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Abstract—We consider the scenario where a source streams a
flow at fixed rate to a receiver across a network, possibly using
multiple paths. Transmission over a link incurs a delay modeled
as a non-negative, non-decreasing and differentiable function
of the link aggregated transmission rate. This setting models
various practical network communication scenarios. We study
network delay optimization concerning two popular metrics,
namely maximum delay and average delay experienced by the
flow. A well-known pessimistic result says that a flow cannot
simultaneously achieve optimal maximum delay and optimal
average delay, or even within constant-ratio gaps to the two
optimums. In this paper, we pose an optimistic note on the
fundamental compatibility of the two delay metrics. Specifically,
we design two polynomial-time solutions to deliver (1 − ε)
fraction of the flow with maximum delay and average delay
simultaneously within 1/ε to the optimums for any ε ∈ (0, 1).
Hence, the two delay metrics are “largely” compatible. The ratio
1/ε is independent to the network size and link delay function,
and we show that it is tight or near-tight. Simulations based on
real-world continent-scale network topology verify our theoretical
findings. Note that the proposed delay gap 1/ε, upon sacrificing
ε fraction of the flow rate, is guaranteed even under the worst
theoretical case setting. Our simulation results show that the
empirical delay gaps observed under practical settings can be
much smaller than 1/ε. Our results are of particular interest to
delay-centric networking applications that can tolerate a small
fraction of traffic loss, including cloud video conferencing that
recently attracts substantial attention.

I. INTRODUCTION

A. Background and Motivation

We consider the scenario where a source streams a flow at
fixed rate to a receiver across a network, possibly using multi-
ple paths. Transmission over a link incurs a delay modeled as
a non-negative, non-decreasing, and differentiable function of
the link aggregated transmission rate. We study three funda-
mental network delay optimization problems, concerning two
popular metrics, namely maximum delay and average delay.
The three problems are (i) minimizing the maximum delay,
denoted as problem MM, (ii) minimizing the average delay,
denoted as problem SO, and (iii) finding the Nash equilibrium,
denoted as problem NE. Our focus is on understanding the
fundamentals of the two delay metrics. Specifically, we study
quality of the solutions to the three problems, in terms of si-
multaneously attaining optimal or close-to-optimal maximum
delay and average delay performances.

Our study is motivated by recent skyrocketing interests on
supporting delay-centric traffics in data center networks [1],
[2] and real-time communications such as cloud video con-
ferencing [3], [4]. For example, it is reported that 51 million
users per month attend WebEx meetings [5], 3 billion minutes

of calls per day use Skype [6], and 75% of high-growth
innovators use video collaboration [7]. As recommended by
International Telecommunication Union (ITU) [8], for highly
interactive tasks including video conferencing, it is desirable
to keep the cross-network one-way delay as low as possible. A
delay less than 150ms can provide a transparent interactivity
while delays above 400ms are unacceptable [8].

The communication network delay is composed of the
processing delay, packet queuing delay, and propagation delay.
In many cases, queuing delay is the dominant factor, which
increases with the packet flow rate. According to queuing
theory, the link delay can be estimated by the following
function (for M/M/1 queue together with a FIFO server) [9]

D(x) =

{
1
c−x if c > x,

+∞ otherwise,
(1)

where c is the capacity and x is the assigned traffic. Func-
tion (1) does not allow the overhead case where assigned
rate exceeds the capacity. Better but more complex delay
formulas have been proposed to account for the overhead case
and propagation delay [10]. In this paper, we design traffic
routing strategies for arbitrary link delay functions that satisfy
some modest assumptions (non-negative, non-decreasing, and
differentiable). These assumptions are satisfied in almost all
settings including the function in (1) and those in [10].

B. Network Delay Optimization
The two delay metrics, i.e., maximum delay and aver-

age delay, are optimized by the three fundamental network
optimization problems, i.e., MM, SO and NE, in different
ways and are of strong practical relevance in delay-centric
networking applications. For example, for traffic routing in
cloud video conferencing, the optimum to MM provides a good
assignment for conferencing with multiple sessions since the
maximum end-to-end delay is minimized. Hence all sessions
can experience a delay within an optimal upper bound. SO
minimizes the average end-to-end delay and gives an optimum
to efficiently utilize the network resources from the view of the
cloud. The optimum to NE is the assignment to which delay-
aware distributed rate control protocols converge for large
networks without centrally administered servers. It provides
the best fair solution where conferencing sessions with the
same source and destination will experience the same delay.

