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ABSTRACT

Different from a large body of research on social networks
that has focused almost exclusively on positive relationships,
we study signed social networks with both positive and neg-
ative links. Specifically, we focus on how to reliably and ef-
fectively predict the signs of links in a newly formed signed
social network (called a target network). Since usually only
a very small amount of edge sign information is available
in such newly formed networks, this small quantity is not
adequate to train a good classifier. To address this chal-
lenge, we need assistance from an existing, mature signed
network (called a source network) which has abundant edge
sign information. We adopt the transfer learning approach
to leverage the edge sign information from the source net-
work, which may have a different yet related joint distribu-
tion of the edge instances and their class labels.

As there is no predefined feature vector for the edge in-
stances in a signed network, we construct generalizable fea-
tures that can transfer the topological knowledge from the
source network to the target. With the extracted features,
we adopt an AdaBoost-like transfer learning algorithm with
instance weighting to utilize more useful training instances
in the source network for model learning. Experimental re-
sults on three real large signed social networks demonstrate
that our transfer learning algorithm can improve the predic-
tion accuracy by 40% over baseline methods.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data mining
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1. INTRODUCTION
Online social networks such as Facebook, Twitter and

LinkedIn have been gaining increasing popularity in recent
years. People usually form links to indicate friend or fol-
low relationships. But in some other social networks people
can form both positive and negative links. Positive links
express trust, like or approval attitudes, whereas negative
links indicate distrust, dislike or disapproval attitudes. For
a given directed link from user u to v in a social network,

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2035-1/13/05.

we define its sign to be positive (or negative) if it expresses
a positive (or negative) attitude from u to v. We call such
networks with both positive and negative links signed so-
cial networks. Examples include Epinions1 whose users can
express trust or distrust of others [18], Slashdot2 whose par-
ticipants can declare others to be either “friends” or “foes”
[11], and Wikipedia3 whose users can vote for or against the
promotion of others to administrator status [2].

In some signed social networks, the attitude of a link can
be easily determined based on user rating score, i.e., posi-
tive or negative. But in some other cases such as in online
forums or BBS, the existence of interactions (i.e., links) be-
tween two users can be easily observed while the specific
semantic attitudes of these links are not explicitly labeled,
since they are usually expressed implicitly by user reviews
or comments. As a more general case, hyperlinks between
webpages can also indicate agreement or disagreement with
the target of the link, but the lack of explicit labels makes
it very difficult to determine the attitude over these hyper-
links [20]. Manually analyzing and labeling the signs of links
will be very expensive and inefficient. A promising solution
is to train a classifier for link sign prediction in the signed
networks. However for some signed social networks, espe-
cially the newly formed ones, the paucity of available signs
makes it difficult to train a good classifier to predict un-
known link signs. How to reliably and efficiently predict the
signs of links in signed social networks is an important and
challenging problem.

Previous research [15] has shown that, the structural in-
formation is a powerful and reliable source for the purpose
of link prediction in unsigned networks, when applied in a
traditional machine learning framework. Some examples of
such structural information include the number of common
neighbors, or other local neighborhood statistics. As for the
signed social networks, a recent work by Leskovec et al. [14]
studies the edge sign prediction problem using the signed
triad features and a logistic regression model. While its
major contribution is the connections to theories of balance
and status in social psychology, the prediction model makes
a very strong assumption on the input network: the signs of
all links except the one to be predicted are known in advance.
This is not very practical in reality as it is very expensive to
obtain the signs of all links except one in a large network,
especially for newly formed networks.

Thus, in this work we study the edge sign prediction prob-
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lem with a more realistic setting as follows. Given a directed
signed network, we are interested in predicting the signs of
edges whose signs are unknown. We call this network a tar-
get network. We assume there is a very small amount of
edge sign information in the target network as the training
data, but the quantity is inadequate to train a good clas-
sifier. This assumption holds for many newly formed and
fast evolving networks. Thus we consider to leverage an-
other more mature signed social network, called a source
network, which has abundant edge sign information. The
source network may have a different joint distribution of
the edge instances and the class labels from the target net-
work, perhaps because the source network is out-dated or
is from a different application. But the source network is
not completely useless. There still exists a certain degree of
similarity, e.g., similar degree distributions and diameters,
or common properties, e.g., structural balance and social
status [14], between the source and target networks. For
example, according to the structural balance theory, many
signed networks follow a common principle that “the friend
of my friend is my friend” and “the enemy of my friend is
my enemy”. Thus our task is to leverage the sign informa-
tion in both the source and target networks to train a good
classifier. This approach is known as transfer learning [19,
1, 21].

While most existing transfer learning works focus on trans-
actional data [1], image [21] and text [22], in which the data
instances are represented in a predefined d-dimensional fea-
ture space, a unique challenge in our transfer learning prob-
lem across two signed social networks is that there is no pre-
defined feature vector for the edge instances in the networks.
Therefore, the first step is to investigate how to construct
generalizable features that can transfer knowledge from the
source network to the target for edge sign prediction. Specif-
ically, we propose two types of features, i.e., explicit topolog-
ical features which express the manifest properties of edge
instances such as degree and triads, and latent topological
features which capture the common patterns between the
source and target networks for knowledge transfer.

With the extracted features, a straightforward solution is
to simply combine the source and target training instances
and treat them equally to learn a model. However, due
to the distributional difference between the two networks,
some training instances in the source network are very dif-
ferent from the target network, thus may cause test edges
in the target network to be wrongly predicted and degrade
the performance. Therefore, we adopt a transfer learning
algorithm with instance weighting similar to [3]. This al-
gorithm borrows the AdaBoost learning idea which assigns
and iteratively adjusts the weight of each training instance
in the source and target networks. This instance weighting
mechanism can effectively distinguish the more useful edge
instances from the less useful ones in the source network and
attach more importance to the former.

