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Abstract—Two of the fundamental problems in peer-to-peer
(P2P) streaming are as follows: what is the maximum streaming
rate that can be sustained for all receivers, and what peering
algorithms can achieve close to this maximum? These problems
of computing and approaching the P2P streaming capacity are
often challenging because of the constraints imposed on overlay
topology. In this paper, we focus on the limit of P2P streaming
rate under node degree bound, i.e., the number of connections
a node can maintain is upper bounded. We first show that the
streaming capacity problem under node degree bound is NP-
Complete in general. Then, for the case of node out-degree bound,
through the construction of a “Bubble algorithm”, we show that
the streaming capacity is at least half of that of a much less
restrictive and previously studied case, where we bound the node
degree in each streaming tree but not the degree across all trees.
Then, for the case of node total-degree bound, we develop a
“Cluster-Tree algorithm” that provides a probabilistic guarantee
of achieving a rate close to the maximum rate achieved under
no degree bound constraint, when the node degree bound is
logarithmic in network size. The effectiveness of these algorithms
in approaching the capacity limit is demonstrated in simulations
using uplink bandwidth statistics of Internet hosts. Both analysis
and numerical experiments show that peering in a locally dense
and globally sparse manner achieves near-optimal streaming rate
if the degree bound is at least logarithmic in network size.

I. Introduction

P2P systems have enabled scalable file sharing and video
streaming for almost a decade, yet the following fundamental
questions on its performance limits have only recently been
answered partially: what is the streaming capacity, the maxi-
mum streaming rate that can be achieved by all receivers of a
streaming session, under various overlay topology constraints?
What kind of peering algorithms achieve near-capacity rates?

As explained in Section II, P2P streaming can be modeled
as multiple multicast trees superimposed on top of the overlay
graph. The streaming capacity problem depends on the con-
straints on the graph and tree properties. The simplest case
is the unconstrained tree construction on top of a full mesh
(complete) graph, where the streaming capacity is derived
in several papers [1], [8]–[12]. Various practical constraints
on peering and overlay graph have since been considered.
For example, [3], [4] solved the streaming capacity problem
under the node per-tree degree bound on top of a complete
graph. In contrast to node degree constraints in this paper,
node per-tree degree constraints individually upper bound the
number of peers a node can have in each of the multiple trees,
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thus less related to the practical constraints in system design
although easier to tackle mathematically. Then, [2], [5], [12]–
[14] extended the capacity study to overlay networks that are
not full mesh and to those that have “helper nodes” that only
act as relays but not receivers. In this paper, we focus on the
capacity study under node degree bound.

Node degree is defined as the total number of distinct
neighbors across all the multicast trees. Similarly, node out-
degree is defined as the total number of distinct children of
a node. Since a peer is typically a home PC with limited
system resources, it is necessary to limit the number of
connections (or out-going connections) a node maintains, thus
bounding its node degree (or out-degree). As discussed later
in Section II-B, bounding node degree is necessary for TCP-
based communications, while bounding out-degree is sufficient
for UDP-based communications.

In this paper, we study the P2P streaming capacity problem
on P2P overlay graph with capacity constraints and degree
bounds on nodes. Thus it is different from a large body of work
focusing on underlay graph with node degree constraints and
capacity constraints on links (see for instance [2], [15]–[17]
and the related work in [5]). In reality, P2P streaming system
is usually unstructured, and cannot achieve the streaming ca-
pacity. For the optimal scheduling in unstructured P2P system
and the performance gap between unstructured practical P2P
system and streaming capacity, please see [18]–[21].

In the P2P study, the problem we study has not been pursued
even in the case of full mesh graph without helper nodes,
due to the challenges introduced by node degree bound. Al-
gorithms such as SplitStream/CoopNet [6], [7], ZIGZAG [22],
and PRIME [23] bound node degree but do not provide any
streaming rate guarantee. We deploy a combination of graph-
theoretic operations and probabilistic arguments to develop
two peering algorithms with complementary methodologies
and applications:
• First, we show that the streaming capacity problem under

node degree bound is NP-Complete in general.
• We prove, in Section III, that the streaming capacity under

node out-degree bound (abbrev. as n.o.d.b. throughout) is
at least half of the capacity under node per-tree degree
bound (abbrev. as p.t.d.b. throughout). To prove this
result, we develop a Bubble algorithm that satisfies node
degree bound and show that it achieve at least half of the
p.t.d.b capacity. Section III is primarily for theoretical
interest.

• We develop in Section IV the Cluster-Tree algorithm that
can achieve within 1 − ε of the unconstrained stream-
ing capacity with high probability under large enough
node degree bound (abbrev. as n.d.b. throughout). The
algorithm demonstrates the following insight: peering in
a “locally dense, globally sparse” manner is sufficient
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TABLE I
Summary of related work. “w.h.p.” is short of “with high probability”.

Classification References Graph Tree Degree Node Degree Optimality
no degree bound Mutualcast [1] unbounded unbounded complete, directed exact optimality
no degree bound Iterative in [2] general, undirected unbounded unbounded 1 − ε approx.

per-tree degree bound Snowball [3], [4] complete, directed bounded unbounded exact optimality
per-tree degree bound Iterative in [5] general, directed bounded unbounded 1 − ε approx.
node out-degree bound Bubble (Section III) complete, directed bounded bounded, arbitrary > 1/2 approx.

node degree bound CoopNet/SplitStream [6], [7] complete, directed bounded bounded, arbitrary no optimality
node degree bound Cluster-tree (Section IV) complete, directed bounded bounded, log N 1 − ε approx. (w.h.p.)

to achieve near-optimal streaming rate. Section IV is
for both theoretical interest and practical application.
Performance guarantee of the Cluster-Tree algorithm is
robust to individual peer dynamics and mild peer churn.
It is the first algorithm that handles peer churns while
achieving, in a probabilistic sense, near-optimal streaming
rate.

• We demonstrate in Section V the effectiveness of our
algorithms through simulations using uplink capacity
statistics of Internet hosts.

II. Modeling and Problem Formulation

The key notation used is summarized in Table II.

TABLE II
Key Notation

Symbol Meaning
s, V , R the source, set of all nodes, set of all receivers.
Cv upload capacity of node v in V .
N = |R| size of R; the number of all receiver peers.
M per-tree out-degree bound (p.t.d.b.).
Do node out-degree bound (n.o.d.b.).
D node degree bound (n.d.b.).
r̄N(Cs,D) n.d.b. streaming capacity as a function of

Cs and node degree bound D.
r̄N(Cs,Do) n.o.d.b. streaming capacity as a function of

Cs and node out-degree bound Do.
r̄T (Cs,M) p.t.d.b. streaming capacity as a function of

Cs and per-tree out-degree bound M.

A. Basic Model of P2P Streaming Systems

There are two classes of P2P streaming approaches, tree-
based or mesh-based. Tree-based P2P streaming approaches
explicitly construct multiple spanning trees (multi-trees) con-
necting source to all receivers, divide the stream into mul-
tiple substreams, and route one substream per tree. In mesh-
based P2P streaming approaches [13], [14], peers dynamically
exchange video packets with several of their neighbors. No
explicit tree is constructed. Of course, in mesh-based P2P, the
trajectory of each packet still forms a spanning tree, originating
from the source and reaching each peer exactly once.

We use a directed graph G = (V, E) to model a P2P
network. A vertex v in V is either the source or a receiver.
An edge e = (v, u) in E represents that peer v is allowed (but
not required) to transmit packets to peer u by establishing
TCP/UDP connections. If every node is allowed to establish
TCP/UDP connections with every other nodes, then G is full

mesh [2], [5]. We consider the scenario where a single source
s wants to broadcast its data to all receiver peers in R = V−{s}.
Let N = |R| where | · | represents the size of a set.