In terms of computational complexity (see Tab. I), [11]
states that MM is NP-hard, NE can be formulated as a convex
program and thus solved in polynomial time, and SO is also
a convex program if the link delay function is convex. Thus,



TABLE I: Problem complexity [11].

MM NP-hard
NE Convex program
SO Convex program if all link delay functions are convex

TABLE II: Existing results from [11], [12].

Maximum delay bound Average delay bound
MM 1 σ(L) (tight)
NE σ(L) (tight) σ(L) (tight)
SO γ(L) (tight) 1

NE and SO are easy to solve, but it is impossible to obtain
the optimum to MM in polynomial time unless P = NP.

In delay-centric applications, an ideal traffic routing ap-
proach should optimize both the maximum delay and the
average delay, benefiting each user as well as the overall
network simultaneously. Specifically, to ensure that all users
have a satisfactory experience, maximum end-to-end delay
shall be minimized or at least bounded above by the tolerant
value (e.g., 400ms in video conferencing). Also, it is desirable
to provide close-to-optimal average delay to ensure an efficient
utilization of network resources.

Since only the NP-hard problem MM optimizes the maxi-
mum delay, a key question for delay-centric routing is to de-
sign efficient approximation algorithms to approximately solve
MM and simultaneously provide a close-to-optimal average
delay performance. Because SO and NE are easy to solve,
a natural idea is to see whether their solutions can provide
certain maximum delay performance and average delay perfor-
mance guarantee. Along this line, next we summarize existing
results (Section I-C) and show our contributions (Section I-D).

C. Existing Results

For NE, Roughgarden [13] shows that the Nash equilib-
rium admits a network-dependent maximum delay bound of
(|V | − 1) where |V | is the number of nodes in the network.
Roughgarden and Tardos [14] further prove that the Nash
equilibrium provides an average delay bound of 4/3 for linear
link delay functions. Correa et al. in [11], [12] study arbitrary
link delay functions and their results are shown in Tab. II in
terms of both maximum delay and average delay bounds. In
Tab. II, L is the set of all link delay functions, and both γ(L)
and σ(L) depend on L. Although their bounds γ(L) and σ(L)
have been proved to be tight, we can see that they rely on the
link delay model. Even worse, they can be arbitrarily large for
certain delay functions [15].

Overall, we observe pessimistically that a flow cannot
simultaneously achieve optimal maximum delay and average
delay, or even within constant-ratio gaps to the two optimums,
for general network topologies and arbitrary link delay models.

D. Our Contributions

In this paper, we pose an optimistic note on the funda-
mental compatibility of the two delay metrics. Specifically,
we propose a new approach to achieve constant maximum
delay bound and constant average delay bound simultaneously
by sacrificing the flow rate within a controllable level. We

summarize our results in Table III. Our approach is to either
delete a controllable portion of rates from the flow solutions
(Thm. 3 and 4 for DF, i.e., Deleting Flow from SO), or
directly solve the flow problems with a controllably smaller
rate (Thm. 5 and 6 for NE, Thm. 7 and 8 for MM).

In this way, for each of the three problems including SO,
NE and MM, we can obtain a solution which has theoretically
guaranteed maximum delay and average delay that are simulta-
neously close to the two optimums, only in the cost of losing
a controllable portion of the rate. For arbitrarily link delay
functions and general network topologies, all proposed delay
bounds are constants which are at least near-tight, an optimistic
and different result than existing studies (e.g. [11], [12]) which
cannot bound the two delay metrics simultaneously within
constant gaps to the two optimums without sacrificing flow
rate. We believe that these results are of particular interest
to delay-centric networking applications that can tolerate a
small fraction of traffic loss, including cloud video con-
ferencing. Simulations based on real-world continent-scale
network topology verify our theoretical findings. Besides, our
simulation results show that the empirical delay gaps observed
under practical settings are much smaller than 1/ε, which is
the theoretical gap guaranteed even in the worst case upon
sacrificing ε fraction of the flow rate, calling for possible future
work to improve our proposed delay gaps with more practical
parameters involved when flow rate can be sacrificed.