Our main contributions are summarized as follows.

• We formulate the problem of edge sign prediction in a
signed social network which may have only a very small
amount of labeled training instances. We consider to
exploit another network, called source network, which
has abundant labeled instances. The source and tar-
get networks may have different yet related joint dis-
tributions. Our task is to leverage the source network
instances for feature construction and model learning.

To the best of our knowledge, this is the first work on
transfer learning across large signed social networks.

• We design the latent topological features which can
capture the common structural patterns between the
source and target networks, thus are generalizable fea-
tures across domains. The latent features are obtained
by nonnegative matrix tri-factorization [4].

• We adopt an AdaBoost-like transfer learning algorithm
with instance weighting to distinguish the more use-
ful training instances from the less useful ones in the
source network.

• We conducted extensive experiments on three real large
signed networks and demonstrated that our transfer
learning algorithm can improve the prediction accu-
racy by 40% over baseline schemes.

The rest of our paper is organized as follows. We introduce
related work in Section 2 and give the problem definition
in Section 3. We describe our proposed features for the
edge sign prediction problem in Section 4. In Section 5 we
propose an AdaBoost-like learning algorithm with instance
weighting in the transfer learning framework. Experimental
results are presented in Section 6 to show the effectiveness
of our features and transfer learning algorithm. Finally, we
conclude our work in Section 7.

2. RELATED WORK
In this section we first introduce related studies on signed

social networks, and then the state-of-the-art transfer learn-
ing research.

Signed social networks have attracted more and more at-
tention since Guha et al. proposed their leading work on
trust propagation in signed social networks [6]. Kunegis et
al. did spectral analysis on signed networks [11, 12]. They
revealed fundamental characteristics of signed networks by
evaluating various measures in [11]. They also studied signed
spectral clustering methods, signed graph kernels and net-
work visualization methods in signed graphs [12].

For the edge sign prediction problem in signed graphs, ex-
isting studies can be categorized into two major approaches:
a matrix kernel approach [11] and a machine learning ap-
proach [14]. Kunegis et al. exploited the property of mul-
tiplicative transitivity in signed graphs to realize edge sign
prediction and their method utilized the node adjacency in-
formation only. Leskovec et al. used signed triads as fea-
tures and constructed a logistic regression model for predic-
tion [14]. While its major contribution is the connections to
theories of balance and status in social psychology, the pre-
diction model makes a very strong assumption on the input
network: the signs of all links except the one to be predicted
are known in advance, which is not very practical in reality.

Transfer learning [19] has been an important research topic
and a useful technique in practice. Transfer learning can ef-
fectively transfer the information from the source domain
to facilitate a different target domain’s learning task, where
the labeled data in the target domain is very limited [1,
16]. Most existing transfer learning works focus on trans-
actional data [1], image [21] and text [22], in which data
instances are represented in a predefined d-dimensional fea-
ture space. They typically map data instances from different
origins into the same latent domain [21] with sparse coding



or other dimension transformation techniques. Some trans-
fer learning methods also use bipartite or tripartite graph as
tools to facilitate knowledge transfer [7, 8] by mapping the
instances and features to bipartite or tripartite graph nodes.
To the best of our knowledge, our work is the first one on
transferring topological knowledge across large signed social
networks. Specifically, we transfer the knowledge of a source
network to the target network for both feature construction
and model learning, which have been shown to be very ef-
fective.

3. PROBLEM FORMULATION
Let a directed graph Gt = (Vt, E

l
t, E

u
t , S) be the target

graph for edge sign prediction. Here Vt denotes the set of
vertices, El

t denotes the set of directed edges with edge sign
labels, S : El

t 7→ {−1, +1} is the edge sign mapping func-
tion that maps an edge e ∈ El

t to a positive label (+1) or
a negative label (−1), and Eu

t denotes the set of directed
edges whose signs are unknown and need to be predicted.
We treat the labeled edges El

t as the training data which
is an independent and identically distributed (i.i.d.) sample
drawn from the target graph. Thus El

t has the same distri-
bution as the test edge set Eu

t . However, in many scenarios
the quantity of the training edges is inadequate to train a
good classifier.

Assume that we have another directed graph Gs = (Vs, Es, S),
called the source graph, where Vs denotes the set of vertices,
Es denotes the set of directed edges, and S : Es 7→ {−1, +1}
is the edge sign mapping function that maps an edge e ∈ Es

to a positive or negative label. The labeled edges Es are
assumed to be abundant, but the distribution of Es may
differ from that of the test edge set in the target graph Gt,
perhaps because Gs is out-dated, or is from a different do-
main. When a classifier trained on Es is applied to the test
edge set Eu

t from Gt, the performance of the classifier may
substantially degrade.

However, the labeled edges Es from the source graph Gs

is not entirely useless, because there may still exist a cer-
tain degree of similarity or common properties between the
source graph Gs and the target graph Gt. Considering the
inadequate labeled edges El

t from Gt, it is important and
beneficial to leverage the labeled edges Es from Gs to help
train a classifier to predict the edge signs of Eu

t in Gt.
Formally, let T = Ts ∪ Tt denote the training edge set.

Ts = {(es, S(es)}, ∀es ∈ Es, and Tt = {(et, S(et)}, ∀et ∈ El
t.

We denote |Ts| = n and |Tt| = m. Eu
t is the unlabeled test

edge set. The objective is to learn a classifier P : Es ∪El
t 7→

{−1, +1} that minimizes the prediction error on the test
edge set Eu

t .
In the following, we will first study feature construction

to create useful topological features that are generalizable
from the source graph Gs to the target Gt. Then we will
study model learning that uses an AdaBoost-like method
to weigh the training edges from the source graph and the
target graph differently, for the transfer learning purpose.

