
Minimizing Streaming Delay in Homogeneous
Peer-to-Peer Networks

Joe Wenjie Jiang∗, Shaoquan Zhang†, Minghua Chen†, Mung Chiang∗
∗Princeton University, NJ, USA.{wenjiej, chiangm}@princeton.edu

†The Chinese University of Hong Kong, Hong Kong.{zsq008, minghua}@ie.cuhk.edu.hk

Abstract—Two questions on the theory of content distribution
capacity are addressed in this paper: What is the worst user delay
performance bound in a chunk-based P2P streaming systems
under peer fanout degree constraint? Can we achieve both the
minimum delay and the maximum streaming rate simultane-
ously? In the homogeneous user scenario, we propose a tree-based
algorithm called Inverse Waterfilling, which schedules the chunk
transmission following an optimal transmitting structure, under
fanout degree bound. We show that the algorithm guarantees
the delay bound for each chunk of the stream and maintains the
maximum streaming rate at the same time.

I. I NTRODUCTION

Peer-to-peer (P2P) technology, already widely used for file-
sharing applications, has the potential to reduce server and
network load for video streaming applications, by allowing
consumers to download live video content from each other [1].
Existing P2P streaming applications, however, suffer from
low-quality video, periodic hiccups, and high delay [2]. This
makes it difficult for service providers to leverage the tech-
nology directly in commercial offerings.

There has been a number of work on theoretical foundations
to understand the design of P2P systems. Many of these
work focus on maximizing thestreaming rate, a metric that
determines the video quality peers experience, subject to the
peer capacities [3], [4], [5]. Recently there are also work
on maximizing the streaming rate with boundednode degree
and node out-degreetaken into account [6], [7], [5]. Node
degree is defined as the total number of neighbors of a peer.
Similarly, node out-degree is defined as the total number of
neighbors of a peer to whom the peer maintains out-going
connections. Since a peer is typically a home PC with limited
system resources, it is necessary to bound the number of
connections (or out-going connections) a node maintains, thus
bounding its node degree (or out-degree) [6].

Compared to rate, delay performance of P2P systems is
much less understood. Earlier work on delay focused on
fluid-based P2P content distribution model [7], and derived
algorithms to minimize the worst tree depth. Others [8], [9]
studied the average user delay under various settings.

In a chunk-based P2P streaming where a stream is modeled
as an infinite sequence of video chunks, Liu [10] [11] investi-
gated the fundamental limits of the minimum delay in realtime
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P2P streaming and proposed a simple snow-ball algorithm
to approach the delay bound, though no degree bound is
guaranteed. A graph labeling algorithm is proposed in [12]
to minimize the initial buffering delay, which is a generalized
version of the problem studied in [10]. G. Bianchi [13]
extended the result of [10] by adding the restrictions on the
number of neighbors each peer can have. But their work only
studied the simplest case with one or two chunks and cannot
extend to an infinite stream. So far no algorithms are known
to achieve the bound with bounded degree constraint [14].

In this paper, we study the delay performance for homoge-
nous chunk-based P2P streaming systems, where all peers have
the same upload capacity. We also take practical considerations
into account and bound the node out-degree across the system.
We seek to answer the following fundamental questions:

• how to achieve the minimum worst user delay for con-
tinuous stream under node out-degree bound?

• can we achieve the maximum streaming rate and mini-
mum worst user delay simultaneously?

Our results characterize the minimum worst user delay for
an infinite continuous stream under arbitrary node out-degree
bound, which can be extended to the same node in-degree
bound. We further show it is possible to achieve both the
maximum streaming rate and minimum worst user delay by
packing afinite number of multicast trees, by our proposed In-
verse Water-Filling algorithm. We also show that the marginal
return of allowing large peer out-degree is diminishing, and a
proper range of out-degree gives close-to-optimal delay.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We first present a mathematical model for the peer-to-peer
streaming systems and the problem to solve.

Consider a peer-to-peer streaming network with one source
and N participating peers. The peer set is denoted byN =
{0,1, . . . ,N−1}. The source is denoted byS. It generates a
continuous stream of video chunks at a constant rate, and
delivers the chunks to all the peers. A video chunk is the
smallest unit of data exchange in the network. Let B be the
chunk size. LetCv denote the upload capacity for nodev,
which we assume to be the only bottleneck in the network.
In this paper, we consider homogeneous P2P networks, where
all peers including the source have the same upload capacity,
i.e., Cv = C for all v in N . Without loss of generality, we
assume each peer has one unit capacity,i.e., it takes one unit



of time for any peer to transmit one single chunk, and the
source generates a new chunk every time unit.

