactoiry the dual algorithm.
distributed solution is still lacking may help us to discove Note Y. ps(84) is the stationary throughput of link by
new distributed algorithms. That is, the Markov approxim@at running CSMA protocol network-widely with transmission
technigue is a general framework. aggressive vectgBA. This is a key observation made in [3]

3) Approximation Accuracy Limited by Physical Conf5] [6]. The Lagrange dual variablg, can then be updated
straints: Mathematically, ag approaches infinity, we shouldbased on information of the local queue at link
be able to solveMWIS exactly. However, there are certain Given the Markov chain converges to its stationary distribu
physical constraints preventirgto be too large. In CSMA tion instantaneously, proving the convergence of the éhyor
networks, The value of exf{;) corresponds to the ratio ofin (30) can be done by a standard technigue using Lyapunov
average packet duration to average bdckone [3]. For function [14],
a given fixed packet duration (e.g., that corresponds to theln practice, however, the Markov chain may not converge
maximum size of an Internet packet), increasphasically before the primal-dual algorithm (30) evolves. the aldoit
means decreasing the average bakime. However, the av- then turns into a stochastic primal-dual algorithm, given a
erage backf time cannot be arbitrarily decreased. In practicdbllows:
situation, the back® process is actually time-slotted. Each
backdf time slot o must be sfiicient large either due to  j(m+1)=
circuit design considerations, or more fundamentally tuia
propagation delay. For a WLAN in which the largest distance )
between two stations id, as a rule of thumlr > 2d/c(the Zs(M+1) = [Zs(m) + €(m) (Us(Zs(m)) - Z/h(m)ﬂ VYseS,
round-trip progagation delay) for CSMA to operate properly lles +
If we assume the radius of a WLAN coverage is 75m and the (31)

speed of lightc = 3x 10° nys, theno > Ius. In 802.11b, \yheree(m) is the step sizef(m) is the average link rate mea-

o = 2Qus , but here we will assume the fundamental limit o§yreq by link within the update intervaly, andTy is the time

o= 1H3 _interval between the system updatintrg— 1), zim- 1)) and
Typically, we should allow for enough number of slots I A(m), Z(m)). The primal-dual algorithm (30) can be considered

the average backbtime to avoid excessive packet collisions; continuous time approximation of (31) with smefir) and
due to simultaneous bac@ountdown to zero by two or more T

transmitters. In 802.11b, for example, the average number o ynder suitable choices of step sizes and update intervals,

backdt countdown is around 15 time slots. Using this numbefye establish the convergence of the stochastic primal-dual

the average backbtime is therefore 1% 1us = 15us. algorithm (31) with probability one in the following theare
Now suppose that the data rate of the WLAN is 10 Mbps, Theorem 2: Assume that U0) < o,¥s € S

and the average packet size is 1kB. The packet duration”gsw%mzs(m) < o and maxmA(Mm) < co. The stochastic
then in the ballpark of 8Q6s (ignoring DIFS and ACK). The iimal-dual algorithm in (31) converges to the optimal solu
largest possible value for exp) is then 80015 = 53 (or tions of MP — MA asymptotically with probability one under

BAr < 4).In 802.11e, we could use the TXOP option to bundige following conditions on step sizes and update intervals
packet transmissions together. Assume we bundle 10 packets

together for transmissions, then instead of 53, gxp(< 530 {Tm} is non-decreasing with m, (32)
(or BAy < 6.3). That is, the back® rate of linkl” (I’ € L) is (m) > 0Ym, Z‘” e(m) = oo, Z‘” (M) <o, (33)
exp(B4), which cannot go beyond 530. m=1 m=1

4) Solving ProblemrMP — MA by CSMA and Primal-dual Z“’ e(m) < oo, (34)
Algorithm: With the approximated optimal value to problem m=1 T
MWIS in Eguation , We can sglve the following problem tq=yrther, the setting(1) = T(1) = 1, e(m) = I Tm=m m>2
get the optimal solutiorz” and A" (and thusp"): is one specific choice satisfying conditions (32)-(34).

The proof is relegated to Appendix-B. Inspired by and
1 .

Z Us(zs) - Z A Z Zs + — log Z exp BZ All. (29) similar to [15], we also adopt the standard methods of stecha

S leL  slesseS B fer lef tic approximation [16] and Markov chain [17], [18]. The

This problem can be solved by either a dual algorithm ordifférence between our proof and [15] is that, our proof studies
primal-dual algorithm. Dual algorithms has been studiadafo the saddle points of Lagrangian function, while [15] stsdie
slightly different formulation in [5], [6]. We study a primal- the optimal dual solutions directly.
dual algorithm as follows

{/-ll = kl [ZSZ|€S,S€S Zs — Zlef ps (ﬂ/l)]; (30) A Settings

’ +
Zs = as|U - A
2 = | U(z) - Ties ']Zs Consider a wireline networ=(V, L), the capacity of link
where k(I € L) and ag(s € S) are positive constants andl € L is denoted byC,. Let Js denote the set of paths available
function ]} = max(Qb) if a < 0 and equald otherwise. The for users € S. For each path a usesr selects fromJs, it

Vlel,

A.(m)+e(m){ >, zs(m)—e‘.(m)]

sles,seS

+

IV. Case 2: Pxra SeLECTION IN WIRELINE NETWORKS



opens a connection to transfer data. Maintaining connesticslower timescale due to the overhead involved in configuring

and paths consume users’ resources and incur overhead. paths and setting up connections.

to the limited system resource or concern on overhead, eacWith the two timescale separation in place, we focus on

users € S operates at modDs connections ovebg paths. solving the combinatorial problefS in the slow timescale.
Let ¥ denote the set of all possible configurations of paths

used by users. A configuratioh € ¥ represents the set ofC. Approach by Markov Approximation

paths used by als € S. Given anf € #, we denote those

;Jsezd by uses to t%et‘]%f < ‘]S’_ \{vhetrel\]stfl N Igs.mSlmllar IMarkov approximation and at the end turn to solve an ap-
0 [2], we assume that there exists at most one bottlenedgal %)éoximated version of problemS as follows:

each path, where “bottleneck” is defined as the link shar 1
among multiple paths. Therefore, at most one link of a pathpg_ A :  max,. Ud(z) — = logps (38
will be shared with other paths. While a limited assumption 0.p=0 ; o(2) é Prlogpr (38)
that may not hold in practice, it is a reasonable model for
some realistic scenarios [19]. Even under this assumisii,

Following similar procedure in Section Ill, we apply

s.t. Zs < Z Rst pr Vse S

selection is still a challenging problem [2]. We also assume fer
the utility functions to be twice dierentiable, increasing and Z pr =1
strictly concave. fer

To proceed, we relax the first set of constraints and denote
A =[1s, s€ S] as the vector of Lagrange multipliers. Follow-
ing a similar analysis as in Section Ill, the optimal solatiaf