4. FEATURE CONSTRUCTION
In this section, we study how to construct useful features

for edge sign prediction. Different from many traditional
machine learning or transfer learning problems in which in-
stances are represented in a predefined feature vector, there
is no predefined feature vector for the edge instances in a

signed social network. Therefore the problem is how to con-
struct topological features for the edge instances that are
generalizable from the source graph Gs to the target graph
Gt. In this work, we propose to create a collection of fea-
tures from two categories: (1) explicit topological features
which express manifest properties of the edge instances in
the source or target graph; and (2) latent topological features
which are hidden but express the common patterns between
the source graph and the target graph. Such latent topolog-
ical features are generalizable across domains in principle.

4.1 Explicit Topological Features
For a directed edge e = (u, v), we begin by defining a num-

ber of explicit topological features including node degree,
betweenness centrality, triad count and edge embeddedness.
These features express the connectivity pattern of the edge
e and its two end nodes u and v. It is noteworthy that we
do not include any edge sign information in the features,
because we only have a very small amount of edge signs in
the target graph Gt. When predicting the sign of an edge
e ∈ Eu

t , it is practically infeasible to use the signs of edges
in the local neighborhood of e as features, as those signs can
be unknown.
Node Degree. For a directed edge e = (u, v), we use
degout(u) and degin(v) to denote the number of outgoing
edges from u and incoming edges to v, respectively. The
node degree measures the aggregate connection strength of
a node to the rest of a graph.
Betweenness Centrality. Betweenness centrality mea-
sures a node’s centrality in a graph. For a node v ∈ V ,
the betweenness centrality fbc(v) is defined as

fbc(v) =
X

i6=v 6=j

σi,j(v)

σi,j
(1)

where σi,j is the number of shortest paths from node i to
j and σi,j(v) is the number of shortest paths from node i
to j through node v. Here all possible node pairs i, j ∈ V
such that i 6= v 6= j are considered. For a directed edge
e = (u, v), we use fbc(u) and fbc(v) as two betweenness
centrality features.
Triad Count. Following [14], we also use the triad counts
as features. For a directed edge e = (u, v), we consider each
triad involving the edge (u, v), consisting of a node w such
that w has an edge either to or from u and also an edge
either to or from v. Considering that the edge between u
(or v) and w can be in either direction, there are 2× 2 = 4
types of triads. For an edge between u and w, we call it
a forward edge (F) if it points from u to w, or a backward
edge (B) otherwise. Similarly, for an edge between v and
w, we call it a forward edge if it points from w to v, or a
backward edge otherwise. Figure 1 shows the four types of
triads involving (u, v). We use four features fF F , fF B, fBF

and fBB to record the number of triads of each type that
the edge (u, v) is involved in.
Edge Embeddedness. For a directed edge e = (u, v), the
edge embeddedness [14] feb(e) is defined as the number of
common neighbors of nodes u and v. feb(e) is also used as
one topological feature.

4.2 Latent Topological Feature
The above explicit topological features, though very intu-

itive, may not be generalizable from the source graph Gs to
the target graph Gt, especially when Gs and Gt have dif-
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Figure 1: Four Types of Triads

ferent distributions. To better leverage the labeled edges in
the source graph, we propose to construct latent topological
features which can capture the common patterns between
Gs and Gt, and thus are generalizable features. Again, it is
worth noting that only a very small amount of edge signs
are available in the target graph Gt, so it is not practical
to include the edge signs in the latent topological features.
Therefore, we only use the connectivity information of both
graphs without edge signs to construct the latent features.

Specifically, denote the source graph without edge signs as
Gs = (Vs, Es) with |Vs| = M . Let As ∈ {0, 1}M×M denote
the M ×M adjacency matrix of Gs. For a pair of vertices
u, v, As(u,v) = 1 iff (u, v) ∈ Es, and As(u,v) = 0 otherwise.

As is asymmetric since Gs is a directed graph. Similarly, let
At ∈ {0, 1}N×N denote the N ×N adjacency matrix of the
unsigned target graph Gt where |Vt| = N .

Given As and At, we propose to use Nonnegative Ma-
trix Tri-Factorization (NMTF) [4], which originates from
Nonnegative Matrix Factorization (NMF) [13] and has been
widely applied and extended in machine learning [4, 17], to
construct latent topological features through factorizing As

and At under the same space. The latent feature space can
capture the principal common factors of the original link
structures in both Gs and Gt. We formulate the problem of
finding the latent feature space as follows:

minJ = ‖As − UsΣkV T
s ‖2F + ‖At − UtΣkV T

t ‖2F
+ α‖Σk‖2F ,

s.t.
k

X

j=1

Us(·j) = 1,
k

X

j=1

Vs(·j) = 1,

k
X

j=1

Ut(·j) = 1,
k

X

j=1

Vt(·j) = 1,

Us, Vs ∈ R
M×k
+ , Ut, Vt ∈ R

N×k
+ (2)

where ‖ · ‖F is the Frobenius norm. In this formulation,
we consider the nonnegative matrix tri-factor decomposi-
tion As ≈ UsΣkV T

s and At ≈ UtΣkV T
t . Matrix Σk ∈ R

k×k
+

is the common latent space for both graphs, which ensures
that the extracted topological features of both graphs are
expressed in the same space. Us, Vs, Ut, and Vt are four
latent topological feature matrices. The ith row of matrix
Us represents the outgoing linkage features of a source graph
node i (i ∈ Vs) in the latent space, while the ith row of ma-
trix Vs represents the incoming linkage features of node i in
the latent space. Similar interpretations can be derived for
matrices Ut and Vt in the target graph Gt. α is the trade-off
regularization parameter to weigh the term ‖Σk‖2F . Since all
of our variables are nonnegative, excessively large values in
Σk will make many entries in Us, Ut, Vs and Vt approach 0.