For each node v in V , its aggregate outgoing rate is bounded
by its uplink capacity Cv, e.g., 384 Kbps for typical ADSL
users in the U.S. Similarly, its aggregate incoming rate is
bounded by its downlink capacity, e.g., 1.5 Mbps. Similar to
most other P2P work [1], [8], [10]–[12], we make the “uplink
bottleneck” assumption that node uplinks are the only rate
limiting bottlenecks in the network. We also assume a node
only stores and forwards content, and thus do not consider
network coding.

B. Degree Bounds

For P2P streaming systems to scale, node degree must
be bounded, in order to limit the overhead for a node to
maintain concurrent TCP or UDP connections to its neighbors.
Bounding node degree also helps to reduce the fanout delay,
which is the time a node takes to forward a packet received
from its parent(s) to its children.

Consider the following two cases:
• We need to bound the total node degree bound if TCP

is used for communications between peers, since the
socket and memory overhead of a node maintaining TCP
connections is proportional to the number of both its
parents and children.

• On the other hand, we only need to bound node out-
degree if UDP is used. This is because UDP is connec-
tionless. A receiving node can use one single socket to
receive packets from all its parents. Hence, the overhead
is proportional to the node’s out-degree but independent
to the node’s in-degree. Furthermore, fanout delay also
depends on the out-degree only.

Similar to [3], [4], we do not cast node degree bound on source
s, since it is in general a powerful server with much resource.

Now the question is how much will node degree bounds
reduce the P2P streaming capacity, compared to the idealized
scenario of no degree bounds and to the less restrictive
scenario of per-tree out-degree bound? What is streaming
capacity under node degree bound, and can intelligent peering
be carried out to approach the limit?

C. Formal Statement of Problem

Consider a full mesh P2P overlay network G and a node
degree bound D. Let G′ = (V, E′) be a graph where the edge
set E′ ⊆ E, and for every node v ∈ R on G′, its node degree
is no more than D. G′ thus represents a subgraph of G with
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a node degree bound D. Let Q(G,D) be the set of all such
subgraphs.

Let T(G′) be the set of all feasible spanning trees in G′,
originating from source s. Let P(T(G′)) be the power set of
T(G′). Every multi-tree T ∈ P(T(G′)) is feasible over G′.

Let yt be the rate of tree t in a chosen multi-tree T . The
streaming rate achieved by all receivers is simply

∑
t∈T yt. Let

the number of children of node v in tree t be mv,t. Then, The
uplink capacity constraint of node v is

∑
t∈T mv,tyt ≤ Cv, ∀v ∈

V . The question now comes down to a joint neighbor selection
and packing spanning tree problem as follows:

Problem 1 (Streaming Capacity under Node Degree Bound):

max
G′∈Q(G,D),T∈P(T(G′)),yt≥0,∀t∈T

∑
t∈T

yt (1)

s.t.
∑
t∈T

mv,tyt ≤ Cv , ∀ v ∈ V. (2)

The streaming capacity is the optimal value of Problem 1.
The peer uplink capacities are fixed. However, the service

provider usually has the capability to change uplink capacity
of the source s, i.e., Cs. Thus, the streaming capacity under
node degree bound is a function of Cs and node degree D,
and we denote it by r̄N(Cs,D).

The streaming capacity for the case of D = ∞ is re-
cently characterized by a supply-equal-demand argument as
follows [1], [8], [10]:

r̄N(Cs,∞) = min

⎛⎜⎜⎜⎜⎜⎝Cs,
1
N

∑
v∈V

Cv

⎞⎟⎟⎟⎟⎟⎠ . (3)

It can be achieved by packing one depth-1 tree and N depth-2
trees, called Mutualcast trees [1] [12] [8].

Since source s is usually a high-end server with large
bandwidth, Cs is in general larger than 1

N

∑
v∈V Cv. Let

μ = 1
N

∑
v∈R Cv be the average receiver upload capacity, then

r̄N(Cs,∞) approaches μ asymptotically:

r̄N(Cs,∞) =
1
N

∑
v∈R

Cv +
1
N

Cs → μ as N → ∞. (4)

However, when node degree bounds are imposed, it be-
comes challenging to either compute or come close to the
streaming capacity.

Proposition 1: For general graph G and D ≥ 2, Problem 1
is NP-Complete.

Proof: It has been shown in [24] that the DEGREE-
BOUNDED-SUBGRAPH problem of determining the exis-
tence of a connected subgraph of G with node degree bound
D ≥ 2 is NP-Complete. Any solution to the problem in (1)
also gives a connected subgraph of G with node degree bound
D ≥ 2, which is a solution to the NP-Complete DEGREE-
BOUNDED-SUBGRAPH problem. As such, the problem in
(1) for general graph must also be NP-Complete.

Remarks: This problem can be modeled as a mixed integer
linear program (MILP) with continuous variables representing
rates on trees and integer 0/1 variables indicating whether
a tree is used or not. The node degree bounds would be

modeled using integer variables. However, the straightforward
formulation has exponential number of variables (one for each
possible tree). Taking the dual could make the number of
variables polynomial but the integer variables in the primal
make things more complicated. Moreover, obtaining an ILP
formulation does not help us solve the problem in an efficient
manner. The best of commercial LP solvers like cplex do
not give reasonable running times on MILP formulations on
graphs beyond few tens of nodes.

Observing the challenges, in the rest of the paper, we
seek polynomial time algorithms with performance guarantees.
Note that, there are prior works studying the P2P streaming
capacity on top of a non-full-mesh overlay graph; see [2]
for undirected graph without any degree bound, and [5] for
directed graph with p.t.d.b. Those works optimize over tree
packing for fixed neighboring relationships and do not bound
node degree bound. Compared with those works, our work is
joint optimization over neighbor selection and spanning tree
packing.

III. N.O.D.B Streaming Capacity and Bubble Algorithm

In this section, we study the streaming capacity under
node out-degree bound (n.o.d.b.). Since this problem is NP-
Complete in general, we provide upper and lower bounds of
the n.o.d.b. streaming capacity, denoted by r̄N(Cs,Do).

The upper bound of r̄N(Cs,Do) is straight forward: since
n.o.d.b. is a stronger constraint than node per-tree degree
bound (p.t.d.b.), denoted by r̄T (Cs,M), we have

r̄N(Cs,Do) ≤ r̄T (Cs,M)|M=Do . (5)

The node p.t.d.b. streaming capacity r̄T (Cs,M)|M=Do is derived
in [3], [4], which propose a “Snowball algorithm” that satisfies
p.t.d.b. and achieves the exact streaming capacity r̄T (Cs,M).

For the lower bound of r̄N(Cs,Do), we have:

Theorem 1: For a P2P streaming system with N receiver
peers and one server with bandwidth Cs, the n.o.d.b. streaming
capacity r̄N(Cs,Do) is at least half of the p.t.d.b. streaming
capacity r̄T (Cs,M), for M = Do, i.e.,

r̄N(Cs,Do) ≥ 1
2

r̄T (Cs,M)|M=Do ,∀Cs ≥ 0, ∀Do,N ≥ 1. (6)

Proof: We prove Theorem 1 by constructing a “Bubble
algorithm” that satisfies n.o.d.b., and achieves at least half of
the capacity achieved by Snowball algorithm, i.e., r̄T (Cs,M).
The proof is relegated to Appendix A.

