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Abstract— Peer-to-peer (P2P) systems provide a scalable way
to stream content to multiple receivers over the Internet and
has become a major type of application traffic. The maximum
rate achievable by all receivers is the capacity of a P2P
streaming session. We provide a taxonomy of the problem
formulations. In each formulation, computing P2P streaming
capacity requires the computation of an optimal set of multicast
trees, generally with an exponential complexity. We survey the
family of constructive, polynomial-time algorithms that can
compute P2P streaming capacity and the associated multicast
trees, arbitrarily accurately for some of the formulations, and to
some approximation factors in other formulations. Performance
evaluation using large-scale Internet trace is provided before
open problems in this research area are discussed.

I. BACKGROUND AND MODELING

To deliver rich multimedia content to many users, a
popular recent trend is to employ a peer assisted network to
complement the existing data center and CDN infrastructure.
With all the promising potential of P2P content distribution,
especially streaming video, we are naturally led to the
following fundamental question: What is the limit of such
networks? And how can we design P2P algorithms to attain
the limit? Defining streaming capacity as the maximum
supported streaming rate that can be received by every
receiver, these two questions, of determining the streaming
capacity of P2P, and of achieving (exactly or arbitrarily
closely) the capacity, are being addressed by the research
community. This paper provides a survey of these results,
with more detailed discussions of the recent results of Bubble
algorithm, Cluter-tree algorithm, and performance evaluation
using large scale real traffic traces.

A. P2P Network Modeling

We use a directed graph, denoted by G = (V,E), to
model a P2P overlay network. A vertex v in V corresponds
to a node on the P2P overlay networks, and every edge
e in E corresponds to a TCP/UDP connection between
two endpoints. We model P2P networks as networks with
capacity constraints on nodes, rather than on links.

In practical P2P networks, there are many factors that limit
system throughput. For example, a peer node has limited
download capacity to receive its own data, and limited
upload capacity to forward content to other peers. Many
peers are simply commercial home PCs with limited memory
and/or CPU power, and can only maintain connections to
a small subset of peers. This constraint limits the number
of other peers a receiver node can help, and may reduce
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system throughput. We define the degree of a node as the
number of neighbors of the node, and thus as the number of
simultaneous connections this node needs to maintain.

To model the node capacity constraints, we assume every
edge e in E has infinite capacity and associate with each node
v an upload capacity constraint Cout(v), and a download
capacity constraint Cin(v). Let In(v) and Out(v) denote
the set of edges entering and leaving node v respectively.
Let f(e) : e → [0,∞) be the rate over edge e in E. For
each node v, we constrain the sum of the edge rate entering
and leaving v as follows:∑

e∈In(v)

f(e) ≤ Cin(v),
∑

e∈Out(v)

f(e) ≤ Cout(v).(1)

Let S ⊆ V be a designated set of senders, and for each
s ∈ S, let Rs ⊆ V − {s} be a designated set of receivers.
An information source originates from each sender s ∈ S,
and is to be received by each r ∈ Rs. The remaining nodes
Hs = V − Rs − {s} are a set of helper nodes that can act
as relays for distributing the information from source s.

There are two paradigms to multicast messages from a sin-
gle source s to its set of receivers Rs. The first one is routing,
i.e., each source s packs multiple directed Spanning/Steiner
trees rooted at s and reaching all receivers in Rs. Every
tree is responsible for delivering a subset of the broadcast
messages, and the nodes only perform the actions of store,
copy, and forward. The second one is network coding [1][2],
and in particular random linear network coding [3]. In this
paradigm, the source s starts by transmitting the message to
its neighboring nodes. As the messages propagate through
the network, each node generates coded messages as random
linear combinations of its received messages and output the
coded messages to its neighbors. Receivers obtain random
linear combinations of the messages. They can recover the
original batch of messages from any set of random linear
combinations that form a full rank matrix.

Network coding is not quite practical in today’s P2P
applications. It cannot be used in the Internet routing layer
because it requires changes in all routers (for encoding) and
end-hosts (for decoding). If deployed in the overlay (P2P
layer), it will introduce new complexity in end-host software
(for encoding and decoding) and additional delays in video
delivery. Consequently, almost all comercial P2P systems
adopt the routing solution.

In the rest of this paper we focus on the following settings
unless mentioned otherwise:

• single source multicast scenario over the P2P networks,
• with only node upload capacity constraints,
• and no network coding is allowed.



II. EXISTING WORK

We review existing work on maximizing P2P streaming
rate in this section, and discuss insights behind these ap-
proaches. We start from the simplest scenarios and proceed
by introducing practical constraints.

A. Full-mesh Networks, No Degree Bound

Streaming capacity over a full-mesh P2P network without
node degree bound is a well studied problem. Li et al. [4]
have defined the capacity of a full-mesh P2P network with
helpers, and shown that the capacity can be achieved through
so called MutualCast trees. Kumar et al. [5] and Massoulie et.
al. [6] have independently developed the same result for the
maximum broadcasting rate in a full-mesh heterogenous P2P
network, but without helpers. Nguyen et al. [7] have studied
the throughput efficiency of the full-mesh P2P network, and
arrived at the same result for homogeneous P2P networks
without helpers.

Specifically, for single source multicast in P2P networks
with only upload capacity constraints and no node degree
bound, the following results hold [4]:

Theorem 1: Consider the case where source s multicasts
to all its receivers with helper nodes in presence. The maxi-
mum streaming rate can be achieved with design complexity
that is polynomial-time in network size by packing at most
1 + |Rs|+ |Hs| multicast trees as follows:

• One depth-1 tree rooted at s and reaching all receivers
in Rs, i.e. the type (1) tree in Fig 1.