As a result, this will cause each node to have nearly indistin-
guishable latent topological features. Thus it is necessary to
constraint the values in Σk through a regularization term.
In addition, we enforce the constraints that each row in the
topological feature matrices is positive and normalized.

By solving the joint NMTF problem in Eq. 2, we obtain
four feature matrices Us, Vs, Ut and Vt for expressing the
latent topological (both outgoing and incoming) features for
nodes in Gs and Gt in terms of the same latent space Σk.

4.2.1 Optimization Algorithm

We develop an iterative update algorithm to minimize J
in Eq. 2. Specifically, we optimize the objective function
in Eq. 2 by updating one variable while fixing the other
variables. We can rewrite the objective function in Eq. 2 as
follows.

J = tr(AT
s As − 2AT

s UsΣkV T
s + VsΣ

T
k UT

s UsΣkV T
s )

+ tr(AT
t At − 2AT

t UtΣkV T
t + VtΣ

T
k UT

t UtΣkV T
t )

+ αtr(ΣT
k Σk) (3)

Update Rule of Us: Since we have the constraint Us ≥
0, following the standard constrained optimization theory,
we introduce the Lagrangian multiplier LUs

∈ R
M×k and

minimize the Lagrangian function

L(Us) = J − tr(LUs
Us) (4)

We set ∂L(Us)
∂Us

= 0. Then considering the KKT condition
LUs(i,j)Us(i,j) = 0, we can get

(−2AsVsΣ
T
k + 2UsΣkV T

s VsΣ
T
k )(i,j)Us(i,j) = 0 (5)

Based on Eq. 5, following a similar approach as in [13], we
have the following multiplicative update rule

Us(i,j) ← Us(i,j)

s

(AsVsΣT
k )(i,j)

(UsΣkV T
s VsΣT

k )(i,j)
(6)

Update Rules of Other Matrices: Similar to the update
rule of Us, the update rules of Vs, Ut, Vt, and Σk are

Vs(i,j) ← Vs(i,j)

s

(AT
s UsΣk)(i,j)

(VsΣT
k UT

s UsΣk)(i,j)
(7)

Ut(i,j) ← Ut(i,j)

s

(AtVtΣT
k )(i,j)

(UtΣkV T
t VtΣT

k )(i,j)
(8)

Vt(i,j) ← Vt(i,j)

s

(AT
t UtΣk)(i,j)

(VtΣT
k UT

t UtΣk)(i,j)
(9)

Σk(i,j) ← Σk(i,j)

s

(UT
s AsVs + UT

t AtVt)(i,j)

(UT
s UsΣkV T

s Vs + UT
t UtΣkV T

t Vt + αΣk)(i,j)
(10)

Algorithm 1 is the iterative update algorithm that uses the
above multiplicative rules for updating each variable matrix
to optimize Eq. 2. The convergence criterion is, the gap
between any two consecutive objective function values of
Eq. 2 is less than a certain threshold.

4.2.2 Convergence Analysis

We now study the convergence property of Algorithm 1.
First, we give the following two lemmas from [13, 4].



Algorithm 1: Iterative Update Algorithm for Eq. 2

Data: [Adjacency Matrices As, At; Regularizer α]
Result: [Latent feature matrices Us, Vs, Ut, Vt; Latent

space Σk]
begin

Initialize Us, Vs, Ut, Vt, Σk following [23]
while beyond convergence do

1. Update Us according to Eq. 6
2. Update Vs according to Eq. 7
3. Update Ut according to Eq. 8
4. Update Vt according to Eq. 9
5. Update Σk according to Eq. 10
6. Normalize each row of Us, Vs, Ut, Vt

end

Lemma 1. [13] Aux(h, h′) is an auxiliary function for
F (h) if the conditions Aux(h, h′) ≥ F (h), Aux(h, h) = F (h)
are satisfied. If Aux is an auxiliary function for F , then F
is non-increasing under the update

ht+1 = arg min
h

Aux(h, ht)

where ht is the value of variable h in the tth iteration.

Lemma 2. [4] For any matrices P ∈ R
N×N
+ , Q ∈ R

k×k
+ ,

S ∈ R
N×k
+ , S′ ∈ R

N×k
+ , and P and Q are symmetric, the

following inequality holds

X

i,j

(PS′Q)i,jS
2
i,j

S′
i,j

≥ tr(ST PSQ) (11)

Theorem 1. Define J (Us) according to Eq. 2 as

J (Us) = tr(−2AT
s UsΣkV T

s + VsΣ
T
k UT

s UsΣkV T
s ) (12)

then the following function

Aux(Us, U
′
s) = −2

X

i,j

(AsVsΣ
T
k )(i,j)U

′
s(i,j)(1 + ln

Us(i,j)

U ′
s(i,j)

)

+
X

i,j

(U ′
sΣkV T

s VsΣ
T
k )(i,j)

U2
s(i,j)

U ′
s(i,j)

(13)

is an auxiliary function for J (Us). Furthermore, Aux(Us, U
′
s)

is convex for Us and its global minimum can be achieved at

Us(i,j) = U ′
s(i,j)

s

(AsVsΣT
k )(i,j)

(U ′
sΣkV T

s VsΣT
k )(i,j)

(14)

Proof. First, in Lemma 2, let P = I , Q = ΣkV T
s VsΣ

T
k ,

S = Us and S′ = U ′
s. Then we have

tr(ST PSQ) = tr(UT
s · I · Us · ΣkV T

s VsΣ
T
k )

= tr(UT
s UsΣkV T

s · VsΣ
T
k )

≤
X

i,j

(U ′
sΣkV T

s VsΣ
T
k )(i,j)

U2
s(i,j)

U ′
s(i,j)

Based on the property of trace, we have

tr(UT
s UsΣkV T

s · VsΣ
T
k ) = tr(VsΣ

T
k · UT

s UsΣkV T
s )

