
Privacy Preserving Joins
Yaping Li 1, Minghua Chen 2

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley, CA 94720, USA

1yaping@eecs.berkeley.edu
2minghua@eecs.berkeley.edu

Abstract— In this paper, we design a system for mutually
distrustful entities to perform privacy preserving joins, leveraging
the power of a memory-limited secure coprocessor. Under this
setting, we critique a questionable assumption in a previous
privacy definition [1] that leads to unnecessary information
leakage. We then remove the assumption and propose a new
definition. Based on this definition, we propose three correct
and provable secure algorithms to compute general joins of
arbitrary predicates, by utilizing available cryptographic tools in
a nontrivial way. We discuss different memory requirements of
our proposed algorithms, and explore how to trade little privacy
with significant performance improvement. In [2], we evaluate the
performance of our algorithms by numerical examples. We also
show the performance superiority of our approach over secure
multi-party computation in [2].

I. INTRODUCTION

We consider the problem of how entities compute arbitrary
join functions over their data in a privacy preserving way such
that no party learns more than what can be deduced from its
input and output alone. Two motivating applications of privacy
preserving joins in airport security and national healthcare
were presented in [1].

One straight forward solution to perform privacy preserving
join is to rely on a Trusted Third Party (TTP) to whom
all parties submit their inputs. This TTP then computes the
desired function and distributes the results. However, finding
such a TTP to be unanimously trusted by all parties is usually
difficult due to the high level of trust on the TTP.

Another approach is along the lines of the secure multi-
party computation problem where parties collectively perform
a computation over their data [3]. This approach assumes a
low level of trust among the parties, but its computation and
communication complexities are prohibitively high.

In this paper, we provide an alternative solution that strikes
a balance between the level of the required trust and perfor-
mance, by presenting a system that functions as a TTP, with
a secure coprocessor being the only trusted component.

A secure coprocessor is a programmable general purpose
computing environment that withstands physical and logical
attacks. One example of such commercially available devices
is IBM 4764 cryptographic coprocessors [4].

As pointed out by Agrawal et al. in [1], developing se-
cure applications on a secure coprocessor faces two main
challenges. Firstly, the limited memory capacities of secure
coprocessors preclude the trivial solution of performing a
computation inside a secure coprocessor with ever growing

database size inputs and outputs. Secondly, the access pattern
between a secure coprocessor and its host machine may serve
as a covert channel to convey useful information to an observer
sitting at the host machine. Our contributions are as follows:
• We critique a previous privacy definition in [1] for

algorithms designed for secure coprocessors and point
out the provably secure algorithms proposed in [1] leak
information unnecessarily.

• We propose three provably correct and secure algo-
rithms to compute general joins of arbitrary predicates
and discuss trade-offs among the algorithms. In [2], we
compare the their performance to the best known result
from secure multi-party computation, and show that our
algorithms are orders of magnitude faster.

Please refer to [2] for a complete review on the related work
and complete details of our solutions and results.

II. PROBLEM FORMULATION

1) System Overview: Our computation model consists of
a service provider and multiple service requestors. A service
provider is a host H to which the secure coprocessor T is
attached. Service requestors are data owners and recipients of
join results. The data owners send their data to the service
provider which computes the join and distributes the results
to the intended recipients. We assume authenticated and secure
communication channels between the service provider and
individual service requestors [5].

2) Threat Model: We distinguish two types of standard
adversary models in this paper: honest-but-curious and ma-
licious adversaries [3]. An honest-but-curious party follows
the prescribed protocol properly, but may keep intermediate
computation results, e.g. messages exchanged, and try to de-
duce additional information from them other than the protocol
result. A malicious adversary may deviate arbitrarily from the
protocol. Such deviation can be detected in a systemic and
effective way, as described in [1] and [2]. As such, we assume
honest-but-curious adversaries in the rest of our analysis.

3) Definition of Privacy Preserving: The authors in [1]
define the safety of a join algorithm designed for a secure
coprocessor as follows:

Definition 1: [Safety of a Join Algorithm] Assume we have
database relations A, B, C and D, where |A| = |C|, |B| =
|D|, A and C have identical schema, as do B and D. For
any given N (representing the maximum number of tuples
in B (resp. D) that match a tuple in A (resp. C)), let JAC

(respectively, JCD) be the ordered list of server locations read
and written by the secure coprocessor during the join of A
(resp. C) and B (resp. D). The join algorithm is safe if JAC

and JCD are identically distributed.
The ultimate goal of a privacy preserving join algorithm is

to reveal no information other than what can be inferred from
the join result. We point out two problems in Definition 1
that cause algorithms satisfying the definition to leak more
information than what we expect from this goal.

Firstly, the assumption of the number N permits join
algorithms to leak the knowledge of N by definition. Such
information leakage is not justified in [1] and might be critical.
As shown in later sections, this assumption is also unnecessary.

