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Abstract—Many network design cases with network coding can
be formulated as combinatorial optimization problems, which are
NP-hard and hard to approximate even in a centralized manner.
In this paper, guided by Markov approximation framework, we
provide a unified distributed solution for one important sub-
category of combinatorial network coding problems: combinato-
rial coding subgraph selection problems. We show the scheme
by studying one problem instance: optimal coding subgraph
selection over wireline networks under arbitrary bounds on
graph diameter 1. We develop a distributed Markov chain
based solution. We obtain analytical results for the impacts of
measurement errors on the designed Markov chain. We also
discuss the trade-off between the approximation gap and the
mixing time of the designed Markov chain. We emphasis that
though the analysis is quite involved, the resulting distributed
solution is actually simple to implement.
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I. INTRODUCTION

Network coding, introduced in [2], allows intermediate
nodes to perform coding operation instead of routing (store
and forward). In general, when network coding is applied for
network design, there are two key steps: subgraph selection
and code construction. Subgraph selection is the selection of
network resources by choosing links, nodes and corresponding
link service rates to support a transmission session. The
selection criterions include maximizing system performance
such as network utility or throughput, and minimize system
cost such as interference, energy or latency.

Once the coding subgraph is established, we perform net-
work coding, i.e., the construction of network codes for the
given subgraph. Despite rich results on network coding [3, 4],
there are still a lot of challenges when we try to solve
combinatorial network coding problems, i.e., combinatorial
network design problems with network coding. In general,
combinatorial network coding problems are NP-hard and hard
to approximate even in a centralized manner. The hardness of
combinatorial explosion for these problems comes from the
following aspects:

• Coding Subgraph. The number of feasible coding sub-
graphs can be exponentially large. For example. the
coding subgraphs are composed by possible subsets of all
available paths, trees or non-interfering wireless links.

1A graph’s diameter is the largest number of nodes which must be traversed
in order to travel from one node to another when paths which backtrack,
detour, or loop are excluded from consideration [1].

• Code Construction. The number of feasible codes can
be exponentially large. For example, some linear code
constructions for multi-session network coding [4].

In this paper, we do not discuss the combinatorial code
construction problem. Instead, we adopt random linear net-
work codes [4]. Based on this coding scheme, the following
fundamental question remains open:

• How to solve combinatorial coding subgraph selection
problem in a distributed manner?

In this paper, we answer the above question and make the
following contributions:

• We solve the combinatorial coding subgraph selection
problem in a unified way. Our distributed solutions are
inspired by a set of log-sum-exp approximation and
Markov chain based arguments expounded in [5]. Further,
our distributed solutions are simple to implement, while
having performance guarantees.

• We provide a distributed solution for one typical case
of combinatorial coding subgraph selection problem: op-
timal coding subgraph selection over wireline networks
under arbitrary bounds on graph diameter. Our solution
optimizes the selection of multicast trees (coding sub-
graph) and achieves multicast rates arbitrarily close to
optimum.

• We give upper bounds on the gap to optimum when the
transition rates of the designed Markov chain contain er-
rors. We also discuss the trade-off between approximation
gap and the mixing time of the designed Markov chain.

Due to page limits, all proofs are omitted here and details
can be found in our technical report [6].

II. GENERAL COMBINATORIAL CODING SUBGRAPH
SELECTION PROBLEM

Consider a network modeled as a graph G, we denote F as
the set of all feasible coding subgraphs. For a feasible subgraph
f ∈ F , let ϕf be the system performance under f , including
throughput, power, and delay as special cases. The problem
of maximizing the system performance by choosing the best
coding subgraph can then be cast as following combinatorial
optimization problem called combinatorial coding subgraph
selection problem(CCSS):

CCSS : max
f∈F

ϕf (1)

.
In general, problem CCSS is computational intractable

because the number of all feasible coding subgraphs can be



exponentially large. Further, there is no effective approximate
solution to the problem even in a centralized manner

In practice, it is often acceptable to solve the problem
approximately with a guaranteed bound, but in a distributed
manner. Systems running distributed algorithms are more
robust to user and system dynamics than those running cen-
tralized algorithms.

In this paper, we adopt Markov approximation framework
proposed in [5], which enable us to design distributed schedul-
ing algorithms with provable optimality of network perfor-
mance. The essence of this framework is that, when using the
log-sum-exp function to approximate the optimal value of any
combinatorial problem, we end up with a solution that can be
interpreted as the stationary probability distribution of a class
of time-reversible Markov chains. Certain carefully designed
Markov chains among this class yield distributed algorithms
that solve the log-sum-exp approximated combinatorial net-
work optimization problem.

