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Abstract— Orthogonal frequency division multiplexing
(OFDM) is the key component of many emerging broadband
wireless access standards. The resource allocation in OFDM
uplink, however, is challenging due to heterogeneity of users’
quality of service requirements, channel conditions, and
individual resource constraints. We formulate the resource
allocation problem as a non-strictly convex optimization
problem, which typically has multiple global optimal solutions.
We propose a reduced primal-dual algorithm, which is
distributed, requires simple local updates, and probably
globally converges to a global optimal solution under easily
satisfied sufficient technical conditions. The performance of
the algorithm is studied through a realistic OFDM simulator
based on field measurements. Compared with the previously
proposed standard primal-dual algorithm, the reduced
algorithm decreases the total number of iterations by 80%
and the variance by 85%.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is
a promising technology for future broadband wireless net-
works. In OFDM, the entire frequency band is divided into
a large number of subchannels, and network resource can
be allocated flexibly over each of the subchannels. In this
paper, we consider the resource allocation problem in a single
cell OFDM uplink system, where multiple end users transmit
data to the same base station. This is motivated by several
practical wireless systems, such as WiMAX/802.16e, LTE for
3GPP, and UMB for 3GPP2. Given the channel conditions of
users at a particular time, we need to determine which subset
of users to schedule (i.e., transmit with positive rates), how
to allocate subchannels to the scheduled users, and the power
allocation across these subchannels.

Most previous work on resource allocation in OFDM
systems focused on the downlink case, where the base station
sends traffic to multiple end users subject to a total power
constraint. The optimization problem in the downlink case
is easier to solve and a centralized algorithm is reasonable
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to implement [1]. Due to different resource constraints in
the uplink case, however, the algorithms proposed for the
downlink case can not be directly applied to the uplink case.

Uplink OFDM resource allocation only receives limited
attention recently [2]–[8]. In [2], the problem was formulated
in the framework of Nash Bargaining with a focus of fair
resource allocation. The authors of [3] proposed a heuristic
algorithm that tries to minimize each user’s transmission
power while satisfying the individual rate constraints. In [4],
the author considered the sum-rate maximization problem
and derived algorithms based on Rayleigh fading on each
subchannel. The authors in [5]–[8] proposed several heuristic
algorithms to solve a problem similar as the one considered
here with additional integer channel allocation constraints.
None of the previous literature focused on solving the uplink
resource allocation problem optimally.

We formulate the resource allocation problem as a
weighted rate maximization problem, which is motivated by
the gradient-based scheduling framework in [9]–[11]. This
problem, however, is quite challenging to solve due to the
heterogeneity of users’ quality of service requirements, chan-
nel conditions, and individual resource constraints. In this
paper, we propose a distributed primal-dual algorithm that
achieves the optimal resource allocation in uplink OFDM
systems. Our key contributions are:
• Optimal algorithm with global convergence: the pro-

posed algorithm is provably globally convergent to one
of the global optimal solutions of the resource allocation
problem, despite non-strict convexity of the problem
under which setting primal-dual algorithms may not be
able to converge [12]–[14].

• Distributed algorithm with low complexity: the proposed
algorithm is distributed, requires simple local updates,
and demands only limited message passing.

• Simpler algorithm with better convergence: the pro-
posed algorithm only needs to iteratively update a subset
of all decision variables, and thus requires much fewer
iterations to converge compared with the previously
proposed standard primal-dual algorithm.

• OFDM model with self-noise: we consider an OFDM
model where the achievable data rate is calculated by
taking the “self-noise” into consideration. We demon-
strate how this realistic model will affect the optimal
solution and the corresponding algorithm design.

II. PROBLEM STATEMENT

We consider a single OFDM cell, where there is a set
M = {1, . . . , M} of users transmitting to the same base



station. Each user i ∈ M has a priority weight wi.1 The
total frequency band is divided into a set N = {1, . . . ,N}
of subchannels (e.g., tones/carriers). A user i ∈ M can
transmit over a subset of the subchannels (not necessarily
adjacent), with transmission power pi j over subchannel j ∈
N satisfying the individual power constraint, i.e.,

∑
j pi j ≤ Pi.

For channel j, it is allocated to user i with fraction xi j ≥ 0,
and the total allocation across all users should be no larger
than 1, i.e.,

∑
i xi j ≤ 1.