Consider the _following utility mgximization problem baseghe problem in (38) can be obtained by searching the saddle
on path selection, where we time-share among a set Qfint of the following function

configurations to maximize the aggregate user utility of the

B. Joint Path Selection and Multipath Utility Maximization

long-term throughputs: ZUS(ZS) B Z/lszs+ 1 log Z exp(ﬁz Rsf/ls] . (39)
. seS seS ﬁ feF seS
PS: maxsomo . Us(z) (35)
S and at the same time setting
s.t. Zs < Z Rst pr Vse S eXp(ﬁZses Re /15)
fer p:(BA) = NMfeF. (40)

Dpri=1, Yter €XP(B Tes Ret 4s)
fer We explore algorithm design based on this observation in the

wherez is the long-term throughput of usere S, p; is the following subsections. Thps(54) in (40) can be interpreted as
probability (or time fraction) of the configuratioi and Rs ¢ the stationary distribution of a time reversible Markov icha

is named “equilibrium rate” for usesin configurationf. It is Whose states are the configurationsFinWe first discuss how

the aggregate rate sourseobtained at the optimal solutionto design and implement such a Markov chain in a distributed
to the following multipath utility maximization problem #i manner, and then design stochastic algorithms to pursue the

uncoordinated congestion control [2]: saddle point of the function in (39).
MP —UCC: maxo z; ZJ: Us(i) (36) p. Design and Implementation of Markov Chain
seS jelds
o First, we set the transition ratg + between two configu-
st ZYj <G, Vlel; rationsf and f’ to be zero, unles$ and f’ satisfy that

jlej ClL: |fuf —fnf|=2;

whereL; is the set of links used by all users under config- C2: there exists a user, denoted &y, f'), so thatf U
uration f, y; is the path rate for path € Jsr,s € S, and fr—fnf edgir).

y =1yj.¥j € Jss.s € S]T is the vector of rates of all paths.Thjs way, the transition fronf to f’ corresponds to a single
Let optimal solutions of the probleMP — UCC denoted by yserg(f, f/) switching a single path.

¥i. ] € Js1,s€ S, the equilibrium capacity is given by Second, forf and f’ that satisfyC1 and C2, we follow
Rei— . (37) OPT1 discussed in Section II-C to design their transition
sf = j; Yi- rate gs.. Direct implementation of OPT1, however, usually
s f

requires uses(f, f’) to know global informationy s.s Rs t s,

By (37), we implicitly assume a timescale separation be- term dificult to acquire in practice. To this extend, we
tween solving the problemMP — UCC and PS [2]. Such find that a unique structure of our problem can simplify the
assumption is justified to some extend by the following ocbsémplementation.
vations. Given the configuratioh € #, problemMP — UCC First, we introduce a new concept. Given a pdthits
can be solved by standard distributed flow control algorghmnmeighboring path seiN(j) is defined as the set of paths that
[2], in a timescale on the order of round trip time. On thshare links withj, i.e., N(j) ={]’ : ]’ n ] # 0}. Since there is
other hand, the path selection is likely to operate at a muahmost one bottleneck link per path, we have 1) only one link



of path j is shared with other paths iN(j); 2) this particular Yses-H(f,i1) Re.fds can be acquired in the following

path must be the only bottleneck link of any pgthe N(j). way. For alls in S and j € Jgs, users adds

Consequently, all paths iNV(j) have identical neighboring set, a header containin@®y 1s to data packets before

i.e., N(J') = N(j) for all j’ in N(j). For any pathj” ¢ N(J), sending them out along pathEvery router on path

NN N()) =0. records the information d®s 1 1¢ for everys whose
Then we have the following observation: traffic passing through them. Assuming the reverse
Lemma 2: Under the setting of uncoordinate congestion direction trdfic (e.g., ACK packets) uses the same

control, the equilibrium rates of a useft under f and f’ paths as forward direction tifec, the ACK packets

are the same i§ does not change paths, and for any path can collect thdRy 11 (S€ S — H(f, f’)) information

i/ € fuf —fn f, all paths ofs do not belong to the from the routers on their way to user

neighboring path set of, i.e., Stag2: During the count-down, each userlso continu-

) , ously senses whether other users sharing links with
Rs.f =Rsp, if Jot=Jsr andJss NN(J) =0, them undertake a path swapping. This can be done by
Viie(fuf —fnf’). the users who swap paths leave a one-bit of informa-
tion at the routers, and all users whosdficgpassing
by this router can collect this bit of information. If a
users senses a path swapping, it will reset its counter
and jump toStagl
Stag3: When usess count-down expires, it will swap the
selected two paths, and jump &iagl

Proof: Under the setting of uncoordinate congestion
control, each path has its own utility function to maximize.
Two paths are independent to each other if they are disjoint.
Therefore the optimal rate of path depends only on its
neighboring paths sew(j). If the users does not change
paths, and all its paths are disjoint with paths in the set
Up N(i"),J" € fuf —fnt, then paths inls s and their Corresponding pseudocode is shown in Algorithm 1.
neighboring path sets will not b_e_[fa_cted by pa’;h SWappiNg,  nNext we establish that the above distributed procedure in
thus by (36) and (37), the equilibrium raR. ¢ is invariant fact implements a time-reversible Markov chain with statio
and equals Ry, . ary distribution in (40).

Let H(f, f’) be the set of such “invariant” users under _ i _
configurationsf and f’. Then to satisfy the detailed balance ~ Proof: By C1 and C2, we know that all configurations

equationqs ¢ pr(8A) = G- pr(BA) for f and ' that satisfy €N reach each other within a finite number of transitions,

C1 andC2. it is suficient to let thus the constructed Markov chain is irreducible. Furthgs,
’ ., a finite state ergodic Markov chain with a unique stationary
ar.f = [exp(ﬁ 2 seS—H(f, 1) R&fds)] , 41) distribution. We now show that the stationary distributien
-1 indeed (40).
a1 = [exp(,B seS—H(f.1) Rsf//ls)]

Given the current configuratiof, the users(f, f’) chooses
The common part e><(p3 YseH(h 1) R&f,ls) appears on both f’ to be its targeting configuration by random selec-
sides of the detailed balance equation and gets canceled. Nigon,, then it counts down according to a random num-
to implement transition ratey - in (41), the uses(f, f) needs ber that follows an exponential distribution with _paramete
to collect the informatiorRs s As from sin S — H(f, f'). Dy, 1) (|Js(f,f,)| - Ds(f,f,)) [exp(ﬁ 2 seS—H(f, ) Rg,f/lg):l