When a peer transmits a chunk to one of its neighbor peers,
the total delay is the sum of the transmission time of that
chunk, i.e.,B/C, plus the propagation delay. For P2P networks
where the peer upload capacity is several hundred kbps, when
peers are close to each other, transmission time is order of
magnitude larger than the propagation delay. Based on this
observation, we assume the propagation delay is zero in our
study.

We define peer out-degree to be the total number of neigh-
bors a peer can deliver chunks to. It has been argued that
the peer out-degree should be bounded in order to reduce the
overhead in maintaining active connections among peers [7].
In this paper, we consider the case where the out-degree of all
peers are uniformly bounded byM, which is called the peer
out-degree bound.

For a particular user and a particular chunk in the P2P
streaming system, the chunkplayback delayis defined as the
latency between the chunk generation time at the source and
the receiving time at the user. Further themax-user-delayfor
a particular chunk is defined as the maximum chunk playback
delay among all users.

A fundamental question that asks the performance bound of
a P2P streaming system is,given a streaming rate, what is the
minimum max-user-delay for each chunk and how to achieve
that?

III. D ELAY OPTIMIZATION

In this section, we propose an optimal multi-tree con-
struction algorithm in homogeneous P2P streaming networks,
where peers are constrained by an out-degree boundM. We
show that our algorithm achieves rate and delay optimality
simultaneously.

A. Principle of Accelerating Chunk Propagation

We start with a simple case in which we only need to deliver
one single chunk to all peers, which is also studied in [13].
The principle of single chunk transmission later serves as a
building block when it comes to the case of continuous stream.

To ensure that a chunk quickly spans the entire network,
one intuitive observation is that once a peer receives a chunk,
it replicates the chunk toM peers which haven’t received the
chunk. Take the caseM = 4,N = 18 for example, one way
to span the chunk over the whole network is as shown in
Figure 1. Suppose at time 0, the source generates a chunk. We
consider the case where the source transmits the chunk to one
peer, and does not participate in chunk replication afterwards
(because it needs to transmit new chunks, as will be discussed
later). After peer 0 gets the chunk from the source, it replicates
the chunk to its 4 neighbor peers. Similarly, once other peers
receive the chunk, they will transmit it to their neighbor peers.
The replication process continues until the chunk spans the
entire system. It has been shown in [13] that the number of
new peers that receive the chunk at time t follows aM-step
fibonacci sequence as follows:

FM(t) =











0 t ≤ 0

1 t = 1

∑M
k=1FM(t−k) t ≥ 2
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Fig. 1. Single chunk transmission forM=4, N=18.

It turns out that the scheme described in Figure 1 achieves
the minimum max-user-delay. The following theorem gives a
way to characterize the minimum max-user-delay for single
chunk, denoted byD∗.

Theorem 1. [13] In a chunk-based P2P streaming system
where all peers have unit upload capacity and out-degree
bound M, the time for a single chunk to span the entire system
is lower-bounded by

D∗ = min{t : SM(t)≥ N} (2)

where

SM(t) =

{

0 t ≤ 0

∑t
j=1FM( j) i ≥ 1

(3)

B. Optimal Delay and Out-Degree

From Theorem 1, optimal max-user-delayD∗ is a function
of peer numberN and out-degree boundM. Knowing howN
andM impact theD∗ can not only give us deeper insights into
the delay optimization problem but also guide the design of
real P2P applications. Let’s first derive the relationship.The
exact expression ofSM(t) is as follows [13]:

SM(t) =
M

∑
i=1

xi

(xi−1)QM(xi)
·xt

i −
1

M−1
, (4)

wherexi , i ∈ (1,M) are theM roots of the following equation:

xM−xM−1−xM−2−·· ·−x−1= 0, (5)

andQM(x) is as follows:

QM(x) =−1+2(M−1)x+
M−1

∑
i=2

(M− i−2)xi. (6)

According to Theorem 1, we plot theD∗ under differentN
andM in Figure 2.

One observation from Figure 2 is as follows. LargeM can
help in reducing the delay of the chunk. But the impact of
M on D∗ is marginal whenM > 7. On the other hand large
M introduces communication overhead. So a proper node out-
degree should be less than 8.
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Fig. 2. Optimal delayD∗ vs peer numberN and out-degree boundM.