We define ei j as the received signal-to-noise ratio (SNR)
per unit power for user i on subchannel j. We further assume
that the channel conditions do not change within the time of
interests, i.e., we are looking at a resource allocation period
smaller than the channel coherence time.2

With perfect channel estimation, user i’s achievable rate on
subchannel j is ri j = xi jB log

(
1 +

pi jei j

xi j

)
, which corresponds

to the Shannon capacity of a Gaussian noise channel with
bandwidth xi jB and received SNR pi jei j/xi j. This SNR arises
from viewing pi j as the average power user i is allowed
to use on subchannel j; the corresponding instantaneous
transmission power is pi j/xi j when only a time fraction xi j

of the subchannel is allocated. For notation simplicity we
normalize the bandwidth to be B = 1 in the analysis.3

In a real OFDM system, imperfect carrier synchronization
and inaccurate channel estimation may result in “self-noise”
[15], [16]. We follow a similar approach as in [15] to
model self-noise and use an estimate value β to represent
the level of self-noise. With self-noise, user i’s feasible rate
on subchannel j becomes ri j = xi j log

(
1 +

pi jei j

xi j+βpi jei j

)
, where

pi jei j/(xi j + βpi jei j) depicts the effective SNR.
The key notations used throughout this paper are listed in

Table I. We use bold symbols to denote vectors and matrices
of these quantities, e.g., p = {pi j,∀i, j} and x = {xi j,∀i, j}.

Our objective is to maximize the weighted sum of the
users’ rates over the feasible rate-region defined as follows,

R(e) =

{
r ∈ <M

+ : ri =
∑

j∈N
xi j log

(
1+

pi jei j

xi j + βpi jei j

)
, ∀i ∈ M

}
,

(1)
where (x,p) ∈ X are chosen subject to

∑

i

xi j ≤ 1,∀ j ∈ N , (2)

∑

j

pi j ≤ Pi,∀i ∈ M, (3)

and the set

X :=
{
(x,p) ≥ 0 : 0 ≤ xi j ≤ 1, pi j ≥ 0

}
. (4)

1The priority weights wi’s are motivated by the gradient-based scheduling
framework in [9]–[11]. Assume each user i has a utility function Ui(Wi,t)
depending on its average throughput Wi,t up to time t. To maximize the
total network utility limT→∞ 1

T
∑T

t=1
∑

i Ui(Wi,t), it is enough to solve the
weighted rate maximization problem during each time slot t with wi =
∂Ui(Wi,t)/∂Wi,t .

2This is particularly suitable for fixed broadband wireless access (part
of the IEEE 802.16 standard), where users are relatively static and the
corresponding coherence time is long.

3A realistic value of B will be considered in the simulations (Section V).

TABLE I
K N

Notation Physical Meaning
N total number of subchannels
N set of all subchannels
M total number of users
M set of all users
i user index
j subchannel index

wi user i’s (dynamic) weight
ei j normalized SNR on subchannel j for user i
pi j power allocated on subchannel j for user i
xi j fraction of subchannel j allocated to user i
Pi maximum transmit power for user i
β self-noise coefficient

In many OFDM standards, xi j is constrained to be an
integer, in which case we can add the additional constraint
xi j ∈ {0, 1} for all i, j. The integer constraint makes the
resource allocation very difficult to solve, and various heuris-
tic algorithms dealing with such constraint are proposed
in [6]–[8], [17]. In this paper, we focus on the rate re-
gion defined by (1) to (4), i.e., no integer constraints are
considered. The corresponding optimal solution typically
contains fractional values of xi j’s. There are several practical
methods of achieving these fraction allocations. For example,
if resource allocation is done in blocks of OFDM symbols,
then fractional values of xi j can be implemented by time-
sharing the symbols in a block. Likewise, if there are several
tones in a subchannel, then fractional values of xi j’s can
also be implemented by frequency-sharing the tones in a
subchannel [18].

To summarize, we want to solve the following problem

max
r∈R(e)

∑

i

wiri, (5)

where rate ri and rate region R(e) are given in (1).

III. A REDUCED PRIMAL-DUAL ALGORITHM

We rewrite problem (5) in variables x and p as follows:
Problem 1 (Weighted Rate Maximization):

max
(x,p)∈X

∑

i∈M
wi

∑

j∈N
xi j log

(
1 +

pi jei j

xi j + βpi jei j

)
, (6)

subject to the per subchannel assignment constraints in (2)
and the per user power constraints in (3). Set X is given in
(4).

