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Proactive Serving Decreases User Delay
Exponentially: The Light-tailed Service Time Case

Shaoquan Zhang, Longbo Huang, Minghua Chen, and Xin Liu

Abstract—In online service systems, the delay experienced
by users from service request to service completion is one of
the most critical performance metrics. To improve user delay
experience, recent industrial practices suggest a modern system
design mechanism: proactive serving, where the service system
predicts future user requests and allocates its capacity to serve
these upcoming requests proactively. This approach complements
the conventional mechanism of capability boosting. In this paper,
we propose queuing models for online service systems with
proactive serving capability and characterize the user delay
reduction by proactive serving. In particular, we show that
proactive serving decreases average delay exponentially (as a
function of the prediction window size) in the cases where
service time follows light-tailed distributions. Furthermore, the
exponential decrease in user delay is robust against prediction
errors (in terms of miss detection and false alarm) and user
demand fluctuation. Compared to the conventional mechanism
of capability boosting, proactive serving is more effective in
decreasing delay when the system is in the light-load regime.
Our trace-driven evaluations demonstrate the practical power of
proactive serving: for example, for the data trace of light-tailed
Youtube videos, the average user delay decreases by 50% when
the system predicts 60 seconds ahead. Our results provide, from
a queuing-theoretical perspective, justifications for the practical
application of proactive serving in online service systems.

Index Terms—Proactive serving, queuing model, user delay

I. INTRODUCTION

The fast growing number of personal devices with Internet
access, e.g., smart mobile devices, has led to the blossoming
of diverse online service systems, such as cloud computing,
cloud storage, online social networks, mobile Internet access,
and a variety of online communication applications. In online
service systems, delay experienced by users from service
request to service completion is one of the most critical
performance metrics. For example, experiments at Amazon
showed that every 100-millisecond increase in the loading time
of Amazon.com decreased revenues by 1% [3]. Google also
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found that an extra 0.5 seconds in search page generation time
decreased traffic by 20% [3].

Traditionally, to reduce user delay and to improve quality of
experience, service providers often resort to capacity boosting,
i.e., increasing the service capacity by deploying more servers.
However, such a mechanism may be expensive as it needs to
provision for peak demand, which results in low average uti-
lization due to the bursty nature of service requests, especially
when user arrivals are time-varying.

Recent industry practices suggest proactive serving, i.e.,
serving upcoming requests before they arrive, as a mod-
ern approach for reducing user delay. Proactive serving is
based on a key observation: many service requests are pre-
dictable. This technique has been widely used in computer
systems, for example in cache pre-loading and command pre-
fetching1. Similarly, in cloud service systems, it is common
to have predictable service requests. For example, in cloud
computing platforms, service jobs, such as indexing, page
ranking, backing up, crawling, and performing maintenance,
are often predictable. In fact, in an industrial-grade cloud
computing system, researchers observe a significant portion,
e.g., up to 76%, of the workload to be periodic and thus
predictable [4]. Furthermore, individual user behaviors often
follow predictable patterns [5]. For instance, if a user watches
sports news regularly in the morning, then such content can
be pre-loaded to the user’s device.

Recently, Amazon launched Amazon Silk, a mobile web
browser for its Kindle Fire [5]. All web traffic from the
browser goes through the Amazon cloud and is managed by
the servers in the cloud. Based on cached user traffic, the cloud
uses machine learning techniques to predict what users will
browse next. When service in the cloud is available, web pages
that are likely to be requested are pre-loaded to users’ tablets.
Thus, when a user clicks on the corresponding content, it loads
instantly, reducing user delay to zero. This technique speeds
up request responses and improves user browsing experience.

The above mentioned application scenarios suggest proac-
tive serving as a new design mechanism for reducing user
delay: based on user request arrival prediction, the system
can allocate its capacity proactively and pre-serve upcoming
requests, reducing the delay experienced by users. This obser-
vation naturally leads to two fundamental questions:

• How much can we reduce user delay by proactive serv-
ing?

1Cache pre-loading means that the system can send contents to users’
caches before users request them. Command pre-fetching means that the
system can run commands before they are actually called.
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• How does proactive serving compare to capacity boosting
in reducing user delay?

Motivated by these open questions, in this paper, we inves-
tigate the fundamentals of proactive serving from a queuing
theory perspective. In particular, we study proactive serving
with a prediction window of size ω, in which one has the
ability to predict upcoming requests and serve them when
capacity allows. We investigate how proactive serving reduces
user delay as a function of ω. We also consider the case of
imperfect prediction. As discussed in Section II, this work
differs from all existing ones in its model and problem setting.
It provides theoretical foundation for using proactive serving
to reduce user delay.

Challenges. We address two technical challenges in our
study. First, a generic approach to obtain average user delay is
to model the queuing system with proactive serving capability
(based on perfect or imperfect prediction) using a multi-
dimensional Markov chain. Then we compute its steady-state
distribution and subsequently average user delay. However,
it is highly non-trivial to derive closed-form expressions for
steady-state distributions of multi-dimensional Markov chains,
and it is hard to generalize this approach to scenarios with
imperfect prediction. We address this challenge by developing
a new approach that relates the user delay distribution with
proactive serving to that without proactive serving. This allows
us to obtain the delay distribution without proactive serving,
which is usually a less complicated task, and then to derive
the desired one with proactive serving. This simple approach
reveals insights into the delay reduction enabled by proactive
serving. More importantly, the approach can be generalized to
various queuing models.

Second, even with our new approach, it is still non-trivial to
characterize user delay with proactive serving in the presence
of prediction errors. We carefully model the system behavior
under two types of prediction errors, namely miss detection
and false alarm, as a priority queue. Through an involved
derivation, we obtain closed-form expressions for the average
user delay. The expressions allow us to reveal the exact
relationship of the delay performance and system design
parameters.

Contributions. We make the following contributions.
B In Section III, we present the first set of queuing

models for service systems with proactive serving capability.
These models allow us to leverage queuing theory tools to
characterize the delay reduction by proactive serving.

B In Section IV, for stable M/M/1 queuing system with
proactive serving capability, we show that the average user
delay decreases exponentially in the prediction window size ω.
Furthermore, based on the insights from the M/M/1 systems,
we prove that exponential delay decrement holds for the more
general G/G/1 queuing system.

B In Section V, we study the impact of imperfect prediction
on delay reduction. We consider two types of prediction errors:
miss detection and false alarm. We construct queuing models
for the study and characterize the average user delay under
proactive serving with imperfect prediction. We show that
in the presence of miss detection, average user delay still
decreases exponentially in the prediction window size, but it

converges to a positive constant determined by the fraction
of miss detections (instead of converging to zero as would
happen with perfect prediction). Meanwhile, in the presence
of false alarm, we show that there exists an “effective service
rate” determined by both the system service rate and the
fraction of false alarms. User delay decreases exponentially
to zero as prediction window size increases if the actual user
request arrival rate is smaller than the effective service rate;
and otherwise it decreases to a positive constant determined
by the fraction of false alarms.
B In Section VI, by comparing proactive serving to capacity

boosting, we show that proactive serving is more effective in
reducing user delay in a light-load regime.
B In Section VII, we evaluate the performance of proactive

serving using simulations based on real-world traces. Specifi-
cally, for the data trace of light-tailed Youtube videos, user
delay decreases by 50% when the system can predict 60
seconds ahead. For the data trace of heavy-tailed Youtube
videos, user delay decreases by 50% when the system can
predict 84 seconds ahead. We note that there are efficient
mechanisms for predicting user requests in the near future for
industrial-grade VoD systems [6].

II. RELATED WORK

In [7], the authors study how prediction can be used to
facilitate queue admission control, i.e., which requests should
be redirected away (up to certain rate) in order to minimize
the average queue length. They find that, in the heavy-load
regime (arrival rate λ → 1), when the size of look-ahead
window is O(log 1

1−λ ), the achieved average queue length is
the same as that when we have complete future knowledge.
Similar idea is also adopted in [8] to reduce waiting time for
patients in Emergency Department by proactively managing
the admission control. These two works use future information
to control admission of requests into the system, instead
of pooling idle service capacity to proactively serve future
requests as we explore in this paper.