Secondly, Definition 1 does not explicitly prescribe the join
result, which allows algorithms to produce a superset of the
real join result and leak information unnecessarily. We show
in our technical report [2] that the provable safe algorithms
in [1] under Definition 1 leak statistics of the number of joins
per tuple in A. This knowledge would not be available to a
recipient had it received only the real join tuples.

In terms of performance, The algorithms in [1] outputs a
fixed amount of N |A| join tuples regardless of the actual join
result size. This is not ideal for most of the applications.

In this paper, we define privacy preserving joins with
respect to honest-but-curious adversaries. We distinguish our
definition from Definition 1 in three aspects: a) removal of the
assumption of N , b) an explicit requirement of a join algorithm
to compute exact join results with no additional padding, and
c) extension to the multi-party scenario.

According to Definition 2, we say a join algorithm is privacy
preserving if its access pattern is independent of the inputs.

Definition 2: [Privacy Preserving Joins]Let f : Dm 7→ D
be an m-way join function where D is any database and A an
algorithm that computes f . Assume arbitrary databases Ā =
(A1, . . . , Am) and B̄ = (B1, . . . , Bm) where |Ai| = |Bi|,
Ai and Bi have identical schemas respectively, and |f(Ā)| =
|f(B̄)|. Let JĀ(resp. JB̄) be the ordered list of host locations
a secure coprocessor reads and writes during the execution of
A on Ā (resp. B̄). Then A is privacy preserving if JĀ and
JB̄ are identically distributed.

III. PRELIMINARIES

A. Assumptions and Notations

Assume J participating databases D1, . . . , DJ . Let D =
D1 × · · · ×DJ , L = |D|, I = {1, . . . , L}, and iTuple be an
element in D. Let R denote the set of the join results with size
S. For ease of exposition, we assume that D is materialized in
H’s memory. When joining J tuples, our proposed algorithms
refer to the logical index of the corresponding iTuple in D
instead of the indices of the J tuples in their respective tables.

Let a decoy be a string of a fixed pattern with the same
length as a real join result. To avoid information leakage,
T outputs a decoy when it needs to output something but
there is no real join result. oTuple stands for an output tuple.
An oTuple can be either a real join result or a decoy and
a tuple can be either an iTuple or oTuple. Without loss of

generality, We assume that an iTuple and oTuple have the
same constant size. Let M in unit of tuples be the free memory
of T and we assume that M is dedicated to the storage of
oTuples. In our discussion of communication cost, we state
the cost in terms of tuples.

B. Oblivious Sort

All our algorithms require removing the generated decoys
in a privacy preserving way. An oblivious sorting algorithm
sorts a list of encrypted elements such that no observer learns
the relationship between the position of any element in the
original list and the output list. To keep µ elements (e.g. join
results) in a list of length ω, we apply oblivious sort on smaller
portions of the list repeatedly to achieve high efficiency.

Firstly, we create a buffer of µ + ∆ elements, where ∆ is
the size of a swap area. We copy µ + ∆ elements from the
source list to the buffer, and obliviously sort them to keep the
selected elements in the top µ positions in the buffer. Since at
most µ elements can be selected, the bottom ∆ elements in the
swap area can be overwritten. We copy another ∆ elements
from the source list, and overwrite the bottom ∆ elements.
We obliviously sort the buffer again to keep all the selected
elements in the top positions.

This process is continued until all elements in the source
list is processed. The top µ elements in the buffer are then the
desired elements to keep. The total number of comparisons
in the whole process, denoted as C(ω,µ)(∆), is given by
C(ω,µ)(∆) = ω−µ

∆
µ+∆

4 [log2(µ+∆)]2. The number of element
transfers is 4C(ω,µ)(∆).

Given ω and µ, we minimize the total number of element
transfers between the secure coprocessor and the host, by
carefully selecting ∆. The optimal ∆, denoted as ∆∗, can
be found by solving the following optimization problem:

∆∗ = arg min
∆>0

C(ω,µ)(∆). (1)

IV. PRIVACY PRESERVING JOINS

In this section, we present three join algorithms designed
for a secure coprocessor T , and discuss their communication
cost and privacy preserving levels. Please refer to [2] for the
algorithm details, communication cost and proof of correctness
and security.

A. Algorithm A1: for Secure Coprocessors with Small Memory

Intuitively, if T always outputs a tuple regardless of whether
there is a real join or not, then the communication patterns
between T and H are independent of the contents of the
participating databases. Consequently, an adversary does not
learn any information on the contents of the participating
databases, by observing the traffic between the T and H. At
the end, T obliviously filters out the decoys and outputs the
real results.

B. Algorithm A2: for Secure Coprocessors with Large Mem-
ory

A significant portion of the communication cost of Algo-
rithm A1 comes from obliviously filtering out the L − S

decoys. One way to remove this portion of cost is to only
write out the real results as follows. For participating databases
D1, . . . , DJ , T sequentially reads iTuples in a pre-defined
order. If the current iTuple results in a join result, T stores
the join tuple in its memory.

The secure processor T writes out the stored M results only
after scanning all L iTuples. T keeps repeating this process
until it outputs all S join results. Consequently, M results are
written out to the host machine every L tuples; the write cycle
is L tuples and the write efficiency is M

L .