Although the objective function in (6) is concave, its
derivative is not well defined at the origin (x = 0,p = 0).
This motivates us to look at the following ε-relaxed version
of Problem 1:

Problem 2 (ε-relaxed Weighted Rate Maximization):

max
(x,p)∈X

∑

i∈M
wi

∑

j∈N
(xi j + εi j) log

(
1 +

pi jei j

xi j + βpi jei j + εi j

)
, (7)

where constants εi j take small positive value for all i and j.
The constraint set remains the same as in Problem 1.



By such relaxation, the objective function in (7) now has
derivative defined everywhere in the constraint set X. Thanks
to the continuity of the objective function, the optimal value
to Problem 2 can be arbitrarily close to that of Problem 1 if
ε = [εi j,∀i, j] is chosen to be small enough.

The constraint set of Problem 2 is convex, and the objec-
tive function in (7) is continuous and non-strictly concave.4

As such, Problem 2 has multiple optimal solutions, and there
is no duality gap between it and its dual problem.

The existence of derivatives allows us to write down
a primal-dual algorithm to pursue the optimal solution to
Problem 2. The Lagrangian for Problem 2 is as follows,

L(λ,µ,x,p) :=
∑

i, j

wi(xi j + εi j) log
(
1 +

pi jei j

xi j + βpi jei j + εi j

)

+
∑

i

λi

(
Pi −

∑

j

pi j

)
+

∑

j

µ j

(
1 −

∑

i

xi j

)
. (8)

By strong duality theorem, the optimal primal and dual
solutions must satisfy KKT conditions, i.e., for all i and j,

µ j ≥ 0,
∑

i

xi j ≤ 1, µ j

(∑

i

xi j − 1
)

= 0, (9)

λi ≥ 0,
∑

j

pi j ≤ Pi, λi

(∑

j

pi j − Pi

)
= 0, (10)

xi j ≥ 0, pi j ≥ 0, (11)

xi j

(
fi j(xi j, pi j) − µ j

)
≤ 0, (12)

pi j

(
gi j(xi j, pi j) − λi

)
≤ 0, (13)

where fi j(·) and gi j(·) are gradients of the objective function
in (7) with respect to xi j and pi j, respectively, and are given
by

fi j(xi j, pi j) = wi log
(
1 +

pi jei j

xi j + βpi jei j + εi j

)
−

wi(xi j + εi j)pi jei j

(xi j + βpi jei j + εi j)[xi j + (β + 1)pi jei j + εi j]
,

and

gi j(xi j, pi j) =
wiei j(xi j + εi j)2

(xi j + βpi jei j + εi j)[xi j + (β + 1)pi jei j + εi j]
.

The last two KKT conditions in (12) and (13) become
equalities if xi j > 0 and pi j > 0, respectively. It can be
verified that the optimal solutions of Problem 2, satisfying
above KKT conditions, are exactly the saddle points of the
Lagrangian function in (8). Since the primal problem has at
least one solution, the saddle point exists.

For notation simplicity, we define (a)+ = max(a, 0) and

(a)+
b =

{
a, b > 0,
max(a, 0), otherwise.

To pursue saddle points of the Lagrangian function, we
start by reviewing the standard primal-dual algorithm intro-
duced in [13]. Then we derive a new reduced primal-dual
algorithm which converges faster than the standard one.

4This can be verified by showing that the Hessian of the objective function
in Problem 2 is negative-semidefinite but not negative-definite [19].

For each i and j, we consider the following standard
primal-dual algorithm:

Algorithm SPD: Standard Primal-Dual Algorithm

ẋi j = kx
i j

(
fi j(xi j, pi j) − µ j

)+

xi j
, (14)

ṗi j = kp
i j

(
gi j(xi j, pi j) − λi

)+

pi j
, (15)

µ̇ j = kµj

(∑

i

xi j − 1
)+

µ j

, (16)

λ̇i = kλi
(∑

j

pi j − Pi

)+

λi

, (17)

where kx
i j, k

p
i j, k

µ
j and kλi are constants representing update

stepsizes. Here the derivatives on the left hand sides of (14)
to (17) are defined with respect to time.