Noticed thatS — H(f, f*) is the set of users whose paths Now we want to compute the corresponding transition
share links withs(f, ), userssin S—H(f, f’) can then leave (416 ¢ ., We first use a counting argument to compute the
the informationRs 45 at each router, and use(f, f’) can 5 onapility that users(f, f') selects the particular targeting
fetch them from the routers when its own packets pass By that leads to configuration swapping from ffto Given
The shared routers can be thought as shared memory betWg@Bnfigurationf, the total number of targeting configurations
(f, 1) and s in S — H(f, f). In this way, S(f, f") acquires j can swap to is[Jees Ds(IJs| — Ds). Among these target-
the needed information to compujer andqy. ¢ in (41) ina jng configurations, the number of targeting configuratis i

distributed manner. : e
We briefly describe the distributed implementation as fo[[gesf‘s(f’f/)} Ds(1Js1 = D<). Thus the desired probability is
lows.
StagO: Initially, every uses randomly select®s paths from Pr(f — f" with userg(f, f'))
its path setls. B [Tses—stt.ty) Ds(1ds] — Ds) 42
Stagl:.Users randomly selects one path out of its not- - [Tses Ds(1Js| - Ds) (42)
in-use |J¢§f — Ds paths, and randomly selects one 1
path out of itsDs in-use path. Uses then counts = (43)

. Dyt.t1) (1351, 1| — Dt
down according to a random number and swaps these (.1 (Mt «1.1)

two paths when the count-down expires. Denote the

current configuration af and the targeting con- Upon selecting the particular path, the user
figuration asf’. The random number is generated(f, f’) performs the path switching with rate
following an exponential distribution W'tﬂ parameteip ., (|‘]S(f’f,)| - Ds(f,f/))[exp(ﬁ S ses H(LT) Rs/,f/ls/)]

Ds(|Js| — Ds) [exp(ﬁ D ses—H(f, 1) Rg,f/lg)] , where Thus overall the transition rate frorhto f’ is given by the



Algorithm 1

E. Solving ProblemPS— MA by Running An Primal-dual

1: The following procedure runs on each individual useslgorithm over Markov Chain

independently. We focus on a particular user

2: procedure INITIALIZATION

3 Jst < Ds paths random picked frords
4: index « 0

5 Invoke Procedure Selectios)(

6: end procedure

7: procedure SELECTION(S)

8: randomly selects one patts) from Js s

9: randomly selects one targeting pgtls) from Js—Js ¢
10: acquiresy ges (r,1) Re.tds

11: generates a timer

Following a procedure similar to that in Section 111-C4, we
design a distributed stochastic primal-dual algorithmuospe
the saddle points of the function in (39), on top of the Markov
chain implemented in the previous subsection, as follows:

z5(m+ 1) = [zs(m) + e(m) (U(zs(m)) — )ts(m))]+ , VseS
(46)

As(m+ 1) = [A(m) — e(m) (0s(M) — z(m))|, . ¥seS (47)
wheree(m) is the step sizefs(m) be the average service rate

users actually obtains within the update intervi, andTy, is
the time interval between the system updatia@n(— 1), zim-

-1 1)) and @(m), Z(m)).
Ts ~ exp| Ds (|Js] — Ds) exp[ﬁ Z Rg’f,lg] Again, under suitable choices of step sizes and update in-
SeSTH(E ) tervals, we establish the convergence of the stochasticapri

and begin counting down dual algorithm (46)-(47) as follows.
12: while the timerTg does not expirelo Theorem 3: Assum(;a that Lis(O) < O?”:{S te h S{.
13: if Senses the existence of path swapping activig}‘_’j‘)%’mZS(m) < co and Mmaxm s(m) < oo. The stochas 1C

then rimal-dual algorithm in (46)-(47) converges to the optima
14 index — 1 solution of problemPS- MA with probability one if the
15: break following conditions for step sizes and update intervalklho
16: end if {Tm} is non-decreasing with m (48)
17:  end while o ©
18: I.I: |ndeX — 1 then G(m) > 0 Vm, Zm:l G(m) = 00, Zm:l € (m) < 00, (49)
19: Terminates current countdown process and invoke ©  €(m) <o (50)

Procedure Selectiog(
20: index « 0
21: else Invoke Procedure Swag(j(s), j’(9)
22: end if
23: end procedure

24: procedure Swar(s, j(9), j'(9)

25: users switches from pathj(s) to pathj’(s)
26: leaves one bit information at routers along pafk)
and j’(s)

27: end procedure

following equation

-1

dr.rr = Dgr.ry (gt — Dr. 1) [GXP{B Z Rs,f/ly]
SeSTR(E1)
x Pr(f — f’with users(f, f’)) (44)
1
= exp[lB Rg,f/lg] (45)
sesTA(f.1)

m=1 T,

Further, the setting(1) = T(1)= L e(m =1, Tpy=m m>2
is one specific choice satisfying conditions (48)-(50).

The proof of this theorem 3 is very similar to the proof of
theorem 2. We omit details here.

V. Cast 3: CHANNEL ASSIGNMENT IN WIRELESS LAN s
A. Settings

Consider a wireless 802.11 LAN wifd access points (AP).
Each AP is associated with a set of clients that access tee Int
net via this AP. In our setting, APs are connected via wigelin
backbone, e.g., Ethernet, so that they can communicate with
each other with negligible cost. This corresponds to the cas
where APs belong to the same administrative zone and can
coordinate. Each AP can choose one channel to operate from a
set ofM available channels, denoted ©y= {c3, Cy, ...Ccm}. We
define a channel-assignment configuration as the vector indi
cating the channel choice of every APs, ifex, [f1. T2, . .., fn].
where fi € C denotes the channel choice of théh AP. Let
¥ be the set of all feasiblé.

Given a configurationf, the wireless stations compete to
access the wireless channels according to standard 802.11
protocol. We denote the downlink throughputs observed by
AP i under configurationf by Rf. Upon observing}f, AP

With (40), we see thaps -qr.+ = pr -Qs-.1, I.€., the detailed i obtains a utility ofU; (Rf). We assume functiotJ; to be
balance equations hold. Thus the constructed Markov chainictly increasing and concave, and twicéfelientiable. The
is time-reversible and its stationary distribution is indg40) problem of finding the best channel assignment to maximize

according to Theorem 1.3 and Theorem 1.14 in [20]. ®

system-wide utility is as follows:
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Received a RESET message
CODE 3

D

INITIALIZATION
CODE 1

N
CA: maXer Z Ui (Rf)~ (51) WAIT(f)
i=1 CODE 2

This problem is a combinatorial problem, and the size o
feasible setF is very large even for a network of modest
size, making the problem hard to solve. Furthermore, even if
we could handle problems of this size, we may not krRﬁ/v
a priori because they can only be measured in real time in the
field, and accurate analytical estimates of them are lacking
Thus, we assume a measurement-based approach in ﬂhich
is obtained from real-time measurements. We also assurhe tha
the measurement interval is much smaller than the timescafé
on which the APs perform channel assignments.