As theoretical byproducts of our proposed delay bounds,
we derive two polynomial-time bi-criteria approximation al-
gorithms to solve the NP-hard problem MM. One is to solve
the problem NE directly with a controllably smaller rate
requirement, which has polynomial time complexity regardless
of the convexity of the delay functions as long as they are
non-negative, non-decreasing and differentiable. The other is
our Algorithm 1 to delete a controllable portion of rate from
the solution to SO, which has polynomial time complexity
under an extra mild assumption that all link delay functions
are convex. Both resulting flows have a constant and near-
tight bi-criteria approximation ratio (1 − ε, 1/ε). To our best
knowledge, this is the first time to design approximation
algorithms to solve MM with constant approximation ratios
independent of input networks and link delay functions.

The rest of the paper is organized as follows. Sec. II gives
our system model and defines the three delay-centric network
flow problems. Sec. III describes the algorithm to obtain the
flow solution for DF and proves non-decreasing properties for
its average and total delay. Sec. IV details the proof of the
results in Table III. Sec. V presents our experiments, followed
by the conclusion in Sec. VI. Finally in Appendix, we present
lemmas and associated proofs which will be used heavily.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this paper we model the input network as a directed graph
G , (V,E). Data transmission over a link e ∈ E incurs a
delay modeled by a function De(xe) that is non-negative, non-
decreasing, and differentiable w.r.t. the aggregated link rate
xe. We study the single-unicast networking scenario where a



TABLE III: Our results: Bi-criteria delay bounds.

Average delay bound compared to fSO(R) Maximum delay bound compared to fMM(R)
Ratio Proof Tightness Example Ratio Proof Tightness Example

fSO[(1− ε)R] (1− ε, 1) Thm. 1 Fig. 1 (1− ε, γ(L)) Thm. 2 Unknown
fDF[(1− ε)R] (1− ε, 1) Thm. 3 Fig. 1 (1− ε, 1/ε) Thm. 4 Fig. 2 *
fNE[(1− ε)R] (1− ε, 1/ε) Thm. 5 Fig. 3 (1− ε, 1/ε) Thm. 6 Fig. 2 *
fMM[(1− ε)R] (1− ε, 1/ε) Thm. 7 Fig. 3 (1− ε, 1) Thm. 8 Fig. 1

Note. *: the figure is used to prove near-tightness instead of tightness.

source node s ∈ V streams a flow of rate R > 0 to a receiver
t ∈ V \{s}, possibly using multiple paths in G.

We define P as the set of all paths from s to t. A flow
solution f is defined as the assigned rates over P , i.e., f ,
{xp : xp ≥ 0, p ∈ P}, where xp is the rate on path p. The
total rate sent from s to t under flow f is defined as

|f | ,
∑
p∈P

xp.

The aggregated assigned rate on link e under flow f is

xe ,
∑

p∈P :e∈p
xp,

and the path-p delay under flow f is

dp(f) ,
∑
e∈p
De(xe),

which is the sum of delays for all links belonging to p.

B. Maximum Delay and Average Delay

The maximum delay of the flow f is the maximum path
delay among all paths that have a positive rate1, defined as

M(f) , max
p∈P :xp>0

dp(f). (2)

The total delay of flow f is the sum of delays experienced
by all flow units, defined as

T (f) ,
∑
p∈P

dp(f) · xp =
∑
e∈E
De(xe) · xe. (3)

The average delay of flow f is the ratio between the total
delay and the total flow rate, defined as

A(f) , T (f)
|f |

. (4)

C. Three Network Delay Optimization Problems

MM: the Minimal Maximum delay problem aims to mini-
mize the maximum delay subject to a flow rate constraint

MM : min
f
M(f) s.t. |f | = R.

We define fMM(R) as an optimal flow solution to problem MM
under rate requirement R. For convenience, fMM(R) is called
a min-max flow. We define M∗(R) as the optimal maximum
delay that can be achieved for any feasible flow with rate R.
Clearly, it is M∗(R) =M(fMM(R)).