We call a point (x,p,µ,λ) an equilibrium of Algorithm
SPD if and only if the corresponding derivatives in (14) to
(17) are zero for all i and j. We can show that the set of
equilibria of Algorithm SPD is equivalent to the set of global
optimal solutions of Problem 2 [13].

In Algorithm SPD, all variables xi j, pi j, µ j, and λi are
dynamically adapted, which might lead to slow convergence.
One way to address this is to reduce the number of dynam-
ically adapting variables. To achieve this, we will constrain
the algorithm trajectories onto a manifold that includes all
optimal primal and dual solutions.

We study the following manifold by setting (15) to zero,
i.e. ∀i, j,

0 =
(
gi j(xi j, pi j) − λi

)+

pi j
, (18)

which in turn implies
{

gi j(xi j, pi j) = λi, if pi j > 0,
gi j(xi j, pi j) ≤ λi, if pi j = 0. (19)

Based on the KKT conditions, the optimal primal and dual
solutions must lie on the above manifold.

After simplification we get the following expression of the
manifold:

pi j = hi j(xi j, λi), (20)

where hi j(·) is denoted by

hi j(xi j, λi) =



√
1 + 4β(β + 1) wiei j

λi
− (2β + 1)

2β(β + 1)ei j
(xi j + εi j)



+

wiei j−λi

when β , 0, and

hi j(xi j, λi) =

(
wiei j − λi

λiei j
(xi j + εi j)

)+

wiei j−λi

when β = 0.
Substituting (20) into (14) to (17), we obtain a new

reduced primal-dual algorithm as follows:



Algorithm RPD: Reduced Primal-Dual Algorithm

ẋi j = kx
i j

(
fi j(xi j, pi j) − µ j

)+

xi j
, (21)

µ̇ j = kµj

(∑

i

xi j − 1
)+

µ j

, (22)

λ̇i = kλi
(∑

j

pi j − Pi

)+

λi

, (23)

pi j = hi j(xi j, λi). (24)

Proposition 1: The set of equilibria of Algorithm RPD is
the same as the set of global optimal solutions of Problem
2.

This means that if Algorithm RPD converges, it reaches
a global optimal solution of the ε-relaxed weighted rate
maximization problem.

Compared to Algorithm SPD in (14) to (17) in which p is
dynamically adapted, p in the new Algorithm RPD is directly
computed from x and λ. Consequently, Algorithm RPD has
fewer dynamically adapting variables, hence is expected to
converge faster.

Similar as Algorithm SPD, Algorithm RPD can also be
implemented in a distributed fashion by end users and the
base station. End user i is responsible of updating xi j’s
and pi j’s as well as dual variables λi’s locally. During each
iteration, it sends the latest values of xi j’s to the base station,
but not the pi j’s or λi’s. The base station is responsible
of updating dual variables µ j’s for all subchannels and
broadcasting to the users. In particular, the base station does
not need to know users’ priority weights, power constraints,
or the power allocation. Both the communication complexity
and computation complexity per iteration are O(MN).

Next we will show that trajectories of Algorithm RPD con-
verge to its equilibria, and thus the global optimal solution
of Problem 2.

IV. CONVERGENCE OF THE REDUCED
PRIMAL-DUAL ALGORITHM

The key challenge of the convergence proof is the non-
strict concavity of the objective function in (7). It has
been well observed in literature that although primal-dual
algorithms globally converge to the optimal solution of
strictly concave optimization problem, they may oscillate
indefinitely and fail to converge when applying to non-
strictly concave optimization problem [12]–[14].

In this section, we study convergence of Algorithm RPD.
We first show that the trajectories converge to an invariant
set that contains all global optimal solutions of Problem 2.

Theorem 1: All trajectories of Algorithm RPD converge
to an invariant set V0 globally and asymptotically. Fur-
thermore, let (x∗,p∗,µ∗,λ∗) be a global optimal solution
of Problem 2 and (x,p,µ,λ) be any point in set V0, the
following is true for all i and j,

1) (x∗,p∗,µ∗,λ∗) is contained in V0;
2) µ j is nonzero only if

∑
i x∗i j = 1;

3)
∑

j p∗i j = Pi, and λi is a positive constant;

4) Over set V0, fi j(xi j, pi j) = fi j(x∗i j, p∗i j) = µ∗j , and
gi j(xi j, pi j) = gi j(x∗i j, p∗i j) = λ∗i ;

5) pi j/(xi j + εi j) = p∗i j/(x∗i j + εi j).
The detailed proof can be found in Appendix A of the

online technical report [20]. Results 1) to 4) will be used in
later analysis.

