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Abstract

In this paper, we study the problem of utility maximization in P2P systems, in which aggregate application-

specific utilities are maximized by running distributed algorithms on P2P nodes, which are constrained by their

uplink capacities. This may be understood as extending Kelly’s seminal framework from single-path unicast over

general topology to multi-path multicast over P2P topology, with network coding allowed. For certain classes of

popular P2P topologies, we show that routing along a linear number of trees per source can achieve the largest

rate region that can be possibly obtained by (multi-source) network coding. This simplification result allows us to

develop a new multi-tree routing formulation for the problem. Despite of the negative results in literature on applying

Primal-dual algorithms to maximize utility under multi-path settings, we have been able to develop a Primal-dual

distributed algorithm to maximize the aggregate utility under the multi-path routing environments. Utilizing our

proposed sufficient condition, we show global exponential convergence of the Primal-dual algorithm to the optimal

solution under different P2P communication scenarios we study. The algorithm can be implemented by utilizing only

end-to-end delay measurements between P2P nodes; hence, it can be readily deployed on today’s Internet. To support

this claim, we have implemented the Primal-dual algorithm for use in a peer-assisted multi-party conferencing system

and evaluated its performance through actual experiments on a LAN testbed and the Internet.

I. INTRODUCTION

The problem addressed in this paper is motivated by Peer-to-Peer (P2P) multi-party conferencing applications in

which providing Quality-of-Service (QoS) is a crucial challenge. Because the Internet is not a dedicated network,

voice or video conferencing applications must share the available network resource with other applications, and

adjust the coding rate, protection scheme and network delivery path to maximize the quality of experience of all

peers involved. We measure the quality of experience of the conferencing peer by a utility function. For video

conferencing, it can be the Peak-Singal-to-Noise Ratio (PSNR) of the decoded video, or a more sophisticated

subjective quality measure such as [1].

Traditional multi-party conferencing (VoIP and/or video conferencing) is conducted using either a client-server

architecture or in an ad hoc simulcast way.
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The client-server approach ensures that the entire upload bandwidth of each peer can be used for the delivery of

just that peer’s audio/video session; however, it places a heavy CPU and network bandwidth burden on the central

server and thus incurs heavy deployment and egress ISP bandwidth costs. In the ad hoc simulcast approach, each

user splits its uplink bandwidth equally among all receivers and sends its video to each receiver separately. Though

simple to implement, this approach suffers from poor quality of service, especially when there is one peer with

low upload bandwidth, as that peer is forced to use a low coding rate that degrades the overall experience of the

other peers.

In contrast, the P2P approach for multiparty video conferencing that we consider in this paper does not necessarily

rely on centralized infrastructure and allows a peer to not only use its uplink to send its video stream but also

to forward the video stream of other peers. This approach facilitates optimal use of peer uplink bandwidth in the

system and naturally accommodates peer uplink heterogeneity.

A. Related Work

In the past decade, network utility maximization have attracted significant attention ever since the seminal

framework was introduced in [2] and [3]. In the framework, network protocols are understood as distributed

algorithms that maximize aggregate user utility under wired or wireless network resource constraints. For the

single-path unicast scenarios considered in [2] and [3], user’s utility function is typically assumed to be strictly

concave function of user rate, and the resource constraints set is linear. Various types of fairness across users can be

warranted by choosing different utility functions [4]. This framework not only provides a powerful tool to reverse

engineering existing protocols such as TCP [5], but also allows systematic design of new protocols, see [6] for a

comprehensive review.

There have been work on extending the framework to multi-path unicast scenarios [7] [8] [9], as well as single-

tree multicast scenarios [10] [11]. For utility maximization in multi-path unicast scenarios, the utility function

is non-strictly concave with respect to the individual path rate due to multi-path routing. The challenge is to

design distributed algorithms to solve non-strictly concave optimization problems with provable fast convergence

and easy implementation. Primal and Dual algorithms, and proximal approach are proposed to address such

challenges [7] [8] [9].

For utility maximization in single-tree multicast scenarios where routers enable multicast functionality, the

constraint set is non-linear, in particular, involving non-differentiable max(·) terms. In [10] and [11], distributed

Primal and Dual algorithms are proposed to maximize utility, under the assumptions that multicast trees are given and

every session has a unique source. The challenge of dealing with non-differentiable max function in the constraints

is approached by either using continuous and concave approximation of the max function [11], or introducing

auxiliary variables and applying either Proximal or sub-gradient approaches [10].
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There is also work focusing on multicast scenarios where routers can perform intra-session network coding [12]

[13] [14]. The challenge is to deal with non-strictly concave optimization under non-linear constraints. By exploring

the Proximal approach, or a slow timescale traffic engineering control approach, or expressing the constraints

involving max(·) terms with equivalent linear ones, distributed Primal, Dual subgradient and Primal-dual algorithms

are proposed to maximize the sum of non-concave utility functions, or minimize the cost of using the network [12]

[13] [14].

B. Our Contributions

In this paper, we consider the general utility maximization problem for multiple multicast in a P2P setting,

with multi-path delivery and inter-session network coding allowed. This setting differentiates our work from other

existing work, and highlights the challenges we encounter. Multi-party conferencing is one of the applications of

our work.

The main contributions of this paper are as follows:

• The Optimality of Routing on P2P Topology: We focus on typical P2P topology where peer uplinks are the

only bottleneck in the network. For multi-source multicast on certain classes of popular P2P topologies, we

show that all feasible rates can be achieved by packing polynomial number of Steiner trees. As such, routing

is optimal even if the system contains Steiner nodes (helpers), and surprisingly there is no gain to perform

(intra-session or inter-session) network coding on peer nodes. This result is a multi-source extension of the

single source result studied in [15].

• New Tree-based Formulation: We introduce a new formulation for utility maximization in P2P topology in

which the variables are rates of individual trees. In contrast, almost all prior formulations in the rate control

literature are either path-based or link-based. Our tree based formulation uses linear constraints, thus avoiding

the nonlinear max(·) terms in path and link based formulations. Using unique properties of P2P topology, we

show that our formulation achieves maximum utility by routing along a linear number of depth-1 or depth-

2 trees for each source in the overlay network. As such, our solution is not only optimal but also readily

implementable on today’s Internet.

• Primal-Dual Algorithm with Fast Convergence: Contrary to popular belief that Primal-dual algorithms in

general fail to converge in multi-path routing scenarios with supporting evidence in [9], we design a queuing

delay based Primal-dual algorithm that solves the utility maximization problem for multi-tree routing under

a general sufficient condition that holds in popular P2P settings. This distributed algorithm is used by each

source to adjust its transmission rate and split that rate across multiple multicast trees by utilizing end-to-end

delay measurements between peer nodes.

• Evaluation on the Internet: The proposed distributed algorithms can be easily implemented in practice. We
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have built a prototype multi-party conferencing system in Python programming language using the Primal-dual

algorithm and evaluated its performance for several multi-party conferencing scenarios on a LAN testbed, in

a virtual environment, and also on the Internet. Our system can satisfy the strict end-to-end packet delivery

delay requirements for conferencing systems because every packet goes through at most one hop in the overlay

and we tightly control the queuing delay between nodes.

The rest of the paper is structured as follows. In Section II, we state the results on optimality of routing over

P2P topology, and present the tree-rate based formulation for the utility maximization problem in P2P systems.

In Section III, we propose a delay-based Primal-dual distributed algorithm to this problem. Its global exponential

convergence is proved under the popular P2P settings we consider in this paper. We discuss how to implement

our proposed algorithm in practice in Section IV. In Section V, we evaluated the performance of our proposed

algorithm in several multi-party conferencing scenarios on a LAN testbed, in a virtual environment, and on the

Internet. Conclusions and future works are provided in Section VI.

II. PROBLEM FORMULATION

We consider a network presented by a directed graph G = (V, J), where V is the set of vertices, i.e., nodes in

the network, and J is the set of edges, i.e., links in the physical network. Assume each link j ∈ J has a finite

capacity Cj . Let n = |V |.
In the P2P systems we consider, some source node s ∈ S sends its content to a set of receivers, denoted by Rs.

A set of helper nodes, denoted by H , are willing to help in distributing the content. In this paper, we assume a

deterministic fluid model for sending rates of nodes and ignore packet dynamics. This assumption is reasonable

when the timescale of rate control is sufficiently larger than that of packet dynamics.

Let zs be the multicast rate of source s, and z = {zs, s ∈ S}. Assume all members in Rs receive s’s stream at

this rate. Let Us(zs) be the utility upon receiving the content from s at rate zs. To prevent abusing the resources

from helpers, sources and receivers should use helpers’ resources only after they have used up their own. Putting

this into consideration, we associate a cost, denoted by Gh(z), with using a helper h ∈ H to distribute a content.

In this multiple multicast scenario, a natural goal is to maximize the aggregate net utility of all receivers, subject

to rate constraints, i.e.,

max
z

∑

s∈S

Us(zs)−
∑

h∈H

Gh(z), subject to the constraints of {zs}.

Before formulating the problem further, we need to understand the constraint region for {zs} to optimize over

and how to achieve it.
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A. Network Coding vs. Routing

The maximum achievable multicast rate of single source multicast scenario is characterized as the minimum of

the min-cuts between the source node s and all nodes in its receiver set R [16], i.e., mint∈R min-cut (s, t). For

example, in the classical Butterfly network shown in Fig. 1.(a), a source s multicasts to two receivers t1 and t2.