• |Rs| depth-2 trees, each rooted at s and reaching all
other receivers in Rs via different r ∈ Rs, i.e. the type
(2) tree in Fig 1.

• |Hs| depth-2 trees, each rooted at s and reaching all
receivers in Rs via different h ∈ Hs, i.e. the type (3)
tree in Fig 1.
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Fig. 1. Packing different types of multicast trees to achieve maximum
streaming rate.

This result extends Edmonds’ theorem [8] for P2P topol-
ogy.
Intuitive explanation: The streaming rate is determined by
a) the system utilization of total system capacity, and b)
the transmission efficiency. To maximize the streaming rate,
it is sufficient to maximize the system utilization and the
transmission efficiency. The first, second, and third type of
trees in Fig 1 maximize the capacity utilization of the sender,

s, V , R the source, set of all nodes, set of all receivers.
Cv upload capacity of node v ∈ V .
U(v): Actual upload of node v ∈ V .
T: Set of all feasible trees.
t a tree, t ∈ T.
T a multi-tree, a set of sub-trees.
yt rate of substream delivered by tree t.
mv,t out-degree of node v in tree t.
M uniform per-tree out-degree bound (p.t.d.b.).
M(v) non-uniform per-tree out-degree bound (p.t.d.b.).
Do node out-degree bound (n.o.d.b.).
D node degree bound (n.d.b.).
r̄N (Cs, Do) n.o.d.b. streaming capacity as a function of

Cs and node out-degree bound Do.
r̄T (Cs,M) p.t.d.b. streaming capacity as a function of

Cs and uniform per-tree out-degree bound M .

TABLE I
MAIN NOTATION USED IN THIS PAPER.

individual receivers, and individual helpers, respectively.
Meanwhile,the first two types of trees deliver one bit of
information to |Rs| receivers by using exactly |Rs| bits of
system capacity, resulting in full transmission efficiency. The
third type of trees deliver one bit of information to |Rs|
receivers using |Rs|+1 bits of system capacity, where the one
extract bit consumption is due to a helper must receive the
information before rebroadcasting to the receivers. This leads
to a transmission efficiency of |Rs|

|Rs|+1 . This is the maximum
possible value for transmission that involves helpers, since
helpers need to receive at least one copy of the message
before they can help in redistributing the message. Thus, by
properly packing the three types of trees in Fig 1, one can
maximize the system utilization and also the transmission
efficiency, and hence the streaming rate.

However, the tree-packing scheme of Theorem 1 cannot
be directly applied to practical P2P networks. This is because
the scheme requires each peer to connect to each of the
remaining |Rs| − 1 receiver peers simultaneously. Thus the
required node degree is unbounded as the network size
increases, whereas in realistic networks the node degree is
bounded to limit the overhead in maintaining simultaneous
connections to neighboring nodes. For instance, in practical
systems such as PPLive [9], the total number of neighbors of
a node is usually bounded around 200 [10], and the number
of active neighbors of a node is usually bounded by 10−15.

B. Fullmesh Network, Bounded Per-Tree Degree

The first step toward a constrained tree construction is
to limit the per-tree degree bound. The streaming capacity
problem under this constraint is formulated as below:

Streaming Capacity Problem

maximize r =
∑

t∈T yt (2)
subject to

∑
t∈T mv,tyt ≤ Cv , ∀ v ∈ V (3)

yt ≥ 0, ∀ t ∈ T (4)
mv,t ≤ M(v), ∀ t ∈ T, v ∈ V (5)



variables T ⊂ T, and yt,∀t ∈ T . (6)

With this constraint, to support a streaming rate r, any
receiver v can at most upload D(v, r) := min(M(v)r, Cv),
called effective uplink capacity. With the new maximum
upload, the new upper bound for streaming capacity is given
in [11]:

rmax(Cs, Cv,M(v))

≤ min
(
Cs,

1
N

(
Cs +

∑N
v=1 D(v, r)

))
= min

(
Cs,

1
N

(
Cs +

∑N
v=1 min(M(v)r, Cv)

))
.

(7)

Since r appears in both side of the inequality, it is easier
to solve an equivalent problem, called minimum server load
problem, which seeks the minimum server upload Umin(s)
that is sufficient to support a given streaming rate r. Mini-
mum server load and streaming capacity are equivalent and
once we solve one, we can solve the other:

rmax(Cs, Cv,M(v))

= max
(
r ∈ R+ : Us,min(r, Cv,M(v)) ≤ Cs

)
, (8)

Us,min(r, Cv,M(v))

= min
(
Cs ∈ R+ : rmax(Cs, Cv,M(v)) ≥ r

)
. (9)

For the server load, we have the following lower bound:

Umin,s(r, Cv,M(v)) ≥ max

(
r,Nr −

N∑
v=1

min(M(v)r, Cv)

)
.

(10)
It is shown in [11], [12] that the bounds in (7) and (10) are

indeed achievable. The proof is by constructing a “Bottleneck
Removal algorithm” for M ≡ 1, a “Rotation algorithm” for
uniform M > 1 and homogeneous peer capacities, and a
“Snowball algorithm” for uniform M > 1 and heterogeneous
peer capacities, and a variant of Snowball algorithm for the
most general case, non-uniform M(v) and heterogeneous
peer capacities. It is shown that the four algorithms achieve
the bounds for the four respective cases.

Combining all cases, we get the following result.