1) Log-sum-exp Approximation: First, we use the log-sum-
exp function to approximate the max function smoothly, shown
as follows:

max
f∈F

ϕf ≈ 1

β
log(

∑
f∈F

exp[β ϕf ]) (2)

where β is a positive constant. Let |F| denote the size of the
set F , then the approximation accuracy is known as follows
[5]:
Proposition 1.

0 ≤ 1

β
log(

∑
f∈F

exp[β ϕf ])−max
f∈F

ϕf ≤ 1

β
log |F| (3)

As β → ∞, the approximation gap disappears.
We have some important observations in the following

proposition [5].
Proposition 2. 1

β log(
∑
f∈F

exp[β ϕf ]) is the optimal value of

the following optimization problem

CCSS− β : max
p≥0

∑
f∈F

pfϕf − 1

β

∑
f∈F

pf log pf (4)

s.t.
∑
f∈F

pf = 1.

and the corresponding optimal solution is

p∗f (ϕ) =
exp[βϕf ]∑

f ′∈F
exp[βϕf ′ ]

, ∀f ∈ F , (5)

where ϕ , [ϕf , f ∈ F ].

By time-sharing among different configurations f according
to their portions p∗f (ϕ), we can solve the problem CCSS− β.
Note that an equivalent formulation of problem CCSS is

CCSS2 : max
p≥0

∑
f∈F

pfϕ(f) (6)

s.t.
∑
f∈F

pf = 1,

where pf is the time fraction (or probability) of the feasible
coding subgraph f . Therefore, by the log-sum-exp approx-
imation in (2), we are implicitly solving an approximated

version of the problem CCSS2, off by an entropy term
− 1

β

∑
f∈F pf log pf .

2) Distributed Markov Chain Monte Carlo: To obtain
p∗f (ϕ), f ∈ F (5) in a distributed way, we construct a time-
reversible continuous-time Markov chain with its state space
being F and its stationary distribution being p∗f (ϕ), f ∈ F .
Denote qf,f ′ as the non-negative transition rate between two
states f and f ′, it suffices to design qf,f ′ in a distributed
manner such that

• the resulting Markov chain is irreducible, i.e., any two
states are reachable from each other,

• and the detailed balance equation is satisfied: for all f
and f ′ in F and f ̸= f ′, p∗f (ϕ)qf,f ′ = p∗f ′(ϕ)qf ′,f ,, i.e.,
exp(βϕf )qf,f ′ = exp(βϕf ′)qf ′,f .

We have two degrees of freedom in designing a time-
reversible Markov chain distributedly:

• The state space structure: two states f, f ′ have one
edge connecting them if and only if the direct transitions
between f and f ′ involves only local information

• Transition rate: the transition rates qf,f ′ and qf ′,f utilize
only local information of f and f ′.

In practice, however, the designed transition rates may need
to utilize global information that is hard to obtain. Therefore,
we use the locally available information as the estimation
of the global information. On the other hand, even if the
designed transition rates utilize only local information, this
local information can be imprecise due to noisy measurements.
All above factors lead to inaccurate transition rates, which
further lead to inaccurate stationary distributions instead of
the designed stationary distribution (5).

To study the impacts of inaccurate transition rates, we can
view the Markov chain formed by the inaccurate transition
rates as a perturbed version of the designed Markov chain with
exact transition rates. Under some mild conditions [7], we can
obtain upper bounds on the differences between inaccurate and
exact stationary distributions.

III. OPTIMAL MULTICAST RATE OF WIRELINE NETWORKS
WITH NETWORK CODING AND DELAY CONCERN

In this Section, we focus on one problem instance: opti-
mal coding subgraph selection over wireline networks under
arbitrary bounds on graph diameter.

Existing coding subgraph selection algorithms including
back-pressure algorithms and convex optimization algorithm
[4, 8] are not suitable for networks with bounds on graph
diameter. The reason is that these algorithms tend to explore all
available links in the network and need to maintain very long
end-to-end paths between sources and destinations. Instead,
we utilize multiple multicast trees to multicast data packets,
where the depth of each tree is bounded and the number
of simultaneously used trees is limited. In this way, the
requirement on graph diameter bound is satisfied. The network
coding is operated over the subgraph composed by the selected
multicast trees. We aim to achieve maximum multicast rate by
selecting the best coding subgraph.

Next we introduce the problem formulation.



A. Problem Formulation
We consider a wireline network G = (V, L), where V is

the set of nodes and L is the set of links. Each link l ∈ L is
associated with a capacity Cl.