Therefore, we can derive

tr(VsΣ
T
k UT

s UsΣkV T
s ) ≤

X

i,j

(U ′
sΣkV T

s VsΣ
T
k )(i,j)

U2
s(i,j)

U ′
s(i,j)

(15)
Second, since ∀z > 0, z ≥ 1 + ln z, we have

tr(AT
s UsΣkV T

s ) =
X

i,j

(AsVsΣ
T
k )(i,j)Us(i,j)

≥
X

i,j

(AsVsΣ
T
k )(i,j)U

′
s(i,j)(1 + ln

Us(i,j)

U ′
s(i,j)

) (16)

If we multiply both sides of Eq. 16 with −2, we get

tr(−2AT
s UsΣkV T

s ) ≤ −2
X

i,j

(AsVsΣ
T
k )(i,j)U

′
s(i,j)(1+ln

Us(i,j)

U ′
s(i,j)

)

(17)
When adding Eqs. 15 and 17 on both sides, we have

J (Us) = tr(−2AT
s UsΣkV T

s + VsΣ
T
k UT

s UsΣkV T
s )

≤ −2
X

i,j

(AsVsΣ
T
k )(i,j)U

′
s(i,j)(1 + ln

Us(i,j)

U ′
s(i,j)

)

+
X

i,j

(U ′
sΣkV T

s VsΣ
T
k )(i,j)

U2
s(i,j)

U ′
s(i,j)

= Aux(Us, U
′
s)

In addition, it is easy to verify that Aux(Us, Us) = J (Us).
Therefore, we prove Aux(Us, U

′
s) defined in Eq. 13 is the

auxiliary function for J (Us).
Next, if we fix U ′

s and minimize Aux(Us, U
′
s) w.r.t. each

Us(i,j), we get

∂Aux(Us, U
′
s)

∂Us(i,j)

= −2(AsVsΣ
T
k )(i,j)

U ′
s(i,j)

Us(i,j)

+ 2(U ′
sΣkV T

s VsΣ
T
k )(i,j)

Us(i,j)

U ′
s(i,j)

(18)

Moreover, the second partial derivative (Hessian matrix) is

∂2Aux(Us, U
′
s)

∂Us(i,j)∂Us(k,l)

= δikδjl(2(AsVsΣ
T
k )(i,j)

U ′
s(i,j)

U2
s(i,j)

+
2(U ′

sΣkV T
s VsΣ

T
k )(i,j)

U ′
s(i,j)

) (19)

We should notice that Hessian of Aux(Us, U
′
s) w.r.t. Us is

a diagonal matrix with all positive diagonal elements. Thus,
Aux(Us, U

′
s) is convex over Us and we can achieve its global

minimum through setting Eq. 18 to be 0, which leads to the
result in Eq. 14.

Let U ′
s(i,j) = U t

s(i,j), then according to the update ht+1 =

arg minh Aux(h, ht) in Lemma 1, Us(i,j) defined in Eq. 14

which minimizes Aux(Us, U
t
s(i,j)) is exactly U t+1

s(i,j). This is

essentially our update rule for Us in Eq. 6. This leads to the
following lemma.

Lemma 3. Using the update rule in Eq. 6 to update Us,
J (Us) in Eq. 12 is monotonically decreasing.

Proof. By Lemma 1 and Theorem 1, we have

J (U0
s ) = Aux(U0

s , U0
s ) ≥ Aux(U1

s , U0
s ) ≥ J (U1

s ) ≥ · · ·



where U t
s is the value of matrix Us in the tth iteration.

Therefore, J (Us) is monotonically decreasing.

Theorem 2. Using Algorithm 1 to update Us, Vs, Ut, Vt

and Σk, the value of the objective function J will monoton-
ically decrease.

The proof of Theorem 2 can be similarly achieved through
Lemma 3. Since the objective function value J in Eq. 2 is
lower bounded by 0, Algorithm 1 can guarantee convergence
by Theorem 2.

Theoretically, the computational complexity of factorizing
Eq. 2 is at most O(k ·max{|Es|, |Et|}2) where k is the length
of the latent topological feature vector, and Et = El

t ∪ Eu
t .

In practice, due to the sparsity of adjacency matrices As and
At, the exact computational cost can be much lower than
the theoretical result.

So far we have constructed both explicit and latent topo-
logical features for edge sign prediction. For an edge instance
e = (i, j) ∈ El

t with label S(e), we have latent feature vec-
tors Ut(i·) and Vt(j·) to represent node i’s outgoing linkage
pattern and node j’s incoming linkage pattern. We also
have 9 explicit features, including node degrees degout(i)
and degin(j), betweenness centrality fbc(i) and fbc(j), triad
counts fF F (e), fF B(e), fBF (e), fBB(e), and edge embed-
dedness feb(e). We can similarly define features for edge
instances in Es. The features are used together, denoted as
F (e), for learning an edge sign prediction model.

5. EDGE SIGN PREDICTION BY TRANS-

FER LEARNING
With the explicit and latent topological features, it is nat-

ural to learn a model from the training instances in the tar-
get graph, i.e., Tt = {(et, S(et))}, ∀et ∈ El

t. However, using
only the small amount of labeled edge instances for training
does not give a classifier with good prediction performance
on the target graph.

Fortunately, we still have the full knowledge of the edge
signs in the source graph Gs. Thus our task is to learn
an edge sign prediction model by leveraging the labeled in-
stances in both the source and target graphs. With our ex-
tracted features, the source and target graph edge instances
can be represented in the same feature space. A straightfor-
ward approach is to simply combine the source and target
edge instances and treat them equally to learn a model.

However, since discrepancy always exists between the dis-
tribution of source and target graph edges, a classifier learned
from this simple combination may not necessarily achieve
better performance than the model learned from the target
graph edges only. Sometimes the noise in the source graph
instances may cause the model to predict wrongly on the
test edges from the target graph, thus degrade the perfor-
mance substantially. Thus we need an effective mechanism
to distinguish the more useful edge instances from the less
useful ones in the source graph.