We now briefly describe the Bubble algorithm. We use Uv

to denote the current total upload rate of node v, and use
C̃v = Cv −Uv to denote its remaining capacity. We say a node
v is larger than a node u if C̃v > C̃u. We say a node v is
“exhausted” if C̃v = 0. If v is an internal node in a tree t, then
we say tree t is an “internal tree” of node v. Without loss of
generality we assume that C1 ≥ C2 ≥ · · · ≥ CN .

Bubble algorithm is a greedy algorithm. The main ideas are:
1) We iteratively construct trees with tree degree M = Do,
and require that the children of each node remains unchanged
across its trees. 2) Once we construct a tree, we assign a
maximum allowed rate to this tree, such that at least one of
the internal nodes is exhausted, and we swap the exhausted
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internal node(s) with the largest leaf node(s) and construct new
trees. 3) The swap must be done in a way such that no new
children are brought to an old internal node, otherwise that
internal node violates the n.o.d.b. constraint. 4) To maximally
utilize peer bandwidths, the server uploads to only one single
child if possible, and we call these trees “initial trees”. For an
initial tree, we call the single child of the server the “root”
of this initial tree. We continue the iterations until we do not
have enough non-exhausted nodes to construct an initial tree.
We note that Bubble algorithm is a centralized algorithm, and
thus not a practical P2P streaming solution. We only design it
to prove Theorem 1, and it is the first algorithm that satisfies
n.o.d.b. while still having provable performance guarantee.

A. Bubble Algorithm Description

Bubble algorithm constructs trees with degree M = Do in
an iterative fashion, one tree in each round. Define I = 
N−1

M �,
then any tree with degree M contains at least I internal nodes.

1) We first build a balanced tree, called tree 1, with tree
degree M by using the first I nodes as internal nodes; see
an example in the first plot of Fig. 3. For the I internal
nodes, the first I − 1 one each has M children and the
I-th node has N − 1 − (I − 1)M ∈ [1,M] children. We
assign the maximum possible rate in this tree, such that
at least one (denote the number by n) of the I internal
nodes or the source exhausts.

2) We swap the n exhausted internal nodes of tree 1 with
n largest non-exhausted leaf nodes of tree 1, one by
one, to form a new tree, named tree 2. We assign the
maximum possible rate for tree 2, such that at least one
of its internal nodes or the source exhausts.

3) We repeat the swapping process for tree 2 to generate
tree 3, and so on.

We terminate the tree construction process if there are less
than I non-exhausted nodes, or if the source exhausts.

The key challenge is to swap in a way such that n.o.d.b. is
not violated. Suppose node A is an exhausted internal node,
and E is the largest original leaf node that will be swapped
with A. Consider the relationships between A and E, we have
altogether three possibilities, as illustrated in Fig. III-A.
• Case 1: A is not an ancestor of E; for that case, we can

simply give all children of A to E, and keep the other
internal nodes’ children unchanged.

• Case 2: A is the parent of E. For that case, we cannot
simply swap the positions of A and E, since this way, A’s
parent will have a new distinct child. Similarly, E cannot
be the child of any other internal peer node, otherwise
that peer will have a new child. Since the server is not
degree bounded, the only choice is to make E the single
child of the server, let E take the original root and all the
other children of A as its children, and A is left as a leaf
node.

• Case 3: A is an ancestor, but not a parent, of E. For that
case, suppose B is the child of A that is an ancestor of
E. Similar to the reasoning in case 2, to ensure that no
old internal nodes add a new child, we need to make B
the new root, and let E take the original root and all the
other children of A as its children.

There are at least M − 1 trees constructed by Bubble algo-
rithm. This is achieved in the case where in every iteration all

the I internal nodes are exhausted simultaneously, and it needs
at least M−1 iterations to leave less than I nodes unexhausted.
The maximum number of Bubble trees is N − I + 1, in which
case exactly one node is exhausted for each iteration.

A complete example of how the Bubble algorithm constructs
the multi-tree to utilize peer bandwidths is shown in Fig. 2
and Fig. 3. For this example, N = 9, M = Do = 3, and we
index the peers from A to J. We set the server capacity to
be sufficiently large. The remaining capacities and the nodes
being swaped after each iteration are shown in Fig. 2, and the
trees constructed in the iterations are shown in Fig. 1.

B. Throughput and Node Degree Analysis

We now study the streaming rate guarantee of Bubble algo-
rithm by comparing the streaming rates of Bubble algorithm
and Snowball algorithm [3], [4], denoted by rb(Cs,Do) and
rs(Cs,M), respectively. We first have

rs(Cs,M) = r̄T (Cs,M) ≥ r̄N(Cs,Do) ≥ rb(Cs,Do) , if M = Do .
(7)

Both Snowball and Bubble algorithms use initial trees until
not possible. Suppose when initial trees are no longer possible,
the Snowball and Bubble algorithms can support streaming
rate r∗s and r∗b, respectively. We have

rs(Cs,M) = Cs if Cs ≤ r∗s , and rs(Cs,M) < Cs otherwise,
rb(Cs,Do) = Cs if Cs ≤ r∗b , and rb(Cs,Do) < Cs otherwise.

(8)
We call r∗ the critical rate for the two algorithms. Then, we
have the following lemma:

Lemma 1: If Do = M, then:

r∗s ≥ r∗b (9)

r̄N(Cs,Do)
r̄T (Cs,M)

≥ rb(Cs,Do)
rs(Cs,M)

≥ rb(r∗s ,Do)

rs(r∗s ,M)
≥ rb(r∗b,Do)

rs(r∗s ,M)
=

r∗b
r∗s
.(10)

Proof: Please refer to Appendix A.

Inequality (9) and the first inequality in (10) are straightfor-
ward from (7), the third inequality in (10) is straightforward
from (9), and the last equality in (10) is straightforward from
(8). The key result is the second inequality in (10), which
concludes that the ratio of Bubble rate over Snowball rate
reaches its smallest value when Cs = r∗s . This feature is
illustrated in Fig. 4. From Lemma 1, once we bound r∗b/r

∗
s ,

we bound the ratio between Bubble rate and Snowball rate,
and thus bound the ratio between n.o.d.b. streaming capacity
and p.t.d.b. streaming capacity.

Proposition 2: Consider a single-source P2P streaming
scenario with N receivers and n.o.d.b. Do = M, and define
I = 
(N − 1)/M�. We have

r∗b
r∗s
≥ I

2I − 1
, (11)

rb(Cs,Do)
rs(Cs,M)

≥ I
2I − 1

+
I − 1

(2I − 1)(1 + M)
. (12)

Proof: Please refer to Appendix A.
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Fig. 1. The swap of an exhausted internal node and a leaf node. From left to right, case 1, case 2 and case 3. Case 1: A is not an ancestor of E. Case 2: A
is the parent of E. Case 3: A is an ancestor, but not the parent, of E.

Example 1: N = 10,C = [20, 15, 10, 8, 7, 6, 5, 4, 3, 2],M = 3.
C̃(A) C̃(B) C̃(C) C̃(D) C̃(E) C̃(F) C̃(G) C̃(H) C̃(I) C̃(J) yt aggregate rate ds,o Us

20 15 10 8 7 6 5 4 3 1.5 10/3 10/3 1 10/3
10 5 (0) (8) 7 6 5 4 3 1.5 5/3 15/3 1 15/3
5 (0) 0 3 (7) 6 5 4 3 1.5 3/3 18/3 1 18/3
2 0 0 (0) 4 (6) 5 4 3 1.5 2/3 20/3 1 20/3
(0) 0 0 0 2 4 (5) 4 3 1.5 2/3 22/3 1 22/3
0 0 0 0 (0) 2 3 (4) 3 1.5 2/3 24/3 1 24/3
0 0 0 0 0 (0) 1 2 (3) 1.5 1/3 25/3 1 25/3
0 0 0 0 0 0 (0) 1 2 (1.5) 1/3 26/3 1 26/3
0 0 0 0 0 0 0 0 1 0.5 1/6 26.5/3 4 28/3
0 0 0 0 0 0 0 0 0.5 0 1/6 27/3 7 31.5/3
0 0 0 0 0 0 0 0 0 0

Fig. 2. An example showing the Bubble algorithm. In the table, C̃(A) to C̃(J) give the remaining capacities of A to J before each iteration, ds,o represents the
source out-degree in the tree constructed in each iteration, and Us represents the total server load until the end of each iteration. The number with underline
means this node is internal. The symbol (·) means the node is to be swaped ((0) means the node is the new formed bubble from the previous iteration).