Let ps be the percentage of the time that configuratiois
activated, i.e., AR chooses channd|. We could reformulate
problemCA as follows: We implement a channel-hopping Markov chain with tran-
sition rate in (55) as follows. Initially, the APs randomlick
their channels. Each AP keeps track of its omeif) based
on the measurement & under current configuratiof, and
periodically broadcasts it to all the other APs. This braesdc

S.t. Z pr =1 can be done using the backbone Ethernet connecting the APs.
fer Each AP also generates an exponentially distributed random
We remark that the problei@A — AVG is still hard to solve nhumber with mean equal to
as the number of variables is still combinatorial.

Countdown to
zero

HOP(f)
CODE 4

2. State machine of a particular link in “Wait-and-Hoglgorithm

C. Implementation

N
CA-AVG: max.o » pi» Ui(R)  (52)

fer i=1

N
exp(ﬁz Ui (Rf)] /(M - 1) (56)
B. Approach by Markov Approximation =1
We apply Markov approximation and tu@A — AVG to the and counts down according to this number. When the count

following CA — MA optimization problem: down of an AP expires, this APandomly switches to one

N of its (M — 1) not-in-use channels. This AP also informs the
fno1 i i

CA-MA : maXzo Z P Zui (R ) 3 Z pslogp; (53) other APs to terminate their current count down processes

(= fer and start fresh ones using new measurements under the new
s.t. Z pr = 1. configuration f’. We name this implementation “Wait-and-
fer Hop” algorithm for ease of reference.

1) Pseudocode of the “Wait-and-Hop” algorithnmin the

Its optimal solution is
P “Wait-and-Hop” algorithm, each AP runs a procedure which

exp(B 2N, Uj (Rf)) operates according to the state machine shown in Fig.2. We
= N Ve (54) focus on a particular AR. The pseudocode under each state
Srer exp(BEi Ui (RT)) is shown in Algorithm 2.

We consider a continuous time-reversible Markov chain that2) Correctness of the “Wait-and-Hop” implementation:
has the stationary distribution given tp} (f € 7). We call We verify that the “Wait-and-Hop” algorithm realizes a
it a channel-hopping Markov chain. Its states are the fémsitgontinuous-time chanr)el-hopplng Markov chain with statio
configurations. Letys s andqs ¢ be the transition rates fromary probability shown in (54).

a statef to another statd’. To achieve the desired stationary In the “Wait-and-Hop” algorithm, the state sojourn time
distribution, we follow OPT1 discussed in Section 1I-C, ané exponentially distributed and the transition probapils

set independent of time, so the state transition process forms a
N -1 homogeneous continuous-time Markov chain.
dr.f = [exp(ﬁz Ui (Rf)ﬂ . (55) Denote the probability that the process will enter stéte
i=1 when leaving statd by ps . Let L = MN be the number of

We do not consider OPT2-4 because they all involve probirﬁ‘éﬁ_Sib'e channel assignment states Af{d) be the set of states

the performance of the target configuration before makieg tHhich are directly connected to statteln the “Wait-and-Hop

channel hopping decision, complicating the system design.2lgorithm, the next state df has equal probability to be any
statef’ wheref’ e N(f). Specifically, sincéN (f)| = (M—1)N

SIndeed, the problem of finding the analytical expressiorRiBfthat fuly » We have
accounts for the féects of the carrier-sensing relationships among the links,
hidden-node fects, back-fi collisions, and channel fading is particularly 1 1

challenging and largely open. Prr = IN ()] - (M -1)N’

Vi e N(F). (57)
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Algorithm 2 “Wait-and-Hop” algorithm statef to statef’ is given by

a s wdkR

2]

10:

11:
12:
13:
14:

15:
16:
17:
18:

C={c1,Cp...Cm} N -1
: procedure copk 1 1 B (pf
fi « a channel randomly picked fro@ (M -1)N xN(M-1) (eXp(ﬂiZ; Ui (R )])
Transit to State WAIT ) N 1
: end procedure — (exp(ﬁ U (Rf))] (58)
= i(R .
i=1

: procedure cobk 2

Measure R', compute and periodically broadcastVith (54), we obtainpiqr - = py.dr.¢. That is, the detailed
balance equation holds between any two adjacent states. Ac-

. _f
Ui (R') cording to [20, Theorem 1.2], the constructed Markoc Chain

f . .
CollectU; (Rj)tj €L o ’,N,} - ) is time-reversible and its stationary distribution is (54)
Generate a timer with initial valuer; that fol-

lows exponential distribution with mean equal to

e ( EU ( f) /(M — 1) and begin counting down D. Evaluation
X i (R - [ unti W
p'Bizl (R g g We evaluate the performance of the proposed “Wait-and-

end procedure Hop” algorithm through extensive simulations. We sgt:) =
log() and 8 = 10. As the benchmark, the optimal channel
procedure copk 3 assignment state is obtained by exhaustively searching the
Terminate its current count down process feasible channel assignment states.
Transit to State WAIT ) 1) Simulation Setup:Typical 802.11b parameter settings
end procedure are used in the simulation (e.g\) = 3). Each AP tries to
access the channel according to the standard 802.11 pkotoco
procedure cope 4 . In each simulation run, we gather the statistics of two
fi « a channel randomly picked fro@ — { f;} metrics: i) normalized aggregate throughput; i) systefiityit
Broadcast a RESET message to other APs We defineAT as the ratio between the achieved normalized
end procedure aggregate throughput and the optimal normalized aggregate

throughput. We further define Utility gatU as the diference
between the system utility achieved and the optimal utility

In the following, we show the “Wait-and-Hop” implementa- 2) Aggregate Throughputs and Utilitiesn this section we

tion realizes a channel-hopping Markov chain with trapsiti €valuate the achieved normalized aggregate throughpdts an
rate shown in (55). the achieved utilities of “Wait-and-Hop” algorithm in netvks

« First, all the transition rates of the channel-hopping prcY‘-”th

different contention graphs.

cess are finite: a) Six-AP full clique network:ln a network in which

Second V. f’ ’e # f and f’ communicate with each six APs form a clique, it is easy to see that the optimal

other T;) s,ee this ’we transform the state transition di%?nfiguration should be the one in which two APs share a
' L : . . annel. In this way, each AP obtains half of the normalized

gram of the channel-hopping Markov chain to a directe roughput. The normalized throughput of each AP and the

graph G, in which the vertices represent the channe}-__ P R )
assignment states and the arcs represent the transiH(S'ﬂfy gap of_Walt-and-Ijop_ are prese”nted n T‘?‘b'e .
s shown in Table I, “Wait-and-Hop” can achieve roughly

edges in the state transition diagram, respectively. No&)% of the optimal throughput and near optimal utility.