When the system can pre-serve upcoming requests based on
prediction, the authors in [9] consider predictive scheduling
in controlled queuing systems. They propose the Predictive
Backpressure algorithm to achieve the optimal utility perfor-
mance. With proactive serving, the authors in [10] show that
the probability of server outage in wireless networks decreases
exponentially with the size of look-ahead window. They also
show that appropriate use of prediction by primary users
can improve the gain of the secondary network at no cost
of primary users in cognitive networks. The authors in [11]
explore the idea of proactive serving in data networks to shape
user demand so that the time average expected cost incurred by
the service provider is minimized. In [12], the authors combine
smart pricing and proactive content caching in mobile service
system and show that the combination can increase the profit
of the service provider while at the same time reducing end-
users’ costs. In [13] and [14], the authors provide a prediction
model and develop techniques for proactively serving web
contents. What differentiates our work from theirs is that we
study the effect of proactive serving on decreasing user delay.
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In addition, there have been many works on proactively
serving mobile content based on predicting mobile user traffic
and mobility patterns [15], [16], [17], [18], [19]. In [20], the
authors present a system architecture for mobile pre-fetching
where informed pre-fetching is structured as a library to which
any mobile application may link. For general computer sys-
tems, the authors in [21], [22], [23] explore prediction and pre-
fetching for file systems, databases, and DRAM respectively.
These works mainly focus on practical system design and call
for theoretical investigation.

III. MODEL

A. Service System without Proactive Serving

Consider a service system shown in Fig. 1. Incoming user
requests arrive at the system according to a continuous process
{A(t)}t. For all t, A(t) ∈ {0, 1} where A(t) = 1 if a
user request arrives at t and A(t) = 0 otherwise. Servers in
the system provide service upon user requests. When a user
request arrives, the request will be served if there is idle service
capacity. Otherwise, the request waits in the queue Q(t) until
service is available. The request will leave the system upon
service completion. We define user delay as the time from user
request arrival till its departure.

Traditionally, queuing theory has been applied to model
such a system and study its performance. In particular, queuing
theoretic analysis suggests boosting system capacity as a prin-
cipled mechanism to reduce average user delay. For example,
one can use standard M/M/1 queuing model to represent the
service system in Fig. 1, and it is well known that average user
delay decreases inverse-proportionally in service capacity.

B. Service System with Proactive Serving

We now consider a service system that can proactively serve
upcoming user requests based on arrival prediction. For the
ease of presentation, we consider perfect prediction of arrivals
in this section and in Section IV, and we study imperfect
prediction in Section V.

As shown in Fig. 2, we assume that the system can predict
user request arrivals ω amount of time ahead. That is, at time t,
the system knows exactly in (t, t+ω) the request arrival epochs
and the corresponding users who generate the requests2. We
assume that the system does not know the service time, i.e.,
how long it takes to serve a request. The rationale behind the
assumption is that even if the system knows the workload of
the request (e.g., size of a video), it is still difficult for the
system to know exactly how long it takes to serve the request
because of the dynamics in server capabilities and the time-
varying available bandwidth between servers and users.

Based on arrival prediction, the system can serve upcoming
requests proactively. The user requests that are pre-served will
not enter the system. For the service system without proactive
serving capability, servers remain idle when there is no request
in the system. In contrast, for the service system with proactive

2For service systems that are content-centric, we consider the timescale at
which the content refresh/update is much larger as compared to the prediction
horizon. Thus, contents delivered proactively to a customer will not be
outdated by the time the customer actually requests them.
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Fig. 1. A single queue service system.
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Fig. 2. Prediction model: Each upright arrow represents a request
arrival. At time t, the system knows in (t, t+ ω) the request arrival
epochs (red solid arrows) and the corresponding users who generate
these requests by its prediction mechanism.

serving capability, server capacity can be allocated to serve
upcoming requests when there is no request in the system.

We depict the service system with proactive serving capa-
bility under perfect prediction in Fig. 3. In the figure, Q0(t)
denotes the queue that stores the requests that have arrived
at the system and are waiting for service at time t. Wω(t)
denotes the prediction window of size ω. Each user request
first goes through the prediction window Wω(t) and then
enters the queue Q0(t). The servers can serve the requests in
both Q0(t) and Wω(t). We remark that each request entering
Wω(t) will transit to Q0(t) after exactly ω amount of time,
if it has not been pre-served completely before that. Requests
will not queue up in Wω(t). Thus Wω(t) should be viewed
as a pipe rather than a queue. User delay corresponds to the
time that the request spends in Q0(t) and with the server, and
it does not include the time spent in Wω(t). Slightly abusing
the notations, we sometimes use Q0(t) and Wω(t) to denote
their corresponding sizes respectively. For example, Wω(t) can
represent the number of arrivals within the prediction window
that have not been pre-served completely at time t.

In this paper, we assume no constraints on the user side
when proactive serving is conducted. For example, when cache
pre-loading scenario is considered, we assume that there is
no limit on user’s cache size and the cache can be always
accessed.

C. Queuing Models for Service System with Proactive Serving
Capability

In this paper, we are interested in understanding the funda-
mental benefit of proactive serving on user delay reduction.
For this purpose, we extend the classical queuing model to
capture the proactive serving behaviors.
• In the classical queuing model, requests arrive randomly

at the system. If all servers are busy, requests will wait in
the queue for service. Servers serve requests according to
a service policy. The amount of time to serve a request
is random.

• In our extended model, there is also a prediction window
(modeled as a pipe). Each request first goes through the
pipe before entering the queue. Servers can serve requests
in either the queue or the pipe according to a service
policy.
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Fig. 3. Service system with perfect prediction: Q0(t) represents the
queue of the requests that have arrived at the system and are waiting
for service at time t. Wω(t) is the prediction window of size ω. Each
arrived user request first goes through the prediction window Wω(t)
and then enters the queue Q0(t). The servers can observe and serve
the requests in both Q0(t) and Wω(t).

In the classical queuing theory, Kendall’s notation is widely
used to describe a queuing system. We extend it to describe
the service system with proactive serving capability as

A/S/k[ω]/POLICY.

Here A represents the distribution of request inter-arrival time,
S represents the distribution of service time, k is the number
of servers, and POLICY denotes the service discipline, such as
First-Come-First-Served (FCFS). [ω] denotes that the system
can predict upcoming arrivals ω amount of time ahead and
serve them proactively.

For example, one can use M/M/1[ω]/FCFS to model the
system in Fig. 3. Both the inter-arrival time and the service
time follow exponential distributions. There is a single server
in the system. The system can predict upcoming arrivals ω
amount of time ahead and serve them proactively. When the
server becomes idle, it first examines Q0(t). If Q0(t) > 0, the
server serves the request at the head of Q0(t). If Q0(t) = 0,
the server then checks the prediction window Wω(t) and pre-
serves the earliest request in it.

A queuing system is stable if arrivals happen slower than
service completions, and is unstable otherwise. Unstable sys-
tems do not have steady-state distributions and consequently
do not have well-defined average user delay. Thus we only
study user delay for stable queuing systems. To focus on
characterizing the benefit of proactive serving and avoid the
complication of service policy design, we assume FCFS as
the service policy in the rest of the paper, unless mentioned
otherwise. Our analysis shows that even under the simple
scheduling policy FCFS, proactive serving is very effective
in reducing user delay.

IV. PROACTIVE SERVING WITH PERFECT PREDICTION

In this section, we start from the simple M/M/1[ω] model
and show that proactive serving can decrease the average user
delay exponentially. Based on the insights from the M/M/1[ω]

model, we extend the analysis to the general G/G/1[ω] model
and show that exponential delay decrement holds regardless
of inter-arrival time and service time distributions.

)(tQ p
server)( ω+tA

Fig. 4. M/M/1: The arrival process is {A(t+ω)}t. Service times of requests
are independent and identically exponentially distributed with mean 1/µ. The
initial value Qp(0) is |A(0 : ω)|+Q0(0). The service policy is FCFS.

We remark that we have also obtained similar exponen-
tial user-delay decrement results for the Markovian/Geo/1[ω]

model, in which the user request arrival rate is time-varying,
governed by an underlying Markov process. We skip the
details here due to the space limitation and refer interested
readers to our technical report [24].