The min-cuts between s and t1 and t2 are all 2. Thus, the maximum achievable multicast rate is 2.

(a) (b) (c)Fig. 1. (a) Butterfly network with unit link capacities. (b) Network coding can achieve a multicast rate of 2. (c) Routing can achieve a

multicast rate of 1.

If network coding is allowed, then the single source multicast rate region can be achieved for arbitrary topology

by solving the routing and coding problems separately, each being of polynomial complexity [17]. For example,

as seen in Fig. 1.(b), by performing XOR operation in the Steiner nodes in the Butterfly network, we can achieve

the maximum achievable multicast rate 2.

The achievable rate region for multi-source multicast scenarios was recently implicitly characterized in [18], but

currently no scheme is known to achieve it. It is believed that information from different multicast groups should

be coded in a nonlinear fashion in order to achieve the rate region (inter-session coding). However, doing such

mixing and coding is complex and largely open.

Regardless of its power, network coding is not quite practical in today’s P2P applications. It cannot be used in

the Internet routing layer because it requires changes in all routers (for encoding) and end-hosts (for decoding).

If deployed in the overlay (P2P layer), it will introduce new complexity in end-host software (for encoding and

decoding) and additional delays in video delivery. A practical way to explore the achievable rate region is by

routing. Each source s packs directed Steiner trees rooted at s and reaching all receivers in Rs. For the general

case of arbitrary topologies, this approach of routing brings up the following difficulties:

1) For a given source, the maximum rate achieved by routing can be a factor of up to log |V | lower than that

achieved by network coding [17]. For example, as seen in Fig. 1.(c), by packing Steiner trees in the Butterfly

network, we can only achieve multicast rate of 1, as compared to 2 achieved by network coding approach.

2) To achieve the maximum rate for routing, the problem of packing directed Steiner trees is NP-hard [19].

Moreover, the number of Steiner trees used in an optimal solution may be exponential.

As such, routing cannot achieve the optimal rate region in general topology and its cost could be prohibitively
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large. However, the fact that our problem involves a P2P topology where peer uplinks are the only bottlenecks (in

practice) in the network allows us to tackle all of the above difficulties in a surprisingly elegant manner.

B. Impact of P2P Topology

In P2P topology, we assume peer uplinks are the only bottlenecks in the whole network, and every peer can

connect to every other peer through routing in the overlay. In the overwhelming majority of residential broadband

connections, bottlenecks typically are at the edge of the access networks rather than in the middle of the Internet.

Furthermore, it is common to have the uplink capacity of a peer to be several times smaller than the downlink

capacity, thus justifying the practicality of our assumption on P2P topology. Formally, if a peer i has uplink capacity

rU
i , downlink capacity rD

i , and is a source of data at rate Ri, and a sink of data at rate R′
i (i.e., it is not uploading

this data to any other peer), then its downlink is not a bottleneck if rD
i ≥ R′

i + (rU
i −Ri).

In the context of P2P topology with the above uplink constraint assumptions, a powerful theorem established in

the Mutualcast paper [15] states the following. Consider a network with P2P topology consisting of a source s,

a set of receivers Rs, and a set of helpers H . Then, the min-cut capacity for source s and receivers Rs can be

achieved by packing at most 1 + |Rs|+ |H| Mutualcast trees as follows:

• One depth-1 tree rooted at s and reaching all receivers in Rs, i.e. the type (1) tree in Fig 2.

• |Rs| depth-2 trees, each rooted at s and reaching all other receivers in Rs via different r ∈ Rs, i.e. the type

(2) tree in Fig 2.

• |H| depth-2 trees, each rooted at s and reaching all receivers in Rs via different h ∈ H , i.e. the type (3) tree

in Fig 2.

s

r . . .

r

r ’ . . .

h

r . . .

Rs– {s} Rs– {s}Rs– {s,r}

Type (1) tree Type (2) tree Type (3) tree

s s

Fig. 2. Different types of Mutualcast trees.

This result extends and simplifies Edmonds’ theorem [20] for P2P topology, in the sense that it allows helper

(Steiner) nodes and uses only depth-1 and depth-2 Steiner trees. Fig. 4(b) shows all 12 Mutualcast trees for a three

peers and one helper scenario where each peer wants to multicast its content to the other two. For a special case

where there is no helper nodes in the network, authors in [21], [22] and [23] also derived results similar to the

above-stated Mutualcast theorem independently.
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Given that the Mutualcast Theorem is for single source multicast scenario only, we first extend this result to the

case of a multi-source multicast scenario when there is no coding across sessions belonging to different sources.

Theorem 1: Consider a P2P topology in which peer uplinks are the only bottleneck. Consider multiple multicast

sessions given by source nodes s ∈ S, receiver set Rs, and helper nodes Hs = V −{s}−Rs for session with source

s. Then, the rate region z = {zs, s ∈ S} achievable by network coding within each session is also achievable by

routing along 1 + |Rs|+ |Hs| Mutualcast trees for each source s independently.

Proof: Consider the realization of a given rate vector z = {zs, s ∈ S} through network coding within each

session. Partition the capacity usage on each link according to portions used by each session. Then, by the Mutualcast

theorem, the rate zs for session with source s can be achieved by routing along 1 + |Rs|+ |Hs| Mutualcast trees

using only the partitioned link capacities corresponding to this session. By superposing the Mutualcast trees used

for each session, we get the claimed result.

This observation is interesting and practically important in the sense that it states that for practical P2P topology,

routing is as good as intra-session network coding.

Further, surprisingly, we show in the following theorem that routing is optimal and inter-session network coding

is not needed, if we require that each receiver is part of every session, i.e., Rs ∪ {s} = R for all s ∈ S. (Note that

each receiver need not be a source though.) Such a scenario is common in multi-party conferencing systems.

Theorem 2: Consider a P2P topology in which peer uplinks are the only bottleneck. Consider multiple multicast

sessions given by source nodes s ∈ S, receiver set Rs, and helper nodes Hs = V − {s} − Rs for session with

source s. Further, assume that each receiver is part of every session, i.e., Rs ∪ {s} = R for all s ∈ S, and hence

Hs = V −R = H for all s. Then, the largest achievable rate region z = {zs, s ∈ S}, achievable by network coding

across sessions, can be achieved by routing along 1+ |Rs|+ |Hs| Mutualcast trees for each source s independently.

Furthermore, let Co(v) be the uplink capacity constraint for node v in V , then the largest achievable region is given

by {
z : zs ≤ Co(s), ∀s ∈ S, |R|

∑

s∈S

zs ≤
∑

v∈V

Co(v)− 1
|R|

∑

h∈H

Co(h)

}

Proof: Refer to Appendix A.

In contrast to the known results that inter-session coding is needed to achieve the maximum rate region in general

topology, the unique structure of the P2P topology we consider in this paper allows us to achieve the maximum

rate region by packing only linear number of Steiner trees per source, if each receiver is part of every multicast

session. This result is not only surprising but also elegant.

We summarize the advantages and disadvantages of using network coding and packing (directed) Steiner trees

to achieve multicast rate region in Table I.
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TABLE I

COMPARISONS OF APPROACHES TO ACHIEVE MULTICAST RATE REGION

single source single source multi-source multi-source complexity

multicast multicast multicast multicast

(P2P topology) (general topology) (P2P topology) (general topology)

network coding optimal optimal ? (open) ? (open) polynomial

packing optimal suboptimal optimal in suboptimal NP-hard in general,

Steiner trees certain cases polynomial in P2P

C. Optimization Framework

With the packing Mutualcast trees approach, each source s ∈ S builds a set of depth-1 and depth-2 Mutualcast

trees to send data to all receivers in Rs along the trees. We denote this set of trees also as s, and a source is

identified by the set of trees of which it is the root. Another advantage of this packing trees approach is that the

resulting solution also includes session scheduling; therefore, the latter need not be solved as a separate problem.

A tree m ∈ s is a set of links and nodes that the tree passes through; all receiver nodes on a tree receive the

same content at the same rate. We denote the rate of tree m as xm. Rates of the trees rooted at source s sum up

to the source rate zs, i.e.,
∑

m∈s xm = zs, ∀s ∈ S. The injecting rate of link j is the aggregate rate of the trees

that pass through link j, denoted by yj , and is given by,

yj ,
∑

s∈S

∑

m∈s:j∈m

bm
j xm, ∀j ∈ J, (1)

where bm
j is the number of tree m’s branches that pass through physical link j. Since different branches of a tree

in the overlay can pass through the same physical link in the underlay, the tree rates might be counted multiple

times when computing the injecting rate of a link, hence the multiplication by bm
j .

Similarly, define the forwarding rate of a helper node h as

yh ,
∑

s∈S

∑

m∈s:h∈m

bm
h xm, ∀h ∈ H, (2)

where bm
h is the out-degree of helper node h in multicast tree m. Denote yH = [yh, h ∈ H].