Theorem 2: The four algorithms mentioned above can
achieve both the lower bound for server load and the upper
bound for streaming rate for the four respective cases, and
thus solve the minimum server load problem and the stream-
ing capacity problem under per-tree node degree bound.
Furthermore,
1) For minimum server load, we have

Us,min(r) = max(r,Nr −
∑
v∈V

min(Cv,M(v)r)) , (11)

2) For the streaming capacity, we have

rmax(Cs, Cv) =

{
Cs if Cs ≤ P (N) ,
min(Cs, g(k

∗)) if Cs > P (N) ,
(12)

where

g(k) :=

{
Cs+

∑N
i=k Ci

N−
∑k−1

i=1 M(i)
if
∑k−1

i=1 M(k) < N ,

∞ otherwise,
(13)

and k∗ is the minimum k such that

P (k) ≤ g(k,M) and P (k) ≤ Cs . (14)

3) The degree bound is inactive, i.e., the streaming capacity
and minimum server load with degree bound always equal
to those without degree bound, if and only if∑N

v=2 Cv

N −M(1)− 1
≥ P (1) . (15)

Otherwise, the degree bound is active, i.e., there exists a
Cs value, such that rmax(Cs,M) < rmax(Cs,∞), or there
exists a r value, such that Us,min(r,M) > Us,min(r,∞).

Theorem 2 shows the optimality of the four algorithms, de-
rives the exact formula for streaming capacity and minimum
server load, and gives the necessary and sufficient condition
on the activeness of the degree bound. From the condition, if
the peer capacities are close to each other, the degree bound
is inactive; if the peer capacities differ too much, the degree
bound may be active.

C. Fullmesh Network, Bounded Node Degree

Bounding the total number of neighbors for every node
can reduce the achievable streaming capacity. For instance,
if each node can have at most two neighbors, then the only
possible streaming topology is a chain. Consequently, the
maximum streaming rate is bounded by the second to the
minimum node capacity, which can be significantly worse
than the maximum streaming rate without degree bound.

What the server can do is to optimize the neighbor lists
it gives to each peer in order to improve the streaming rate.
To proceed, we first consider the scenario where no helper
nodes are present, all nodes have the same upload capacity,
i.e., Cv = C,∀v ∈ V , and each node has a same node degree
bound D. For the sake of easy explanation, we assume D to
be an even number. The analysis for D being an odd number
can be carried out similarly.

For this homogeneous broadcasting scenario, CoopNet
[13] and SplitStream [14] constructs multiple interior-node-
disjoint trees with tree degree 1

2D to perform the streaming.
For instance, consider an example of the server streams to
seven nodes all having unit upload capacity, and the node
degree bound is 4. The CoopNet and SplitStream schemes
construct two trees with tree degree 2 as shown in Fig. 2.
Each tree delivers half of the video at rate 1

2C, and hence
the total achieved streaming rate is the optimal value C. The
interior nodes on these two trees are disjoint. this is because
all interior nodes use up their capacities simultaneously on
one tree, and are leaf nodes in the other tree.

The above observations on CoopNet/SplitStream schemes
can be generalized. The following lemma shows that Coop-
Net [13] and SplitStream [14] can achieve a streaming rate
of at least D−2

D C, which is close to the maximum possible
rate C for large D.
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Fig. 2. In this example, the server s forms two interior-node-disjoint trees,
each having tree degree 2, to stream video to all seven receivers. In tree
1, nodes 1, 2, 3 are interior nodes; while in tree 2, they become leaf nodes
and nodes 4, 5, 6 become the interior nodes. There are not enough nodes
with non-zero upload capacity left to build a third tree; hence, node 7 does
not get the chance to serve as an interior node.

Lemma 1: [15]Consider that CoopNet/SplitStream
schemes construct multiple degree-D/2 trees in a single-
source streaming scenario with N homogeneous receivers,
i.e., Cv = C for all v in R, and N > D

2 +1. The followings
are true:

• The total number of CoopNet/SplitStream trees is either
D
2 − 1 or D

2 , and the trees are interior-node-disjoint;
• Node degree is bounded by D;
• Streaming rate supported by these trees is at least(

1− 2
D

)
C.

Intuitive explanation: To maximize the streaming rate
from the server to N homogeneous receivers with degree
bound D, it is again critical to fully utilize receivers’ upload
capacities while maintaining high transmission efficiency.
One straightforward way is to construct trees for delivery
and let the receivers to serve as interior nodes. If all interior
nodes of a tree have the same number D

2 of children, then
the all interior nodes use up their capacities simultaneously
on one tree and should be leaf nodes in the rest trees. Hence,
the trees are interior-node-disjoint. This turns out to be key
to fully utilize receivers’ capacities while bounding the node
degree. A tree at most uses up

⌈
N

D/2

⌉
number of interior

nodes’ capacities, and is capable of support a rate of C
D/2 .

The the total number of CoopNet/SplitStream trees is either
D
2 − 1 or D

2 . Consequently, the achieved streaming rate is
at least

(
D
2 − 1

)
C

D/2 =
(
1− 2

D

)
C. Across multiple trees, a

node in total has at most D
2 children and D

2 parents; hence,
its node degree is bounded by D.

Now consider the case where N receivers have heteroge-
nous upload capacities. Let µ , 1

N

∑
v∈R Cv be the average

receiver upload capacity. Assuming (as is usually true) that
the server upload capacity is larger than µ, for a sufficiently
large number of peers it can be verified by a supply-equals-
demand argument that µ is approximately the maximum
streaming rate.

In this case, directly applying CoopNet/SplitStream
schemes can no longer guarantee the interior nodes of a tree
use up their capacities simultaneously. Without the interior-
node-disjoint property, it becomes complicated to fully utilize

receivers’ capacities while bounding the node degree across
multiple trees.

1) Bubble Algorithm: We then extend our study of the
streaming capacity to node out-degree bound (n.o.d.b.), i.e.,
M(v) = Do < ∞. It is shown in [15] that the streaming
capacity problem under node degree bound on top of a gen-
eral graph is NP-Complete in general. It remains unknown
whether the streaming capacity problem under n.o.d.b. on
top of a complete graph is NP-hard or not, though. We also
derive the upper and lower bounds of the n.o.d.b. streaming
capacity, denoted by r̄N (Cs, Do), in [15].