Result 5) is of independent interest. It implies that al-
though there can be multiple global optimal solutions to
Problem 2, the effective SNR achieved by user i on sub-
channel j is the same in all solutions.

Although all trajectories of Algorithm RPD may converge
to the desired equilibria in V0, they may also converge to non-
equilibrium points in V0 (if there are any). We now study the
conditions for V0 to contain only the desired equilibria, under
which Theorem 1 guarantees the convergence of Algorithm
RPD to a global optimal solution of Problem 2.

Plug result 4) of Theorem 1 into Algorithm RPD, and
recall that M is the total number of users and N is the total
number of subchannels. We find that V0 is exactly the set
that contains all trajectories of the following linear system
in (25) to (27) over set {x ≥ 0,µ ≥ 0}.

ẋ = KxAT
1 µ∗ − KxAT

1 µ, (25)
µ̇ = KµA1x − Kµ1, (26)
λ̇ = KλA2B(x + ε) − KλP = 0, (27)

where Kx is an MN × MN diagonal matrix with diagonal
terms equal to kx

i j’s, Kµ is an N × N diagonal matrix with
diagonal terms equal to kµj ’s, and Kλ is an M × M diagonal
matrix with diagonal terms equal to kλi ’s. B is an MN ×MN
diagonal matrix given by B = diag(bi j, ∀i, j), where bi j =

p∗i j

x∗i j+εi j
. The matrix A1 has a dimension of N × MN, and is

given by A1 = [IN , · · · , IN], where IN is an identity matrix
with dimension N. The matrix A2 has a dimension of M×MN
and is given by

A2 =



11×N 0 · · · 0
0 11×N · · · 0
...

...
. . .

...
0 0 · · · 11×N


,

where 11×N is an all one vector with dimension 1 by N.
We observe the following for the above linear system:
Lemma 1: For the linear system in (25) to (27), we have
1) every order Lie derivative of A2Bx is constant, that is
∀n ≥ 0:

dn

dtn A2Bx = constant,

where t denotes time;
2) starting from a non-equilibrium point, trajectories of

x and µ, following (25) and (26) respectively, do not
converge and form limit cycles.

Proof: (Sketch) From (27), we have

A2Bx = P − A2Bε = constant.

Result 1 can be derived by taking derivatives (with respect
to time) on both sides of the above equation. For result 2, it



can be verified that the transfer function matrix of the linear
system (25)-(26) is a product of positive diagonal matrix
and a skew-symmetric matrix. Hence, all eigenvalues of the
transfer matrix are purely imaginary.

Result 1 in Lemma 1 states that every order Lie derivative
of A2Bx is constant. By linear system theory, if the system
state µ is completely observable from A2Bx, then constant
A2Bx will lead to µ̇ equal to 0 and µ being constant. When µ
is constant, ẋ is constant according to (25). Combining with
the constraint that x ≥ 0 and A2Bx is constant, we can show
that ẋ is also zero if µ̇ is zero over the set {x ≥ 0,µ ≥ 0}.

In the following theorem, we state conditions for µ to
be completely observable from A2Bx, and summarize its
consequence on convergence of Algorithm RPD.

Theorem 2: All trajectories of Algorithm RPD converge
globally and asymptotically to the system equilibria if the
following condition holds:

[
A2BKxAT

1
KµA1KxAT

1 − σI

]
has rank N, (28)

where σ denotes any eigenvalue of matrix KµA1KxAT
1 .

Proof: By linear system theory, µ is completely ob-
servable from the constant A2Bx if and only if the complete
observability (28) holds [21]. Then the invariant set V0
contains only the equilibria of the linear system in (25) to
(27), which are the global optimal solutions of Problem 2.
Consequently, all trajectories of Algorithm RPD converge
globally and asymptotically to the global optimal solutions.

For the problem we studied in this paper, we can choose
properly the update stepsizes of Algorithm RPD to satisfy
the conditions in (28).

Corollary 1: Conditions (28) in Theorem 2 are satisfied
if both of the following are true

• Kx = kI (diagonal terms of Kx take the same value k);
• all diagonal elements of Kµ take different values.

The proof of Corollary 1 can be found in Appendix B in the
online technical report [20].