C. Algorithm A3: Trading Privacy with Efficiency

In Algorithm A2, the write cycle is L tuples and the write
efficiency is M

L . When M ¿ S, T spends a large number of
write cycles to output all S join results, resulting in a high
read cost. One way to improve the efficiency is to shorten the
write cycle.

We assume that T knows L and S. In addition, T is able
to randomly read every iTuple once and only once. This
can be done by reading the tuples according to a random
order generated on-the-fly by a Pseudo Random Number
Generator [2].

To achieve better write efficiency, T processes the L
iTuples in a random order in blocks of size n. While T
is processing a block, it stores the join results in its memory.
T writes all stored results to H after finishing processing one
block. It repeats the process until completing all blocks. T
then obliviously filters out the decoys and outputs the real
results.

If the number of join results K generated for a block is no
more than the memory size, i.e., K <= M , then T simply
writes out M oTuples with M −K decoys. In this case, T
can achieve a write efficiency of M/n, which is better than
that of Algorithm A2.

However, in the case where K > M , T will not able to
output all the join results in one pass and will need to access
this block again to output the missing results. These “salvage”
actions may lead to information leakage and compromise the
privacy preserving property of the join process. We refer to
this situation as a blemish case.

It is certainly a design goal to minimize the probability of
such a blemish case. Let x(n) be a random variable denoting
the number of join results in n randomly selected iTuples.
The probability of x(n) ≤ M is the same as the probability
of having at most M balls of a certain color out of n balls,
which are selected from L balls in a non-replacement fashion.
By a simple counting argument, this probability is given by

P [x(n) ≤ M] =
1(
L
n

)
M∑

k=1

(
L− S

n− k

)(
S

k

)
(2)

The probability for a blemish case to happen, i.e., at least
one of the blocks contains more than M join results, is
bounded by L

n P [x(n) > M], the so called union bound. We
denote this bound as PM (n). It is then crucial to make PM (n)
acceptably small.

Let 1−ε be a privacy preserving parameter where ε ∈ [0, 1]
can be chosen to be arbitrarily small. The optimal block size,
denoted by n∗, is the minimum n that satisfies PM (n) < ε.
n∗ can be found by solving the following problem:

n∗ = arg min
n>0

n subject to PM (n) < ε. (3)

The significance of n∗ is that, if T processes iTuples by this
optimal block size n∗, then a blemish case will happen with
probability at most ε.

Following the above analysis, we propose Algorithm A3
with a privacy preserving guarantee of probability 1−ε where
ε ∈ [0, 1].

D. Comparison of Algorithms A1, A2 and A3
We compare levels of privacy preserving and communica-

tion costs of Algorithms A1, A2, and A3 in Table I.

Privacy Preserv- Communication Cost
-ing Level

A1 100% 2L + L−S
∆∗ (S + ∆∗)[log2(S + ∆∗)]2

A2 100% S + d S
M
eL

A3 (1− ε)× 100% 2L + d L
n∗ eM +

d L
n∗ eM−S

∆∗ (S + ∆∗)[log2(S + ∆∗)]2
(for the case ε 6= 0 and M < S)

TABLE I
LEVEL OF PRIVACY PRESERVING VS. COMMUNICATION COST.

In Table I, Algorithm A1 and A2 guarantee 100% privacy
preserving, while Algorithm A3 guarantees (1−ε)× 100% pri-
vacy preserving. However, as ε can be chosen to be arbitrarily
small to meet practical needs, Algorithm A3 is practically as
secure as Algorithm A1 and A2.

In general, Algorithm A1 has the highest communication
cost among the three algorithms. The communication cost
of Algorithm A2 mainly depends on the write efficiency
M
L , while the communication cost of Algorithm A3 mainly

depends on the cost associated with oblivious filtering.
For large L and small M with respect to S, the write

efficiency of an algorithm dominates the communication cost.
Algorithm A2 has a low write efficiency; hence, Algorithm
A3 outperforms Algorithm A2 in terms of communication
cost. In cases where M is close to S, Algorithm A2’s write
efficiency M/L is high with respect to the optimal value S/ L.
Consequently, Algorithm A2 might have less communication
cost than Algorithm A3.

REFERENCES

[1] R. Agrawal, D. Asonov, M. Kantarcioglu, and Y. Li, “Sovereign joins,”
in ICDE 2006, Atlanta, Georgia, April 2006.

[2] Y. Li and M. Chen, “Privacy preserving joins,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2007-
137, Nov 2007. [Online]. Available: http://www.eecs.berkeley.edu/Pubs/
TechRpts/2007/EECS-2007-137.html

[3] O. Goldreich, Foundations of Cryptography. Cambridge University
Press, Aug. 2001, vol. 1: Basic Tools.

[4] IBM Corporation, “IBM 4764 Model 001 PCI-X cryptographic coproces-
sor,” 2005.

[5] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Trans.
on Info. Thry., vol. IT-22, no. 6, pp. 644–654, November 1976.