5.1 Transfer Learning with Instance Weight-
ing

To address the distributional difference issue, we borrow
the AdaBoost idea from Freund and Schapire [5] and Dai et
al. [3] for instance weighting in our transfer learning frame-
work. That is, we treat the edge instances in Ts = {(es, S(es))},

∀es ∈ Es and Tt = {(et, S(et))}, ∀et ∈ El
t differently, by as-

signing and adjusting the weight of each training instance
during model learning. For those edge instances in Ts that
are more similar to the target edge instances in Tt, we should
give them larger weights to attach more importance to them;
conversely, for those edge instances in Ts that are less simi-
lar to the target edge instances in Tt, we should give smaller
weights to weaken their impacts.

Algorithm 2 shows an iterative algorithm which updates
instance weights according to the basic classifier Pt’s per-
formance in each round. It is similar to the traditional Ad-
aBoost method where the accuracy of a learner is boosted
by carefully adjusting instance weights. We use w1, . . . , wn

to denote the weights of edges in Ts, and wn+1, . . . , wn+m

to denote the weights of edges in Tt. It is worth noting the
following special instance weighting policy in our transfer
learning framework. For an edge e, Pt(e) ∈ [−1, 1] is the
predicted edge sign for e and S(e) is the true edge sign. For
any target graph edge et ∈ El

t, its weight will always get

increased by a factor of β
−

|Pt(et)−S(et)|
2

t ∈ [1, +∞), and the
weight increment of a wrongly predicted edge is larger than
that of a correctly predicted one. In contrast, for any source
graph edge es ∈ Es, its weight will always get decreased by

a factor of β
|Pt(es)−S(es)|

2 ∈ (0, 1], and the weight decrement
of a wrongly predicted edge is larger than that of a correctly
predicted one, because the wrongly predicted source graph
edge may be very dissimilar to the target graph. There-
fore, the weights of source graph edges would never increase
and are always less than those of target graph edges, which
means that the source graph edges will never have a larger
influence than the target graph edges in model learning. Af-
ter K iterations, those source graph edges which are more
similar to the target graph edges will have larger weights
than the less similar ones to contribute to model learning.

5.2 Training Loss Analysis
We analyze the training loss from both source and target

graphs, based on the analysis in Freund and Schapire [5]
and Dai et al. [3]. Consider the tth iteration training loss
on source graph instances where each instance’s normalized
loss is defined as lt(ei) = |Pt(ei) − S(ei)|/2, and its overall

training loss through K iterations is Li =
PK

t=1 lt(ei), 1 ≤
i ≤ n. Thus all source instances’ training loss suffered by
Algorithm 2 is

Υ =
K

X

t=1

n
X

i=1

dt
ilt(ei)

where dt
i = wt

i/(
Pn

j=1 wt
j). We first present the following

conclusion.

Theorem 3. In Algorithm 2, we have

Υ

K
≤ min

1≤i≤n

Li

K
+

r

2 ln n

K
+

ln n

K
(20)

Theorem 3 and its proof can be found in [5]. It can
rigidly bound the average training loss of source graph in-
stances through K iterations, which cannot exceed the min-
imum average training loss of a single instance by more than
q

2 ln n
K

+ ln n
K

.

Similar to [3], we have the following theorem.



Algorithm 2: Transfer Learning & Instance Weighting

Data: source edge instances Ts, labeled target edge
instances Tt, and the iteration number K

Result: edge sign classifier P
begin

Let n← |Ts|, m← |Tt|
Initialize the weight vector
w1 = (w1

1, . . . , w
1
n, w1

n+1, . . . , w
1
n+m)

for t = 1, . . . , K do

1. qt ← wt/(
Pn+m

i=1 wt
i)

2. Call a basic learner on Ts ∪ Tt with qt to
learn a model Pt : F (e)→ Pt(e) ∈ [−1, 1]
3. Calculate the error of Pt on Tt

ǫt =

Pn+m
i=n+1 qt

i · |Pt(ei)−S(ei)|
2

Pn+m
i=n+1 qt

i

4. Set βt = ǫt

1−ǫt
, β = 1

1+
√

2 lnn/K

5. Update weight vector wt

wt+1
i =

8

<

:

wt
iβ

|Pt(ei)−S(ei)|
2 , 1 ≤ i ≤ n

wt
iβ

−
|Pt(ei)−S(ei)|

2
t , n + 1 ≤ i ≤ n + m

P (e) =

8

>

>

<

>

>

:

1, if

K
X

t=1

log
1

βt
· Pt(e) ≥ 0

−1, otherwise

end

Theorem 4. In Algorithm 2, qt
i denotes the weight of the

training instance ei, which is defined as qt = wt/(
Pn+m

i=1 wt
i).

Then,

lim
K→∞

PK
t=1

Pn
i=1 qt

i lt(ei)

K
= 0 (21)

Theorem 4 shows that the weighted average training loss
in the source graph edge instances gradually converges to
zero.

Next, according to Step 4 in Algorithm 2, we have the
constraint ǫt ≤ 1/2 − γ, for some γ > 0. Then we have the
following bound on the prediction error of the final classifier
on the labeled target edge instances.

Theorem 5. Let I = {i : P (ei) 6= S(ei), ei ∈ Tt}. Define
the error of the final classifier P by Algorithm 2 as ǫ =
Pre∈Tt

[P (e) 6= S(e)] = |I|/|Tt| and it is bounded as

ǫ ≤ exp{−2 ·Kγ2}. (22)

Theorem 5 and its proof can be found in [5]. From Theo-
rem 5, we can observe that the final classifier P will reduce
the error on target graph labeled instances, when the maxi-
mum number of iterations K increases. Therefore Algorithm
2 minimizes both the error on the target graph training in-
stances and the weighted average loss on the source graph
training instances simultaneously.