it is suficient to show that there exists a path @n X .
P b) Eight-AP random networksWe generate ten eight-

betweenf and f',Vf, f" € F. Let m = SP(f, f’) denote d works. in which h AP h th
the length of the shortest path for the process to reac rahdom networks, in which eac as on average three

state f’ starting from statef. Then we construct a path neighbors in the contention graphT and AU of “"Wait-and-

composed of a sequence of stafds - - , f™1, such that Hop” are given in Table Il. Averaging over ten networks, we
SP(f, 1) = m=1, SP(f', £2) = m—2 S;D(f' ’an) _1 find that the “Wait-and-Hop” algorithm can achieve 99.85% of
That |s starting ﬁomf, t’he process’approélches stite the optimal aggregate throughput and the average utilify ga

by changing one element corresponding to sfatepon Is -0.002.

each transition. TABLE |

Third, the transition rate from stateto f’ satisfies (55)_ NorMALIZED THROUGHPUT AND UTILITY GAP OF THE “WAIT-AND-HOP” ALGORITHM
Given the current state i$, according to the “Wait- IN A SIX-AP FULL CLIQUE NETWORK.

and-Hop” algorithm, allN APs count down with rate ko, T T [ 2 [ 3 [ 4 | 5 [ 6 | AU
[ Wait-and-Hop | 0.543 | 0.543 | 0.543 | 0.543 | 0.542 | 0.541 | -0.001 |

(M-1) (exp(ﬁg Ui (Rf))) . Consequently, the rate the
i1

. N (of - For further details, we show two of these ten networks in
process leaves stafeis N(M - 1) (exp(ﬁ Elu' (R ) Fig.3. Network 1 in Fig.3(a) is a three-colorable networkeT
With probability ps 1 = m the process jumps to stateoptimal channel assignment should guarantee that each AP
f’ when leaving statd. Hence, the transition rate fromhas a normalized throughput of one. Network 2 in Fig.3(b)
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TABLE I
NorMALIZED THROUGHPUT AND UTILITY GAP OF THE “WAIT-AND-HOP” ALGORITHM IN TEN EIGHT-AP RANDOM NETWORKS

Network Number #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Averaged
AU -0.001 -0.002 -0.001 -0.001 -0.002 -0.003 -0.001 -0.002 -0.003 -0.002 -0.002
AT 99.87% | 99.85% | 99.90% | 99.88% | 99.84% | 99.80% | 99.78% | 99.85% | 99.85% | 99.89% | 99.85%

to a solution that can be realized by time-reversible Markov
chains. These Markov chains usually have desirable streictu
that can yield distributed algorithms for solving the netiwo
‘“.’A optimization problem approximately.
[S—/25—/5% 76X To illustrate our approach, we first apply the Markov
(a) Network 1 (b) Network 2 approximation technique to the utility maximization preivl
Fig. 3. Two random eight-AP networks in the domain of CSMA networks. This examplfears a fresh
perspective to a known distributed algorithm. Going beyond
we then show that the Markov approximation technique can
has a four-APs clique and hence the contention graph is m&p us synthesize new distributed algorithms in new prable
three-colorable. The optimal channel assignment stataldhodomains. We illustrate this by applying the technique tagies
be such that two of the APs in the four-APs clique shargew distributed algorithms with provable performance oo t
a channel and all the other APs enjoy an unshared chanm@lportant practical problems: 1) optimal path selection in
One such assignment fs=[1,1, 2, 3,2, 3, 1, 3]. The achieved multipath transmission; 2) frequency channel assignment t
normalized throughput of each AP for Network 1 and Netwo/LANSs. Based on the promising results out of our preliminary
2 given in Table IlI. investigation, we believe the Markov approximation tech-
nigques will also find application in many network optimizati
problems in other domains.

TABLE Il
NORMALIZED THROUGHPUT OF “WAIT-AND-HOP” IN TWO RANDOM EIGHT-AP
NETWORKS IN FIG.3.

APPENDIX

Link No. T 2 3 q 5 3 7 3

Network 1 | 1.00 | 0.99 | 1.00 | 0.99 | 0.99 | 0.99 | 0.99 | 1.00 A. Proof of the Lemma 1

Network 2 | 0.99 | 0.72 | 0.72 | 0.79 | 0.99 | 0.99 | 0.99 | 0.79 . . . . .
Proof: First, we will construct a continuous-time time-

. . . eversible ergodic Markov chain and show that its statipnar
« o A o
As shown in Table Ill, "Wait-and-Hop” can achieve 99.38 /?j'kstribution is p; (x) in (12). In particular, we construct a

and 99.71% of the optimal aggregate throughputs for Networ

. . s continuous-time Markov chailf with a finite state spacé .
1 and Network 2, respectively. The utllity gaps of Wa't'andWe design the Markov chaivf such that any two statésand

Hop” for Network 1 and Network 2 are -0.002 and '0'0011” can communicate directly with each other, i.e., the traosit

respectively. ) ,
3) Utility loss bound:Eqn. (4) provides a performance Ioss;g:ea:;:‘nff,tz ; Iivgfgé:& 0 for any f, " € 7. Furthermore,
e 9 L

bound for our Markov approximation. In the worst case, th
Log-sum-exp approximation can incur a performance loss of -
%Iog n, wheren is the number of feasible configurations. In Q. = @ |€xp :BZ % (0] - (59)
our simulation setup, we have reR

. _ ThusY is an ergodic Markov chain with unique stationar
1 logn = { L log 3 = 0.6592 for Six— AP clique network g 4 y

0 . distribution. By (59) and (12), we can check that detailed
E|0938 = 0.8789 for Eight- AP random netWOrk%alance equations hold, by Theorem 1.3 and Theorem 1.14
Simulation results presented in Table | and Table Il shoin [20], we know that thisY is reversible, and its stationary
that “Wait-and-Hop” can achieve a utility loss of0@1 and distribution is indeed; (x) in (12).
0.002 for the Six-AP full cliqgue network and Eight-AP random Next, we will establish that for any continuous-time time-
networks, respectively. reversible ergodic Markov chaiK, its stationary distribution
Comparing the computed performance loss bound with thecan be expressed by the product fopp(x) in (12). For
actual observed utility loss in simulation, we see that thbe state-transition diagram for the Markov chinwe map
performance loss bound is guaranteed. More importantly, tit to an undirected grap®=(V,E), where the node s&f = ¥
actual loss can be much smaller than the bound. For all tisethe set of states and any edge j) € E, i, j € V represents
scenarios tested, “Wait-and-Hop” can actually achiever-nethe state-paifi,j) with g;; # 0.
optimal utility. Let the stationary distribution of statebe denoted byr;,
and transition rate from stateto statej’ is denoted byq; .,
VI. CONCLUSIONS then by detailed balance equation of time-reversible Marko
This paper has presented a Markov approximation framghain, we know thatr;q; = 7y q; ;. Let pjj = q;j/d;,; for
work for solving combinatorial network optimization prob-anyq; ; # 0, thenzj = mjpj ;.
lems. In particular, we show that the log-sum-exp approxima Since X is an ergodic Markov chain, any two states can
tion of the optimal value of a combinatorial problem giveseri reach each other within finite transitions, aBds a connected
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graph. We can always find a spanning tree to connect all node&urther, the stationary distributionshown in (62)-(63) can
in G and there exists only one path between any pair of nodég. expressed in the product form in (12) as follows:
Suppose we have constructed a spanning tre€.ofhen we exp(0)