The aggregate utility maximization problem in P2P systems can be formulated as follows:

max{xm}
∑

s∈S

|Rs|Us

(∑
m∈s

xm

)
−

∑

h∈H

Gh(yh) (3)

s.t. yj ≤ Cj , ∀j ∈ J,

where |Rs|Us

(∑
m∈s xm

)
is the aggregate utility of a group Rs upon receiving content at rate

∑
m∈s xm = zs,

and Gh(yh) is the cost of using helper node h to deliver content at rate yh. As discussed earlier, this cost is to

prevent peers from abusing resources from helpers – sources and receivers should use helpers’ uplink capacities
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only after they use up their own. Formally, if the optimum objective function value can be achieved without using

(or using lower) helper uplink capacities, then this should be preferred.

We assume that the utility functions Us(·), s ∈ S, are strictly concave, and the cost functions Gh(·), h ∈ H are

strictly convex.

This problem formulation is applicable to many P2P applications in practice. For example, in P2P video

conferencing systems with utility being the video quality, the problem in (3) corresponds to maximizing the aggregate

video quality of all receivers. This formulation is flexible in the sense the tree loss and delay characteristics can be

easily taken into account by adding a term emxm with negative em into the utility function representing the delay

or loss cost of using tree m.

The optimization problem in (3) is a non-strictly concave optimization problem with linear constraints. It might

have more than one optimal {xm}. However, the optimal aggregate rate associated with each source {z} is unique.

This is because the objective function is strictly concave with respect to {zs}, and the rate constraint region of

{zs} can be shown to be a polyhedron by eliminating the tree-rate variables xm (for example, by Fourier-Motzkin

elimination [24]).

For the concave optimization problem shown in (3), interior-point and simplex based algorithms can be applied

to solve the problem in a centralized manner [25]. However, centralized solutions may put a huge burden on the

central solver and it requires the central solver to know the up-to-date topology, peer uplink rates, cross traffic,

and the utility function of each peer. Tracking these information may not be feasible in practice and it is therefore

desirable to have a distributed algorithm that can be deployed in practice.

III. DISTRIBUTED ALGORITHMS FOR

MULTI-TREE BASED MULTICAST

The optimization problem we consider in (3) is a non-strictly concave optimization due to multi-path and multi-

tree routing between sources and their receivers. There are three ways to approach such a problem in a distributed

manner, namely Primal algorithms, Dual algorithms, and Primal-dual algorithms.

Due to the non-strictly concave objective function, standard Dual gradient algorithms fail to work since the

gradient is not everywhere defined. Alternatively, dual subgradient algorithms [10] [13] and dual proximal algo-

rithms [10] [8] are proposed to solve the problem. However, convergence of dual variables in these approaches

are typically slow, and recovering optimal primal variables from optimal dual variables requires solving another

optimization problem. Furthermore, it is not clear how to implement these algorithms on today’s Internet.

In this paper, we focus on Primal and Primal-dual algorithms. The advantages of Primal algorithms lie in their ease

of applicability and fast convergence in multi-path/multi-tree routing scenarios. As it will be clear later, the advantage

of our Primal-dual algorithm are two folds. First, it can be implemented by utilizing the delay measurements between
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peers, which makes it particularly attractive in practice. Second, we show that our Primal-dual algorithm converges

exponentially fast.

A. A Packet Marking Based Primal Algorithm

The Primal algorithm follows the penalty approach, by relaxing the constraints by adding a penalty to the objective

function whenever constraints are violated. This leads to an approximate version of the original problem without

constraints, making it easier to solve.

Inspired by Kelly’s modeling of TCP [5], we study the following penalty version of the problem:

max
{xm}

∑

s∈S

|Rs|Us (zs)−
∑

h∈H

Gh(yh)−
∑

j∈J

∫ yj

0
qj(w) dw, (4)

where
∫ yj

0 qj(w) dw is the price associated with violating the capacity constraint of link j. If qj(·) is non-decreasing,

continuous and not always zero, then the above optimization problem is concave and has at least one equilibrium.

The strict concavity of Us(·) and −Gh(·) indicates that both z and yH are unique for any optimal solution. If

− ∫ yj

0 qj(w) dw is also strictly concave, then yj , j ∈ J , are also unique.

We choose qj(w) = (w−Cj)+

w for link j, corresponding to packet loss rate or ECN marking probability [26] in

practice. We consider the following Primal algorithm: ∀s ∈ S,∀m ∈ s,

ẋm = fm(xm)


|Rs|U ′

s(zs)−
∑

h∈m

bm
h G′

h(yh)−
∑

j∈m

bm
j qj(yj)


 (5)

where fm(xm) is a positive function adjusting the rate of adaptation for xm. It is simply a gradient decent algorithm

solving the problem in (4). The problem can have multiple solutions since the objective function is not strictly

concave due to the multi-tree routing.

The primal algorithm can be implemented in a distributed manner by receivers reporting to the source their

observed packet loss/marking rates for the packets traveling along individual trees, and every source adapts the tree

rates according to its local utility function and feedback from receivers. For its implementation in P2P systems,

refer to our to-be-updated technical report [27]. We now state the convergence result for the Primal algorithm.

Define a set to be a positive invariant set of the system, if all system trajectories entering the set remain in it.

The following theorem investigates stability of equilibria of the system in (5), i.e., the convergence of tree rates

{xm}.

Theorem 3: There exists a compact set Ω such that any compact set containing Ω is a positive invariant set of

the system in (5). Further, if {xm} are bounded within one such compact set, then the system trajectories, i.e., tree

rates {xm}, converge to the equilibria globally exponentially.

Sketch: We first prove local exponential stability and globally asymptotical stability of the equilibria. Then

we construct the set Ω. Finally, we prove the theorem using a readily applicable lemma in [28]. We omit the details

and refer interested readers to [27].
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Remarks: In practice, the tree rates {xm} are naturally bounded within certain compact set, and it has been

argued in [28] that it is trivial for a reasonable large compact set to contain Ω. As such, Theorem 3 implies global

exponential convergence of tree rates {xm} in practice.

B. A Queuing Delay Based Primal-dual

Algorithm

Another way to solve the optimization problem in (3) in a distributed manner is to look at its Lagrangian:

L(x, p) =
∑

s∈S

|Rs|Us (zs)−
∑

h∈H

Gh(yh)−
∑

j∈J

pj (yj − Cj) , (6)

where pj is the Lagrangian multiplier, and can be interpreted as the price of using link j. Since the original problem

in (3) is a concave optimization problem with linear constraints, strong duality holds and there is no duality gap.

Any optimal solution of the problem in (3) and one of its corresponding Lagrangian multiplier is a saddle point

of L over the set {x ≥ 0, p ≥ 0}, and vice versa. Further, (x, p) is one such saddle point of L if and only if it

satisfies the Karush-Kuhn-Tucker conditions [25]: ∀s ∈ S,∀m ∈ s,∀j ∈ J ,

pj ≥ 0, yj ≤ Cj , pj (yj − Cj) = 0, (7)

|Rs|U ′
s(zs)−

∑

h∈m

bm
h G′

h(yh)−
∑

j∈m

bm
j pj = 0. (8)

The first equation is the complementary slackness condition. The optimal Lagrangian multiplier can be nonzero

only if the capacity constraint of link j is activated, i.e., yj = Cj . We denote the set containing all (x, p) that

satisfy the above conditions by E. As the original problem has at least one solution, E contains at least one point

and is therefore not empty.

There could be multiple saddle points of L since the original optimization problem is not strictly concave. To

pursue one of the saddle points, we consider the following Primal-dual algorithm, over the set {x ≥ 0, p ≥ 0}:

s ∈ S, ∀m ∈ s, and j ∈ J ,

ẋm = km


|Rs|U ′

s(zs)−
∑

h∈m

bm
h G′

h(yh)−
∑

j∈m

bm
j pj


 (9)

ṗj =
1
Cj

(yj − Cj)
+
pj

, (10)

where km is a positive constant controlling the adaptation rate of tree m and (yj − Cj)
+
pj

= yj(t)− Cj if pj > 0,

and is max(0, yj − Cj) otherwise. It is known that pj adapted according to (10) can be interpreted as queuing

delay [29]. Every saddle point of L is an equilibrium of the above system in (9)-(10).

Whether the Primal-dual algorithm can be applied to multi-path/multi-tree routing scenarios is an open problem.

Served as a negative result, it is shown that (x, p) following (9)-(10) oscillates indefinitely in common multi-path
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unicast scenarios [9, Section 2.5]. Consequently, to our best knowledge, almost no solution for multi-path routing

utilizes such Primal-dual algorithm.

In this paper, we give a general sufficient condition for the Primal-dual algorithm in (9)-(10) to converge to the

optimal solution, regardless of unicast or multicast, single path or multipath routing. To our best knowledge, this is

the first attempt to characterize the applicability of the Primal-dual algorithm. We believe its applicability is beyond

the P2P systems we studied in this paper.

We give the definitions and notations to be used in later analysis. Let A be the connectivity matrix, where the

(i, j) entry is the number of branches of tree j passing through link i. This is different from traditional connectivity

matrix (for unicast) as its entries can take values other than 1 or 0. Similarly, let AH be the helper connectivity matrix

whose entries being the number of branches of a tree passing through a helper. Let K = diag{km, m ∈ s, s ∈ S},

C = diag{Cj , j ∈ J} where J is assumed to contain only the bottlenecks without loss of generality. Let B be the

matrix representing the relation of source rate, rate passing through helpers and the tree rate, with the (i, j) entry

being 1 if tree j belongs to source i, being bj
i if tree j passes through helper i, and 0 in any other cases.