6. EXPERIMENTAL EVALUATION
In this section, we first describe how we prepare data

for training and testing. Then we present experimental re-
sults to show the effectiveness of our proposed features and
the transfer learning algorithm. Studies on the convergence
properties of both Algorithms 1 and 2 are also provided.

6.1 Data Preparation
We use three large online social networks Epinions, Slash-

dot and Wikipedia where each link is explicitly labeled as
positive or negative. All three networks are downloaded
from Stanford Large Network Dataset Collection4. Since
the original graphs are too large and sparse, we select 20,000
nodes from Epinions, 16,000 nodes from Slashdot and 7,000
nodes from Wikipedia with the highest degrees, as well as
the edges between the selected nodes. There are 13 nodes in
Epinions, 1 node in Slashdot and 2 nodes in Wikipedia that
are disconnected from the remaining selected nodes. These
isolated nodes are removed from the respective network and
the remaining ones form a connected component. Table 1
shows the statistics of the three extracted networks.

Table 1: Statistics of Extracted Graphs
Epinions Slashdot Wikipedia

Number of Nodes 19,987 15,999 6,998
Number of Edges 634,215 371,122 121,151
Average Degree 31.731 23.197 17.312
Positive Edges 87.6% 76.5% 71.3%

Average Distance 3.163 3.569 4.014

We can observe that Epinions has the largest number of
nodes, edges, average degree and the percentage of positive
edges among the three networks, while Wikipedia has the
smallest number of nodes, edges, average degree and the per-
centage of positive edges. The statistics demonstrate that
there indeed exists discrepancy in data distribution among
the three networks.

As the edge signs in all these networks are overwhelmingly
positive, we follow the methodology adopted by both Guha
et al. [6] and Leskovec et al. [14], to create a balanced dataset
from each signed social network. For every negative edge, we
sample a random positive edge to ensure that the number
of positive and negative edges is equal. We consider each
pair of networks out of the three and use one network as the
source and the other as the target for transfer learning, and
then reverse the source and the target networks. There are
totally

`

3
2

´

× 2 = 6 (source, target) pairs to test. Moreover,
we use 4-fold cross validation for performance evaluation –
in each target graph we partition the edge instances into four
parts evenly, each having a balanced class distribution. We
use one part as the test edge set Eu

t , and randomly sample
a small percentage of edge instances in the remaining three
parts to form the labeled edge set El

t. This small El
t and all

edges Es in the source graph form the training set. We run
our experiment on the four test edge sets in turn and report
the average classification accuracy.

6.2 Evaluation of Transfer Learning with In-
stance Weighting

Comparison with Other Approaches: We compare the
prediction accuracy of the following methods.

4http://snap.stanford.edu/data/index.html
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Figure 2: Prediction Accuracy by Varying the Percentage of Labeled Target Edge Instances

• Katz : Katz kernel [10] is a matrix kernel approach
used in [11, 9] for edge sign prediction. It uses the
adjacency matrix of labeled edges in the target graph
to predict the sign of the test edges.

• Src: using all edge instances in the source graph only
for training.

• Target : using labeled edge instances in the target graph
only for training.

• Src+Target : using both source graph edges and la-
beled target graph edges equally for training without
instance weighting.

• IW : using both source graph edges and labeled target
graph edges for training with instance weighting (our
Algorithm 2).

For all the above schemes we use SVM as the classifica-
tion model and use the same test edge set for prediction.
All schemes except Katz use our proposed explicit and la-
tent topological features. We set k = 30 for matrix Σk

representing the latent feature space.
In the first group of experiment, we use Slashdot as the

source and Epinions as the target. We vary the percentage
of labeled edge instances in the target graph from 2% to
50% for training and report the classification accuracy. The
results are shown in Figure 2(a). We can observe that when
the percentage of labeled target edge instances increases, the
accuracy of all methods except Src increases and gradually
saturates. The accuracy of Target improves greatly when
the percentage increases from 2% to 20% and it outperforms
Src when the percentage exceeds 20%. The performance of
Src+Target without instance weighting lies between that of
Src and Target. When the amount of labeled target edge in-
stances is very small, Src+Target can improve the accuracy
over Target by leveraging source graph edge instances; but
when the labeled target edge instances are abundant, the
source edge instances become less useful, and the noise in
the source edge instances may become more obvious, caus-
ing Target to be better than Src+Target. Katz performs
the worst among all methods. Our proposed method IW
(Algorithm 2) achieves the highest accuracy in all cases,
demonstrating the effectiveness of instance weighting in the
transfer learning framework. IW consistently outperforms

Target even if we have 50% labeled target edge instances for
training. This result proves that the knowledge transferred
from the source graph is beneficial to improve the model’s
performance, under proper instance weighting.

We can observe similar trends in Figure 2(b) in the second
group of experiment when Epinions is the source and Slash-
dot is the target. But due to the larger number of edges in
Epinions, the source edge instances have a larger influence
in model learning. This effect causes Src+Target to have a
very close performance to Src.

Similar conclusions can be drawn in Figures 2(c)–2(f) for
the other four groups of experiments. Another important
observation is that, when the distributional differences be-
tween the source and target networks become larger, the
transfer learning performance becomes worse. For example,
the differences between Wikipedia and Epinions as shown
in Table 1 are larger than the differences between Slashdot
and Epinions. Consider the case when Epinions is the target
network. The prediction accuracy when using Wikipedia as
the source (Figure 2(f)) is lower than the accuracy when us-
ing Slashdot as the source (Figure 2(a)), due to the larger
differences between Wikipedia and Epinions.
Learning Convergence Analysis: It is important to as-
sess the convergence of Algorithm 2 as an iterative algo-
rithm. Besides the theoretical analysis of convergence in
Section 5, we also test the learning convergence in all our
experiments. Figure 3 shows the prediction accuracy in each
iteration on all the

`

3
2

´

= 3 pairs of networks. Legend “S vs
E-0.02” means using Slashdot as the source and Epinions as
the target with 2% labeled target edges for training. We
can see that the accuracy gradually increases with more it-
erations and converges after 30–35 iterations. This result
confirms the theoretical analysis on learning convergence.