Fig. 3. Constructed trees in all iterations for the example in Fig. 2. The first 8 trees are initial trees. After iteration 8, there are less than I = 3 peers left
unexhausted, and Bubble algorithms stops. Then server takes care of the children of all exhausted internal nodes from then on.

The inequality in (11) concludes that the ratio of the two
critical rates is at least 1/2, and (12) comes from (11).

From Lemma 1 and Proposition 2, we have:

r̄N(Cs,Do) ≥ rb(Cs,Do) ≥ 1
2

r̄T (Cs,M)|M=Do (13)

rb(Cs,Do) ≥ 1
2

r̄T (Cs,M)|M=Do ≥
1
2

r̄N(Cs,Do) (14)

Equation (13) states that the n.o.d.b. streaming capacity is at
least half of the p.t.d.b. streaming capacity, which is Theo-
rem 1. Equation (14) states that Bubble algorithm guarantees
a 1/2 sub-optimality in term of rate performance.

Proposition 2 gives the performance guarantee of Bubble
algorithm for the worst case. The worst case occurs if there
are N peers, 2I − 1 of them have the same positive bandwidth
C, and the others have zero bandwidth. For this worst case, the
first Bubble tree exhausts the first I nodes, while there is not
enough unexhausted nodes to construct the second Bubble tree,
and r∗b = IC/(N − 1). For this worst case, Snowball algorithm
can achieve a rate that is the same as unbounded capacity

r̄N(Cs,∞), and r∗s = (2I − 1)C/(N − 1). Even with n.o.d.b.,
we can easily construct another tree that has all the 2I − 1
nodes be internal with the same out-degree (the last node could
possibly be an exception), and this tree can almost achieve the
unbounded capacity r̄N(Cs,∞). Therefore, for the worst case,
r∗b/r

∗
s → 1/2 and rb(Cs,Do)/r̄N(Cs,Do) → 1/2 as both N and

M approaches to infinity. Although 1/2 is the worst case ratio,
we will show in Section V that the ratio of rb(Cs,Do)/r̄(Cs,∞)
is actually very close to 1 for most realistic peer bandwidth
distributions.

The critical rates and streaming rate curves for Bubble,
Snowball (capacity under per-tree out-degree bound) and
Mutualcast (capacity under no bound at all) algorithms are
illustrated in Fig. 4.

C. Special Case: Homogeneous Receivers

We study a special case where all receiver nodes have the
same upload capacities. Results for this case are not only of
independent interest, but also useful later in Section IV.
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Proposition 3: Consider constructing degree-M Bubble
trees in a single-source streaming scenario with N homoge-
neous receivers, i.e., Cv = C for all v in R, and N > M + 1.
The followings are true:

1) Total number of Bubble trees is either M − 1 or M, and
the trees are interior-node-disjoint;

2) Node degree is bounded by 2M;
3) Streaming rate supported by these trees is at least (1 −

1/M)C.
Proof: Please refer to Appendix A.

It is not difficult to see that, in this homogeneous receivers
case, the Bubble trees we build are the same as those built by
SplitStream [6] and CoopNet [7]. As such, Bubble trees share
the same properties as SplitStream and CoopNet trees, such
as robustness to peer churn and low delay delivery.

IV. Cluster-Tree Algorithm

In Section III, we have introduced the Bubble algorithm,
which provides a deterministic guarantee of the streaming
capacity under n.o.d.b. In contrast, in this section, we study
the streaming capacity problem under the more difficult node
(total) degree bound (n.d.b.), and provide a probabilistic per-
formance guarantee by developing a Cluster-Tree algorithm.

Assume that Cv (v ∈ R) are i.i.d. with finite mean μ and
variance σ2. Our proposed Cluster-Tree algorithm is a two-
level hierarchical scheme that can support a streaming rate of
(1 − ε)μ for any ε in (0, 1] with high probability, at the same
time the node degree is maintained at D = O(ln N). According
to (4), we have for large N,

(1 − ε)μ ≈ (1 − ε)r̄N(Cs,∞) ≥ (1 − ε)r̄N(Cs,D) .

Hence, the supported streaming rate of the Cluster-Tree algo-
rithm is close-to-optimal with high probability for large scale
P2P systems.

The basic idea is to group peers into clusters, form a
full-mesh to deliver content locally within a cluster, and
form degree bounded trees to deliver content globally across
clusters. Locally, the full-mesh supports high streaming rate
within each cluster. The rates supported by different clusters
are roughly the same if clusters are large enough, according
to the Central Limit Theorem. Globally, using degree bounded
Bubble trees (essentially CoopNet/SplitStream trees) to deliver
content across these equal-rate clusters achieves high through-
put, according to Proposition 3. An illustrative example is
shown in Fig. 5. The general idea of clustering in large scale
P2P is of course not new, and what the rest of this section
does is to develop a particular way to combine clustering with
peering to attain streaming capacity under degree bound.

A. Cluster-Tree Algorithm Description

Given that N peers want to receive content from source
s, the tracker evenly distributes them into clusters. Let K be
the total number of clusters, G1, . . . ,GK be the clusters, and
ni = |Gi|. Define Xi as the average peer upload capacity in
Gi, i.e. Xi =

∑
v∈Gi

Cv/ni. Since Cv are i.i.d. random variables,
Xi follows Gaussian distribution with mean μ and variance σ

2

ni

when ni is large. Let n = min1≤i≤K ni and X = min1≤i≤K Xi.
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Fig. 4. Plots illustrating Theorem 1 and Theorem 2. Left: The critical rates
and streaming capacity functions of Bubble (bottom red curve), Snowball
(middle green curve) and Mutualcast (top blue curve) algorithms. r∗m, r∗s , r∗b are
the corresponding critical rates. r′b is the streaming rate of Bubble algorithm
when Cs = r∗s . The worst rb(Cs,Do)/rs(Cs,M)|M=Do ratio occurs at Cs = r∗s ,
and it is r′b/r

∗
b. Right: The curve of n versus N for fixed p = 10−3 or 10−4. For

each p value, we set parameters such that (2(1+α)σ2)/(ε2μ2) is the smallest
value for (18) to hold for all N from 1000 to 1000, 000. It shows that a cluster
size of below 25 is enough to guarantee a low outage probability for system
size up to one million.
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tracker
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tracker

G4

Tree 2
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Fig. 5. In this example, the tracker groups the peers into 7 clusters. The
server s forms two interior-node-disjoint trees, each having tree degree 2,
to distribute video to all clusters. Within each cluster, the peers form a full-
mesh and locally broadcast the video among themselves. There are not enough
clusters left to build a third tree with disjoint interior clusters; hence, some
clusters, e.g. G7, do not get the chance to serve as interior clusters.

Within each cluster, the peers form a full-mesh. If a peer
receives data from outside the cluster, it constructs Mutualcast
trees to locally broadcast the data to the rest of the peers in
the cluster. Consequently, the maximum streaming rate that
can be supported within cluster i is Xi. We summarize a useful
observation in the following proposition.