A. Average User Delay of M/M/1[ω]

In an M/M/1[ω] model, there is a single server. User requests
arrive according to a Poisson process {A(t)}t with rate λ,
and service times of requests are independent and identically
distributed according to an exponential distribution with pa-
rameter µ. The system can predict upcoming arrivals ω amount
of time ahead and serve them proactively. Define Dω as the
user delay and ρ = λ

µ .
When ω = 0, i.e., no proactive serving, the M/M/1[ω] model

reduces to the classical M/M/1 queuing model. It’s well known
that the average user delay is given by

E
[
D0
]

=
1

µ− λ
. (1)

The probability density function of D0 is also known as [25]

fD0(t) = (µ− λ)e−(µ−λ)t, t ≥ 0. (2)

To characterize the average user delay with proactive serv-
ing, i.e., E[Dω], a generic approach is to discretize the
system and then use a multi-dimensional Markov chain to
model the number of requests in queue and the prediction
window, where user requests passing through the window
can be captured by moving from one state to its subsequent
state in the Markov chain. If we can compute the steady-state
distribution of the multi-dimensional Markov chain, then we
can compute the average number of user requests in the queue,
and consequently the average user delay by using Little’s Law.
However this approach suffers from two limitations. One is
that it is difficult to derive the stationary distribution of multi-
dimensional Markov chain. The other is that it is hard to
generalize the method to study more complex models. Detailed
discussions can be found in Appendix B.

Instead of applying the generic method, we leverage prob-
lem structure to analyze the average user delay. To analyze
the user delay for M/M/1[ω], we first prove that Qsum(t) ,
Q0(t) + Wω(t) evolves the same as an M/M/1 queue with
a properly initialized queue. Based on this observation, the
distribution of user delay under proactive serving, i.e., Dω ,
turns out to be a “shifted” version of that of user delay
without proactive serving as shown in (2). Once we know the
distribution of Dω , we can compute the average user delay
E [Dω]. More interestingly, this approach can be applied to
various queuing models.
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To proceed, consider Q0(t) and Wω(t) as a group. The
request arrival process of the group is {A(t+ω)}t. The time to
serve a request is exponentially distributed. The server serves
the requests in the group according to the FCFS policy. This
essentially mimics an M/M/1 queue. Intuitively, the size of the
group evolves statistically the same as the queue size of the
M/M/1 queue. The following lemma confirms this observation.

Lemma 1: Define Qp(0) = |A(0 : ω)| + Q0(0), where
A(0 : ω) = {A(τ), 0 < τ ≤ ω} is the set of arrivals from
time 0 to time ω and |A(0 : ω)| is its size. Qp(t) is an M/M/1
queue with initial value Qp(0) as shown in Fig. 4. We have

Qsum(t) = Qp(t), for all t.

Proof: Under the condition of Qp(0) = |A(0 : ω)| +
Q0(0) and Qsum(0) = Qp(0). By time t, Qsum(t) and Qp(t)
accept the same set of arrivals. Because both queues contain
the same set of arrivals and adopt the same queuing discipline,
Qsum(t) and Qp(t) have the same sequence of departures up
to time t. As a result, Qsum(t) = Qp(t).

Lemma 1 reveals a useful observation: the total time that
a user request spends in M/M/1[ω], i.e., the sum of those in
the prediction window Wω(t), the queue Q0(t), and with the
server, is statistically the same as that in an M/M/1 queue.
As discussed at the end of Section III-B, the time spent in
Wω(t) is excluded from the user delay calculation. Then the
user delay in M/M/1[ω], i.e., Dω , has the same distribution as
max

(
0, D0 − ω

)
. We leverage this observation to obtain the

distribution of Dω for M/M/1[ω] in the following lemma.
Lemma 2: Let fDω (t) be the probability density function

of Dω . We have

fDω (t) = fD0(t+ ω), ∀t > 0,

and

Pr(Dω = 0) =

ˆ ω

0

fD0(t)dt = 1− e−(µ−λ)ω.

Proof: Because the arrival process A(t) is stationary, the
delay distribution of arrivals in Qp is the same as that of
M/M/1 in (2).

By Lemma 1, Qsum(t) = Qp(t) for any t. Then a same
request in A(t) spends the same amount of time in Qsum and
Qp. As shown in Fig. 6, if not getting pre-served, a request
goes through the prediction window Wω(t) before it enters
Q0, which costs ω amount of time. If a request spends T
amount of time in Qp, it will spend [T − ω]+ amount of
time in Q0. ([T − ω]+ = 0 means the request is pre-served
completely.) Therefore, the delay distribution of requests in
Q0 is a “shifted” version of that of those in Qp.
An illustrating example of the distribution derived in Lemma
2 is shown in Fig. 5. Note that the arguments in the proofs
of Lemma 1 and 2 are also used in our sister paper [9]. We
present the proofs here for completeness.

Although Lemma 1 and 2 are established for the M/M/1[ω]

model, they can be extended to the general G/G/1[ω] model as
shown in the following corollary, which will be used in the
next subsection.

Corollary 1: In the G/G/1[ω] model, the user delay distri-
bution, denoted as fGDω (t), can be obtained from that of the

t
0 2 4 6 8 10

0.1

0.3

0.5

0.7

M/M/1[2]

f
D

0(t)

f
D
ω(t)

Fig. 5. Probability density function (PDF) of user delay with/without future
prediction: The PDF under perfect prediction (the vertical arrow at the origin
and the dash curve) can be obtained by shifting the PDF without prediction
(dash curve) ω units left, where ω = 2.

G/G/1 model, denoted as fGD0(t), as follows

fGDω (t) = fGD0(t+ ω), ∀t > 0,

and
Pr(Dω = 0) =

ˆ ω

0

fGD0(t)dt.

The proof is similar to that of Lemma 2 and is relegated to
Appendix A.

Lemma 2 and Corollary 1 allow us to obtain the distribution
of Dω from that of D0, which usually is well studied in
queuing theory. Based on Lemma 2, for the M/M/1[ω] model,
we obtain the average request delay E[Dω] as follows.

Theorem 1: Assume µ > λ. The average user delay of
M/M/1[ω] model with perfect prediction is given by

E[Dω] =
1

µ− λ
e−(µ−λ)ω. (3)

Proof: Based on Lemma 2,

E[Dω] =

ˆ ∞
0

t · f(t+ ω)dt =
1

µ− λ
e−(µ−λ)ω.

Theorem 1 says that the average user delay decreases
exponentially in the prediction window size ω. This indicates
that a little bit of future information can improve user delay
experience significantly. In particular, this result suggests that,
for Amazon’s new mobile web-browser described in Section
I, if the Amazon cloud can predict upcoming web requests ac-
tually, the request response time can be reduced significantly.

From Theorem 1, in the heavy-load regime where the arrival
rate λ is close to the service rate µ, (3) can be approximated
by 1

µ−λ−ω when ω is small, which is linear in ω. In contrast,
when the system is in the light-load regime, (3) decreases
exponentially in ω. This indicates that proactive serving is
more effective in decreasing delay in the light-load regime
than in the heavy-load regime. The reason is as follows. In
the light-load regime, the number of requests that enter Q0(t)
for service is small and it is empty most of time. As such,
most of the service capacity can be spared to serve upcoming
requests. Consequently, many requests are served proactively
and thus experience zero delay. In contrast, in the heavy-
load regime, the server is busy with serving requests in Q0(t)
most of the time. As a result, a request has little chance to
be served proactively, especially when the prediction window
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size is small. Therefore, proactive serving has limited delay
reduction capability.

B. Average User Delay of G/G/1[ω]

In this subsection, we extend the analysis to the general
G/G/1[ω] model. In G/G/1[ω], inter-arrival times of user re-
quests are independent, identically, and generally distributed
with mean 1

λ and variance σ2
λ. The service times of user

requests are also independent, identically, and generally dis-
tributed with mean 1

µ and variance σ2
µ. Moreover, inter-arrival

times and service times are independent. The system can
predict upcoming arrivals ω amount of time ahead and serve
them proactively.