We focus on a single-source multicast scenario, i.e., the
single source s multicasts data packets to its destination set
Rs. Let Js denote the set of multicast trees (Steiner tree)
available for source s, where the depth of each tree j ∈ Js is
bounded by a positive constant Bj . We allow different trees to
have different depth bounds. Due to limited system resource
or overhead concern, source s selects at most Ds trees from
Js.

We denote F as the set of all feasible tree configurations
over G under tree depth bounds. Each tree configuration f ∈
F is defined as a set of multicast trees simultaneously used
by source s. Let |f | denote the size of configuration f , then
we have |f | = Ds.

For a feasible configuration f ∈ F , let ϕf be the maximum
multicast rate under f . ϕf is obtained by network coding,
where the coding occurs on all overlapping segments of
different trees of source s. In this sense, f can be regarded
as a coding subgraph [8]. Then the problem of achieve
maximum multicast rate by selecting the best coding subgraph
is formulated as follows:

MMR : max
f∈F

ϕf (7)

In general, problem MMR is computational intractable and
is hard to approximate even in a centralized manner.

In this Section, we address this problem by providing a
distributed solution. In particular, we first develop a distributed
multicast algorithm that can achieve ϕf under arbitrary f ∈ F ,
then we design a distributed algorithm that selects the best tree
configuration (coding subgraph).

B. The Distributed Multicast Algorithm
Given a feasible tree configuration f ∈ F , ϕf is obtained

by solving the following utility maximization problem:

UM : max
x≥0

U(
∑
j∈f

xj) (8)

s.t. xj ≤ Cl,∀j ∈ f, l ∈ j, , l ∈ L (9)

where U(·) is a twice-differentiable, increasing and strictly
concave function, xj , j ∈ f is the rate of multicast tree j under
f , and l ∈ j means that tree j uses the link l. The constraint
(9) comes from the flow-sharing property of network coding
[4].

Let the optimal solution of problem UM denoted by x̂j , j ∈
f , then ϕf is given by

ϕf =
∑
j∈f

x̂j (10)

Since the objective function in (8) is not strictly concave
in xj , j ∈ f , the associated algorithms solving UM based on
duality may have the oscillation problem [9]. To circumvent
the difficulty due to the lack of strict concavity, we use
proximal optimization method [9]. With this method, we
enforce strict concavity by adding a quadratic term to the
objective function and then iterate to eliminate the effects of
the term.

Due to space limits, we omits details on distributed multicast
algorithm, which is based on proximal optimization method,
Lagrange dual decomposition and random linear network
coding.

C. The Distributed Coding Subgraph Selection Algorithm
Now given any f ∈ F , we can obtain ϕf distributedly.

Next, we apply the generic way developed in Section II to
solve problem MMR (7) in a distributed way.

By log-sum-exp approximation, we solve an approximated
problem instead:

MMR− β : max
p≥0

∑
f∈F

pfϕf − 1

β

∑
f∈F

pf log pf (11)

s.t.
∑
f∈F

pf = 1.

The corresponding optimal solution is

p∗f (ϕ) =
exp[βϕf ]∑

f ′∈F
exp[βϕf ′ ]

, ∀f ∈ F , (12)

where ϕ , [ϕf , f ∈ F ].
Now we construct a time-reversible continuous-time

Markov chain with its state space being F and its stationary
distribution being p∗f (ϕ), f ∈ F .

First, we set the transition rate qf,f ′ between two configu-
rations f and f ′ to be zero, unless f and f ′ satisfy that

C1: |f ∪ f ′ − f ∩ f ′| = 2;
C2: f ∪ f ′ − f ∩ f ′ ∈ Js.

In this way, the transition from f to f ′ corresponds to the
source s switching a single multicast tree.

Second, for f and f ′ satisfying C1 and C2, we choose qf,f ′

and qf ′,f as follows:

qf,f ′ =
θ

exp(βϕf )
(13)

qf ′,f =
θ

exp(βϕf ′)
(14)

where θ is a positive constant.
So to implement transition rates (13) and (14), the source s

need to collect information of ϕf and ϕf ′ . This can be done
locally since source s can measure its multicast rate. We briefly
describe the distributed implementation as follows.

Stag1: Initially, source s randomly selects Ds trees from its
available multicast tree set Js.

Stag2: Source s measures the value of ϕf , where f is the
current configuration. Then source s counts down
according to a random number following an expo-
nential distribution with parameter Ds(|Js|−Ds)θ

exp(βϕf )
.