Proposition 4: If cluster Gi gets content from outside at
rate Xi, then not only it can locally broadcast the content to
all peers inside Gi, but it also can deliver the entire or partial
content to other clusters at rate Xi.

Proof: Please refer to Appendix B.

The tracker appoints cluster head nodes in each cluster.
The head nodes are responsible for receiving content from
outside, locally broadcasting it to peers in the same cluster,
and serving content to outside. The aggregate upload capacity
of the head nodes in cluster Gi must be no less than 2Xi. This
is to guarantee that they can broadcast in the cluster at rate
Xi, and at the same time send out content to outside at rate Xi.
The following proposition shows that at most two head nodes
per cluster suffice.
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Proposition 5: For any cluster Gi with at least two nodes,
either there exists a node v1 ∈ Gi so that Cv1 ≥ 2Xi, or there
exists two nodes v1, v2 ∈ Gi such that Cv1 +Cv2 ≥ 2Xi.

Proof: Please refer to Appendix B.

Treating the K clusters as homogeneous clusters with all
their upload capacities being X (then a cluster is a virtual
node in the top hierarchy), the tracker forms multiple degree-
bounded M-ary Bubble trees to distribute content to these K
virtual nodes (homogeneous clusters).

The analysis for the case of M = 1 is straightforward.
Consider M ≥ 2. The tracker forms interior-cluster-disjoint
Bubble trees across K homogeneous clusters. As discussed in
Section III-C, every cluster serves as interior cluster only once.
According to Proposition 3, for K ≥ M + 1, which is almost
always true in practice, the total number of trees constructed
is bounded by M, and thus the inter-cluster degree of a cluster
head can be shown to be bounded by 3M.1

The server splits its video into multiple substreams, and
distributes one substream along one Bubble tree. Each interior
cluster in a Bubble tree receives a substream at rate 1

M X, and
replicates M copies to its M child clusters. This interior cluster
becomes leaf cluster in all other trees, and receives distinct
substreams at rate 1

M X per tree. Since there are at least M − 1
trees, every cluster receives at a total rate of at least M−1

M X.

B. Throughput Analysis

The minimum rate supported by Cluster-Tree scheme with
M ≥ 2, defined as rCT (M), is given by

rCT (M) =
M − 1

M
X. (15)

For ε ∈ (0, 1], we define outage as the event that the rCT (M)
for a particular cluster configuration is ε · 100% percentage
away from M−1

M μ. The outage probability, denoted by P(ε,M),
is given by

P(ε,M) = P

(
r̄CT (M) < (1 − ε) M − 1

M
μ

)
= P(X < (1 − ε)μ).

(16)
The following theorem shows rCT (M) can be close to μ with
high probability, by constructing large enough clusters. For
numerical illustration, the right plot of Fig. 4 shows the n
versus N relationship in (17) with parameters that satisfy the
condition in (18).

Theorem 2: If N peers, with independently identically
distributed upload capacities, are evenly distributed into K =

N/n� clusters where

n =

⌈
2(1 + α)σ2

ε2μ2
ln N

⌉
(17)

for some constants α > 0 and ε ∈ (0, 1], then

P(ε,M) = P( min
1≤i≤K

Xi < (1 − ε)μ) < 1
2 + 2α

(
εμ

σ

)2 1
Nα ln N

,

(18)

1For any cluster head, its out-degree is bounded by M. Its in-degree is
bounded by 2M, since there are at most M Bubble trees, and one virtual
node (cluster) has at most two head nodes. Therefore, the overall inter-cluster
degree a cluster head maintains across multiple trees is bounded by 3M.

which diminishes to zero as N goes to infinity.
Proof: Please refer to Appendix B.

Remarks: 1) Let M = O(ln N), then the minimum sup-
ported rate rCT (M) ≥ (1 − ε)μ with high probability. 2)
As long as every cluster is large enough and thus every Xi

sufficiently concentrates around μ, then X stays close to μ.
This indicates throughput of the Cluster-Tree scheme is robust
to the independent upload capacities assumption. Moreover, it
indicates that high streaming rate can be obtained for finite N
as long as we maintain large cluster sizes. We discuss the
finite N case in Section IV-D and V-B. 3) Throughput of
the Cluster-Tree scheme only depends on Xi, which is the
average upload capacity of peers in the cluster. As such the
throughput of the Cluster-Tree scheme is robust to the peer
upload capacity variation. 4) Bubble algorithm does not handle
helper nodes, and our results for out-degree bounded problem
are for help free scenario. However, Cluster-Tree algorithm
can handle helper nodes because it is built from Mutualcast
clusters which can handle helper nodes.

The Cluster-Tree algorithm can support a streaming rate of
(1 − ε) M−1

M μ with high probability, by allocating N peers into
K clusters so that Xi is close to μ for all 1 ≤ i ≤ K.

A natural question then becomes: can we achieve a rate of
M−1

M μ with probability one, by forming the K clusters in a way
such that Xi = μ,∀1 ≤ i ≤ K? It is NP-Complete to achieve
this goal. In particular, determining achievability of the goal
is equivalent to solving an average-bin-weight problem, which
is NP-Complete according to the following.

Lemma 2: Suppose we are given K ≥ 2 bins and N balls
each having nonnegative weight w(i), 1 ≤ i ≤ N. Consider
the following average-bin-weight problem of determining the
feasibility of distributing N balls into K bins so that
• each bin contains at least one ball,
• and the average ball weights in all bins are the same.

The average-bin-weight problem is NP-Complete.

C. Node Degree and Delay Bound

The total node degree consists of two parts: intra-cluster
degree and inter-cluster degree. From Section IV-A, intra-
cluster degree is bounded by cluster size n+1, and inter-cluster
degree is bounded by 3M. Overall, the total node degree is
bounded by

n + 1 + 3M =

⌈
2(1 + α)σ2

ε2μ2
ln N

⌉
+ 1 + 3M. (19)

We next bound delay. There are a few flavors of delay in
P2P streaming, and there have been several works studying
the bound of delay [11], [25], [26]. The delay we focus is the
playback delay, which is defined as the time gap from a packet
originating at source to it reaching the last receiver. This delay
is a function of both propagation delay and fanout delay at
nodes, as well as the size of the packet being distributed. We
assume propagation delays of all overlay links are the same,
denoted by zd. It is shown in [5] that fanout delay of a node
v with M children on a tree is given by ML/Cv where L is
the packet length, and the node’s fanout delays across multiple
trees do not interfere with each other.
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In the Cluster-Tree scheme, usually K is far larger than M.
The maximum number of hops a packet travels across clusters
is the depth of cross-cluster trees, i.e. logM K for M ≥ 2. For
each hop, the packet experiences a fanout delay of at most
ML/minv∈V Cv. Within a cluster, a packet travels at most two
hops before reaching all local peers. For each hop, the fanout
delay the packet experience is bounded by (n+1)L/minv∈V Cv.

Therefore, the overall playback delay of the Cluster-Tree
scheme with M ≥ 2 is upper bounded by2

(
3zd +

(
2n + 2 + M

) L
minv∈V Cv

)
logM
N/n� . (20)

Combining the above playback delay bound and Theorem 2,
we observe that varying the required cluster size n in Cluster-
Tree algorithm can result in trading streaming rate with
playback delay. Given N, M and α, large n leads to small ε
according to (17) and hence high (1−ε)μ. However, according
to (20), large n will also lead to large playback delay. It is
clearly a trade-off between streaming rate and playback delay,
as controlled in part by the cluster sizes and consequently the
node degrees. For example, [26] derived a bound on minimum
playback delay that is smaller than the bound in (20). However,
the streaming rate achievable under the minimum playback
delay above is significantly lower than the streaming capacity
achievable through the Cluster-Tree algorithm.