The upper bound of r̄N (Cs, Do) is straight forward: since
n.o.d.b. is a stronger constraint than node per-tree degree
bound (p.t.d.b.), denoted by r̄T (Cs,M), we have

r̄N (Cs, Do) ≤ r̄T (Cs,M)|M=Do . (16)

For the lower bound of r̄N (Cs, Do), we have:

Theorem 3: For a P2P streaming system with N re-
ceiver peers and one server with bandwidth Cs, the n.o.d.b.
streaming capacity r̄N (Cs, Do) is at least half of the p.t.d.b.
streaming capacity r̄T (Cs,M), if M = Do, i.e.,

r̄N (Cs, Do) ≥
1

2
r̄T (Cs,M)|M=Do ,∀Cs ≥ 0, ∀Do, N ≥ 1.

(17)

We prove Theorem 3 by constructing a “Bubble algorithm”
that satisfies n.o.d.b., and achieves at least half of the
Snowball capacity. Bubble algorithm is a greedy algorithm.
The main ideas are: 1) We iteratively construct trees with tree
degree M = Do, and require that the children set of each
node remains unchanged across its internal trees. 2) Once
we construct a tree, we assign a maximum allowed rate to
this tree until one of the internal node is exhausted, and we
swap the exhausted internal node with the largest leaf node
and construct new trees. 3) The swap must be in a way such
that no new children are brought to an old internal node,
otherwise that internal node violates the n.o.d.b. constraint.
4) To maximally utilize peer bandwidths, the server uploads
to only one single child if possible, and we call these trees
“initial trees”. For an initial tree, we call the single child
of the server the “root” of this initial tree. We continue the
iterations until we do not have enough non-exhausted nodes
to construct a M-ary initial tree.

We call it a “Bubble” algorithm, since we can think of
the N nodes as N layers of liquids, placed from low to
high, with densities equaling to C1 to CN initially. When
a node is exhausted, we say its corresponding layer of
liquid is vaporized to a “bubble”. By gravity, the light
“bubble” node will lift up, and the heaviest liquid above
the new formed bubble will fall down, which corresponds to
a swapping in our algorithm. We note that Bubble algorithm
is a centralized algorithm, and thus not a practical P2P
streaming scheme. We design it to prove Theorem 3. It is
also the first algorithm that satisfies n.o.d.b. and has provable
performance guarantee.



Fig. 3. The swap of an exhausted internal node and a leaf node. From left to right, case 1, case 2 and case 3. Case 1: A is not an ancestor of E. Case
2: A is the parent of E. Case 3: A is an ancestor, but not the parent, of E.

Example 1: N = 10, C = [20, 15, 10, 8, 7, 6, 5, 4, 3, 2],M = 3.
C̃(A) C̃(B) C̃(C) C̃(D) C̃(E) C̃(F ) C̃(G) C̃(H) C̃(I) C̃(J) yt aggregate rate ds,o Us

20 15 10 8 7 6 5 4 3 1.5 10/3 10/3 1 10/3
10 5 (0) (8) 7 6 5 4 3 1.5 5/3 15/3 1 15/3
5 (0) 0 3 (7) 6 5 4 3 1.5 3/3 18/3 1 18/3
2 0 0 (0) 4 (6) 5 4 3 1.5 2/3 20/3 1 20/3
(0) 0 0 0 2 4 (5) 4 3 1.5 2/3 22/3 1 22/3
0 0 0 0 (0) 2 3 (4) 3 1.5 2/3 24/3 1 24/3
0 0 0 0 0 (0) 1 2 (3) 1.5 1/3 25/3 1 25/3
0 0 0 0 0 0 (0) 1 2 (1.5) 1/3 26/3 1 26/3
0 0 0 0 0 0 0 0 1 0.5 1/6 26.5/3 4 28/3
0 0 0 0 0 0 0 0 0.5 0 1/6 27/3 7 31.5/3
0 0 0 0 0 0 0 0 0 0

Fig. 4. One example showing the Bubble algorithm. In the table, C̃(A) to C̃(J) give the remaining capacities of A to J before each iteration, ds,o
represents the source out-degree in the tree constructed in each iteration, and Us represents the total server load until the end of each iteration. The number
with underline means this node is internal. The (·) means the node is to be swaped ((0) means the node is the new formed bubble from the previous
iteration).

Fig. 5. Constructed trees in all iterations for the example in Fig. 4. The first 8 trees are initial trees. After iteration 8, there are less than I = 3 peers
left unexhausted, and Bubble algorithms stops. Then server takes care of the children of all exhausted internal nodes from then on.

The key challenge of Bubble algorithm is to swap in a
way such that n.o.d.b. is not violated. Suppose node A is
an exhausted internal node, and E is the largest original leaf
node that will be swapped with A. Consider the relationships
between A and E, we have altogether three possibilities, as
illustrated in Fig. 3.

• Case 1: A is not an ancestor of E; for that case, we
can simply give all children of A to E, and keep the
other internal nodes’ children unchanged.

• Case 2: A is the parent of E. For that case, we cannot
simply swap the positions of A and E, since this way,
A’s parent will have a new distinct child. Similarly, E
cannot be the child of any other internal peer node,
otherwise that peer will have a new child. Since the
server is not degree bounded, the only choice is to make
E the single child of the server, let E take the original
root and all the other children of A as its children, and

A is left as a leaf node.
• Case 3: A is an ancestor, but not a parent, of E. For

that case, suppose B is the child of A that is an ancestor
of E. Similar to the reasoning in case 2, to ensure that
no old internal nodes add a new child, we need to make
B the new root, and let E takes the original root and
all the other children of A as its children.