In this section, we have investigated the convergence of
Algorithm RPD by combining both La Salle principle from
nonlinear stability theory and complete observability from
linear system theory. The proof shows that Algorithm RPD
can globally and asymptotically converge to one of the
global optimal solutions of Problem 2 when satisfying the
conditions in Corollary 1.

V. SIMULATION RESULTS

We show the convergence and optimality of Algorithm
RPD over a realistic OFDM uplink simulator. Each user’s
subchannel gains ei j’s are the product of two terms: a
constant location-based term picked using an empirically
obtained distribution, and a fast fading term generated using
a block-fading model and a standard mobile delay-spread
model with a delay spread of 10µsec. The system bandwidth
is 5.12MHz consisting of 512 tones, which is further grouped
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Fig. 1. Primal and dual variable convergence of Algorithm RPD

into 64 subchannels.5 The symbol duration is 100µsec with
a cyclic prefix of 10µsec.

Unless otherwise specified, we assume the following pa-
rameter setting throughout all simulations. The variables
are initialized as xi j = 1/M, pi j = Pi/N, µ j = 0, and
λi = 0.01 max j(wiei j) for all i and j. The update stepsizes
in Algorithm RPD are chosen as kx

i j = 10−2, kµj = 10−1 + ε j,
and kλi = 10−2 for all i and j. Here, ε j’s for all channels
are chosen to be very small values and diverse from each
other, in order to meet the requirement of Corollary 1 as
the sufficient condition for system convergence. Each user
has a total transmission power constraint Pi = 2Watts.
Users’ channel conditions are randomly generated from the
simulator, and users have equal weights wi = 1 for all i.

A. Algorithm Convergence

We first show the convergence of Algorithm RPD with
40 users and 64 subchannels. Here we assume β = 0.
Fig. 1 shows the convergence of dual variables (upper two
subgraphs, λi for 40 users and µ j for 64 subchannels) and
primal variables (lower two subgraphs,

∑
j pi j for 40 users

and
∑

i xi j for 64 subchannels).
In Fig. 2, the upper subgraph shows how the dual value

and primal feasible value change with iterations. The dual
value is an upper bound of the global optimal solution of
Problem 2. The primal feasible value is a lower bound and
is calculated as follows: given the primal values of p(t) and
x(t) at iteration t, normalize so that they are feasible and the
resources are fully utilized (i.e., p̃i j(t) = pi j(t)Pi/(

∑
j pi j(t))

and x̃i j(t) = xi j(t)/(
∑

i xi j(t)) ), and calculate the achievable
rate accordingly. The bottom subfigure shows the relative

5Every 8 adjacent tones are grouped into one subchannel. This corre-
sponds to the “Band AMC mode” of 802.16 d/e and can help to reduce the
feedback overhead. For discussions on various ways of subchannelization,
see [1].
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Fig. 3. Average number of iterations and standard deviation of Algorithm
RPD and Algorithm SPD

errors of two curves plotted in the upper subfigure. If we
define the stopping criterion to be the relative error less than
5 × 10−3, then Algorithm RPD converges in 364 iterations.

B. Comparison with the Standard Primal-Dual Algorithm

In Fig. 3, we compare the convergence speed of Algorithm
RPD with Algorithm SPD. The self-noise coefficient is β =

0.01. We vary the number of users from 4 to 40. For a
fixed user population size, we randomly generated 10 sets
of different weights and channel conditions. We plot both
the average and the standard deviation (i.e., error bar) of the
number of iterations for both algorithms as the number of
users changes. In all cases, Algorithm RPD converges with
much fewer iterations (about 80% less than Algorithm SPD
in average) and a much smaller variance (about 85% less
than Algorithm SPD in average).

VI. CONCLUSIONS AND FUTURE WORKS

We presented a distributed optimal primal-dual resource
allocation algorithm for uplink OFDM systems. The key
features of the proposed algorithm include: (a) distributed
implementation by end users and base station with simple

local updates, (b) global convergence despite the existence
of multiple global optimal solutions, (c) reduced primal-dual
algorithm which eliminates unnecessary variable updates and
hence converges faster than the standard algorithm, and (d)
incorporating self-noise observed in the practical OFDM
systems. The absolute convergence speed of the proposed
algorithm, on the other hand, is still slow for real-time
implementation. Designing fast and near optimal heuristic
algorithms based on the proposed algorithm would be an
interesting future research direction.
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