By definition, under the FCFS queuing policy, user delay
is the summation of queuing delay and service time, where
queuing delay is defined as the time from when the user
request arrives at the system till the system starts serving it.
In G/G/1[ω], service times follow general distribution. As a
result, user delay distribution is also general. As shown by
Corollary 1, proactive serving essentially “shifts” the delay
distribution left by ω amount of time. Therefore, average user
delay will decrease monotonically to zero as ω increases, yet
the decrement may not be exponential in ω. Instead, we focus
on the effect of proactive serving on reducing user queuing
delay (i.e., user delay subtracts service time) and show that
proactive serving decreases the average user queuing delay
exponentially as ω increases.

Let QDω denote the user queuing delay when the system
predicts ω amount of time ahead and QD0 denote the user
queuing delay without proactive serving. The explicit form
of the distribution of QD0 in G/G/1 is still an open problem.
However, the authors of [26], [27] have derived an useful upper
bound on the tail of the distribution of QD0. Let random
variable X be the inter-arrival time and Y be the service time.
Let U(s) denote the Laplace-Stieltjes transform of random
variable Y −X . Define

s0 = sup{s > 0 : U(−s) ≤ 1}. (4)

The following lemma presents a sufficient condition for such
s0 to exist.

Lemma 3 ([26]): s0 defined in (4) exists if the following
condition is satisfied:

∃s̄ ∈ (−∞,∞), s.t. E
[
es̄Y
]
<∞. (5)

The condition in (5) requires that the convergence region of
the moment generating function of Y includes an interval
around the origin. Clearly, whether condition in (5) is satisfied
depends on the distribution of Y , and it is satisfied for many
popular distributions for modeling service time, including
Exponential, Gamma, and Weibull [28] [29].

Assuming that the condition in (5) is satisfied and s0

defined in (4) exists, the tail of the distribution of QD0, i.e.,
Pr(QD0 ≥ t), can be upper-bounded as follows [26], [27]

Pr(QD0 ≥ t) ≤ e−s0t, ∀t > 0. (6)

Combining the distribution shift effect under proactive serv-
ing, this upper-bound in (6) enables us to prove that the aver-

age user queuing delay, i.e., E[QDω], decreases exponentially
under proactive serving.

Theorem 2: Assume µ > λ and there exists a real s̄ such
that E[es̄Y ] <∞. The average queuing delay of G/G/1[ω] with
perfect prediction is given by

E[QDω] ≤ 1

s0
e−s0ω, (7)

where s0 exists and is defined in (4).
Proof: Let fQDω (t) denote the distribution of QDω .

Let QD0 denote the queuing delay and fQD0(t) denote the
corresponding distribution without proactive serving. First, we
show that the distribution of QDω can be obtained by shifting
that of QD0 by ω unit.

Although Corollary 1 is established for the distribution of
user delay, it can be easily extended to the distribution of
queuing delay based on the same proof. We can have

fQDω (t) = fQD0(t+ ω) for t > 0

and
Pr(QDω = 0) =

ˆ ω

0

fQD0(t)dt.

Now we are ready to show that the average queuing delay
decreases exponentially in ω. From [26], we have the follow-
ing about the tail of the distribution of QD0

Pr(QD0 ≥ t) ≤ e−s0t. (8)

Then we have

E[QDω] =

ˆ ∞
0

Pr(QDω ≥ t)dt =

ˆ ∞
0

Pr(QD0 ≥ t+ ω)dt

≤
ˆ ∞

0

e−s0(t+ω)dt =
1

s0
e−s0ω.

Theorem 2 says that, as long as the service time distribu-
tion satisfies condition (5), the average user delay decreases
exponentially under proactive serving. In general, computing
the explicit form of s0 is difficult. In Lemma 4 below, for
the heavy-load regime (ρ = λ

µ ≈ 1 but remains strictly less
than 1), one can leverage the results in [30], [31] to show
that higher-order terms of Taylor expansion (around s = 0) of
U(s) can be neglected and an approximate expression of s0

can be obtained. Since the arguments and details are similar to
those in [30], [31] (for analyzing queuing system performance
without proactive serving), we skip the details here and refer
interested readers to [30], [31].

Lemma 4: When ρ = λ
µ ≈ 1 but remains strictly less than

1, s0 as defined in (4) can be approximated by

s0 ≈ 2

(
1

λ
− 1

µ

)
/
(
σ2
λ + σ2

µ

)
. (9)

From (9), we can see how the inter-arrival time and the
service time distributions affect the average queuing delay
under proactive serving. First, we can see that s0 is a decreas-
ing function of λ and an increasing function of µ. This is
intuitive. The incoming workload increases when λ increases
or µ decreases. Consequently the server is more dedicated to
serve requests in the queue and thus the number of pre-served
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Fig. 6. Service system with imperfect prediction: The miss detection
process {A1(t)}t can not be served proactively. Requests in {A1(t)}t
enter Q0(t) for service directly. The process {A2(t)}t includes false
alarms and actual arrivals that are predicted correctly. Requests in
{A2(t)}t go through Wω(t) and can be pre-served by the server. p
is the probability that a request in {A2(t)}t is an actual arrival.

requests decreases. Then the delay reduction by proactive
serving is less significant. From (9), we can also see that s0

is a decreasing function of σ2
λ or σ2

µ. When the variance of
interval-time or service time increases, the incoming workload
becomes more bursty. In this case, the result in (9) suggests
that proactive serving is less effective in reducing user delay.

V. PROACTIVE SERVING WITH IMPERFECT PREDICTION

In Section IV, we analyze the benefit of proactive serving
under perfect arrival prediction. In this section, we look at
two more realistic scenarios that correspond to two common
types of prediction errors, and we study the performance of
proactive serving under these settings. For the ease of analysis
and illustration, we consider a single server setting.

A. Modeling

The first type of error is failing to predict actual arrivals,
i.e., miss detection (also called false negative). When miss
detection happens, the missed arrivals cannot be proactively
served. Intuitively, such errors result in a “side flow” into the
system and will affect the benefit of proactive serving. The
other type of error is false alarm (also called false positive),
which happens when the system mistakenly predicts non-
existing arrivals. Such false arrivals will not eventually enter
the system for service. However, the system may incorrectly
allocate resources to pre-serve them, resulting in wasted ser-
vice capacity.

We represent the system with these two types of prediction
errors using the model shown in Fig. 6. In this model, {A1(t)}t
represents the process of miss detections and {A2(t)}t repre-
sents the process of predicted arrivals, which include false
alarms and actual arrivals that are predicted correctly. Q0(t)
stores requests that have already entered the system and are
waiting for service at time t. Wω(t) is the prediction window
with size ω. Requests in {A2(t)}t go through the prediction
window and can be served proactively by the server. In
contrast, requests in {A1(t)}t enter Q0(t) directly and cannot
be served proactively. False alarms in {A2(t)}t disappear once
they leave the prediction window and do not enter Q0(t).

For tractability, we make the following two assumptions
on {A1(t)}t and {A2(t)}t. First, we assume that the prob-
ability that a request in {A2(t)}t is an actual arrival is p.
With probability p, a request of {A2(t)}t will enter Q0(t);
with probability 1 − p, it will disappear once it leaves the
prediction window. The larger p is, the more accurate the
prediction is. Second, we assume that {A1(t)}t and {A2(t)}t
are independent Poisson processes, which is reasonable for
systems with large number of users.

Let λ1 and λ2 be the arrival rates of {A1(t)}t and {A2(t)}t
respectively. Since all the miss detections and the actual ar-
rivals among the predicted arrivals compose the actual arrivals,
we have

λ1 + pλ2 = λ. (10)

Recall that λ is the rate for the actual arrival process.
In this system, the server applies the FCFS service policy.

Different from the case of perfect prediction, here we assume
that the requests in Q0(t) and the arrivals from {A1(t)}t have
preemptive priority. That is, the arrivals in Wω(t) will be pre-
served only when the queue is empty and there is no new
arrival entering Q0(t) from {A1(t)}t.

B. Impact of Miss Detection

Now suppose that there are only miss detections in the
system, i.e., p = 1 and λ1 + λ2 = λ. In this case, the delay
reduction can be less significant as compared to the perfect-
prediction case, because miss detection cannot be pre-served
by the system.