A complete example of how the Bubble algorithm con-
structs the multi-tree to utilize peer bandwidths is shown in
Fig. 4 and Fig. 5. For this example, N = 9, M = Do = 3,
and we index the peers from A to J . We set the server
capacity to be sufficiently large. The remaining capacities
and the nodes being swaped after each iteration are shown
in Fig. 4, and the trees constructed in the iterations are shown
in Fig. 3.

With the Bubble algorithm at hands, we have furthermore
shown the following result, which directly leads to Theo-



rem 3.

Proposition 1: Consider a single-source P2P streaming
scenario with N receivers and n.o.d.b. Do = M , and define
I = ⌈(N − 1)/M⌉. We have

rb(Cs, Do)

rs(Cs,M)
≥ I

2I − 1
+

I − 1

(2I − 1)(1 +M)
. (18)

From Proposition 1, we have:

r̄N (Cs, Do) ≥ rb(Cs, Do) ≥
1

2
r̄T (Cs,M)|M=Do (19)

rb(Cs, Do) ≥
1

2
r̄T (Cs,M)|M=Do ≥ 1

2
r̄N (Cs, Do) (20)

Equation (19) states that the n.o.d.b. streaming capacity
is at least half of the p.t.d.b. streaming capacity, which
is Theorem 3. Equation (20) states that Bubble algorithm
guarantees a 1/2 sub-optimality in term of rate performance.

Cs

Streaming rate
r∗m
r∗s

r∗b
r′b

Fig. 6. The critical rates and streaming capacity functions of Bubble
(bottom red curve), Snowball (middle green curve) and Mutualcast (top
blue curve) algorithms. r∗m, r∗s , r

∗
b are the corresponding critical rates. r′b

is the streaming rate of Bubble algorithm when Cs = r∗s . The worst
rb(Cs, Do)/rs(Cs,M)|M=Do ratio occurs at Cs = r∗s , and it is r′b/r

∗
b .

Proposition 1 gives the performance guarantee of Bubble
algorithm for the worst case. The critical rates and streaming
rate curves for Bubble, Snowball (capacity under per-tree
out-degree bound) and Mutualcast (capacity under no bound
at all) algorithms are illustrated in Fig. 6.

2) Cluster-Tree Algorithm: A common message illus-
trated by CoopNet/SplitStream and Bubble schemes is that
streaming to homogenous receives is straightforward, but to
heterogenous is rather complicated. One way to proceed is
to create homogeneity out of heterogeneity. Following this
philosophy, we construct a two-layer hierarchical scheme to
aim for a rate close to µ.

We assume that for all v in V − {s}, Cout(v) is drawn
i.i.d. from a distribution with mean µ and variance σ2. Our
idea is two folds. First, we group peers into clusters and
form a full-mesh network to deliver content locally within a
cluster. Second, we use CoopNet/SplitStream trees to deliver
contents globally across groups. Locally, the rates supported
by different clusters turns out to be the average node upload
capacities in the clusters. These average node capacities are
roughly the same if clusters are large enough, according to
the Central Limit Theorem. Globally, using degree bounded
CoopNet/SplitStream trees to deliver content across these
equal-rate clusters achieves high throughput. An illustrative
example consisting seven clusters is shown in Fig. 7. This
example can be thought as an counterpart to the seven homo-
geneous receivers example related to CoopNet/SplitStream.
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Tree 1
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Fig. 7. In this example, the server groups the peers into seven clusters.
The server s forms two interior-node-disjoint trees, each having tree degree
2, to distribute video to all clusters. Within each cluster, the peers form
a full-mesh and locally broadcast the video among themselves. In tree 1,
G1, G2, G3 are interior clusters; while in tree 2, they become leaf clusters
and G4, G5, G6 become the interior clusters.

In particular, we distribute the N receivers evenly into
K clusters G1, . . . , GK ; let Xi be the average peer upload
capacity in Gi, i.e.,

Xi =
1

|Gi|
∑
v∈Gi

Cout(v). (21)

We form a full-mesh among the peers inside clusters, and
apply the scheme in Theorem 1 in Section I-A to deliver
content within cluster Gi(1 ≤ i ≤ K) at rate Xi. If Gi gets
content from outside at rate Xi, then not only can all peers
inside Gi receive this data, but also the cluster can act as a
source and send a copy of the data to nodes outside Gi at
rate Xi. By connecting all the clusters and the source via a
chain, we see that a streaming rate of X̄ , mini=1,...,K Xi is
achievable. If alternatively degree-M CoopNet/SplitStream
trees are in use, then a rate of M−1

M X̄ is achievable.
Observing that each Xi is the sum of i.i.d. random vari-

ables and thus follows a normal distribution concentrating
around its mean µ, we know that the probability of the tail
of the distribution decreases exponentially in the cluster size
N
K . Therefore, if K = O (lnN), the probability X̄ is far
away from µ would be upper-bounded by o

(
1

lnN

)
using the

union bound argument. In particular, the probability that X̄
is smaller than (1 − ϵ)µ for ϵ ∈ (0, 1] goes to zero as N
goes to infinity. That is, X̄ also concentrates around µ if
K = O

(
N

lnN

)
. If the CoopNet/SplitStream trees in use have

a degree no more than O(lnN), then the overall node degree
is bounded by O(lnN) . The above observation is formally
summarized in the following theorem.

Theorem 4: If N peers, with independently identically
distributed upload capacities, are evenly distributed into K =
⌈N/n⌉ clusters where

n =

⌈
2(1 + α)σ2

ϵ2µ2
lnN

⌉
(22)

for some constants α > 0 and ϵ ∈ (0, 1], then

P

(
min

1≤i≤K
Xi < (1− ϵ)µ

)
<

1

2 + 2α

(ϵµ
σ

)2 1

Nα lnN
,

(23)



which diminishes to zero as N goes to infinity.
Using degree-M CoopNet/SplitStream trees to deliver

content across these K clusters, we achieve a rate of at least
M−1
M µ with probability no less than 1− 1

2+2α

(
ϵµ
σ

)2 1
Nα lnN .