The following Lemma shows that the nonlinear system in (9)-(10) converges to an invariant set, over which the

nonlinear system turns into a linear one.

Lemma 1: All (x, p) trajectories of the system in (9)-(10) converge to an invariant set, denoted by V0 = {(x̄, p̄) :
[
z̄, ȳH

]T = Bx̄ = const}, over which the following is true:

• z̄ and ȳH are the unique solution to the problem in (3);

• the nonlinear system reduces to a linear one:



˙̄x = KU ′ −KAHG′ −KAT p̄

˙̄p = C−1Ax̄− 1
(11)

where U ′ and G′ are constant matrices;

• the above linear system is marginally stable, and all its trajectories do not converge and form limit cycles.

Proof: Refer to Appendix B.

Shown by the above theorem, (x, p), trajectories of the system in (9)-(10) converge to a set V0 where the source

rates z̄ are optimal. Clearly, all saddle points of L belong to V0, and E ⊆ V0. If we also have V0 ⊆ E, then the

Primal-dual algorithm solves the problem in (3).

However, it is possible that V0 contains some (x̄, p̄) that are not in E; ˙̄x and ˙̄p are not zero. If (x, p) moves

onto these points, then they will keep oscillating and never converge. This is exactly the challenge of using the

Primal-dual algorithm in multi-path/multi-tree routing scenarios, and explains the oscillations in rates and delay

discussed in [9].

One way to guarantee V0 = E is to utilize the fact that Bx̄ is constant to explore the conditions for V0 to not

include those singular points, as explored in the following theorem.
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Theorem 4: All trajectories (x, p) of the system in (9)-(10) converge globally asymptotically to one of its

equilibria and V0 = E, if p̄ is completely observable from (z̄, ȳH) through the linear system in (11). Equivalently,

V0 = E if for any eigenvalue of C−1AKAT , denoted by λ,

rank


 C−1AKAT − λI

BKAT


 = |J |. (12)

Proof: Refer to Appendix C.

Furthermore, we can access a stronger convergence result for the Primal-dual algorithm in (9)-(10), if the above

condition is satisfied.

Theorem 5: If the Primal-dual algorithm in (9)-(10) converges globally asymptotically, then the following is also

true: there exists a compact set Ω such that any compact set containing Ω is a positive invariant set of the system

in (9)-(10). Further, if (x, p) are bounded within one such compact set, then the system trajectories (x, p) converge

to the equilibria globally exponentially.

Proof: The proof idea is similar to the one for proving Theorem 3. Due to space limitation, we omit the details

and refer interested readers to [27].

The Primal-dual algorithm described in (9)-(10) can be implemented by each link generating its queuing delay

and each source adjusting the rates of its trees by observing sum of the queuing delays introduced by using the

trees. As such, the algorithm can be implemented in a distributed manner.

Regardless of the nice convergence properties and the easy implementation of the Primal-dual algorithm in

(9)-(10), it is possible that with some network settings, the condition in (12) is not satisfied and the Primal-dual

algorithm may not converge. One example is shown in [9, Section 2.5].

Interestingly, the unique structure of the P2P topology allows us to prove that the sufficient condition can be

easily satisfied for two typical P2P systems - P2P Content dissemination systems and multi-party conferencing

systems, as explored in the following subsections.

1) P2P Content Dissemination Scenarios: Consider a P2P data dissemination system with n peers, among which

there are sources, receivers, and helpers. Every source distributes its content to its receivers, with or without the

assistance of helpers. A receiver can receive contents from multiple sources simultaneously, while sources are

servers that only distribute data but do not receive contents. These scenarios correspond to the popular P2P file

distribution and P2P streaming scenarios in practice.

Assume the first ns number of the nodes are sources. Define Ri, 1 ≤ i ≤ ns, to be the set of peers that want

to receive contents from source i. Define Hi, 1 ≤ i ≤ ns be the set of helpers that help distributing the content

of source i. For the ease of explanation, we assume there is no helper in the following analysis, i.e., Hi = ∅. The

analysis can be straightforwardly extended to the case where Hi 6= ∅.
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Let ni = |Ri|+ 1, 1 ≤ i ≤ ns. Each source uses total ni + 1 Mutualcast trees to deliver its content. For the sake

of simplicity, we use the following notation when stating the result. We denote xij as the rate of tree j of source

i passing through node j in the level one, with 1 ≤ j ≤ n and 1 ≤ i ≤ ns. Let kij represent how fast the tree rate

xij adapts, and kij = 0 if j /∈ Ri and j 6= i. This is equivalent to having exactly ni + 1 trees for source i. Since

a source is not receiver for other sources in our P2P data dissemination scenarios, we also have kij = 0 for all

1 ≤ j ≤ ns and j 6= i.

The following theorem gives a sufficient condition for the Primal-dual algorithm in (9)-(10) to converge to the

saddle points of L in P2P data dissemination systems.

Theorem 6: For P2P data dissemination systems in P2P topology, all (x, p) trajectories of the system in (9)-(10)

converge to one of its equilibria globally asymptotically, if the following conditions are satisfied:

• For all 1 ≤ i 6= j ≤ n, ξi 6= ξj , where

ξl =





(nl−1)nl

Cl
kll, 1 ≤ l ≤ ns;

1
Cl

∑
j:l∈Rj

(nj − 1)2kjl, else.

• kii < Ci

2Cj
kij , for all 1 ≤ i ≤ ns and ns < j ≤ n.

Proof: Refer to Appendix D.

In practice, these conditions are in fact easy to satisfy with high probability. For example, source i can generate

kij , j 6= i in a suitable range randomly such that the first condition is satisfied with a good chance.

Source i can then select kii such that the second condition is satisfied under practical relationship between Ci,

normally the server bandwidth, with Cj , normally peers’ (home users’) uplink bandwidth. For instance, we can

assume practically min(Ci

Cj
) = 1 and set kii to be less than 1

2 minj(kij) in a random fashion.

In practice, satisfying this condition also forces the source to adapt the depth-2 Mutualcast trees with high priority,

indicating source nodes, normally the server, will adapt quickly to the network condition changes in receivers, as

compared to the response to its own uplink condition change.

2) Multi-party Conferencing Scenarios: Consider a P2P multi-party conferencing system with the first ns of

them being participants and the rest nh of them being helpers. Every participant wants to receive contents from all

other participants. The following theorem gives a sufficient condition for the Primal-dual algorithm in (9)-(10) to

converge to the saddle points of L in P2P multi-party conferencing systems.

Theorem 7: For multi-party conferencing systems in P2P topology, all (x, p) trajectories of the system in (9)-(10)

converge to one of its equilibria globally asymptotically, if for source s, all its km,m ∈ s are the same.

Proof: Refer to Appendix E.

The requirement of having all km to be the same for all m ∈ s is easy to satisfy in practice. It implies every

source should adjust its tree rates at the same adaptation rate, which is also convenient.
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IV. PRACTICAL IMPLEMENTATION

We implemented a prototype of a P2P multi-party conferencing system. In such a system, each participant peer

is a source of audio and video streams and at the same time wants to receive videos from all other participants1.

Some peer nodes not interested in sending and receiving videos, such as the MCU, may decide to become a helper

and assist in the audio and video delivery.

Implementing the Primal-dual algorithm in (9)-(10) appears to be straightforward. We first describe the function-

ality implemented by each peer, then highlight four important issues we addressed in the implementation. First, we

empirically find one common utility function to use in video conferencing, which can be modeled by logarithmic

functions. Second, we we explain how to measure and collect queuing delays along the trees without global time

synchronization and how we define the cost of using a helper for content delivery by using delays. Finally, we

discuss how to bound the experienced delay to meet the tight delay requirements of real-time conferencing.

A. Peer Functionality

In our implemented P2P multi-party conferencing system, all peers, including both participants and helpers,

perform the following functions:

• Peers on a multicast tree forwards the packets from the upstream tree branches to the downstream branches.

It achieves this by building a forwarding table, which maps a tree number contained in every packet to a list

of its downstream peers. For instance, the helper D in Fig. 4(a) makes two copies of every packet it receives

from one peer (A, B, or C), and unicasts the copies to the other two peers. If a peer is the leaf node in a

tree, it doesn’t forward any packets on that tree.

• Peers on multicast trees measure queuing delay between two peer nodes for each packet they receive and

distribute these measurements to the roots of the trees. This is done in a simple and effective way that will

be discussed later.

In addition, each participant peer, i.e. non-helper node, performs several functions:

• Peers, as sources of the video streams, are roots of several multicast trees which are used to deliver the videos

to other peers. They need to encode their videos at specified rates, split the encoded data among the trees and

send data packets with routing information (i.e., a tree number) along the trees. Each peer sets up its trees at

the beginning of the conference and adjusts them when peers join or leave.

• Peers adjust the tree rates according to (9) based on the queuing delay measurements they receive from other

peers.

• All peers upon receiving the data decode the video streams of other peers and show to the user.