To characterize the impact of miss detections, we follow
the same idea used in the perfect prediction case. That is,
linking the distribution of Dω to that of a single queue system
without proactive serving. After obtaining the distribution of
Dω , we then calculate the average user delay, i.e., E[Dω].
Miss detection creates a sub-arrival process into Q0(t) and
mixes with the requests in {A2(t)}t. This makes it challenging
to derive the user delay distribution. In the derivation process,
we need to apply residue theorem [32] with carefully designed
branch cuts [33] to inverse Laplace transform to obtain the
average user delay. We arrive at the following result.

Theorem 3: Assume λ = λ1 + λ2 < µ. The average user
delay in the presence of miss detections is given by:

E[Dω] (11)

=
λ1

(µ− λ1)λ
+
λ2

λ

[
λ2 − λ1µ

λ2
2(µ− λ)

· e
λ2(λ−µ)

λ
ω · 1λ2>λ1µ

+

1

2π

ˆ 4
√
λ1µ

0

(µ− λ)
√
x(4
√
λ1µ− x)e(−(

√
µ−
√
λ1)

2−x)ω(
(
√
µ−
√
λ1)2 + x

)2 · (λx+ (
√
λ1µ− λ)2

)dx] ,
which decreases exponentially in ω.

Proof: The proof is relegated to Appendix C.
The average user delay expression in (11) consists of two
terms. The first term is a positive constant representing the de-
lay experienced by the miss-detection user requests. As shown
in Fig. 6, miss detections enter Q0(t) directly without going
through the prediction window. As such, these miss detections
cannot be served proactively and will always experience
positive delay. The second term in (11) decreases exponentially
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Fig. 9. Impact of false alarm on the average
request delay with λ = 3 and µ = 4. The
fraction of false alarm is 1− p.

in ω and vanishes as the system predicts sufficiently far into the
future, demonstrating the effectiveness of proactive serving.

We validate the closed-form expression of average user
delay in Theorem 3 by plotting the average user delay by (11)
(the red curve marked by down triangle) and by simulations
(the black curve marked by ‘+’) in Fig. 7 under the setting
of λ1 = 1, λ = 3, and µ = 4. We observe that, (i) two
curves coincide, which verifies Theorem 3, and (ii) user delay
decreases exponentially as the system predicts further. The
user delay is eventually dominated by the first term in (11) as
expected. Compared to the scenario with perfect prediction,
we note that the decay rate in ω is smaller. This is intuitive
because miss detections occupy part of the server capacity
and thus the capacity used for proactive serving is reduced. We
plot the average user delay as a function of both miss detection
fraction and prediction window size ω in Fig. 8, based on (11).
The fraction of miss detection is λ1

λ . As seen, proactive serving
is more effective when there is few miss detection (i.e., high
prediction accuracy). This matches our intuition since more
miss detections mean that more user requests go directly into
the system without having the chance to be served proactively.
The plot also suggests that when there are substantial miss
detections, predicting further into the future is not effective
in reducing user delay, and we are better off if we focus on
improving the prediction accuracy (i.e., reducing the fraction
of miss detection).

C. Impact of False Alarm

When there are only false alarms in the system, i.e., λ1 = 0
and pλ2 = λ, the server capacity will be wasted if a false alarm
is pre-served. As a result, the benefit of proactive serving will
be less significant as compared to the perfect prediction case.

Different from miss detections, false alarms do not enter
Q0(t). Therefore, the system cannot be modeled by a single
queue system without proactive serving. As a result, we cannot
carry out the same equivalence argument as for the miss
detection case in Section V-B. Hence, the idea used in the
miss detection scenario can not be applied here. To address
the difficulty, we first discretize the system and model its
evolution by a multi-dimensional Markov chain where user
requests passing through the window is captured by moving
from one state to its subsequent state in the Markov chain.
This Markov chain is non time-reversible. Then, by studying
the stationary distribution of the Markov chain, we obtain the

average user delay by applying Little’s Law. We arrive at the
following result.

Theorem 4: Assume λ = pλ2 < µ (0 < p ≤ 1). The
average user delay in the presence of false alarms is given by

E[Dω] = (12)
pµ−λ
p(µ−λ)2 (e

1
p
(pµ−λ)ω − (1−p)λ

p(µ−λ) )
−1, when λ < pµ;

λ−pµ
(1−p)λ(µ−λ) +

p(λ−pµ)
(1−p)2λ2 (e

1
p
(λ−pµ)ω − p(µ−λ)

(1−p)λ )
−1, when pµ < λ

and λ < µ;
1

(µ−λ)[(µ−λ)ω+1]
, when pµ = λ.

Due to the space limitation, the proof is included in [24].
From (12), it is not immediately clear that E[Dω] decreases

with an exponential rate when λ2 6= µ. Instead, we show in the
proof in [24] that E[Dω] can be lower and upper bounded by
exponential functions which decrease exponentially in ω. The
average delay decreases exponentially to zero when λ < pµ
and decreases exponentially to a constant value when λ > pµ.
We call pµ “effective service rate”. Theorem 3 says that
the average user delay decreases exponentially to zero in
the prediction window size, if the user request arrival rate
is smaller than the effective service rate, i.e., λ < pµ, and
otherwise to a positive constant determined by the fraction of
false alarms.

We plot the average user delay under the impact of false
alarms by (12) (the pink curve marked by up triangle) and by
simulations (the blue curve marked by dot) in Fig. 7 under
the setting of λ2 = 3.5, λ = 3, and µ = 4. The results clearly
verify Theorem 3 and show that the average delay decreases
exponentially in ω. As compared to the perfect prediction case,
the decay rate is smaller. This is because part of the server
capacity is wasted to serve false alarms. Moreover, we can
derive the following from (12):

lim
ω→∞

E[Dω] (13)

=

{
0, when λ < pµ, λµ < p ≤ 1;

µ
(µ−λ)λ −

1
(1−p)λ , when pµ ≤ λ < µ, 0 < p ≤ λ

µ .

This equation shows that the system cannot reduce delay to
zero if pµ < λ < µ. This is because statistically 1 − p
fraction of the service capacity allocated for proactive serving
is consumed by false alarms, and the remaining p fraction is
not enough to pre-serve all the actual arrivals before they enter
the system. As such, the user delay can not be reduced to zero
no matter how far we can predict into the future. Meanwhile,
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tem capacity boosting.

when λ ≤ pµ the delay can always be reduced to zero as long
as the system can predict sufficiently far.

In Fig. 9, we show the impact of false alarms on user delay
based on (12). The fraction of false alarm in the predicted
arrivals is 1 − p. As seen from the figure, the average user
delay increases when more false alarms exist in the system.
When λ > pµ (corresponds to 1−p > 0.25 in the simulation),
the average delay does not decrease to zero. The larger 1− p
is, the less helpful proactive serving is in reducing user delay.
In practice, system designers should improve their prediction
algorithms to keep the fraction of false alarms less than the
threshold 1−λ

µ to extract the full potential of proactive serving.
If the fraction of false alarms is inevitably larger than the
threshold, then capacity boosting maybe a better choice for
system designers to decrease the average delay.

Discussion: In addition to the impact on user delay reduc-
tion, false alarm may incur additional costs. For example, in
the content pre-fetching scenario, serving false alarms will
waste bandwidth on the system side, and bandwidth, storage,
and energy on the user side. Thus system designers should take
into account the consequences of false alarms when designing
the request prediction algorithm.

D. Impact of Miss Detection and False Alarm

When miss detections and false alarms are both present in
the system, it is difficult to analyze the user delay due to the
coupling of the two effects. Instead, we conduct simulations to
investigate the system behavior. We consider three cases. In
the first case, the prediction mechanism results in few miss
detections but many false alarms. In the second case, the
prediction mechanism leads to few false alarms but many miss
detections. The third case is in-between. The first two can be
considered as extreme cases. The simulation results under the
setting of µ = 5 are shown in Fig. 10.

A few comments are in order for Fig. 10. First of all,
user delay still decreases exponentially as the system predicts
further. Second, when there are many false alarms, the system
cannot remove delay completely, which aligns with (13). When
there are many miss detections, the delay decay rate is smaller
because the server is occupied with miss detections, which
also aligns with the results in Fig. 8. When the number of
miss detections and false alarms are moderate, compared to

other two cases, user delay decreases rapidly and proactive
serving leads to a small delay for users.