To understand it better, we approximate the optimal delay
D∗. One important property aboutxi in the expression ofSM(t)
is that only one root has module larger than 1. This root takes
real value and tends to be 2 very quickly whenM becomes
large. Let’s denote this largest-module root byx. We plot x
with out-degree boundM in Figure 3.
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Fig. 3. The rootx vs out-degree boundM.

When M > 7, the impact on the value of the root is
negligible. Ignoring the influence of roots with module smaller
than 1 whenN is large andM > 7, we can approximateSM(t)
as follows:

SM(t)≈
2t+1

3
−

1
M−1

. (7)

According to the definition ofD∗:

D∗ = log2

(

N+
1
M

)

+ log21.5. (8)

From (8), we see that the impact ofM onD∗ is negligible for
largeN. The intuition is: the extra number of peers receiving a
chunk each time unit due to a largerM is very small compared
to the total number of peersN. Therefore, the node out-degree
constraint should be less than 8 whenN is large.

C. Achieving Optimal Delay for Continuous Stream

For live streaming, chunks are generated at a constant rate1.
Under our problem setting the maximum streaming rate is one
chunk per time unit [4]. Given any out-degree boundM, we

1In practice, streaming rate depends on codec and video content, and hence,
is not strictly constant.

have discussed how to achieve the minimum max-user-delay,
for one single chunk in Section III-A. It remains a question
whether the optimal delayD∗ is attainable while at the same
time achieving the maximum streaming rate.

The following observation interprets the challenge in achiev-
ing minimum delay for multiple chunks. Consider the tree
shown in Figure 1. Source generates a chunk at timet = 0 and
uses the tree shown in Figure 1 to distribute the chunk. Now
suppose a new chunk is generated at timet = 1. Following
the old tree for the new chunk is not possible: the upload
capacity of non-leaf peers will be reserved for one or multiple
consecutive time slots, preventing them from being reused in
the same manner. While one can consider switching leaf nodes
and internal nodes, the out-degree constraint also presents
challenge: requiring the total out-degree across multipletrees
be no greater thanM. As a whole, the algorithm should
schedule the chunk transmission in a way so that each peer
transmits one chunk every time unit and the out-degree bound
is obeyed.

We next present an algorithm that constructs a multi-tree,
i.e., a set of multicast trees, that achieves the minimum delay
D∗ for everychunk, without violating the out-degree constraint
M across all trees. The optimality of our algorithm consists of
three building blocks. We first show it is a necessary condition
that every tree follows an identical structure. The question
of the tree structure is answered in Lemma 1. We second
show the minimum number of trees needed on the multi-
tree, which is answered in Lemma 2. We finally propose the
Inverse Waterfilling (IWF) algorithm to construct the multi-
tree, following the tree structure and the number of trees stated
in the previous two results. Combining three steps give us an
algorithm that achieves both rate and delay optimality.
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Fig. 4. Multi-tree topology (active sets) forM = 4,N = 18,D∗ = 6.

1) Multi-tree Structure:We first use an example to illustrate
the multi-tree structure. We also start to introduce notations
that simplify the tree presentation like in Figure 1. Take the
case ofM = 4,N = 18 for example. We show that we only need
to constructM = 4 trees, which are used for chunk 4k+1,4k+

2,4k+ 3,4k+ 4 wherek = 0,1, . . . ,∞, respectively. LetA(l)
d

denote the set of active peers,i.e., those that are transmitting,
on d-th layer of l -th tree, where 1≤ l ≤M,0≤ d ≤ D∗−1.
Similarly, let R(l)

d denote the set of receivers which receive

chunks fromA(l)
d . Apparently|A(l)

d | = |R
(l)
d |. For example, in

Figure 1,A(1)
3 = {0,1,2,3},R(1)

3 = {4,5,6,7}.



Lemma 1. In a delay-optimal multi-tree,

|A(l)
d |=

{

FM(d+1) d≤ D∗−2

N−SM(D∗−2) d = D∗−1
(9)

Proof: To achieve minimum delay, the size of each active set,
equals the size of its corresponding receiver set, and hence
follows theM-step Fibonacci number. The active set at layer
D∗−1, is the number of remainder peers.

Receiver sets can be derived from active sets as follows:

R(l)
d =











A(l)
d+1\A

(l)
d 0≤ d≤ D∗−3

X,A(l)
d+1\A

(l)
d ⊂ X ⊂ {n : n∈N −A(l)

d } d = D∗−2

N \
⋃D∗−2

d=0 R(l)
d d = D∗−1

(10)
As shown in Equation 10, a receiver set consists ofnewpeers
that appear in the active set of the next time slot, except for
the last two layers.