The degree of each node is O(lnN +M).

The insight is that peering in a locally dense and globally
sparse manner achieves near-optimal streaming rate if the
degree bound is at least logarithmic in network size.

Based on the above insight, we develop a Cluster-Tree
algorithm to achieve high streaming rate with bounded node
degree. The Cluster-Tree algorithm is of a practical design:
a distributed algorithm and it can handle peer churns.

We consider a P2P streaming system with tracker. Trackers
have been adopted in many practical P2P streaming systems,
such as PPLive [9] and PPStream [16], to provide peer
registration and neighbor lookup service.

In these systems, when a node joins the P2P system, it
registers itself with the tracker and retrieves a neighbor list
from the tracker. The peer node then communicates with the
peers in the list to obtain additional lists, and merges these
lists to build its own. It connects to both the server and a
subset of the neighbors to start watching the video. When
a node leaves the system, the tracker is either notified by
the node or finds out by periodic inquiry. In these practical
systems, the heavy load of the centralized tracker is taken
care of by using high-end servers. According to [17], a
small number of tracker servers are able to manage possibly
millions of streaming users.

The Cluster-Tree algorithm works as fellow. Initially, the
tracker assumes an upper bound for the number of nodes
in the system, denoted by N̄ , e.g., 106. It gets the average
upload capacity µ and the variance of capacity σ2 from
a third-party statistics [18], and picks the streaming rate
(1 − ϵ)µ and a desired outage probability by assuming N̄
nodes in the system. It picks Bubble tree degree M to
warranty a low playback delay, and reverse-engineers the
required α by using (23). Finally, the tracker computes the
minimum required cluster size n∗ for a system with N̄ nodes
according to (22). Forming clusters with size n∗ guarantees
that the desired throughput is achieved with high probability
whenever N ≤ N̄ .

As nodes start to join, the tracker groups them into a single
cluster. As the number of nodes in the cluster grows beyond
a critical size 2n∗, the tracker splits the cluster into two, each
with size n∗. As more nodes join, they get added into existing
clusters, and clusters grow and split whenever critical size
2n∗ is reached. This way, the system bootstraps and at the
same time maintains the desired streaming rate with high
probability. The largest degree of a node during the process
is at most 2n∗ + 1 + 3M .

With peer churn, the cluster size may decrease below
n. The tracker should make sure the minimum cluster size
remains larger than n∗. Whenever a peer joins, the tracker
assigns it to the minimum-size cluster at that time. If two
clusters both have small sizes, the tracker can merge them
to a larger size cluster. When a peer leaves, some cluster

may shrink below n∗. In this case, the tracker merges two
small size clusters to get a new larger size cluster.

For the join and leave of peers, and the merging and
splitting of clusters, all are equivalent to adding or deleting
Mutualcast trees within a cluster, which are manageable
operations. Besides forming clusters, the tracker also needs
to maintain M -ary Bubble (essentially CoopNet) trees across
clusters as the number of clusters varies due to peer churn.
The source and at most two head nodes per cluster are
involved. The associated overhead is the same as Coop-
Net/SplitStream trees [14], [19].

D. General Network, Bounded Tree/Node Degree

Given a general (i.e., non-full-mesh) P2P network, bound-
ing the node degree significantly complicate the streaming
capacity problem, making it combinatorial in nature and is
computationally infeasible to solve in general. In particular,
if the node degree is bounded by 2, then this is a Hamiltonian
path problem and is NP-complete [20].

One way to proceed is to consider for a variant of the
node degree bound problem. In our recent work [21], we
consider the problem of packing multicast trees over a given
P2P network modeled by a directed graph G = (V,E)
with bounded tree degree. That is, we bound the number of
children a node can have in individual trees, although across
multiple trees the overall node degree can be unbounded.
As shown later, this variant problem is still challenging to
solve in general, and we are looking for polynomial-time
approximation solutions.

Let Ts be the set of feasible spanning/Steiner trees over G
rooted at source s and reaching all receiver peers in Rs, and
all these trees have tree degree bound M . Let yt be the rate
of tree t ∈ Ts. We formulate the single source streaming
capacity problem as a Linear Programming (LP) problem.
However, the number of variables is clearly exponential in
the network size, and standard LP solutions cannot be applied
to obtain polynomial time solutions.

Single Source Primal Problem (Maximum Streaming
Rate)

max
yt≥0,∀t∈Ts

∑
t∈Ts

yt (24)

s.t.
∑
t∈Ts

mv,tyt ≤ Cout(v) ,∀v ∈ V (25)

where mv,t is the number of outgoing edges of node v in tree
t, and (25) corresponds to the upload capacity constraints.

From linear programming duality theory, solving the pri-
mal problem is equivalent to solving its dual problem, and an
optimizer of the dual problem readily leads to an optimizer
of the primal algorithm. The dual problem associates a non-
negative variable (interpreted as price) p(v) with each node
v ∈ V ′ corresponding to constraint (25), and can be written
as follows:



Single Source Dual Problem (Min-Cost Network)

min
p(v)≥0,∀v∈V

∑
v∈V

Cout(v)p(v) (26)

s.t.
∑
v∈V

mv,tp(v) ≥ 1 ,∀t ∈ T (27)

In general, a network can have an exponential number
of trees (in the size of the network) with a common tree
degree bound. Hence, the primal problem can have possibly
exponential number of variables and its dual can have an
exponential number of constraints, and are both are hard to
solve.