denote the root state as state 0, and denote nod& as 7o = VI

state 12,...,|V| -1, according to the result of the breadth- exp(0)+ Z exp( Z |og,ovJ V,H)

first search on the spanning tree. Let PATH(O, i) be the path k=1

between stat® and the staté (1 < i < |V| -1 ), passing (Z logp, J+1)

m + 1 number of states (including statésandi). We order Voi Vi ,

the nodes on the path PATH(0,i) according to their distatzes i = - 1<i<|VI-1 (67)
state 0, and denoted them gs(0 < j < m). Then according exp(0)+ Z exp( 2 logp,; VM)

to detailed balanced equations along the PATH(O, i), we have k=l

the following: So we get the desired conclusion. |

(66)

m-1
mi=n0- [ [ oy s 1<i<IVI-1 (60) B. Proof of the Theorem 2
j o Before the further illustration, we need some notation. The
vectorz and the vecton are updated at timg,, m=1,2,....
7o + Z mi=1 (61)  with to = 0. DefineTy, = tme1 — tm, and the “period m” as the
time betweent,, andtm.1, m = 0,1,2,..... Z(t), A(t) remain
Then we get the distribution the same in periodh. Let z(m), A(m) be the value of(t), A(t)
1 for all t € [tm, tm1). TO begin with, we assumg0) = 1 and
NVI-Ime1 (62) A(0) = 0 for simplicity. Let6i(m) = X+ Ps(84A(m)) denote the
1+ 32 1 pyi yin link rate for link | in periodm. Then letg(m) be the average
’ link rate measured by linkwithin periodm. For convenience,
l—Ir,-Tlf)lp\,gJ,,\,g;l . we also let
i = S 1<i< V-1 (63)

L+ 2T Ay (D=2, U4 ), 2 ~ og Zexp[ﬂZmﬂ.

leL sles,seS feF lef
We now verify the distribution computed based on the span- (68)

ning tree , i.e., (62)-(63), is the correct stationary d@isttion, Then the stochastic primal-dual algorithm is given as fol-
by testing the detailed balance equations between any tlows:

statesj, j’ € V. _ _ N zs(m+1) = [zs(m) + €(m) (U’S(zs(m)) = Dhles (m))]+
1) If ;7 = 0, then the detailed balance equation trivially Vse'S user rates updating

holds. — )
2) If q;; # 0 and the edge(j, /) belongs to the spanning  [4(M+1)= [A1(m) — e(m) (6(M) ~ Sstes ZS(m))L
tree, then by (63), we know that;, = 7jp;, i.e., the Yl e L link prices updating
detailed balance equation holds. (69)
3) If gj; # 0 and the edge(j, ') does not belong to Wheree(m) is the step size. In general, step size for both
the spanning tree, then we focus on the cycle coRource rate and link price updating should be at the same,orde
s|st|ng of PATH(j’, j) and &(j, j’). Starting from node though can be dierent. Here without loss of generality, we

i = v? j» We can visit nodegk ,1<k<mj;-1and Use the same step size for both source rate and link price

node j = Vj'" in sequence along theATH(j’, j). By updating. _ _ o
Kolmogorov's criteria for time-reversible Markov chain " the following, we will show that the stochastic primal-
[20], we have dual algorithm converges with probability one to the optima

solution of MP — MA (29). Thus wherB — oo, the stochastic

Myt primal-dual algorithm (31) (or (69)) converges with proliap
Pi.j = l_[ Py, vt (64)  one to the optimal solution of probleMP (18).
k=0 Now we state the convergence theorem as follows, which
By (63) and (64) we have is similar to [15, Theorem 7].
my -1 Theorem 4: Assume thatU 0) < o, ¥s € S,
I P vkt = P (65) Maxmzs(m) < co and maxmA(m) < co. If the sequence
Ty ko T of step size{e(m)} and the sequence of update inter{aj.}

Therefore, the detailed balance equation betweand satisfy the following conditions:

i’ holds. {Tm} is non-decreasing with m (70)
Combining above scenarios, we know that the detailed o0 _ o,
balance equations between any two stgtgs € V hold. So e(m) > 0vm Zm:l e(m) = e, Zmzle (m)<eo (71)
the distribution shown in (62)-(63) is indeed the statignar Z‘” e(m) (72)

— < X
distribution. m=1 Tp,
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Then by running the stochastic primal-dual algorithm (31), For any givery > 0, We also define the set
z and A converge toz and A respectively with probability 1.

Here @ 1) is the optimal solution to the probleMP — MA He ={(z ) 1 Lp(Z2 W) - Lg(z A) < i} (80)
(zlgt).is not hard to see that settinfy = (1) = 1Tr = Since ¢ A1) is a saddle point fots(z 4), it follows that
m, e(m) = n%,Vm > 2 satisfies conditions (70)-(72). Further, Lﬁ(z,fl) < Ly(z, A < Ls(2 A) (81)
this setting only depends on the index and thus can be
generally applied to any network. In the following, we need two steps to establish the conver-

Thus by theorem 4, we prove that theorem 2 holds. gence result.

Now we state the proof of theorem 4, i.e., the convergence, Step 1 we will show that¥u > 0, H, is recurrent for
on the stochastic primal-dual algorithm. {2(m), A(m)). g

Proof: In brief, we prove the convergence by showing , gten 2 we will show that for a sfiicient large number

that the estimators of stochastic gradients in (69) areaseti, m, and anyn > m+1, {z(n), A(n)} will reside inH, almost

a standard method of stochastic approximation [16]. The surely.

difference between our proof and [15] is that, our proof studies _

the saddle points of Lagrangian function, while [15] stlsdieth Bfefltl)re _thetfurtrlwer |Ilustrz;\3te ofter;t}wandStep _2 we P;ed q

the optimal dual solutions directly. feth(') OW'bng vt\_/o emmas. Frools of them are given at the en
Let yo(m) be the state of the CSMA Markov chain® L IS su Z?C 'g”- A M

at the beginning of periodn. Define the random vector emma 3: 3ny le(m) - [ —A(m)] B(m)] < co

U(m) = (8(m- 1), 2m), A(m), y°’(m)) for m > 1 andU(0) = Lemma 4: LetW(n) = nLe(i)-[A-A(3)] (i)}, thenw(n)
(Z0), A(0), Y°(0)). Form > 1, let F be theo-filed generated CONverges with probability 1.
by U(0), U(1),...,U(m), denoted by Step 1: Since