D. Bootstrap and Peer Churn

Initially, the tracker assumes an upper bound for the number
of nodes in the system, denoted by N̄, e.g., 106. It gets
μ and σ2 from a third-party statistics [27], and picks the
streaming rate (1 − ε)μ and a desired outage probability by
assuming N̄ nodes in the system. It picks Bubble tree degree
M to warranty a low playback delay, and reverse-engineers
the required α by using (18). Finally, the tracker computes
the minimum required cluster size n for a system with N̄
nodes according to (17). According to the discussion right after
Theorem 2, forming clusters with size n∗ guarantees that the
desired throughput is achieved with high probability whenever
N ≤ N̄.

As nodes start to join, the tracker groups them into a single
cluster. As the number of nodes in the cluster grows beyond
a critical size 2n, the tracker splits the cluster into two, each
with size n. As more nodes join, they get added into existing
clusters, and clusters grow and split whenever critical size 2n
is reached. This way, the system bootstraps and at the same
time maintains the desired streaming rate with high probability.
The largest degree of a node during the process is at most
2n + 1 + 3M.

With peer churn, the cluster size may decrease below n. The
tracker should make sure the minimum cluster size remains
larger than n. Whenever a peer joins, the tracker assigns it
to the minimum-size cluster at that time. If the size of one
of several cluster goes below n, the tracker can merge them
and other bigger clusters until the merged cluster has size well

2Here, 3Zd is because the propagation from one cluster to another is at
most 3 hops: at most 2 hops within one cluster, and 1 hop between the two
clusters. Note that the bound in (20) is very conservative. It assumes that, the
total delay from any cluster to any other cluster is the worst case delay. In
reality, the end-to-end delay could be much smaller than the bound in (20),
especially if one head node is enough for many clusters.

above n, for example 2n. There could also be other ways to
actively prevent cluster sizes to go below the critical value n.

For the join and leave of peers, and the merging and
splitting of clusters, all are equivalent to adding or deleting
Mutualcast trees within a cluster, which are manageable op-
erations. Besides forming clusters, the tracker also needs to
maintain M-ary Bubble trees across clusters as the number
of clusters varies due to peer churn. The source and at
most two head nodes per cluster are involved. According
to the discussion in Section III-C, the M-ary Bubble trees
are essentially CoopNet/SplitStream trees [6], [7]. Thus the
associated overhead of maintaining the M-ary Bubble trees is
the same as CoopNet/SplitStream trees .

V. Numerical Evaluation on P2P Topologies

The algorithms developed in this paper can be embodied
into the control/management plane of P2P streaming systems.
In our simulations, we choose the node uplink capacities ran-
domly from a distribution that is obtained from real peer usage
data as reported in [27]. The possible uplink capacities of
peers and their respective fractions in the peer population are
summarized in Table III. We present results for N = 100, 000,
unless otherwise stated.

Uplink Capacity (Kbps) 64 128 256 384 768
Fraction (%) 2.8 14.3 4.3 23.3 55.3

TABLE III
Peer Uplink Capacity Distribution

A. Bubble Algorithm

We first illustrate the streaming rate r versus service ca-
pacity Cs curves for Bubble algorithm for different M values
(throughout the simulations, we use M to denote both node de-
gree bound and out-degree bound), and they are demonstrated
in the left plot of Fig. 6, which shows that the Bubble rate
curve is higher as M becomes larger, and it is very close to
that of Mutualcast (unbounded streaming capacity) if M ≥ 6.
The important observation is that, although Bubble guarantees
a 1/2 optimality for the worst case, it can actually achieves
much better than 50% and very close to the exact optimality
for practical peer bandwidth distributions.

We next compare the streaming rate achieved by several
algorithms: Bubble (node out-degree bounded, 1/2 guarantee
of streaming capacity), Snowball [3], [4] (achieving per-tree
out-degree bound streaming capacity), CoopNet/SplitStream
[6], [7] (node degree bounded, but no performance guarantee).
We normalize the streaming rates achieved by these algorithms
by the unbounded streaming capacity, which is achieved by
Mutualcast algorithm [1]. We plot the normalized rates versus
source uplink Cs for M = 6 in the middle plot of Fig. 6, which
shows that: 1) for the practical peer uplink distribution, the per-
tree degree bound M = 6 does not affect the streaming capacity
and Snowball always gives the same rate as Mutualcast;
2) Bubble is within 3% of optimality and does better than
CoopNet by about 5-10%.

From the middle plot of Fig. 6, CoopNet, a practical node
degree bounded algorithm also achieves a high streaming rate.
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streaming delay (sec) of the Cluster-Tree scheme, as a function of the cluster size. It shows the trade-off between throughput and delay.

However, CoopNet does not provide any guarantee of rate
sub-optimality. For example, consider the simplest topology
of CoopNet with 7 nodes (say, A to G), as shown in Fig.
1 of [6]. For this simplest network, CoopNet construct two
trees, where nodes A to C are internal in tree 1, and nodes
D to F are internal in tree 2. Suppose the peer bandwidths
are very heterogeneous, for example, C = [10, 10, 1, 1, 1, 1, 1].
For that case, the rate achieved by CoopNet could be far from
optimality, while Bubble still achieves a rate curve close to
optimality, as demonstrated in the right plot of Fig. 6.

B. Cluster-Tree Algorithm

We first simulate on supported rate and validate Theorem 2.
We consider networks with number of nodes N ranging from
100 to 106, and choose the node uplink capacities randomly
from a distribution in Table III. We compute the mean μ and
variance σ2 of the upload capacities. In our experiments, we
set α = 1, where α is the parameter in (17) and (18).

The supported rate shown in Theorem 2 is an asymptotic
result. We would like to study the actual supported rate of
the Cluster-Tree algorithm for finite N in the first experiment.
For each value of N, we fix ε and M, and generate a set of
N node upload capacities independently from the distribution

in Table III. We then run the Cluster-Tree algorithm to build
clusters and cross-cluster trees, and find the supported rate.
We carry out 1000 runs of such experiments, collect 1000
samples of the supported rate, and compute their average and
standard deviation. We vary N from 100 to 106 to get a curve
of N vs. supported rates for a set of ε and M. We repeat the
experiments for ε = 0.5, 0.3 and M = 4, 8. All resulting curves
are shown in the left plot of Fig. 7. We observe that actual rate
achieved by Cluster-Tree algorithm for finite N is significantly
higher than the asymptotic bound guaranteed by Theorem 2;
the latter is shown in the table below the left plot of Fig. 7.

Two additional observations can be drawn from the left plot
of Fig. 7. First, for fixed M and ε, the supported rate of the
Cluster-Tree scheme decreases as N increases. This is because
when M and ε are fixed, the cluster size is on the order of ln N.
Thus, large N means more clusters, and the chance for some
cluster-rate Xi to be small increases, pushing down the overall
minimum X. The second observation is that for a fixed N and
M, small ε leads to small variation in supported rates. This
is because as ε decreases, the Cluster-Tree algorithm builds
larger clusters. The cluster rates Xi are more concentrated
around their mean μ, and so does the minimum one X.

We next study the supported rate if the cluster size has
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to be fixed. Ideally Cluster-Tree scheme sets cluster size as
logarithmic function of system size. However, there might be
an upper bound on cluster size due to overhead concerns. If N
exceeds our maximal supported system size, then the cluster
size freezes at the upper bound. The performance with fixed
cluster size is plotted in the middle plot of Fig. 7. It shows that
the supported rate does not decay sharply as N increases, if the
fixed size is not too small. This indicates that the Cluster-Tree
scheme is robust against the system size and cluster size.