1The audio stream rate is constant and typically small compared to the video stream rate. In practice, audio streams are transmitted to a

Media Control Unit (MCU) and delivered to peers by this central server. As such, only transmission of video streams needs to be considered.
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B. Queuing Delay Measurement and Updating of Tree Rates

We use UDP protocol to transmit video packets along tree m according to tree rate xm(t),m ∈ s. Aside from

the video content, each packet contains a tree number and a timestamp, representing the time when this packet was

sent from the current peer node, such that next-hop peer node can measure the delay between the two peer nodes.

Seen from (9)-(10), the key in implementing the Primal-dual algorithm is to measure the queuing delay pj of

peer j’s uplinks, for all j ∈ J . Under the setting that peer uplinks are the only bottleneck in P2P systems, the

end-to-end queuing delay between peer j and its offspring peers on multicast trees is equal to the queuing delay pj

of the peer j’s uplinks. Therefore, we can measure pj by measuring the end-to-end delay between peer j and its

offspring peers. To ensure a fully distributed solution, it is desirable to carry out such end-to-end delay measurement

without global synchronization across peer nodes.

In our implementation, we use the difference in relative One-Way-Delay (ROWD) to measure the queuing delay

between two peer nodes. ROWD is the relative difference between the packet sending time at the sender peer, and

the packet receiving time on the receiver peer. It is the sum of propagation delay, queuing delay, and clock offset

between the two peers. The smallest ROWD seen in the history between two peers simply corresponds to the sum

of propagation delay and clock offset, and is constant. By subtracting the smallest ROWD seen in the history from

the current ROWD, we can get an measurement of current queuing delay between two peers.

The following is a simple procedure that we follow to measure the queuing delays of peers’ uplinks and to

distribute them among peers.

• Whenever a peer sends or forwards a packet, a timestamp is attached to it.

• Each of its offspring peers on the tree computes the current ROWD, subtracts the minimum ROWD observed

so far, and generates a measurement of the queuing delay of the sender peer’s uplink.

– If the offspring peer is a source, it will piggyback this queuing delay measurement to its next video packet

which guarantees its distribution among all other peers.

– If the offspring peer is a helper, it will piggyback this measurement with the packets being forwarded to

the downstream peers. Those peers (which are always sources) distribute it to all other peers as part of

the next packet they send out through one of their trees.

The overhead of distributing the delay information is negligible as it only requires few bytes per packet and it is

distributed together with each peer’s video.

The advantage of measuring delay based on ROWD is that it does not require time synchronization across peers.

Such method is well adopted in the context of measuring congestion [30]. We use it in this paper for a different

purpose of measuring queuing delay. The disadvantage of using ROWD to measure the queuing delay is that its

measurement can be inaccurate if the underlying route between peers changes; there have been some efforts to
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overcome this drawback [30].

Upon collecting the necessary delay measurement pj (j ∈ Rs ∪H ∪ {s}), source peer s computes an average

queuing delay for each peer on its trees, by doing a running average over the last three queuing delay measurements

of the peer. The purpose of doing so is to achieve a balance between robustness to measurement noise and quick

response to network condition changes. Source s then updates its tree rates xm (m ∈ s) according to (9).

C. Utility (PSNR) Modeling

In video processing, PSNR (peak-to-peak signal-to-noise ratio) metric is the de facto standard criterion to provide

objective quality evaluation between the original frame and the compressed one. For the original video frame f1 and

the compressed one f2, each containing N ×N pixels with values in [0, 255], the PSNR is computed as follows:

PSNR(f1, f2) = 10 log10

[
2552 ×N2

∑N
i=1

∑N
j=1(f

ij
1 − f ij

2 )2

]
,

where f ij
1 and f ij

2 are the pixel values in i-th row and j-th column of frames f1 and f2, respectively.

Fig. 3 shows PSNR curves of three videos as functions of encoding rates. These represent the receiving video

quality if a source peer encodes and sends its video at these rates. We have chosen three video sequences in CIF

format: Akiy, Foreman, and Tennis. They represent low, medium, and high motion scenes, respectively. We encoded

the videos by H.264/AVC Reference Software Encoder (ver. 12.2) [31] with various bitrates to get PSNR curves.

Interestingly, from Fig. 3, we observed that PSNR of a video coded at rate z can be approximated by a logarithmic

function β log(z), with higher β for videos with large amount of motion and lower β for rather still scenes. The β

value can be obtained from the video encoder of source s during the encoding. Based on this empirical observation,

we use utility function Us(zs) = βs log(zs) in our experiments.
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Fig. 3. PSNR curves of three video sequences with low, medium, and high motion and their approximation by logarithmic functions.
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D. Implementing Helper Cost Function Using Delay

In order to implement the Primal-dual algorithm in (9)-(10) in practice, we need to define helper cost functions,

i.e. Gh(yh), that are meaningful, easy to generate, and cause little or no overhead to update source peers of its

value when yh changes. Having these goals in consideration, we use delay based functions in our implementation.

One example is as follows: for all helper nodes h ∈ H , Gh(yh) = γhy2
h, where γh is assumed to be a small

positive constant. Its derivative is: for all h ∈ H , G′
h(yh) = γhyh.

The idea is to implement it as an additional artificial delay that helper h injects when forwarding every packet.

When peers compute the queuing delay for packets received from a helper node h, they add a small amount of

γhyh to it. This artificial portion of delay will be then distributed back to the source peers. In this way, the source

peers will naturally take this γhyh cost into account when adjusting the tree rates according to (9).

The above process can be carried out for arbitrary helper cost functions. In the P2P multi-party conferencing

systems we consider, delay is crucial for the quality of participants’ experience. As such, it is reasonable to use

delay as a cost function. The cost generation and distribution is fully distributed and because it is included in the

existing queuing delay measurements it adds no extra overhead.

E. Bounding the Average Queuing Delay At the Equilibrium

On one hand, our solution uses only depth-1 and depth-2 Steiner trees to deliver contents from a source peer

to its receiver peers. Consequently, every packet goes through at most one hop (i.e., two tree branches) in the

overlay before reaching all receivers, resulting in low end-to-end propagation delay in packet delivery. This makes

our solution especially suitable for real-time P2P multi-party conferencing systems, as conferencing systems have

a strict requirement, in particular 150 ms, on the end-to-end packet delivery delay between participant peers.

On the other hand, one solution relies on the queuing delay experienced by packets to control the tree rates

properly. As queuing delay also contributes to the end-to-end packet delivery delay, it is then desirable to bound

the queuing delay experienced by packets at the steady state of the system after the tree rates converge. Note that

according to Theorem 7 and 5, tree rates converge exponentially fast in P2P multi-party conferencing systems.

Let (x̄, p̄) be the converged tree rates and queuing delays, and let z̄ = Bx̄, ȳH = AH x̄ and q̄ = AT p̄. Let d̄m

be the average queuing delay in packet delivery from source s to its receiver peers along tree m at the equilibria.

The following proposition states the relationship of d̄m and utility functions:

Proposition 1: The following optimization problem, with α being a positive constant, has the same solution as

the one in (3):

max{xm} α

[∑

s∈S

|Rs|Us

(∑
m∈s

xm

)
−

∑

h∈H

Gh(yh)

]
(13)

s.t. yj ≤ Cj , ∀j ∈ J,
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Meanwhile, at the equilibria of the above system, for all m ∈ s, we have

d̄m ≤ 2αU ′
s(z̄s). (14)

Proof: Refer to Appendix F.

As such, we can bound d̄m with a designed value by tuning the constant α based on a lower bound on zs for all

s ∈ S. For example, for P2P multi-party conferencing system, the system designer may want to set a limit on how

low the converged source rate can be, since the video quality will be unacceptable at such limited rate2. This will

give a lower bound on zs, and hence a lower bound value of U ′
s(z̄s) for all s ∈ S. Then the designer can bound

the worst-case d̄m with a designed value, e.g., 150 ms, by solving α according to (14) with these two values. It

should be noted that in practice the converged source rate is larger than the video rate limit, the experienced d̄m

will be therefore smaller than the worse-case bound set above.

V. EXPERIMENTAL RESULTS

We use PCs running Windows XP and Network Emulator for Windows (NEW) connected to a LAN for

Scenarios 1 and 2. NEW is a software based network emulator that allows realistic emulation of different network

characteristics such as bandwidth emulation, packet loss and latency [32]. Scenarios 1 and 2 use the topology and

network conditions described by Fig. 4(a).

We have also conducted experiments in Scenario 3 and 4, under real Internet settings with peers being spread

around the US and virtual machines in a Virtual Lab [33], respectively.

(a) (b)

Fig. 4. Scenarios 1 and 2: (a) Propagation delays and uplink bandwidth constraints for each peer and link in our experimental testbed. (b)

Multicast trees for three nodes (A, B, C) and one helper (D) from Section II-B.

A. Scenario 1: X-Traffic and Utility Changes

In the first experimental scenario we show how our system adapts to network dynamics (i.e., cross traffic) and

utility changes. We have three peers A, B,C initialized with the same utility function, i.e., parameter βA = βB = βC .

At time 200 seconds βB is increased by 50%. At time 400 seconds we start sending additional traffic of 200 kbps

from peer B and stop at 600 seconds.