1If a path has a positive rate, we call it a flow-carrying path.

SO: the System Optimization (minimal average delay)
problem is to minimize the average delay (or equivalently the
total delay) subject to flow rate constraint. It is formulated as

SO : min
f
A(f) s.t. |f | = R.

We use fSO(R) to denote an optimal flow solution to SO
under rate requirement R. The minimal average delay that
can be achieved for flows with rate R is denoted as A∗(R).
To facilitate later analysis, we also define the minimal total
delay as T ∗(R). Clearly we have A∗(R) = A(fSO(R)), and
T ∗(R) = R · A∗(R) = T (fSO(R)). We also call fSO(R) a
system-optimal flow.

It is well known that SO can be described as an optimization
problem using an edge-based flow formulation [16]. When all
edge delay functions are convex, the edge-based formulation of
SO is a convex program with polynomial size, and thus is easy
to solve [14]. The convex program solution then can be con-
verted to a path-based flow by a flow decomposition algorithm
in polynomial time [17]. Note that the flow decomposition
algorithm could output multiple path-based flows, all of which
have the same average delay but may have different maximum
delays. In this paper, we regard fSO(R) as an arbitrary path-
based flow after flow decomposition.

NE: to find a Nash Equilibrium flow subject to flow rate
constraint. A Nash equilibrium flow is defined as follows.

Definition 1: A flow f is a Nash equilibrium flow (or in
short a Nash flow) if for any pair of paths p1, p2 ∈ P with
xp1 > 0, dp1(f) ≤ dp2(f).

The Nash flow is the quickest fair flow [11], where no flow
unit has any incentive to deviate from its own path because
there does not exist a path with a smaller delay.

Problem NE can be written as

NE : find a Nash flow f such that |f | = R.

As proved in [14, Lemma 2.6], for all link delay func-
tions that are non-negative, non-decreasing, and differentiable,
there exists a Nash flow and all Nash flows have the same
total/average/maximum delay. We use fNE(R) to denote an
arbitrary Nash flow under rate requirement R.

These three fundamental problems all aim to optimize
network delay performance. Still, following Tab. II and the
discussion in Sec. I-C, pessimistically none of them can
simultaneously achieve optimal maximum delay and average
delay, not even within constant-ratio gaps to the two optimums
for general network topology and arbitrary link delay function.
However, in this paper we pose an optimistic note on the
two delay metrics that they are “largely” compatible and can



be optimized to simultaneously guarantee within 1/ε to the
optimums, only in the cost of sacrificing ε fraction of the flow
rate. Next we define approaches for each of the three problems
to sacrifice rate such that both maximum delay and average
delay can be close to optimums as proved later in Sec. IV.

D. Bi-Criteria Bounds: Bounded Delay with Sacrificed Rate

Definition 2: A flow f1 is a (µ, ρ)-approximate solution to
another flow f2 in terms of maximum delay, or equivalently
the bi-criteria maximum delay bound is (µ, ρ) for f1 compared
with f2, if

|f1| ≥ µ|f2|, (5)
M(f1) ≤ ρM(f2). (6)

Bi-criteria average delay bound is defined in a similar manner.
In the definition, when µ < 1, f1 only sends a fraction of

the rate of flow f2. For any network topology and arbitrary
delay function, in order to obtain optimization solutions with
both maximum delay and average delay guaranteed to be close
to optimums, we consider the possibility of sacrificing the rate
requirement. More concretely, given any ε ∈ (0, 1) and the rate
requirement R, we first are interested in the following three
problems that directly solve the corresponding optimization
problem with a reduced rate requirement (1− ε)R:
• fMM[(1− ε)R]: an optimal solution to problem MM with

a rate requirement (1− ε)R;
• fSO[(1− ε)R]: an optimal solution to problem SO with

a rate requirement (1− ε)R;
• fNE[(1 − ε)R]: an optimal solution to problem NE with

a rate requirement (1− ε)R.
However, as in Tab. III, we are only able to guarantee the

tightness (or near-tightness) and constantness for the bounds of
fMM[(1−ε)R] and fNE[(1−ε)R], but not those of fSO[(1−ε)R].
This motivates us in Sec. III to further design a novel flow
sacrificing algorithm (Algorithm 1) to get a flow from problem
SO with constant bi-criteria bounds:
• fDF[(1− ε)R]: the solution by Deleting εR Flow rate in

polynomial time from fSO(R) using Algorithm 1.
As opposed to fSO[(1−ε)R], we are able to demonstrate that

fDF[(1 − ε)R] leads to tight or near-tight constant maximum
delay and average delay bounds. Note that fDF[(1 − ε)R] is
not the system-optimal flow under rate (1− ε)R.