Fm=0(U(0),UQ).....U(m). (73) z(m+ 1) = [z(m) + e(m) - f(M)],, VYseS

A(m+ 1) =[a(m) —e(m)-g(m)],, VlelL

+

Given z(m), A(m) at the beginning of perioan. Let the
vector f(m) be the gradient vector ofs(z ) with respect by using the fact that the projectiodi | is non-expansive
to z, and the vectorg(m) be the gradient vector afz(z 1) [11], we have

with respect tal. Then we have
| Zm+ 1) - Z|P< || Z(m) + e(m) - f(m) — 2|17

fo(m) = UL(zs(M) = Zy1es (M), VSeS =l Z(m) — Z|I> +2¢(m) - [z(m) — 27 f (m)
{g|(m) =6(M) — YeesZs(M), Vlel ’ (74) +eX(m) || f(m) |12

However, in stochastic primal-dual algorithm (31), we only and with (78), we have
have an estimation afj(m) for all | € L, denoted by A _ Ao
I A(m+ 1) = A< 1] Am) — e(m) - g(m) — A ]

G(m) = (m) — ) z(m). VI € L (75) — 1 A(m) — A 2 —2¢(m) - [A(m) — AT §(m)

ThenVl € L, gi(m) can b:ecjecomposed into three parts: +€(m) || g(m) |1
y Yl . ~ ~
ai(m) = gi(m) + (E[@(M)IFm] — ai(M)) + (@1(M) — E[Gi(M)IF ). =1 Am) = | ~2¢(m) - [Am) - A" g(m)
The first part is the exact gradieg{m). The second part + B(mM) + p(m)] + €2(m) || g(m) |1

is the biased estimation error gf(m), denoted by . ,
SinceU(:), zs(m) and 4(m) are bounded, by (74) and (75),

Bi(m) £ E[Gi(M)|Fm] — (M) = E[6(M)|Fm] — 6(M)  (76) we know that both| f(m) |2 and || g(m) || are bounded,
, , _ _ ~we can write that| f(m) |[’< C; and|| g(m) ||?< C,, where
The third part is a zero-mean martingaléfeiience noise, ¢, andc, are positive constants. Using this and the above

denoted by inequalities, we have that
m(m) £ g(m) - E[G(M)|Fm] = 6(m) - E[a(M)IFn]  (77) V(zZ(m+ 1), A(m+ 1))
Therefore, = zZm+1)=Z P + || Am+1)—A|]?
Gi(m) = gi(m) + By(m) + (M), ¥l € L (78) = V(M) Am) +2¢(m) - [(2Am) - 2)" f(m)
— (A(m) — )T g(m)] — 2¢(m) - [A(m) — A T[B(m) + p(m)]

Remind that & A) is the optimal solution to the problem
MP —MA (29). Thus ¢ A) is a saddle point fotz(z A).

By using || to_ denote theEuclideannorm, we define the Assuming that £m), A(m)) ¢ H,, (recall the definition oH,,
Lyapunov functionV(-,-) as follows: in (80)). Then we have

+€(m) - (C1 + Cyp) (82)

V(zA) 2l z— 2|+ ]| A=A |7 (79) La(2 A(m)) = Lp(Z(m), ) > 1 (83)



Since Lg(z 4) is concave inz and convex ind, f(m) and
g(m) are the gradient vectors af(z 1) with respect toz and
A respectively, it follows that
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Therefore, applying (93) and (94) to (89), we have
V(z(n), A(n)) < V(z(m), A(M)) + £, Yn>m+ 1.

Ls(2(m), A(m)) — Ly(2 A(m)) = (z(m) — )" £ (m) (84) Thus (Z(n), 4(n)) can not move far away fror,,. Since this
A AT holds for H, with arbitrarily smallu > 0 and anyZ > O, it
La(Z(m). 2) = L(z(m). A(m) = —(Am) = )7 o(M)  (85) 55 that @z, ) converges to the optimal solutio @) with
By the summation of (84) and (85), and combining (83probability 1. This concludes the proof. =
we have Lemma 3: 3174 e(m) - [4 - A(m)]TB(m)| < oo
. The proof is very similar to the one in [15]. It is done by
(Zm) - 2T f (m) - (A(m) — )" g(m) combining two standard methods in Markov chain: bounds
< Lﬁ(z(m),;l) - Lg(Z A(m)) (86) on mixing time [18] and uniformization [17]. We provide the

< H
Combining with (82) yields that
V(z(m+ 1), A(m+ 1))
< V(z(m), A(m)) — 2e(m)u
+2e(m) - [A = AM)] T[B(m) + p(m)] + €X(m) - (C1 + C7) (87)
Further,
E[V(zm+ 1), A(m + 1))|Fn]
< V(z(m), A(m)) — 2e(m)u
+2e(m) - [A- AM)]T[B(M)] + €(m) - (C1+C2)  (88)

By lemma 3 and condition (71),[Zn{e(m) - [fl -

/l(m)]TB(m)}| < oo and stz(m) -(C1 + Cy) < o. Then by

proof here for completeness reason.

Proof: In the following, we consider the period, i.e.,
from ty, to tyy1. At time ty, with the transmission aggressive-
ness vectord(m), denote the corresponding CSMA Markov
chain byY(t). Y(t) is a continuous time Markov chain.

Each statey is a |L|-dimensional vector, with-th element
y € {0, 1} denote the capacity of linkat statey, Yl € L. The
number of states igY| < 211,

By (24), Yy, the stationary distribution of stateis

_ __expBRieYid) _ expBEieyid)
y(A(m)) = py(B1) S ) C(a(m)) o )
5

WhereC(A(m)) = 3y exp(ﬁ Sy, /l|).
Since A(m) > 0, CAM) < YexpBl'am) <
y

supermartingale convergence lemma [21], we can concludle expBL A(m)).

that the seH,, is recurrent for{z(m), A(m)}.
Step 2: By (82) we have that fon > m+ 1,

V(zn), A(n)
n-1 ) ) T £/
< V(Zm), Am) +2 )" {e(i) - [(20i) - 2)7 ()
(A6 - DT g + 2> (i) - [ - AQ]TIBG) + ni))
H(C+C) D &) (89)

Since €1+C2) £y (i) < o0, £ [€)-[A-AM]TB()| < oo

Thus the minimal probability in the stationary distributio

Tmin(A(M)) myin my(A(m)) > m
= exp(-|L| - log 2— B1T A(m)).
SinceAmax = MaX mA(m) < co, we have
Tin(A(M)) > exp(-IL| - 10g 2 - BIL|Amax
= exp(-IL| - (Iog 2+ BAmax))

To utilize the existing bounds on convergence to the station

(96)

by lemma 3, and?; le(i) - [~ A()] ()| < co by lemma 4, ary distribution of discrete-time Markov chain, we unifaze

then
lim (Cy + C2) Z“’m () =0 (90)
lim > i) 1A= A@1TB) = 0 (91)
lim Y le®) - [ A0 ) = 0 (92)

Combining (90), (91), and (92), we know that with prob:

ability 1, for any{ > 0, after @m), A(m)) returns toH, for
some sfticiently largem (due to recurrence ofl,),

ZZZ{E(U A= A0 [B() + n()]}

+(C1+C) D i) <¢ (93)
foranyn>m+ 1.
Combining (81) and (86), we have that
[() -2 f() - (A0) - )T g(i)] <0 (94)

the continuous-time Markov chai¥i(t). Uniformization [17]
plays the role of bridge between discrete-time Markov chain
and continuous-time Markov chain.