2In such case, the system designer might want to involve stronger helpers with large uplink bandwidths to allow higher video rates.
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Fig. 5(a) through 5(i) show the rates and total queuing delays for each tree in the system. As seen in Fig. 5(a),

peer A does not utilize its depth-1 direct tree, because it requires twice as much bandwidth of peer A compared to

sending content through other peers and peer A has the lowest bandwidth capacity. Moreover, other peers are not

utilizing trees in Fig. 5(e) and 5(f) in order to avoid excessive congestion at peer A and to allow it to fully use its

upload bandwidth for trees going through other peers (Fig. 5(d) and 5)(g) to distribute A’s video.

The sending rate of peer B starts to increase at time 200 seconds as its utility function becomes steeper, indicating

the conference participant starts to introduce a large amount of motion in its video. Specifically, the rate of tree in

Fig. 5(h) increases at the expense of peer C (Fig. 5(h)) which has lower utility. All peers are using peer C, the peer

with the maximum bandwidth, as can be observed from Fig. 5(g) and 5(h). The cross traffic at peer B initiated at

400th second causes a decrease in rates for trees in Fig. 5(b) and 5(i) as peer A stops using congested peer B and

peer B decreases utilization of the direct depth-1 tree. The system always quickly converges to one of the optimal

solutions after network conditions or utility function changes (in less than 20 seconds), see Fig. 5(m)).

In order to confirm the results of our distributed algorithm we run a Mosek [34] program to solve the optimization

problem in (3) using the same topology and utility functions. The optimal tree rates allocation generated by Mosek

confirms our above observations and the optimal utility value is shown in Fig. 5(m) and 5(o).

It takes 76ms on average to deliver a packet containing video from a sender to a receiver in Scenario 1 (with

latencies between peers A−B, B−C and C −A, 18, 36, 22ms, respectively, described in Fig. 4(a), and queuing

delays from Fig. 5). If we distributed the videos in a simulcast way the average delay would be 27ms but the

maximum utility would not be possible to achieve. We see that the proposed algorithm incurs very little queueing

delay in the system.

B. Scenario 2: Peer Joining and Helper

In the second experimental scenario (Fig. 5(n)), the three peers are sending videos with various motion charac-

teristics (βB = 0.9βA, βC = 1.2βA, βD = βA). A fourth peer (D) joins the group, first as a source&receiver peer

at time 200 seconds, and as a helper at time 400 seconds. When it becomes a helper, it is no longer generating

its own video stream and is not interested in receiving the videos from other peers but it just helps forwarding the

video content to them.

In this scenario we see that the system adapts the sending rates quickly to accommodate the new joining peer

at time 200 seconds. Maximum utility is achieved within 30 seconds and note that the convergence rate can be

controlled by the km parameter in (9). As each video has to be delivered to more peers, we see a drop in the total

rates. The system adapts again as the peer becomes a helper at time 400 seconds, where the rates react to fully

utilize the available bandwidth and maximize the utility function (Fig. 5(o)). Note that with the helper, rate of each

source monotonically increases and the converged utility is higher than the one without helper, i.e., before second
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200 seconds.

C. Scenario 3: Internet Experiment - 3 Peers

In this scenario we run a short 2-minute 3-party conferencing over the Internet using 3 computers spread around

the US. In this case, every peer will use 3 spanning trees to deliver its contents. Uplink bandwidth limits are 384

kbps for peer A, 256 kbps for peer B, and 128 kbps for peer C. The utility functions for all peers are set to be

the same. The average round trip time between peers are: 79 ms between A and B, 40 ms between A and C, and

65 ms between B and C. Fig. 6 shows the source rates, tree rates and average tree branch delays for each peer.

Fig. 6 also shows the utility achieved in the experiments as well as theoretical optimum. We use the same km for

all the trees of a peer. As such, we use kA, kB and kC to denote the tree rates adaptation speeds for A, B, and C,

respectively.

Seen from Fig. 6(a), the source rate of A ramps up fastest among the three peers, this is because we set kA to

be the largest among the three. Similarly, the source rate of C ramps up slowest since kC is the smallest among

the three.

We observe that the queuing delay varies as the programs adjust the tree rates. We also observe from Fig. 6(a)

that the average tree branch delays for A, B and C are about 19 ms, 20 ms, and 45 ms, respectively. Shown in

Section IV-E, the average packet delivery delay is approximately twice the sum of the average one way propagation

delay and the average tree branch delay. Therefore, the average packet delivery times for A, B and C are about

91 ms, 105 ms, and 128 ms, respectively. These values are within the acceptable range for smooth conferencing

experience.

D. Scenario 4: Scalability Study

The last scenario (Fig. 7) shows a large conference with 10 peers successively joining. The conference starts

with 3 peers and every 60 seconds a new peer joins. All 10 nodes have an uplink bandwidth of 384 kbps and they

were run on virtual machines in a Virtual Lab [33].

Forming a large video-conference does not incur excessive overhead and costs to set-up and maintain the multicast

trees. When a new peer joins a conference, all peers update their trees which is a very simple operation and the

rate updating algorithm continuously changes the rates to achieve optimal use of all the available bandwidth (as

described in Section IV). Note that all the necessary information can be easily spread throughout the system by

appending it to any video packet as it is delivered to all peers.

During peer joins we can observe a peak in the queuing delay (see a detail in Fig. 7(b)). This is due to the

necessity to immediately deliver all video streams to the new peer and the trees react by reducing their rates. After

few seconds the rates increase as the new peer helps to distribute the videos through newly created trees. The
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(a) Tree (A→B,A→C) (b) Tree (B→A,B→C) (c) Tree (C→A, C→B)
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Fig. 5. Scenario 1 – (a) through (i): Sending rates and total delays for trees with edges and topology shown in Fig. 4(a). (j) through (l):

Coding rates of each video nodes A, B, and C are sending. (m) Utility value achieved compared to the optimum. Scenario 2 – (n) and (o):

Coding rates and utility values.
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Fig. 6. Experimental results for Scenario 3: (a) Source rates of A, B, and C, respectively, with the average tree branch delays. (b) Tree

rates for trees of A, B and C, respectively, with the tree branch delays. (c) The aggregate utility achieved by the system, and the utilities

per source.

peaks can be avoided by reducing the tree rates when new peer joins, proportionally to the number of tree branches

before and after, which will also remove the drops in utility graph (Fig. 7(a)) and speed up the convergence. We

disabled this feature to show the natural reactions of the system. The computational costs for updating tree rates

and memory requirements are negligible. Peers only keep track of the last few queuing delay measurements for

each other peer’s uplink and compute the running averages over them.

However, the rates decrease in general as peers join because there is a need to deliver each peer’s video stream

to more peers and new streams of the newly added peers further increase this demand, but the new peers provide

only a small amount of newly available bandwidth for the system to use. This is a scalability issue and you can

observe from the graph that to run a large video conference peers need to have sufficient bandwidth or they would

suffer from low video bitrates otherwise. A nice property of our scheme is that helper servers with an extensive

bandwidth capacity can be easily accommodated to help in a large conference and we can control their use and

the associated costs (Section IV-D). The multi-party video conferencing use case is inherently intended for a small

number of peers, unlike other P2P streaming applications, and is limited by the fact that adding a new peer brings

a burden of both delivering all previous video streams to a new destination and also delivering a new stream to all

previous peers. The significant advantage of using our scheme is that it combines common video delivery schemes

(direct, helper server assisted and peer assisted delivery) into one framework and uses them in an optimal way.

With more peers both the delays and rates exhibit more oscillations and the delays increase as there are more

nodes and trees involved but still stay reasonably small. The oscillations in Fig. 7(c) grow with the number of trees

because the graphs show the aggregated rates of many trees and all the tree rates behave according to the same

queuing delay measurements for the uplinks of peers. The measurements are correlated (see Fig. 7(b)) and thus
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Fig. 7. (a) The aggregate utility achieved by the system. (b) A detailed view on tree rates and delays of peer M1. (c) Source rates of

individual peers M1 through M10 and the average tree branch delays.

the noise amplitude increases. We can also see that the utility achieved is optimal even though for 10 peers the

oscillations are too big to let the rates stay at the optimum as our system tries to keep queuing delays low. Note

also that we can temporarily exceed the optimum utility in the plot 7(a) because our methodology of computing

utility is based on sending rates which can temporarily exceed the bandwidth limits.

VI. CONCLUSION AND FUTURE WORK

We investigate the multi-source multicast utility maximization problem in P2P systems. The nature of P2P

topologies allows us to tackle difficulties arising in the general network case in a surprisingly elegant manner. We

show that routing along a linear number of trees per source can achieve the same rate region as that obtained

through (inter-session) network coding. We develop a new multi-tree routing formulation for the multicast utility

maximization problem. It not only eliminates some mathematical difficulties associated with previous formulations,

but also leads to practical solutions. We further develop a Primal-dual distributed algorithm to maximize the

aggregate utility. We propose a sufficient condition to evaluate convergence of the Primal-dual algorithm in multi-

path routing scenarios, and prove its global exponential convergence under different P2P scenarios we studied. Our

approach naturally accommodates helper nodes within the optimization framework. The developed algorithms are

practical and easy to implement in a P2P overlay over the current Internet. Experimental results over both testbed

and the Internet show that our solution converges quickly to the optimal utility, and re-optimizes itself after network

conditions or utility function change. It is also resilient to peer nodes joining and leaving over time. Its scalability

is also studied.
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We are investigating the scalability of our solution in large P2P systems. The scalability of our current solution

is limited by the fact that branching out-degree of multicast trees used is linear in the number of receivers. Another

area of future work would be to consider multirate multicast where different receivers can receive the same video

at different rates through the use of scalable coding or transcoding.
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APPENDIX

A. Proof of Theorem 2

Proof: Let In(v) be the set of out-going edges of node v, and Out(v) be the set of out-going edges of node

v. Assume every edge e in E have infinite capacity. Let f(e) : e → [0,∞) be the rate assigned to edge e in E.