We finally study throughput and delay trade-off in the
Cluster-Tree algorithm for N = 106, by varying the cluster
size. According to (17), for fixed N, we can vary the cluster
size by changing ε. For fixed M, the playback delay, according
to (20), is determined by the cluster size only. We assume
the video packet size is 1 KB and the propagation delay
between peers is 20 ms. In the right plot of Fig. 7, we plot
the throughput and delay as functions of cluster size n, for
M = 8 and M = 16. It shows that, for fixed M, the supported
rate increases rapidly as the cluster size increases and quickly
saturates. This is expected as ε decreases and the cluster size
increases. The streaming delay, on the other hand, increases
dramatically as the cluster size increases. There is clearly a
trade-off between supported rate and delay, as discussed in
Section IV-B.

VI. Conclusion and FutureWork

In prior research works, P2P streaming capacity has only
been studied without node degree bounds. In this paper, we
propose two algorithms, Bubble algorithm for arbitrary node
out-degree bound, and Cluster-Tree algorithm for node degree
bound of O(ln N). Bubble algorithm provides a deterministic
worst case performance bound of half of the streaming ca-
pacity, while Cluster-Tree algorithm achieves a rate close to
the maximum rate achieved under no degree bound constraint.
Both analysis and numerical experiments show that peering
in a locally dense and globally sparse manner achieves near-
optimal streaming rate if the degree bound is at least logarith-
mic in network size.
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Appendix

A. Proof of Results in Section III

We first prove Lemma 1.
Proof: We first prove r∗s ≥ r∗b. This is straightforward,

since otherwise, if server capacity is S = r∗b, then we have
rb(S ) = S > rs(S ), which violate the condition of rs(S ) ≥
rb(S ),∀S > 0.

We then prove (10). The first inequality comes from the
facts that snowball is optimal for tree degree bound and thus
superior to optimal node degree bound. The second inequality
is visually seen from Figure 4, and the rigorous proof is
available in a longer version of this paper. The third inequality
comes from the monotonicity of rb(S ), and the last equality
is from the definition of r∗.

Before we prove Proposition 2, we need to introduce another
lemma. Recall that Snowball algorithm has a good property
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of being most efficient, i.e., after it stops, all nodes either are
exhausted or trimmed with the largest possible rate. Define
effective capacity of node v to be the minimum of its capacity
C(v) and Mr, then Snowball algorithms always consumes all
peers’ effective capacities and yield the optimal streaming rate
under tree degree bound. For the most efficient algorithms, we
have the following result:

Lemma 3: Suppose we have N peers and two tree con-
struction algorithms A and B, both construct initial trees unless
not possible, both keep the tree degree bounded by M, and
both are most efficient. Suppose the critical rates for the two
algorithms are r∗A and r∗B, and the largest index nodes left
unexhausted are jA and jB, respectively. Then, the following
are true:

1) For algorithm A, the unexhausted nodes are nodes 1 to
jA; similarly for algorithm B, the unexhausted nodes are
nodes 1 to jB.

2) jA = jB and rA = rB.
3) Both algorithm A and algorithm B achieve streaming

capacity under tree degree bound.
Lemma 3 says that two most efficient initial tree construc-

tion algorithms are equivalent in terms of bandwidth utilization
and streaming rate, and both are optimal algorithms.

We now prove Lemma 3.
Proof: We first prove 1). For algorithm A, if node j is

left unexhausted, then Mr < C j. For all i < j, Ci ≥ C j > Mr,
so all nodes i < j are unexhausted also. Therefore, 1) holds
for algorithm A, and similar reasoning applies to algorithm B.

We then prove 2) using contradiction. Suppose jA > jB.
Since

C jB > Mr∗B ≥ C jB+1 ≥ C jA > Mr∗A ,

we know that r∗B > r∗A. Meanwhile, from [3], [4], we have:

r∗A =
∑

k> jA
Ck

N − 1 − M jA
(21)

r∗B =
∑

k> jB
Ck

N − 1 − M jB
(22)

Since any node k > jB, it is exhausted, and we know Ck ≤
Mr∗B,∀k > jB, and this applies to k = jB + 1 to jA. Then,

r∗B = 1
N−1−M jB

(
C jB+1 + · · · +C jA +

∑
k> jA

Ck

)
≤ 1

N−1−M jB

(
Mr∗B + · · · + Mr∗B +

∑
k> jA

Ck

)
= 1

N−1−M jB−M( jB− jA)

∑
k> jA

Ck

= 1
N−1−M jA

∑
k> jA

Ck = r∗A

(23)

Then, we arrive at contradiction. Similarly, jA < jB also leads
to contradiction, and therefore, the only possibility is jA = jB,
and from (21), r∗A = r∗B also.

We finally prove 3). Since Snowball algorithm is most
efficient and is optimal, all most efficient algorithms are
equivalent to Snowball, and therefore they are optimal under
tree degree bound.

With Lemma 1 and 3 at hands, we can prove Proposition 2.
Proof: We consider the case that all the I internal nodes

have M children in initial trees, i.e., N = 1 + IM. For this
case, all internal nodes are trimmed with the same rate. For
the case of N � 1 + IM, the proof is similar but a little bit
more complicated, and it is available in a longer version of
this paper.

For both snowball algorithm and bubble algorithm, they try
to use initial trees as long as it is possible. When that is
not doable, suppose the remaining bandwidths of node v is
C̃v, and there are Js (respectively, Jb) nodes left unexhausted
(positive remaining bandwidth) when the snowball (respec-
tively, bubble) algorithm ends. Then, both Js ≤ I − 1 and
Jb ≤ I − 1. For snowball algorithm, the Js nodes are always
the first Js nodes indexed from 1 to Js. For bubble algorithm,
the Jb nodes could be discontinuous. Suppose a node j < I is
left unexhausted, then this node must be an internal node and
have outgoing degree M in any constructed initial trees. Since
Ci ≥ C j,∀i ≤ j, we know that all the nodes from 1 to j − 1
are left unexhausted also. Suppose there are J1 unexhausted
nodes whose indexes are less than I, then there are Jb − J1

unexhausted nodes whose indexes are larger than I (the I-the
node is exhausted at the first iteration). It is clear that J1 ≥ Js,
since CJs ≥ Mr∗s ≥ Mr∗s > CJ1+1, which leads to Js < J1 + 1.
We divide the index set {1, 2, · · · ,N} to three sets:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A := [1, J1]
B := [J1 + 1, I]
C := {i : I < i ≤ N, C̃i > 0}
D := {i : I < i ≤ N, C̃i = 0}

(24)

Then, we know that |A| = J1, |B| = I− J1, |C| ≤ I−1− J1 < |B|
and we have

r∗b = 1
N−1

(∑
v∈A(Cv − C̃v) +

∑
v∈B Cv +

∑
v∈C(Cv − C̃v) +

∑
v∈D Cv

)
= 1

N−1

(
J1r∗b +

∑
v∈B Cv +

∑
v∈C(Cv − C̃v) +

∑
v∈D Cv

)
= 1

N−1−J1

(∑
v∈B Cv +

∑
v∈C(Cv − C̃v) +

∑
v∈D Cv

)
≥ 1

N−1−J1

∑
v∈B Cv

From Lemma 3, we know that if C = ∅, then bubble algorithm
achieves the same performance as the snowball algorithm.