VI. COMPARISON WITH CAPACITY BOOSTING

In this section, we compare capacity boosting and proac-
tive serving with perfect prediction as two principal design
mechanisms for reducing user delays. In the case of imperfect
prediction, the closed-form expression does not admit a clear
comparison, and thus we resort to perform the comparison
based on simulation results in Section VII.

For easy discussion, we focus on the M/M/1[ω] system as
discussed in Section IV-A. For the M/M/1 system without
proactive serving capability, the average user delay with ser-
vice capacity m is given by 1/(m · µ − λ). By comparing it
with the average delay of the M/M/1[ω] system with proactive
serving capability in (3), we obtain the amount of prediction
(measured in prediction window size) needed to obtain the
same delay reduction as boosting the capacity by m times.
Denote the corresponding prediction window size as ω∗(m),
we have the following theorem.

Theorem 5: Assume λ < µ. For the M/M/1[ω] system with
perfect prediction, ω∗(m) (m ≥ 1) is given by

ω∗(m) =
1

µ− λ
ln
m− ρ
1− ρ

.

Proof: For the M/M/1 system without proactive serving,
the average user delay is 1

mµ−λ when the service capacity
is m. To achieve the same delay performance, ω∗(m) should
satisfy

E[Dω∗(m)] =
1

µ− λ
e−(µ−λ)ω∗(m).

Then we obtain ω∗(m) = 1
µ−λ ln m−ρ

1−ρ where ρ = λ
µ .

We plot the ω∗(m) as a function of m in Fig. 11 under
different ρ with µ = 1 (recall that ρ = λ

µ ). We observe
that ω∗(m) increases logarithmically in the system capacity
m. This suggests that proactive serving is more effective than
boosting the system capacity to keep the system in low delay
regime. For example, to achieve the same average user delay,
proactive serving with prediction window size of 14 unit time
is equivalent to increasing the server capacity by 500 times
when ρ = 0.5.

In Fig. 11, when ρ = 0.9, the system is in heavy-load
regime when m is small and is in light-load regime when m
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is large. Then the logarithmic curve indicates that proactive
serving is more effective in delay reduction than capacity
boosting in light-load regime. The reason is as follows. When
the workload is light, the number of requests that enter the
queue for service is small and thus most of the service capacity
can be spared to serve future requests. As a result, most of
requests are served proactively and thus experience low delay.

It is also conceivable to combine proactive serving and
capacity boosting to achieve a desired average user delay for
a system. To evaluate this idea, we run simulations under the
setting of λ1 = 0.4, λ2 = 8, µ = 10 and p = 0.95 (for
modeling imperfect prediction), as defined in Fig. 6. We plot
different combinations of ω (representing proactive serving
capability) and m (representing service capacity) to achieve
the same desired delay target in Fig. 12. All the combinations
of ω and m on the same isoline achieve the same average
user delay. For example, to obtain the average user delay of
0.1 unit time, the system can serve proactively 7.4 unit time
ahead without boosting the service capacity, or it can serve
proactively 0.9 unit time ahead and boost the service capacity
by 10%. The system designer can select the best combination
according to the average user delay requirement and various
resource constraints.

In practice, the choice of strategy to improve system delay
performance may involve additional considerations. For capac-
ity boosting, the incurred operation cost is a non-negligible
factor. For proactive serving, the cost of bandwidth, stor-
age, and energy due to false alarms are also needed to be
considered. Along this line, we have obtained initial results
by adapting the well-studied network utility maximization
framework to achieve an optimized performance trade-off
among delay reduction and multiple design considerations.
Due to the space limitation, we skip the details and refer
interested readers to our technical report [24].

VII. SIMULATIONS

We carry out simulations to study the impact of proactive
serving on reducing the average user delay under different
practical request arrivals and settings. Our objective is to
evaluate: (i) How is the delay performance of the system with
proactive serving capability? (ii) How does prediction error
affect the delay reduction? (iii) How does proactive serving
compare to capacity boosting?

A. Parameters and Settings
To carry out our simulations, we collect two sets of videos

from YouTube [35]. One set of 557 videos are popular ones,
and the other set of 443 videos are randomly chosen videos.

By studying the histogram of durations of the popular
videos, we observe that the histogram fits light-tailed Gaussian
distribution well, as shown in Fig. 13. This observation also
confirms the measurement result in [36] that the video length
of popular YouTube categories follows Gaussian distribution.
For the randomly-chosen videos, we observe that the empirical
CCDF (Complementary Cumulative Distribution Function) of
their durations fits heavy-tailed power law distribution well,
as shown in Fig. 14. Note that it is common to study CCDF
to evaluate whether a distribution is heavy-tailed or not.

We evaluate the delay performance of popular YouTube
videos, representing the light-tailed service time case, and that
of randomly-chosen YouTube videos, representing the heavy-
tailed serving time case.

In the simulations of popular Youtube videos, we set the
number of servers to be 650 in the system. In the simulation
of randomly-chosen videos, we set the number of servers to
be 270 in the system. In one second, a single server can serve
a video of 700 seconds, which is about 100MB in size. Such
a setting is chosen for two reasons. First, under such setting,
the workload level for two data sets is same so that we can
make comparisons between simulation results under the two
sets. Second, it is to make sure that the average user delay is
reasonable. The system adopts the FCFS service policy.

To investigate the impact of prediction errors, we model the
miss detections and false alarms in the simulation as follows.
Each time unit, q fraction of the request arrivals are miss
detections. The rest 1−q fraction compose actual arrivals in the
predicted request arrivals that can be served proactively. In the
predicted arrivals, 1−p fraction are false alarms and p fraction
are actual arrivals. Larger q means more miss detections, and
smaller p means more false alarms in the system. For perfect
prediction, q = 0 and p = 1.

B. Delay Reduction by Proactive Serving

The simulation results under the popular videos (with light-
tailed durations) and the randomly-selected (with heavy-tailed
durations) are shown in Figs. 15 and 16, respectively. For the
popular videos, under perfect prediction, the user delay can be
reduced by 50% when the system predicts 60 seconds ahead.
For the randomly-chosen videos, under prefect prediction, the
user delay can be reduced by 50% when the system predicts
84 seconds ahead. The above simulation results suggest that
the system can improve user delay experience significantly by
proactive serving. Furthermore, for the popular videos with
light-tailed durations, the delay curve under perfect prediction
can be fitted nicely by the exponential function 9.91e−0.012×ω

with R-squared value of 99.74%. This verifies the theoretical
results we obtain in Section IV-B.

In Fig. 16, we observe similar delay reduction as in Fig. 15.
That is, when ω is small, increasing ω can lead to larger delay
reduction than the case when ω is large. On the other hand,
the delay reduction rate in Fig.16 is smaller than that in Fig.
15. Request for elephant videos plays an important role on the
reduction rate. In the randomly-chosen videos of heavy-tailed
durations, elephant video is not rare. Request for such video
will occupy the service for a long time. Therefore, the delay
reduction under the heavy-tailed data set is less significant.
It remains an interesting direction to characterize the delay
performance under proactive serving for the case of heavy-
tailed duration.

C. Impact of Miss Detection and False Alarm

The simulation results are shown in Fig. 15 and 16. As seen,
both miss detection and false alarm leads to smaller delay
reduction. But proactive serving can still reduce user delay
significantly. For example, in Fig. 15, the user delay can be
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ture under the heavy-tailed video
set.

reduced by 50% as the system predicts about 123 seconds even
when the prediction misses 50% of the actual arrivals (the red
curve with circle maker).

Under all the data traces, proactive serving is relatively more
sensitive to false alarms than miss detections, which matches
what we observed in Section V-D. The reason is that some
server capacity allocated to future requests is wasted due to
false alarm, thus server capacity is not well utilized.

D. Comparison with Capacity Boosting

We compare proactive serving under perfect prediction with
system capacity boosting using all 1000 Youtube video traces.
The results are shown in Tab. I. In the table, the first column
is how far in time the system serves proactively with perfect
prediction. The second column is by how many percents the
number of servers needs to increase to achieve the same delay
performance. The third column is percentage of the decrement
of the utilization ratio of each server, when the total number
of servers increases. The fourth column is how many percents
the average user delay is reduced. For example, in Tab. I,
the first row says, serving proactively 120 seconds ahead can
reduce the average user delay by 54.1%. To achieve the same
delay performance, the system needs to increase the number
of servers by 10%, which results in that the utilization rate of
each server is decreased by 9.1%.