Tree structures are characterized by active sets2. For ex-
ample, consider the tree shown in Figure 1 (M = 4,N = 18).
Figure 4 is one possible configuration of active sets. Rowt
denotes the start of time slott. The source generates a new
chunk every unit time. Columnl ,(l = 1, . . . ,M) denotes the
multicast tree for chunkl . Entry (t, l) in the table denotes the
active set for treel at time t, i.e., A(l)

t−l+1. The size of active
set at each layer follows the Fibonacci sequence, so every
chunk achieves the minimum delay. Observe the following
two invariants for this example, which we later show are also
key conditions to construct an optimal multi-tree topology:

• Each peer appears no more thanM times on the table,
i.e., the out-degree constraint is satisfied.

• All active sets at the same time are disjoint,i.e., no peer
is transmitting more than one chunk simultaneously.

It is not difficult to see that if the two conditions hold for
all M trees, we can repeatedly use them for infinitely many
continuous chunks, thus achieving minimum streaming delay.

2) Number of Multi-tree:Before presenting the tree con-
struction algorithm, we need to determine how many different
trees are needed.

Lemma 2. In a chunk-based P2P streaming system where all
peers have unit upload capacity and out-degree constraint M,
the number of different trees necessary to achieve minimum
delay is:

δ (N) =











M N≥ 2M

⌈logN⌉ 1 < N < 2M

1 N = 1

(11)

Proof: (i) WhenN≥ 2M, in order to achieve minimum delay,
a peer’s maximum out-degree required isM, as shown by
Theorem 1. The streaming rate (e.g., one unit) requires all
but one peer contribute their upload capacities. Let every
peer exhausts out-degreeM, the total out-degree across all

2Note that there are many ways to construct the exact parent-child con-
nections given a specific configuration of active sets and receiver sets, all of
which satisfy the delay and out-degree requirements.

trees is(N− 1+ 1) ·M. Each tree has a total in-degree of
N, because there areN receivers. Thus, the number of trees
needed, isN ·M/N = M. (ii) When 1< N < 2M, in order to
achieve minimum delay, a peer only needs an out-degree of
⌈logN⌉ < M. Follow the same calculation as (i), the number
of trees needed is⌈logN⌉. (iii) When N=1, constructing the
single tree is trivial.

3) Inverse Waterfilling (IWF) Algorithm:We next present
an algorithm called Inverse Waterfilling (IWF) to constructa
multi-tree that achieves the minimum delay.

Lemma 1 characterizes the size of each active set, and it
remains to fill in the active sets with qualified nodes and
build the multi-tree using the active sets. The basic idea of
the IWF algorithm is to iteratively select qualified peers tofill
in each position. For example, Figure 4 shows one possible
node placement.

To initialize, each nodei maintains a degree budgetBi =
min(M,⌈logN⌉), which is the maximum out-degree used on
the multi-tree. Once a node is placed on a position,i.e., a
particular layer of a tree, it consumes one degree and its budget
is decremented by one. By Theorem 1, we know that once a
node is first time placed at a position, it is used for one or
multiple subsequent time slots. Letd(l)

a denote the total degree
consumption for a positiona ∈ A(l)

d ,i.e., the number of time

slots reserved for the node on treel . We can computed(l)
a by

Theorem 1. Take the example of Figure 4, for the position
a ∈ A(1)

2 that node 1 takes,d(1)
a = 3. Note that node 1 also

appears in the last layer, but it is not mandotary by Theorem 1:
we can use node 7 instead of node 1. Hence,d(l)

a = 3 does not
count the degree consumption at the last layer. All positions
at the last layer have degree consumption of 1.

The algorithm starts at timet = 0. At a particular timet,
we fill in the active setsA(l)

d , for l = 1, . . . ,δ (N) respectively.
Once a node is selected for a position, it is also selected for
the corresponding positions in the following active sets. The
node selection should qualify the following rules: (i) the node
budget is greater than or equal to the degree consumption
for that position, (ii) the node has not been selected on
the same layer so active sets are disjoint, (iii) a node with
lower budget is prioritized, breaking ties arbitrarily,e.g., by
node ID. Condition (i) is required so that the tree achieves
minimum delay, (ii) avoids scheduling conflict since each peer
only transmits one chunk at a time, and (iii) is key to the
correctness of the algorithm, which also inspires the name of
the algorithm. We formally present the algorithm in Table I.