We denote f(E) = [f(e), e ∈ E] as the edge rate vector defined on E.

Let Cout(v) be upload bandwidth (i.e. output capacity) for all v ∈ V , such that for each node v, the sum of the

edge rate of the edges leaving v is at most cout(v). That is, we have node upload capacity constraints:

∑

e∈In(v)

fz(e) ≤ cout(v).

Let z = (zs, s ∈ S) be a rate vector achieved by assigning a set of edge rates to E and perform scheduling,

routing and coding. For one z, there could be many f(E) that can achieve z. Define a set Fz(E) = {f(E) :

z is achieved by f(E)}.

Definition: A edge rate vector f∗z (E) ∈ Fz(E) is irreducible with respect to z, if there does not exist f ′z(E) ∈ Fz(E)

such that
∑

v∈V

∑

e∈Out(v)

f ′z(e) <
∑

v∈V

∑

e∈Out(v)

f∗z (e).

Irreducible edge rate vector represents the most efficient edge rate assignment that achieves z. There can be multiple

irreducible edge rate vectors in Fz(E).

Under the problem setting of Theorem 2, we have Rs ∪ {s} = R and Hs = H for all s in S. Let N = |R| − 1.

The following Lemma describes an important property of any irreducible edge rate vectors, under our settings

in this section.

Lemma 2: For any feasible rate vector z, let f∗z (E) be irreducible with respect to z. We have

∑

h∈H

∑

e∈Out(h)

f∗z (e) ≤ N
∑

h∈Hs

∑

e∈In(h)

f∗z (e).

Proof: We show it by contradictory arguments. Suppose it is not true, then

∑

h∈H

cout(h) ≥
∑

h∈H

∑

e∈Out(h)

f∗z (e) = M
∑

h∈H

∑

e∈In(h)

f∗z (e) (15)

for some M > N .

We now show f∗z (E) can not be irreducible, by constructing a f ′z(E) as follows:

• for all e between any two nodes in S, let f ′z(e) = f∗z (e);

• for all e between any two nodes in H , let f ′z(e) = 0;

• for all r in R that originally send information to H in the assignment f∗z (E), let them send the same amount

of information
∑

h∈H

∑
e∈In(h) f∗z (e) to H . This is done by filling every helper h in H one by one, each at



28

an amount of at most 1
N cout(h). Such operation is doable according to (15). Each helper then replicates the

bits it receives from node r in R, and broadcast to all other nodes in R.

By carrying out all the above steps, all r in R in the assignment f ′z(E) have same information from other nodes

in R as in the assignment f∗z (E). Further, all r in R also have all the information that entering H from R in

the assignment f∗(E). If r originally gets coded packets from helpers in H in the assignment f∗z (E), then it can

generate the same coded packets by itself in the assignment f ′z(E). As such, all r in R in the assignment f ′z(E)

also have same information from helper nodes in H as in the assignment f∗z (E).

Therefore, z are still achieved by f ′z(E), and for

∑

h∈H

∑

e∈Out(h)

f ′z(e) = N
∑

h∈H

∑

e∈In(h)

f∗z (e) <
∑

h∈H

∑

e∈Out(h)

f∗z (e).

Summing the rates of all outgoing edges of all nodes for f ′z(E) and f∗z (E), we have

∑

v∈V

∑

e∈Out(v)

f ′z(e) <
∑

v∈V

∑

e∈Out(v)

f∗z (e).

As such, f∗z (E) is not irreducible, violating the problem setting.

Now we show packing Mutualcast trees is optimal under the problem settings. Given an achievable rate vector

z = (z1, . . . , z|S|), it must be achievable by at least one irreducible rate vector. Denote one of such vector as fz(E).

Considered a receiver node r in R, its aggregate consumption rate must be no more than the sum of fZ(e) over

all edges e in In(r). That is,
∑

s:r∈Rs
zs ≤

∑
e∈In(r) fZ(e). Note this is true even if network coding is allowed

in information transmission. Summing over all receiver nodes r in R, we have a necessary condition for z to be

feasible as follows:

N
∑

s∈S

zs ≤
∑

r∈R

∑

e∈In(r)

fZ(e)

=
∑

v∈V

∑

e∈In(v)

fZ(e)−
∑

h∈H

∑

e∈In(h)

fZ(e)

=
∑

v∈R

∑

e∈Out(v)

fZ(e) +
∑

h∈H

∑

e∈Out(h)

fZ(e)−
∑

h∈H

∑

e∈In(h)

fZ(e)

(by Lemma 2)

≤
∑

v∈R

cout(v) +
(

1− 1
N

) ∑

h∈H

∑

e∈Out(h)

fZ(e)

≤
∑

v∈V

cout(v)− 1
N

∑

h∈H

cout(h).

The sum of first two terms is the total system upload bandwidth, the third term is the bandwidth consumed by the

helper nodes. Thus the aggregate term is the upload bandwidth available to receivers.



29

An outer bound for z is then given by
{

z : zs ≤ cout(s), ∀s ∈ S; N
∑

s∈S

zs ≤
∑

v∈V

cout(v)− 1
N

∑

h∈H

cout(h)

}
.

It is straightforward to see that the above set is exactly the achievable rate regions of |S| independent multicast

sessions superposition on top of each other over the full mesh topology with node upload constraints, where session

s uses a set of N + |H|+ 1 Mutualcast trees to broadcast to all receivers in R at rate zs.

B. Proof of Lemma 1

Proof: Let (x∗, p∗) be one point in the non-empty set E, which is a saddle point for L as defined in Section III

and is an equilibrium point of the system. Similar to [9, Section 2.6] and [35, Section 3.4], we define a function

V as follows:

V (x, p) =
∑

m∈s,s∈S

∫ xm

0

(w − x∗m)
km

dw +
∑

j∈J

∫ pj

0

Cj(w − p∗j ) dw.

Define the tree price q = AT p. V ’s Lee derivative satisfies

V̇ ≤ (p− p∗)T (y − y∗)− (q − q∗)T (x− x∗)

+
∑

s∈S

∑
m∈s

(xm − x∗m)

(
|Rs|U ′

s(zs)−
∑

h∈m

bm
h G′h(y∗h)− q∗m

)

+
∑

j∈J

(pj − p∗j )
(
y∗j − Cj

)
+

∑

h∈H

(yh − y∗h)(G′h(y∗h)−G′h(yh)).

The first two terms simply cancel. Based on the unique structure of the optimization problem we consider, we

have q∗m, z∗ and y∗h are unique, U ′
s is a decreasing function, and G′ is an increasing function. We also have

(pj − p∗j )
(
y∗j − Cj

)
≤ 0 since y∗j ≤ Cj and p∗j = 0 if y∗j < Cj .

Therefore, we have V̇ ≤ 0. By La Salle principle, the system will asymptotically converge to an invariant set in

V0 = {x̄, p̄ : V̇ = 0}, which indicates
∑

m∈s x̄m = z∗s , ȳh = y∗h, and p̄j can only be nonzero at link j satisfying

y∗j = Cj .

Observed that z̄ and ȳH are unique overV0, the nonlinear system turns into a linear one. We consider the worst

case where prices on all links are positive in the converged set, and express the linear system as follows:

 z̄

ȳH


 = Bx̄, ˙̄x = KU ′ −KAHG′ −KAT p̄, ˙̄p = C−1Ax̄− 1,

where U ′ and G′ are constant matrices. The characteristic function of the above linear system, denoted by F , is a

product of a positive diagonal matrix and a skew-symmetric matrix, as follows:

F =


 K 0

0 C−1





 0 −AT

A 0


 .

Since all eigenvalues of a skew-symmetric matrix are either zero or purely imaginary, so do those of F . Consequently,

trajectories of the linear system will not converge.
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C. Proof of Theorem 4

Proof: Observed [z̄, ȳH ] is constant, if the system state p̄ is complete observable from [z̄, ȳH ], then p̄ can be

fully determined by all orders of Lee derivatives of [z̄, ȳH ] and must be constant. According to [36], this is true if

and only if for any λ, the eigenvalue of C−1AKAT ,

 C−1AKAT − λI

BKAT


 has rank |J |. (16)

If above condition is satisfied, then ˙̄p = 0 because:

dn z̄

dtn
= 0,

dn ȳH

dtn
= 0, n = 1, 2, . . . ⇒ Mp̄ = const.

If ˙̄p = 0, then ˙̄x = const. Observing that x̄ ≥ 0 in V0 and z is constant, we must have ˙̄x = 0. Therefore, V0 contains

only the equilibria of the system in (9)-(10), if the condition in (16) is satisfied.

D. Proof of Theorem 6

Proof: Let K = diag{kij , 1 ≤ i ≤ ns, 1 ≤ j ≤ n}. Let Ki be diag{kij , 1 ≤ j ≤ n}. As such, K =

diag{Ki, 1 ≤ i ≤ s}.