From Tab. I, we first observe that, when the system capacity
increases, the rate of ω∗ increasing slows down, where ω∗ is
how far the system needs to predict to achieve the same delay
performance as capacity boosting. This agrees with what we
observed in Fig. 11 that proactive serving is more effective
than capacity boosting in the light-load regime. For example,
to achieve the same delay reduction attained by boosting the
capacity by 10%, one needs to predict request arrivals 120
seconds ahead. Meanwhile, suppose we already boost the
capacity by 20%, to achieve the same delay reduction by
boosting another 10% of the capacity (assuming incurring
the same amount of expense), one only needs to increase
the prediction window size by 300 − 219 = 81 seconds,
which is smaller than the 120-second increment required in
the previous (heavier load) case. Results from Tab. I also
show that, under the Youtube data trace, boosting the capacity
by 30% is equivalent to predicting 300 seconds ahead; both
reduce the average user delay by about 90%. Since predicting
300 seconds ahead with decent accuracy is very feasible

ω∗(sec.) # of servers ↑ utilization ↓ average delay ↓
120 10% 9.1% 54.1%
219 20% 16.7% 75.3%
300 30% 23.1% 89.9%

TABLE I
COMPARISON WITH SYSTEM CAPACITY BOOSTING UNDER THE YOUTUBE

DATA TRACE.

according to the study on predicting user requests for an
industrial-grade VoD system [6], this means one can achieve
the same delay reduction by leveraging prediction, without
significant investment to increase the service capacity by 30%.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the fundamentals of proac-
tive serving from a queuing theory perspective. We show
that proactive serving decreases average delay exponentially
(as a function of the prediction window size) with perfect
prediction. We show that in the presence of miss detections,
average user delay still decreases exponentially in the predic-
tion window size, but to a positive constant determined by
the fraction of miss detections. Meanwhile, in the presence of
false alarms, we show that there exists an “effective service
rate” pµ. Average user delay decreases exponentially to zero
as prediction window size increases if the actual user request
arrival rate is smaller than the effective service rate; otherwise
it decreases to a positive constant determined by the fraction
of false alarms. Compared with the conventional mechanism
of capability boosting, we show that proactive serving is more
effective in decreasing user delay in a light workload regime.
Our trace driven evaluation results demonstrate the practical
power of proactive serving, e.g., for the data trace of light-
tailed Youtube videos, user delay decreases by 50% when
the system can predict 60 seconds ahead. Our study applies
to general online service models that use prediction, such as
the pre-loading interested content on mobile devices and the
pre-fetching Youtube videos. Therefore, our results not only
provide solid theoretical foundations for proactive serving, but
also reveal insights into its practical applications.

Our research offers several interesting future directions.
First, while in the paper we focus on characterizing the benefit
of proactive serving, it would also be valuable to consider the
costs/overhead involved in proactive serving, e.g., bandwidth
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cost due to false alarms, to properly evaluate its effectiveness.
Second, while this paper only considers proactively serving
one predictive request at a time, it would be conceivable
and interesting to generalize the analysis to consider serving
multiple predictive requests simultaneously. Third, while we
consider time-homogeneous prediction accuracy in this paper,
it would be interesting to generalize the study to cases with
time-heterogeneous prediction accuracy where short-time pre-
diction is more accurate than long-term prediction. Last but not
the least, it would be interesting to analyze the delay reduction
benefit of proactive serving under work-conserving policies
other than the FCFS used in our current study.
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APPENDIX A
PROOF OF COROLLARY 1

Consider a general queuing system as shown in Fig. 3. We
can always find a queuing system without proactive serving
capability as in Fig. 17, where the arrival process is delayed
ω amount of time, the initial value of queue is equal to |A(0 :
ω)| + Q0(0) and the service policy is the same as adopted
in the general queuing system. As such, we can get the same
equivalence between two systems as Lemma 1. Based on how
fGD0(t) is derived in [37], the delay distribution of the system
in Fig. 17 is the same as fGD0(t). This is because that we
consider the delay distribution when the system is in steady
state. Then the initial value of Qg (which is bounded) and
the shifted arrival process will not alter the delay distribution.
Then, based on the same argument as in Lemma 2, we can
show that the delay distribution under proactive serving can
be obtained by shifting the delay distribution without proactive
serving left by ω amount of time.

APPENDIX B

Discussion: An alternative approach to obtain E[Dω] in
Theorem 1 is applying the Markov chain model, which works
as follows. First, we discretize the system. We chop the
time into slots of equal length. Let δ denote the slot length.
At time slot t, A(t) becomes a Bernoulli random variable



13

)(tQm server)(1 tA

)(2 ω+tA

Fig. 18. M/M/1 with preemptive priority: Two arrival processes are
{A1(t)}t and {A2(t + ω)}t respectively. Service times of requests
are independent and identically exponentially distributed with mean
1/µ. The initial value of Qm is |A2(0 : ω)| + Q0(0). Requests in
{A1(t)}t have preemptive priority over those in {A2(t+ ω)}t.

with probability λ · δ. Each time slot, the server is on with
probability µ · δ and off with probability 1− µ · δ. When the
server is on, it can serve a request in one slot. Q0(t) stores
requests that are waiting in the system for service at slot t. The
prediction window Wω(t) is chopped to ω/δ small windows
which are denoted by {wi(t)}1≤i≤ω/δ . Each request first goes
through a pipeline of these small windows from wω/δ(t) to
w1(t) before entering Q0(t). If A(t+iδ) = 1, then the system
can observe a request in the window wi(t), which can be
served proactively. Then, based on the efforts in the above step,
the system can be modeled by a multi-dimensional Markov
chain with state being

(
wω/δ(t), wω/δ−1(t), ..., w1(t), Q0(t)

)
.

By solving the stationary distribution of the Markov chain, we
can obtain the average user delay of the discretized system by
applying Little’s Law. Then, by taking limit in δ, we finally
get E[Dω]. Remark that the structure of the Markov chain is
very complicated which makes the derivation of the stationary
distribution highly involved.

Compared the approach we used in the paper, the above
approach is complicated and cannot provide intuitive insights.
At the same time, the approach is hard to be generalized to
more complex models. For example, for the system in Section
V, the Markov chain that models the discretized system is
much more complex, which is rather challenging to solve.

APPENDIX C
PROOF OF THEOREM 3

Instead of FCFS, the system under imperfect prediction
gives preemptive priority to the requests of {A1(t)}t, and
within the same arrival process FCFS is adopted.

Under this policy, Qsum(t) = Q0(t) + Wω(t) evolves the
same as the system in Fig. 18. The proof is similar to that of
Lemma 1 and thus omitted. Consider a request in {A2(t)}t.
Similar to Lemma 2, if it spends T time in Qm, it will spend
[T − ω]+ in Q0. Then the distribution of delay of requests
in {A2(t)}t spend in Q0 can be obtained by shifting that
in Qm left by ω units. Let fω2 (t) and fm2 (t) be the density
function of delay that requests of {A2(t)}t spend in Q0 and
Qm, respectively. We have fω2 (t) = fm2 (t+ ω) when t > 0.

Next we first calculate fm2 (t), and then we can obtain fω2 (t).
To do so, as the first step, we express fm2 (t) as a function
of distributions of busy period of the M/M/1 system. By
leveraging existing knowledge on busy period of the M/M/1
system (in particular, we know the Laplace transform of the
distribution of length of the busy period), we get the Laplace

transform of fm2 (t). Then, based on the relationship between
fm2 (t) and fω2 (t), we get the Laplace transform of fω2 (t).