Stag3: When the count-down expires, source s randomly
switches one in-use tree in f with one remaining
candidate in Js − f . Then the source s returns to
Stag1.

We establish the following result:

Proposition 3. This implementation in fact realizes a time-
reversible Markov chain with stationary distribution in (12).



D. The Overall Distributed Solution
By combining the distributed multicast algorithm and the

distributed coding subgraph selection algorithm and operating
them in tandem, we obtain the overall distributed solution.
Now we discuss the convergence of the overall distributed
solution.

In practice, however, our measurements are always accom-
panied with errors, which leads to the inaccurate values of
ϕ(f) for any configuration f ∈ F . By (13), we know that the
transition rates of Markov chain are also inaccurate. There-
fore, the designed Markov chain with inaccurate transition
rates does not converge to the desired stationary distribution
p∗f , f ∈ F (12). Next, we characterize the gap to the desired
distribution and the gap to the optimal multicast rate.

E. Impact of Inaccurate Transition Rates
We adopt the following settings: (1) for each configuration

f ∈ F with ϕf , errors (deviations from ϕf ) belong to the
bounded region[−∆f ,∆f ]. These errors are quantized into
2nf + 1 levels: { j

nf
∆f , j = −nf , . . . , nf}. Therefore, the

maximum multicast rate under f obtained by measurement
belongs to the set: {ϕf + j

nf
∆f , j = −nf , . . . , nf}.

We denote the stationary distribution with accurate and inac-
curate transition rates as p∗ : (p∗f , f ∈ F) and p̄ : (p̄f , f ∈ F)
respectively. To characterize the gap between p∗ and p̄, we
adopt one common measure: total variance distance, which is
denoted by dTV (p

∗, p̄) , 1
2

∑
f∈F

|p∗f − p̄f |. By following the

method in [7], we obtain the following result:

Theorem 1. The upper bound of dTV (p
∗, p̄) is shown as

follows:

dTV (p
∗, p̄) ≤ 1− exp(−2β∆max). (15)

where ∆max = max
f∈F

∆f and ϕmax = max
f∈F

ϕ(f). Further,

the gap between maximum multicast rate with p∗ and max-
imum multicast rate with p̄ is no more than 2ϕmax(1 −
exp(−2β∆max)).

F. Trade-off Between Approximation Gap and Mixing Time of
Markov Chain

In this subsection, we study the trade-off between approxi-
mation gap and mixing time of Markov chain. This trade-off
is parameterized by β.

First, we investigate the impact of β on the approximation
gap. We assume the optimization solution to the problem
MMR (7) is unique. The extension to multiple optimization
solutions is straightforward. We denote this unique optimiza-
tion as f0 and f0 = argmaxf∈F ϕf . Then the corresponding
probability distribution of tree configurations (coding sub-
graphs) is π : (πf , f ∈ F):

πf =

{
1 if f = f0

0 otherwise
(16)

We define the approximation gap as

dTV (p
∗,π) , 1

2

∑
f∈F

|p∗f − πf |, (17)

i.e., the total variance distance between p∗ and π. Then we
have

Theorem 2. The approximation gap dTV (p
∗,π) is a decreas-

ing function of β. As β → ∞, the approximation gap is zero.

Next, we investigate the impact of β on the mixing time of
the designed Markov chain. Recall that p∗ is the stationary
distribution of the designed Markov chain. Let Ht(f) denote
the probability distribution of all states in F at time t given
that the initial state is f . We define mixing time as follows:

tmix(ϵ) , inf

{
t ≥ 0 : max

f∈F
dTV (Ht(f),p

∗) ≤ ϵ

}
(18)

Then we have

Theorem 3. The mixing time tmix(ϵ) is upper bounded as
follows:

tmix(ϵ) ≤
|F|2 ·Ds(|Js| −Ds) · exp(4βϕmax)

θ · 1

ln
|F|
4ϵ2

+βϕmax

(19)

This upper bound is an increasing function of β.

IV. CONCLUSIONS

In this paper, we develop a unified approach for combinato-
rial coding subgraph selection problems. We show the method
by studying a special case: optimal coding subgraph selection
over wireline networks under arbitrary bounds on graph diam-
eter. We design a distributed solution including a distributed
multicast algorithm achieving maximum multicast rate under
arbitrary tree configuration, and a distributed Markov chain
based algorithm to optimize the selection of multicast trees.
We characterize the gap to the optimum distribution with
inaccurate transition rates of the designed Markov chain. We
also discuss the trade-off between the approximation gap and
the mixing time of the designed Markov chain.
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