Figure 5 shows the degree budgetBi at each step of the
IWF algorithm. Note that if we break ties by node ID, then
the last node is never used. Therefore, the total number of
degrees spent, including the source, is(N−1+1)δ (N), equals
the total out-degree of the multi-tree. The correctness of the
algorithm is shown by the following theorem.

Theorem 2. In a homogeneous P2P network where each node
has unit upload capacity and out-degree constraint M, the
multi-tree built by the Inverse Water-Filling (IWF) algorithm
achieves minimum max-user-delay D∗ for every chunk. At the



Inverse Water-Filling (IWF)
Initialize Bi = min(M,⌈logN⌉), for i = 1, . . . ,N.
for t = 0 to D∗+δ (N)−2 do

for l = 1 to δ (N) do
for every a∈ A(l )

t−l+1
if a is not filled

For positiona, select nodei according to rules (i)-(iii)

Mark all d(l )
a positions filled with nodei

Bi ← Bi−d(l )
a

end if
end for

end for

TABLE I
INVERSEWATERFILLING

peer 0 1 2 3 4 5 6 7 8 9 A B C D E F G H 

t=0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

t=1 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

t=2 0 1 4 4 4 4 4 4 0 4 4 4 4 4 4 4 4 4 

t=3 0 1 2 2 4 4 4 4 0 1 4 4 0 4 4 4 4 4 

t=4 0 1 2 2 3 3 3 3 0 1 2 2 0 1 4 0 4 4 

t=5 0 0 1 1 2 2 2 1 0 1 2 2 0 1 2 0 1 4 

t=6 0 0 0 0 1 1 1 1 0 0 0 0 0 1 2 0 1 4 

t=7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 4 

t=8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 

Fig. 5. Degree budgetBi in constructing multi-tree forM = 4,N = 18.

same time, the maximum streaming rate is also achieved.

Proof: We first show that the IWF algorithm achieves optimal
delay, and then prove that optimal streaming rate is also
achieved simultaneously.

The proof of delay optimality proceeds in three steps: (A)
we show that the IWF algorithm always terminates success-
fully, (B) minimum delay is achieved for every chunk on the
multi-tree, (C) minimum delay is achieved for infinitely many
continuous chunks.
(A). To show that the IWF algorithm always terminates, it
suffices to prove that we can always find a peer that qualifies
rules (i)-(iii). We briefly outline the proof sketch here, and
the full version can be found at [15]. Observe the following
invariant: at any step of the algorithm, the total degree con-
sumption for unfilled positions on the multi-tree, equals the
total degree budget except the last peer. Now suppose we try
to fill a position a∈ A(l)

d but cannot find any qualified peers,
there are only two cases: (a) For∀i ∈N that has not been
selected in active sets on the same layer, 0< Bi < d(l)

a , (b)
otherwise,Bi = 0. We prove by contradiction that both cases
do not exist. For case (a), suppose there exists an unselected
peer i such thatBi = k. By assumptionk < d(l)

a , we can find
a positiona′ on the same layer that has already been filled,
and its degree consumptiondl ′

a′ = k (such thatl ′ < l ). Let i′

be the selected node that fills positiona′. Claim thatBi′ = 0,
otherwise we should usei to fill position a′, according to rule
(iii). In other words, forall nodes that fill positions with degree
consumptionk, their budgets are zero. We show in [15] that
it violates the invariant we stated earlier, by observing the the

number of zero-budget nodes. For case (b), the total degree
consumption for unfilled positions on the layer, where each
node has degree consumption≥ d(l)

a , exceeds the total leftover
degree budgets becausem< d(l)

a . Again, this contradicts the
invariant we stated earlier.
(B). This claim is Lemma 1.
(C). For infinitely continuous stream, we can reuse the multi-
tree repeatedly. To show that such scheduling works for
infinitely many chunks, it suffices to show that any active set
is disjoint with active sets that areδ (N) time slots earlier.
To see this, note that a node appears in active sets forδ (N)
consecutive time slots on the multi-tree. Therefore, thereare
no nodes that also appear in an active set that isδ (N) time
slots later on the same multi-tree. Finally, combining (A)-(C)
together completes the proof of delay optimality.

For the rate optimality, the maximum streaming rate for a
homogeneous system is min(1, N+1

N ) = 1. [7]. In our problem,
the source generates a new chunk every time unit, which
realizes the upper-bound of streaming rate.

Thus we show that delay and rate optimality can be achieved
simultaneously in the region of homogeneity. A next step is to
address the two questions we post in the introduction in a more
general system with heterogeneous node upload capacities.
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