Inspired by the seminal work by Garg and Konemann [22]
on solving multi-commodity flow problem using an itera-
tive algorithm, our work [21] designs a fast (polynomial
time) combinatorial algorithm for solving both primal and
dual problems up to an approximation factor. Note Garg-
Konemann approach was also adopted by Cui et al. in [23]
to develop a primal-dual algorithm to maximize broadcast
rate over undirected graph with edge capacity constraints,
no helper node, and no node degree bound.

One observation that can be made from our approach in
[21] is that although solving the Single Source Primal/Dual
problems exactly requires packing exponential number of
trees, solving them approximately only requires packing
polynomial number of trees. We find this set of polynomial
number of trees and assigning the corresponding tree rates
in an iterative manner in [21]. We give a briefing description
as below:

1) Find a min-cost tree over the node-costed network with
given node cost, and assign a tree rate that is subjected
to normalization in Step 3.

2) Include the newly founded min-cost tree into the
candidate tree set, and update the cost of the nodes
that is used by this newly found tree and its assigned
tree rate. If the overall network can accommodate more
flows (by testing whether the overall network cost is
too large), then go to Step 1; otherwise go to Step 3.
The intuition of updating the node costs is to reflect
the usage of the nodes via its costs, thus the nodes
will be less likely to be picked when computing the
min-cost tree with the updated node costs.

3) Use only the trees in the candidate tree set collected in
Step 2, and normalize their tree rates. It can be shown
that at the end we have find a set of polynomial number
of trees with corresponding tree rates to solve the
Single Source Primal/Dual Problems approximately.

The key step in our iterative approach involves finding the
min-cost tree over (directed) node-costed networks that have
costs on nodes rather than on edges.

Theorem 5: If an α-approximation algorithm (α ≥ 1)
exists for the min-cost tree problem, then our algorithm can
guarantee an approximation factor of (α+ ϵ) for any ϵ > 0.

Hence, approximation algorithms for the min-cost tree
problem, when plugged into our primal-dual framework, give
approximation algorithms for the overall problem.

The min-cost (spanning/Steiner) tree problem over node-
costed networks is essentially the minimum cost directed
Steiner tree problem together with symmetric connectivity
and a special structure on the costs – costs of all edges
going out of a node are equal. On one hand, one can directly
apply approximation algorithms for general problems to this
specific case to obtain approximated solution for the overall
problem. Our work in [21] includes a summary of the results
obtained along this path.

On the other hand, such special structure can in fact be
utilized to design algorithm with improved approximation
factor, as compared to those for general problems without
such special structure.

For instance, it is known that the minimum cost directed
Steiner tree problem over edge-costed networks is hard to ap-
proximate to a factor better than ln |Rs| [24]. An O

(
|Rs|δ

)
-

factor approximation algorithm that runs in polynomial time
for any fixed δ > 0 is given in [25]. By reducing the
min-cost Steiner tree problem over node-costed networks
to a min-cost group Steiner tree problem over edge-costed
network, we shows in [21] that an approximation factor of
O(ln |Rs| ln3 |V |) can be achieved in polynomial time. In
the case where |V | = O(|Rs|), the approximation factor
becomes O

(
ln4 |Rs|

)
, which is better than the best known

approximation factor of O(|Rs|δ) (δ > 0) over traditional
edge-costed networks [26].

E. Simulations

1) Evaluation on Large-Scale Online Video Viewing
Trace: In this simulation, we evaluate the ability of Cluster-
Tree algorithm, the only distributed algorithm surveyed here
and the one capable of handling per-node degree bound, to
provider a sustained streaming rate as peers join over time.
For this purpose, we use an MSN VoD (Video-on-Demand)
trace from [18] – this corresponds to the most popular video
on MSN during the measurement period going back to 2007.
A total of about 1.3 million peers appear in the trace. Because
our schemes are designed for live streaming (vs. VoD), we
use the trace to model peer arrivals who stay in the system
for the rest of the duration of the simulation. Hence, the
number of peers in our simulation grow to about 1.3 million
over time.
Forming Clusters: The clusters in our Cluster-Tree algo-
rithm require full-mesh communication between them. If
peers in a given cluster come from all over the globe, then
Internet links would become bottlenecks for communication
between them; moreover, criss-crossing paths around the
globe within a cluster would lead to inefficient use of
Internet bandwidth. For these reasons, we restrict clusters
to consist of peers from the same Autonomous System
(AS). Such a cluster formation scheme is also ISP-friendly
and minimizes cross-ISP peering traffic. With clusters now
following AS (and geographic) locality, the asymptotic rate
bounds established for Cluster-Tree scheme may not hold,



since uplink capacities in the same AS could be correlated
due to similar consumer broadband plans provided by the
ISP. The main objective of this experiment is to evaluate
the impact of this on the streaming rate provide by Cluster-
Tree algorithm and propose modifications to improve the
algorithm in a practical real-world setting.
Sustained Streaming Rate: Our initial run of the Cluster-
Tree algorithm on the MSN video trace with clusters formed
with AS domains as described above gives a low sustained
streaming rate of about 128 Kbps. This is because a small
number of low uplink capacity peers form clusters with
low average uplink capacities, and these clusters become
the bottleneck for the streaming rate. If we remove these
small fraction of very low uplink capacity peers from con-
sideration, the streaming rate delivered by uplink capacity
peers could improve significantly. To understand this effect,
we demonstrate, in Fig. 8, the streaming rate as a function
of the fraction of low uplink capacity peers removed from
consideration. We observe that by removing just 0.3% of the
1.3 million peers, the streaming rate is increased to 300Kbps.
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Fig. 8. Streaming rate (Kbps) for Cluster-Tree scheme as a function of
the fraction of peers (the lowest uplink capacity ones) served by a separate
delivery mechanism. (MSN online video trace used for simulation.)