Now we focus on the system in Fig. 18. It can be modeled
by a Markov chain and let πi be the stationary probability
that the number of requests in the system is i. By standard
analysis, we can have πi = (1− λ1+λ2

µ )(λ1+λ2

µ )i. Consider a
request of {A2(t)}t. Let us denote the request by a2. Let T
be the time that a2 spends in the system. Let N be the total
number of requests already in the system when the request
enters the system. Let Ti+1 be the time that a2 spends in the
system conditioning on N = i. Then we have

P (T ≤ t) =
∞∑
i=0

πiP (T ≤ t|N = i) =

∞∑
i=0

πiP (Ti+1 ≤ t). (14)

Ti+1 is equal to the time till a standard M/M/1 system is
empty again when there are i+1 requests in the M/M/1 system
[38]. Note that T1 is the length of a busy period. Denote the
probability density functions of Ti+1 by fTi+1(t). By (14), we
get fm2 (t) =

∑∞
i=0 πifTi+1

(t). From [38], we know that the
Laplace transform of fTi+1

(t) is

Fi+1(s) =

[
1

2λ1

(
λ1 + µ+ s−

√
(λ1 + µ+ s)2 − 4λ1µ

)]i+1

.

So the Laplace transform of fm2 (t) is

F (s) =

∞∑
i=0

πiFi+1(s)

=
2(µ− λ1 − λ2)

µ− λ1 − 2λ2 + s+
√

(λ1 + µ+ s)2 − 4λ1µ
.

By definition, the Laplace transform of fω2 (t) is

Fω(s) =

ˆ ∞
0

e−stfm2 (t+ ω)dt+

ˆ ω

0

fm2 (t)dt

=esω
ˆ ∞
ω

e−stfm2 (t)dt+

ˆ ω

0

fm2 (t)dt

=esω
[
F (s)−

ˆ ω

0

e−stfm2 (t)dt

]
+

ˆ ω

0

fm2 (t)dt.

Based on the Laplace transform, we are ready to calculate
the average request delay of the requests of {A2(t)}t in Q0,
which is denoted by E[Dω

2 ]. By the definition of the Laplace
transform,

E[Dω
2 ]

=− dFω(s)

ds
|s=0

=
µ

(µ− λ1)(µ− λ1 − λ2)
− ω + ω

ˆ ω

0

fm2 (t)dt

−
ˆ ω

0

t · fm2 (t)dt.

Then the derivative of E[Dω
2 ] is

dE[Dω
2 ]

dω
=

ˆ ω

0

fm2 (t)dt− 1.

Now consider
´ ω

0
fm2 (t)dt as a function of ω. The Laplace

transform of it is equal to

F (s)

s
=

2(µ− λ1 − λ2)

s
(
µ− λ1 − 2λ2 + s+

√
(λ1 + µ+ s)2 − 4λ1µ

) ,
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which is due to the integration property of the Laplace
transform. Next, we invert F (s)

s and get the expression of´ ω
0
fm2 (t)dt.

Define s1 = −(
√
µ +
√
λ1)2, s2 = −(

√
µ −
√
λ1)2, s3 =

λ2(λ1+λ2−µ)
λ1+λ2

, s4 = 0. s1and s2 are branch points of F (s)
s .

s4 is a simple pole of F (s)
s . When (λ1 + λ2)2 > λ1µ, s3

is also a simple pole of F (s)
s . The residue at s3 Res(s3) is

λ1µ−(λ1+λ2)2

λ2(λ1+λ2) e
λ2(λ1+λ2−µ)

λ1+λ2
ω. The residue at s4 Res(s4) is 1.

Consider the closed contour L+ CR shown in Fig. 19.‰
F (s)

s
esωds =

ˆ
L

F (s)

s
esωds+

ˆ
CR

F (s)

s
esωds

=

ˆ σ+jR

σ−jR

F (s)

s
esωds+

ˆ
CR

F (s)

s
esωds

= lim
r→0

ˆ
Cr

F (s)

s
esωds+

2πj · Res(s4) + 2πj · Res(s3) · 1(λ1+λ2)2>λ1µ,
(15)

where the last equality is based on Cauchy’s Theorem. When
R→∞, 1

2πj

´ σ+jR

σ−jR
F (s)
s esωds becomes the inverse transform

of F (s)
s . According to Jordan’s lemma,

´
CR

F (s)
s esωds → 0

when R → ∞. Thus, to calculate the inverse transform of
F (s)
s , we only need to calculate limr→0

´
Cr

F (s)
s esωds.

lim
r→0

ˆ
Cr

F (s)

s
esωds

= lim
r→0

ˆ π

−π

F (s1 + rejθ)

s1 + rejθ
· e(s1+re

jθ)ω · jrejθdθ+

lim
r→0

ˆ π

−π

F (s2 + rejθ)

s2 + rejθ
· e(s2+re

jθ)ω · jrejθdθ−
ˆ 4
√
λ1µ

0

2(µ− λ1 − λ2)e
(s2−x)ω

(s2 − x)
(
µ− λ1 − 2λ2 + s2 − x+ j

√
x(4
√
λ1µ− x)

)dx
+

ˆ 4
√
λ1µ

0

2(µ− λ1 − λ2)e
(s2−x)ω

(s2 − x)
(
µ− λ1 − 2λ2 + s2 − x− j

√
x(4
√
λ1µ− x)

)dx
=

ˆ 4
√
λ1µ

0

j(µ− λ1 − λ2)
√
x(4
√
λ1µ− x)e(s2−x)ω

(s2 − x) ·
(
(λ1 + λ2)x+ (

√
λ1µ− λ1 − λ2)2

)dx,
where, in the first equality, the first two integrals are those
around s1and s2 which are equal to 0 and the last two are
those from s2 to s1 and from s1 to s2 respectively. By (15),
we obtain

´ ω
0
fm2 (t)dt.

Finally, we get

dE[Dω
2 ]

dω

=

ˆ ω

0

fm2 (t)dt− 1

=
λ1µ− (λ1 + λ2)2

λ2(λ1 + λ2)
e
λ2(λ1+λ2−µ)

λ1+λ2
ω · 1(λ1+λ2)2>λ1µ+

1

2π

ˆ 4
√
λ1µ

0

(µ− λ1 − λ2)
√
x(4
√
λ1µ− x)e(s2−x)ω

(s2 − x) ·
(
(λ1 + λ2)x+ (

√
λ1µ− λ1 − λ2)2

)dx.
(16)

Then we derive the average delay of requests of {A2(t)}t as

E[Dω
2 ]

=
µ

(µ− λ1)(µ− λ1 − λ2)
−

(λ1 + λ2)
2 − λ1µ

λ2
2(µ− λ1 − λ2)

(1− e
λ2(λ1+λ2−µ)

λ1+λ2
ω
) · 1(λ1+λ2)2>λ1µ

−

1

2π

ˆ 4
√
λ1µ

0

(µ− λ1 − λ2)
√
x(4
√
λ1µ− x)(1− e(s2−x)ω)

(s2 − x)2 ·
(
(λ1 + λ2)x+ (

√
λ1µ− λ1 − λ2)2

)dx.
Because of preemptive priority, the average delay of A1

requests E[D1] = 1
µ−λ1

. Then, we obtain the average delay
of all requests by E[Dω] = λ1

λ1+λ2
E[D1]+ λ2

λ1+λ2
E[Dω

2 ] based
on the total expectation law.

Now consider dE[Dω2 ]
dω .

1

2π

ˆ 4
√
λ1µ

0

(µ− λ1 − λ2)
√
x(4
√
λ1µ− x)e(s2−x)ω

(s2 − x) ·
(
(λ1 + λ2)x+ (

√
λ1µ− λ1 − λ2)2

)dx
=C · e(−(

√
µ−
√
λ1)2−ξ)ω,

where C is a negative constant and ξ is a constant between
0 and 4

√
λ1µ by the mean value theorem. Now in (16), the

coefficients of two exponential terms are negative. At the same
time, in both exponential terms, the coefficient of ω is also
negative. We can find positive constants C1, C2, ξ1, ξ2 so that
−C1 ·e−ξ1ω < dE[Dω2 ]

dω < −C2 ·e−ξ2ω . As a result, E[Dω
2 ] de-

creases exponentially in ω. Because dE[Dω]
dω = λ2

λ1+λ2

dE[Dω2 ]
dω ,

we get that E[Dω] decreases exponentially in ω.

1s 2s 3s 4s

RC

rC

Fig. 19. Contour integration: The contour consists of L and CR. s1
and s2 are branch points. s3 and s4 are simple poles.
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