If C � ∅, we see that there are more unexhausted nodes for
bubble algorithm than the snowball algorithm, and therefore,
the r(Us) curve for bubble algorithms is below that for the
snowball algorithm. Consider why we have non-empty C set,
that is because there are less than I nodes left unexhausted
and no initial tree could be further constructed. Suppose we
can reallocate the remaining bandwidth of nodes in set C to
all nodes from I + 1 to N, and suppose we relax the degree
constraint to tree degree bound, then we can exhaust all nodes
in set C. Suppose we have supported an extra rate re in this
extra step, then clearly, the total rate we have supported is
r∗b + re, and we have

re ≤
∑

vinC C̃v

N − 1 − M j1

From Lemma 3, we know that any two algorithms reach the
same result if they both use up all nodes’ effective capacities,
and therefore, we know that

r∗b + re = r∗s
Furthermore, since |B| > |C| and Cv > Cu,∀v ∈ B, u ∈ C, we
know that

r∗b ≥
∑

v∈B Cv

N − 1 − J1
>

∑
v∈C Cv

N − 1 − J1
≥ I

I − 1
re (25)

which means that r∗b ≥ r∗s I/(2I − 1).
From Figure 4 and Lemma 1, rb(S )/rs(S ) ≥ r′b/r

∗
s . It is

easy to find that, at the worst case, r′b = r∗b + (r∗s − r∗b)/(1+M).
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Plugging (25), we have proved (11).
The proof of Theorem 1 is directly derivable from Lemma 1

and Proposition 2, noting the fact that

I
2I − 1

+
I − 1

(2I − 1)(1 + M)
>

1
2
,∀N,M .

We finally prove Proposition 3.
Proof: For the case of homogeneous receivers, interior

nodes of all Bubble trees are disjoint. All interior nodes in a
tree use up their capacities simultaneously, and are leaf nodes
in all the rest trees.

In a Bubble tree with tree degree M, there are one root and

N−1

M � interior nodes. Given N receivers, the total number of
degree-d interior-node-disjoint Bubble trees can be constructed
is �N/

(

N−1

M �
)
�.

For N > M + 1, there exist k ≥ 1 and 0 ≤ l < M such that
N − 1 = kM + l, we have k ≤ 
N−1

M � ≤ k + 1; hence,

⌊ N
k + 1

⌋
≤
⎢⎢⎢⎢⎢⎢⎢⎢⎣ N


N−1
M �

⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≤
⌊N

k

⌋
. (26)

We also have
N
k
= M +

l + 1
k
< M +

l + 1
M + 1

< M + 1,

and
N

k + 1
≥ k

k + 1
M ≥ M + 1

M + 2
M ≥ M − 1

M
M = M − 1.

Combining the above two observations into (26), we get

M − 1 ≤
⎢⎢⎢⎢⎢⎢⎢⎢⎣ N


N−1
M �

⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≤ M.

Since a node at most has M distinct parents across M trees
and has at most M children when it is a parent node, overall
the degree of the node is upper bounded by 2M.

The supported rate of each Bubble tree is C
M , the total

number of trees is at least M − 1; hence, the aggregate rate
supported by this set of Bubble trees is at least M−1

M C.

B. Proof of Results in Section IV

The proof of Proposition 4 is straightforward. The total rate
needed is Xini and the total available capacity is also Xini. If
we get additional supply from outside at Xi, then we have Xi

extra to serve outside.
We now prove Proposition 5.

Proof: Since Xi is the average upload capacity of cluster
Gi, there must exist a node whose upload capacity exceeds
Xi. Let one of these nodes be v1. If Cv1 ≥ 2Xi, then we are
done. If 2Xi > Cv1 ≥ Xi, there must exist another node v2 so
that Cv1 + Cv2 ≥ 2Xi. Suppose this is not true. Then for all
v ∈ Gi − {v1}, Cv < 2Xi −Cv1 . But this implies

Xi =
1
ni

∑
v∈Gi

Cv <
ni − 1

ni

(
2Xi −Cv1

)
+

1
ni

Cv1

= Xi +
ni − 2

ni

(
Xi −Cv1

) ≤ Xi,

which leads to a contradiction.
We then prove Theorem 2.

Proof: By union bound, we have

P
(
X < (1 − ε)μ) ≤

K∑
i=1

P

(
Xi − μ
σ/
√

ni
< −√ni

εμ

σ

)

(Xi is Gaussian) <

K∑
i=1

exp

(
−1

2
ni

(
βμ

σ

)2)
≤ N

n
exp

(
−n

2

(
εμ

σ

)2
)
.

If n =
⌈

2(1+α)σ2

ε2μ2 ln N
⌉
, then

P
(
X < (1 − ε)μ) < 1

2(1+α)

(
εμ
σ

)2 1
Nα ln N ,

which diminishes to zero as N goes to infinity.
We finally prove Lemma 2.

Proof: The proof is very similar to the one showing 4-
PARTITION is NP-Complete in [24, Theorem 4.3].

Let X = {x1, . . . , xq}, Y = {y1, . . . , yq}, Z = {z1, . . . , zq}, and
M ⊆ W × X × Y denote arbitrary instance of 3DM.

Consider a corresponding average-bin-weight instance with
n = 4|M| balls, one for each occurrence of a member of
X ∪ Y ∪ Z, and one for each triple in M. The elements
corresponding to a particular p ∈ X ∪ Y ∪ Z will be denoted
by p[1], p[2], . . . p[N(p)], where N(p) denotes the number of
triples from M in which p occurs. These balls’ weights are:

w(xi[l]) =

{
10(32q)4 + i · 32q + 1, 1 ≤ i ≤ q, l = 1;
11(32q)4 + i · 32q + 1, 1 ≤ i ≤ q, 2 ≤ l ≤ N(xi).

w(y j[l]) =

{
10(32q)4 + j(32q)2 + 2, 1 ≤ j ≤ q, l = 1;
11(32q)4 + j(32q)2 + 2, 1 ≤ j ≤ q, 2 ≤ l ≤ N(y j).

w(zk[l]) =

{
10(32q)4 + k(32q)3 + 4, 1 ≤ k ≤ q, l = 1;
8(32q)4 + k(32q)3 + 4, 1 ≤ k ≤ q, 2 ≤ l ≤ N(zk).

We assign the single ball corresponding to a particular triple
(xi, y j, zk) ∈ M, denoted by ν, the weight as follows

w(ν) = 10(32q)4 − k(32q)3 − j(32q)2 − i(32q) + 8.

At the end we have n = 4|M| balls, each with the weight
assigned according to the above rule. It can be verified that
the total ball weights is B·|M|, where B = 40(32q)4+15n3+15.

Now we show the following problems are NP-Complete.
• A 4-PARTITION problem: Can these n balls be dis-

tributed into |M| bins so that every bin has exactly 4
balls and the total ball weight of every bin is exactly B?

• An average-bin-weight assignment problem: Can these
n balls be distributed into |M| bins so that every bin
contains at least one balls and the average ball weight
of every bin is exactly B/4?

On one hand, by [24, Theorem 4.3], the desired 4-partition
exists if and only if M contains a matching, i.e., this instance
of 4-PARTITION is as hard as 3DM and is NP-Complete.

On the other hand, the desired 4-partition exists if and only
if the average-bin-weight assignment exists. First, clearly any
valid 4-partition is also a valid average-bin-weight assignment.
Second, notice every ball has integer weight, and the fraction
part of B/4 is 0.25. For any bin to have average ball weight
B/4, it must contain at least 4 balls. Since there are totally
4|M| balls and |M| bins, every bin must have exactly 4 balls
to have average ball weight of exactly B/4.

Hence this instance of average-bin-weight problem is also
as hard as 3DM and is NP-Complete.
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