6.3 Effectiveness of Topological Features
In this experiment, we evaluate the effectiveness of each

type of features we propose, including degree, betweenness
centrality (BC), triad counts, edge embeddedness (Embed)
and latent features constructed by NMTF. We set k = 30 in
matrix Σk for the latent feature space. We use source graph
edges and a certain percentage of labeled target graph edges
for training; then use our instance weighting algorithm for
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Figure 3: Prediction Accuracy by Iteration of Algorithm 2

Degree BC Triad Embed Latent All
0.45

0.5

0.55

0.6

0.65

0.7

0.75

P
re

di
ct

io
n 

A
cc

ur
ac

y

 

 

Slashdot vs Epinions
Epinions vs Slashdot

(a) Slashdot vs. Epinions

Degree BC Triad Embed Latent All
0.4

0.45

0.5

0.55

0.6

0.65

0.7

P
re

di
ct

io
n 

A
cc

ur
ac

y
 

 

Slashdot vs Wiki
Wiki vs Slashdot

(b) Slashdot vs. Wikipedia

Degree BC Triad Embed Latent All
0.35

0.4

0.45

0.5

0.55

0.6

0.65

P
re

di
ct

io
n 

A
cc

ur
ac

y

 

 

Epinions vs Wiki
Wiki vs Epinions

(c) Epinions vs. Wikipedia

Figure 4: Feature Effectiveness Comparison with 2% Target Training Instances

model learning. Only one type of feature is used in each
learned model. We also use all these features (All) to learn
a model to show their overall performance.

We first use 2% labeled edge instances in the target graph
plus all source edge instances for training. Figures 4(a)–4(c)
show the prediction accuracy of each feature type on the
three network pairs respectively. Among the five types of
features, we can see that our latent features always achieve
the highest accuracy, followed by Degree, Triad, BC and
Embed. This is because the latent features can capture
the common structural patterns between the source and tar-
get graphs, despite the different distributions between them.
Thus the latent features can generalize well from the source
graph to the target. In contrast, the other four types of
features are not generalizable from the source graph to the
target. As the statistics in Table 1 show that the three so-
cial networks have different distributions in degree and other
dimensions, it is not difficult to understand that a model
learned from the source edge instances based on these ex-
plicit features cannot generalize well to predict the sign of
test edges in the target graph. Finally, the model using all
these features achieves the best performance.

When we increase the percentage of labeled target edge in-
stances to 30% for training, the prediction accuracy is shown
in Figures 5(a)–5(c). Among the five types of features, La-
tent still achieves the highest accuracy in most cases, fol-
lowed by Degree, Triad, BC and Embed. But the perfor-
mance difference between Latent and Degree/Triad is not
as significant. This is because when the amount of labeled
target edge instances is much larger, the labeled target in-
stances provide reliable feature values on Degree and Triad.
The source graph edges which have a different distribution
will have a smaller influence in model learning through in-
stance weighting. Finally, the model using all these features
still achieves the best performance.
Tri-Factorization Sensitivity Test : We perform sensitiv-
ity test on the dimension of the latent feature space, i.e., k
in the k×k matrix Σk computed by matrix tri-factorization.
We vary the k value of the latent feature space and report the
prediction accuracy in Figures 6(a)–6(c) on the three net-
work pairs respectively. 30% labeled target edge instances

plus all source graph edges are used for training. Here leg-
end Src+Target means using both source graph edges and
labeled target graph edges without instance weighting, and
IW means our instance weighting method. We can observe
that the prediction accuracy increases first when k increases
and then becomes stable or even slightly decreases when
k > 30 for all three groups of experiments. When k > 30,
we find many entries in the latent feature vector become al-
most 0, thus contribute little to prediction, or even degrade
the performance.
Tri-Factorization Convergence Analysis: We prove the
convergence of Algorithm 1 in Section 4.2.2. We report the
objective values (in log scale, i.e., lnJ ) over 20 iterations un-
der three latent feature dimensions k = 10, 30, 60 in Figure
7. Due to the lack of space, we only show the results when
Slashdot is the source and Epinions is the target. We can
observe that the objective values which measure the differ-
ence between the original matrix and the decomposed ones
converge very quickly (after 4 iterations) regardless of the
feature dimension k. This result confirms our theoretical
analysis on the convergence of Algorithm 1.
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Figure 7: NMTF Convergence

7. CONCLUSIONS
We studied the edge sign prediction problem in signed so-

cial networks, which have both positive and negative links.
We assume the edge sign information is very scarce in the
target network which is very common for newly formed net-
works. This problem is important because knowing the edge
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Figure 5: Feature Effectiveness Comparison with 30% Target Training Instances
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Figure 6: Sensitivity Test of Latent Feature Dimension

signs will provide us with better understanding of user opin-
ions in a social network. It is challenging due to the inad-
equate edge signs in the target network and the prohibitive
cost of manual labeling. We adopt the transfer learning ap-
proach by leveraging a source network with abundant edge
sign information but possibly under a different yet related
distribution. We propose to construct generalizable latent
features through NMTF by considering both the source and
target networks, and then adopt an AdaBoost-like algorithm
with instance weighting to train a good classifier. Extensive
experiments on three real signed networks Epinions, Slash-
dot and Wikipedia prove the effectiveness of our extracted
features and transfer learning algorithm.
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