We therefore propose to complement the theory-based
algorithm with a different delivery mechanism (e.g., direct
from content server) or a separate instance of the Cluster-
Tree scheme for this small fraction of ultra-low uplink
capacity peers. Various real-time measurement techniques
can readily help identify such links with little overhead.
To validate that this works, we demonstrate, in Fig. 8, the
sustained streaming rate in the Cluster-Tree scheme as peers
join over time, when a small fraction (we call this fraction a
cutoff percentage) of the peer population (the lowest uplink
capacity peers) are served through a separate delivery mech-
anism. We further demonstrate, in Fig. 9, the streaming rates
as functions of peer number for various cutoff percentages,
and compare them with the theoretical maximum streaming
rate (computed as the global average uplink capacity µ).
From Fig. 9, a higher cutoff percentage gives a higher
streaming rate. For example, we can get a higher streaming
rate of about 400 Kbps by increasing the cutoff to 5% of the
peers. The theoretical maximum streaming rate (computed
as the global average uplink capacity µ) is also shown.

In summary, our evaluations on a real-world video viewing
trace show that the Cluster-Tree algorithm can sustain a high
streaming rate even when clusters are formed by geograph-
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Theoretical Maximumcutoff=5.0% of peerscutoff=1% of peerscutoff=0.3% of peers
Fig. 9. Sustained streaming rate (Kbps) for Cluster-Tree scheme as peers
arrive over time. Different fixed fractions of peers (the lowest uplink capacity
ones) are served by a separate delivery mechanism on a continuing basis.
Theoretical maximum streaming rate is also shown. (MSN online video
trace used for simulation.)

ical (AS) proximity, provided a complementary delivery
mechanism is used for the ultra-low uplink capacity peers.

III. OPEN PROBLEMS

A. An Open Case

When the given graph is not full mesh, each node has a
degree bound (even just per-tree degree bound), and there are
helper nodes, polynomial time computation of P2P streaming
capacity with a constant approximation fraction remains
open.

B. The Cases with Both Upload and Download Capacity
Constraints

We observe that a graph G with both node upload and
download capacity constraints can be reduced to a corre-
sponding graph G′ with only upload capacity constraints.
Given a graph G = (V,E) with nodes v ∈ V having upload
capacities Cout(v) and download capacities Cin(v), we can
construct a graph G′ by replacing each node v by two nodes
v−, v+ as shown in Fig. 10. Let G′ = (V − ∪ V +, E′)
where V − = {v− : v ∈ V } and similarly for V +, and
E′ = {(v−, v+) : v ∈ V } ∪ {(u+, v−) : u, v ∈ V }.
This graph G′ has only upload capacity constraints given
by Cout(v

−) = Cin(v) and Cout(v
+) = Cout(v).

Proposition 2: Suppose network coding is not allowed,
then a scheme achieves maximum streaming rate on G
(with download and upload constraints) if and only if it
achieves maximum streaming rate on G′ (with only upload
constraints).

Fig. 10. A node v with upload and download capacity constraints Cout(v)
and Cin(v) respectively is replaced with two nodes v− and v+ with only
upload capacity constraints. Node v− has an upload capacity of Cin(v),
and v+ has an upload capacity of Cout(v).



Proposition 2 indicates that if network coding is not
allowed, then it is sufficient to study a graph G′ with
only upload capacity constraint. The main difficulty is in
efficiently finding schemes to maximize streaming rate on
this non-complete graph G′. When the original graph G has
bounded node degree, the problem becomes NP-complete,
as is discussed in Section II-C.

With network coding allowed, streaming rate achievable
on G′ is not necessarily achievable on G. The amount of
traffic node v can mix on G is no more than Cin(v), whereas
the net traffic v− and v+ can mix on G′ can exceed Cin(v).

C. Streaming Capacity with Network Coding Allowed

Almost all existing work we review in the previous sec-
tion focus on routing based algorithms. It is of interest to
study the streaming capacity problem with network coding
allowed. We recently characterize the capacity region of P2P
networks with network coding allowed, for the cases with
full-mesh networks and presence of helper [27], [28]. It is
shown that network coding has no gain over routing in terms
of throughput in P2P networks. This is contrast to the general
belief that network coding can improve the capacity region
as compared to routing. Similar results were also observed
by authors in [29] for the case with full-mesh networks and
no helper.

D. Distributed Algorithms and Implementations

Almost all existing work we review in the previous section
use centralized algorithms, with few exceptions such as
Mutualcast [4]. It is of great interest to solve the stream-
ing capacity problem using distributed algorithms. Systems
running distributed algorithms, compared with those running
centralized algorithms, are more adaptable to users joining
and leaving the systems (e.g., peer churn in Peer-to-peer
systems) and are more robust to system/network dynamics
(e.g., upload capacity fluctuations).

So far in the research literature of P2P streaming, there is
a gap between theory and practice. Bridging this gap through
a large-scale deployment of theory-inspired algorithms will
be a highly challenging and healthy direction.

E. Additional Metrics and Variables

In addition to throughput, delay, robustness (to traffic and
peer fluctuations) and ISP-friendliness are also important,
and sometimes conflicting, objectives in P2P streaming. In
addition to overlay topology construction and application
layer streaming rate, there are other variables that present
opportunities of design freedom to either P2P or ISP.

For instance, a recent work by Wu, Liu, and Ross [30]
studies multi-channel P2P streaming systems. They suggest
to decouple the content a peer downloads to serve and the
content it wants to view, and shows throughput improvement
in the presence of dynamic peer joining and leaving.

Bridging the content-pipe divide [31] and jointly opti-
mizing over these variables to strike 4-dimensional tradeoff
regions of the above metrics remains a long-term goal for
this research topic.
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