Let the transition rate matrix ofY(t) is denoted by
Q={Q(y,Y)}. Construct a discrete-time Markov cha#{(n)
with its probability transition matri®= 1 +QAn, wherel is the
identity matrix. Then consider a system that successivessta
visited form a Markov chairZ(n) and the times at which the
system changes its state form a Poisson probé$s Here
N(t) is an independent Poisson process with xgteThen the
state of this system at timiis denoted byZ(N(t)), which is
called asubordinated Markov chain

Let

Vin = IL| - expBAmay).-
Since Yy, Yy, Q(y.y) < expBa(m) < expBimad, andy

can at most transit tgL| other states, thuZy., Q(y,y) <
IL| - eXp@BAmax) = Vm- Then by uniformization theorem [17],

(97)
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Y(t) and Z(N(t)) has the same distribution, denoted Yift) d Further,

Z(N(1)). _
Now let the vectownm(t) = {wm(t, )} be the probabilities of llwm = w(A(mM))llrv (99)
all states at timé,+t (0 <t < Ty), given that the initial state Tm
at time t, is y°(m) and that the transmission aggressiveness =l 0 [@m(®) = #(A(m)]dt/ Trllrv
during periodm ([tm, tm+1)) areA(m). Let y(tn +1t) be the state T
at timetm, + t, then < f llwm(t) — w(A(M))[lTvdt/ T
0
E[6/(M)|F:
[6/( m)l ml] S% / -(1A(m))v (1_1 . (100)
= E[ f 11 (yi(tm + 1) = 1)dt/Tr] fmin P2 m
T: Now we boundo, by Cheeger’s inequality [18]
- [ 1-POitn + 0 = DT,
0
T p2<1— ¢?/2
= [ e+ T
OTm Where¢ is the “Conductance” oP, defined as
= j; Z y ’ a)m(t, }/)dt/Tm . . F(N, NC)
Y T ¢= NeQa(N)e(0,1/2] 7t (A(m))
- ;)/ .fo wm(t Y )dY Tm F(:e'(leé)ﬁ i; the state( ;(pa;igq(,\,(/}llgr)) = Tyen my(A(m)) and
— s = €N,y eN¢ /s m y, .
= >V - only) 9 thus
v
_ T _ _ ¢ = min F(N,N°)
Where wn(y) = fo wm(t, Y)dt/Ty is the time-averaged NcQ.r(N)€(0,1/2]
probability of statey’ in the interval. > min_ F(y,Y)
Since the initial distribution is concentrated at a single YAV P)-0
definite starting statg®(m), we dgnote this Qistribution_b&yo. = T yay, p(yy/) O”V(’l(m))P(y’ y)
We I_etn_yo(/l(m)) be the probability ofy°(m) in the statl_onary > miny(A0M))/Vim
distribution of Y(t). Let #(A(m)) = {ny(A(M)} be the stationary y
distribution of Y(t), then by uniformization theorem [17], = min(A(M))/Vm
n(A(m)) is also the stationary distribution @f{n).
We us€||-||Tv to denote the total variation distance between then
two distributions [18], which satisfies triangle inequgalitVe 1 3 = 22 [amin(A(M)] 2. (101)

usep, to denote the second largest eigenvalue of transition 1-po ™ ¢2

matrix P. Thus for reversible discrete-time Markov ch&i(n) . . .
with transition matrixP, and for anyn > 0 ,we have the Combing (101), (96) , (97) with (100), it follows that

following inequality [18]: lom — 7 AM)liry
v,
1 [1-mp(a(m) < = [Tmin(A(M)] >
16y0P" = 2AM)litv < 5[ —F37— 5 Tm
T R 2N T = (ILI/Tm) - €XPI(5/2IL| + 1)BAmax + 5/2LIlog2]
Therefore, = (LI 7)/Tm,
lwm(®) — w(A(m))llry wherer = exp[(5/2|L] + 1)BAmax + 5/2|L|log2].
- n So by (76) and (98), we have
13 Y e vnt)sg P - aam)iny ’ T
o (th)'n - A 1Bi(m)| = [E[a/(M)IFm] — &(M)]
< - - _
< ano T SXPEVmDIIoye m(A(m)llrv _ IZY-wm(Y) ~ Zy, (M)
1 [1-mp(A(m) it Y v
=3 nyﬂ(yjl(m)) DI - pZ) exp-vint) < 2 [|om = m(AM))lry
<(@L|-7)/Tm,VleL
J L I v o))
2\ mp(a(m) PEVm{ = 2 SinceVl € L, 1, is bounded and, < r for somer™ 0, then
1 1 we have
= 2\ Zmn(a(m) exp(-vin(l = p2)) 1[4 = A(M)]] < T+ A ¥l € L



Therefore [8]
D le(m)- [A= am)] " B(m)|

" (9]
<P ) ) [T+ Amad - /T

_ w  e(m
= 2ILP[T + Amad T Zm:l _f_—m) [10]
< 00 [11]
where the last step follows from condition (72). [12]
. e
Lemma 4: Let W(n) 2 X He(i)-[A1—A3)]T5(i)}, then Wn) 13l
converges with probability 1. [14]

Proof:

First, we prove thatW(n) is a martingale. By (73) and (77), [15]
we know thatp(n — 1) € F,, E[np(n — 1)|Fn-1] = 0. Further,
Yl € L, |m(n)| is bounded anl (n)| < c3 for somecz > 0. Thus
W(n) € Fn, EIW(N)| < oo, ¥n and E(W(n)|Fn-1) - W(N—1) = [16]
e(n—1)-[A-An-1)]"E[n(n - 1)|Fn-1] = 0.

Then we prove that syfE(W(n)?) < co.

SinceVl € L, 1, is bounded and, < r for somer> 0, then [18]
we have

[17]

[19]

[A = Am)]"p(M)] < L] - [T + Ama] [20]

21
Thus [

SUPE(W/(n)?)

= sup> " Elfe(m) - [A - Am)]Tn(m)]?)
< > Ellem) - [A- am)] pm)?

< D AmALPET + Amad?)

= ILPGIT + Amad® ) (e(M)?)

< 00

where the last step follows from condition (71). By Martin-
gale Convergence Theorem [16¥(n) converges with proba-
bility 1. [ |
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