Under the P2P data dissemination setting, matrix B, representing the relationship between the source rate

z = [z1, · · · , zns
]T and the tree rates

x = [x11, · · · , x1n, x21, · · · , x2n, · · · , xns1, · · · , xnsn]T , can be expressed as follows:

B =




11×n 0 · · · 0

0 11×n · · · 0
...

...
. . .

...

0 0 · · · 11×n




.

The connectivity matrix A can be expressed as follows:

A = [A1, A2, · · · , Ans
],

where Ai = (ni − 1)Di + Ei, 1 ≤ i ≤ ns, Di = diag{dj , 1 ≤ j ≤ n} is an n× n 1-0 diagonal matrix with dj = 1

if peer j ∈ Ri ∪ {i}, and zero otherwise. Matrix Ei = [ejl, 1 ≤ j ≤ n, 1 ≤ l ≤ n] is an n × n 1 − 0 matrix with

ejl = 1 if j = i and l ∈ Ri ∪ {i} and zero otherwise.

Straightforwardly, we can verify that

A =
[

(n1 − 1)D1, (n2 − 1)D2, · · · (nns
− 1)Dns

]
+ B.

Denote the first term by D.



31

Our goal is to show that p̄ is completely observable through z̄ = Bx̄ in the linear system in (11). Since

Ax̄ = Dx̄ + z̄ and z̄ is a constant, we have ˙̄p = Dx̄ + const. As a result, the following gives an alternative

condition for p̄ to be completely observable through z̄: for any eigenvalue of matrix C−1DKAT , denoted by λ,

the following condition is satisfied: 
 C−1DKAT − λI

BKAT




has rank n.

We first work out the expression of C−1DKAT and BKAT . By direct computation and noticing kij = 0 for all

1 ≤ j ≤ ns and j 6= i, we derive BKAT as follows:

BKAT =




11×nK1A
T
1

...

11×nKns
AT

ns




=
[

U1 | U2

]
,

where U1 = diag{∑n
j=1 kij + kii}, and U2 = [uij , 1 ≤ i ≤ n− ns, 1 ≤ j ≤ ns], and uij = k(i+ns)j .

We express C−1DKAT as follows:

C−1DKAT = C−1
ns∑

i=1

(ni − 1)DiKiA
T
i

= C−1
ns∑

i=1

(ni − 1)Ki

[
(ni − 1)I + ET

i

]
.

It is straightforward to verify that C−1DKAT is a block matrix

 M1 0

M2 M3


 ,

where M1 and M3 are positive diagonal matrices and M2 is a positive matrix. The eigenvalues of C−1DKAT ,

denoted by λ, are simply the diagonal terms: for 1 ≤ i ≤ n,

λi = ξi =





(ni−1)ni

Ci
kii, 1 ≤ i ≤ ns;

1
Ci

∑
j:i∈Rj

(nj − 1)2kji, else.

By the assumption, ξi, 1 ≤ i ≤ n are mutually different, then C−1DKAT − λI has rank n− 1 for any λ = ξi.

When λ = ξi, the i-th diagonal entry of C−1DKAT − ξiI is 0. We now show the matrix containing both the i-th

row of BKAT and the rest n − 1 rows of C−1DKAT − λiI has full rank. Denote such matrix as V . First, it is

straightforward to verify V has full rank if λ = ξi for ns < i ≤ n.

Now we consider the case where λ = ξi for 1 ≤ i ≤ ns. In this case, V can be expressed as

V =


 V1 V2

M2 V3


 ,
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where V1 and V3 are diagonal matrices and V2 is zero everywhere except the i-th row. V has an interesting property

that as long as the j-th diagonal terms of V3 is negative if node (j + ns) is in Ri, then V has full rank n. Note

if node (j + ns) is not in Ri, then j-th diagonal terms of V3 will not be used in evaluating the rank of V and

hence can be any value. If the j +ns node is in Ri, then the j-th diagonal terms of V3 is simply ξi− ξns+j , which

satisfies

ξi − ξj+ns
≤ (ni − 1)

[
ni

kii

Ci
− (ni − 1)

ki(j+ns)

C(j+ns)

]
< 0.

Hence, the requirement is satisfied and V has full rank for all λ = ξi, 1 ≤ i ≤ n. Therefore, p̄ is completely

observable through z̄ = Bx̄ in the linear system in (11).

E. Proof of Theorem 7

Proof: Following the setting, we have km = ks for all m in s. Correctness of the theorem is easy to verify

for the case where ns = 1. In the rest of this proof, we focus on the case where ns ≥ 2.

Let KS = diag{ks, s ∈ S}. In the P2P multi-party conferencing scenario we consider, we have H ∩ S = ∅ and

H ∪ S = V . Let ns = |S| and nh = |H|. Under the setting, every helper forwards messages from a participant to

other ns − 1 participants. Matrix B is an then n× (n · ns) matrix, and can be expressed as follows:

B =




11×n 0 · · · 0

0 11×n · · · 0
...

...
. . .

...

0 0 · · · 11×n

(0|(ns − 1)Inh
) (0|(ns − 1)Inh

) · · · (0|(ns − 1)Inh
)




.

The connectivity matrix A can be expressed as follows:

A = [A1, A2, · · · , Ans
],

where

Ai = (ns − 2)In + Di +


 0 0

0 Inh


 , 1 ≤ i ≤ ns,

and Di is an n× n 1− 0 matrix with all entries of the i-th row being one and zero elsewhere.

To show that 
 C−1AKAT − λI

BKAT




has rank n for any eigenvalue λ of matrix C−1AKAT , it is sufficient to show BKAT has rank n. Let kΣ =
∑

s∈S ks,

we give BKAT as the following block matrix:

 KS [nIns

+ (ns − 2)1ns×ns
] (ns − 1)KS1ns×nh

(ns − 1)1nh×ns
KS (ns − 1)2kΣInh


 .
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Its determinant is given by 3

det((ns − 1)2k̄Inh
) det (KS [nIns

+ (ns − 2)1ns×ns
]

−nh

kΣ
KS1ns×ns

KS

)
.

We are done if the determinant is non-zero. Define a matrix Q as follows:

Q , nIns
+ (ns − 2)1ns×ns

− 1
k̄
1ns×nh

1nh×ns
KS .

To show Q has full rank, it is sufficient to show that (Q + QT ) is positive definite.

We notice that

1ns×nh
1nh×ns

= nh1ns×ns
= UT ΛU,

where

U =




1√
ns

−1√
2

0 · · · 0

1√
ns

0 −1√
2

· · · 0
...

...
...

. . .
...

1√
ns

0 0 · · · −1√
2

1√
ns

1√
2

1√
2

· · · 1√
2




,

and

Λ =




1
ns

0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0




.

For a nonzero vector ξ = [ξ1, ξ2, · · · , ξns
]T , we study U(Q + QT )UT as follows:

ξT U(Q + QT )UT ξ = 2nξT ξ + 2 (ns − 2)Λ− 2
nh

kΣ
ΛUKSUT

= 2nξT ξ + 2
ns − 2

ns
ξ2
1 − 2

nh

n2
s

k1

kΣ

ns∑

i=1

ξ1ξi +
nh

ns

kns

kΣ

(
ξ1ξns

− ξ2
1

)

>
nh

n2
s

k1

kΣ

[
(
n2

s + 1
)
ξ2
1 +

ns∑

i=2

ξ2
i

]
− 2

nh

n2
s

k1

kΣ

ns∑

i=1

ξ1ξi +
nh

ns

kns

kΣ

(
2ξ2

1 + ξ2
ns

)
+

nh

ns

kns

kΣ

(
ξ1ξns

− ξ2
1

)

=
nh

n2
s

k1

kΣ

ns∑

i=2

(ξ1 − ξi)
2 +

nh

ns

kns

kΣ
(ξ1 + ξns

)2

≥ 0.

Thus, U(Q + QT )UT is positive definite, and so does Q + QT . Consequently, Q has full rank.

3Determinant of a block matrix


 M1 M2

M3 M4


 is det(M4) det(M1 −M2M

−1
4 M3).
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F. Proof of Proposition 1

Proof: Clearly the problem in (13) and the problem in (3) have the same optimal solution.

According to (9)-(10), at the system equilibria, for all s ∈ S and m ∈ s, we have

˙̄xm = km|Rs|
(

αU ′
s(z̄s)− α

|Rs|
∑

h∈m

bm
h G′

h(ȳh)− 1
|Rs| q̄m

)
= 0,

where q̄m =
∑

j∈m bm
j p̄j is the sum of the queuing delay experienced by packets going through all the branches

on tree m.

In our solution, the total number of branches on a tree m is |Rs| if it does not contain a helper, and is |Rs|+ 1

if it contains one (note there is at most one helper per tree in our solution). Combining with this observation and

the definition of q̄m, the average queuing delay experienced by packets passing through a branch on tree m at the

equilibria is bounded by 1
|Rs| q̄m.

Let d̄m be the average queuing delay in packet delivery from source s to its receiver peers along tree m at the

equilibria. Noticing that a packet at most passes through two tree branches, we can bound d̄m as follows:

d̄m ≤ 2
|Rs| q̄m ≤ 2αU ′

s(z̄s)− 2α

|Rs|
∑

h∈m

bm
h G′

h(ȳh) ≤ 2αU ′
s(z̄s).