III. A NOVEL FLOW-SACRIFICING ALGORITHM TO SO

As motivated in Sec. II, in this section we propose a novel
algorithm to reduce εR rate from fSO(R), such that near-tight
constant maximum delay and average delay bounds can be
guaranteed as proved later in Sec. IV.

A. Procedure to Find fDF[(1− ε)R] in Polynomial Time

In Algorithm 1, first, we obtain a path-based system-optimal
flow fSO(R) given rate requirement R (Line 4). Then, the
algorithm deletes εR rate iteratively from fSO(R) (Lines 6–
15). In each iteration, we find the slowest flow-carrying path
pl, i.e., the path that has the maximum path delay among all
paths with a positive flow rate, and then delete the right amount

Algorithm 1 Finding fDF[(1− ε)R]
1: input: G = (V,E), R, s, t, ε ∈ (0, 1)
2: output: fDF[(1− ε)R]
3: procedure
4: fSO(R) = System-Optimal-Flow(G,R, s, t)
5: xdelete = εR //the rate to be deleted
6: while xdelete > 0 do
7: Find the slowest flow-carrying path pl
8: if xpl > xdelete then
9: xpl = xpl − xdelete

10: xdelete = 0
11: else
12: xdelete = xdelete − xpl
13: xpl = 0
14: end if
15: end while
16: fDF[(1− ε)R] is defined by the remaining flow
17: return fDF[(1− ε)R]
18: end procedure

of rate from it. The iteration terminates when εR rate is deleted
in total, and the remaining flow is fDF[(1− ε)R].

With the assumption that all link delay functions are convex,
we can get a path-based system-optimal flow in polynomial
time (Line 4) as discussed in Sec. II: after solving the convex
program formulation of SO, we do a flow decomposition on
its optimum. Note that the flow decomposition outputs at most
|E| paths and thus fSO(R) contains at most |E| flow-carrying
paths [17]. Hence, the while loop (Lines 6–15) in Algorithm 1
terminates in at most |E| iterations. In each iteration, we need
to recalculate all flow-carrying path delays and find the path
with largest delay, which takes O(|E|) time. Thus, the while
loop takes polynomial time. Overall, Algorithm 1 can output
the solution fDF[(1− ε)R] in polynomial time in the network
size |V | and |E|, and its complexity is independent from ε.

B. Upper Bounded Average and Total Delay for fDF[(1−ε)R]
In this subsection for the newly proposed fDF[(1 − ε)R],

we present the results comparing its average/total delay to the
optimal average/total delay for flows with the full rate R.

Lemma 1: Following Algorithm 1, we have:

A[fDF((1− ε)R)] ≤ A∗(R), (7)

T [fDF((1− ε)R)] + εR · M[fDF((1− ε)R)] ≤ T ∗(R). (8)

Proof: See Appendix B.
Lem. 1 directly implies that the average delay of fDF[(1−

ε)R] is guaranteed to be no worse than the optimal average
delay under the full rate, leading to a bi-criteria average delay
bound of (1 − ε, 1) for fDF[(1 − ε)R] (Thm. 3). In the next
section we will further prove a near-tight bi-criteria maximum
delay bound of (1−ε, 1/ε) for fDF[(1−ε)R] (Thm. 4). There-
fore, the polynomial-time Algorithm 1 provides a desirable
traffic assignment strategy for delay-centric applications, in
that the maximum delay performance is close to optimum
(within a constant-ratio gap of 1/ε) while the average delay is
optimal, only in a cost of losing ε portion of the traffic rate.



Fig. 1: A simple graph with one link and two nodes. It is used
to show tightness in Thm. 1, Thm. 3, and Thm. 8 where the
link delay function is a constant D(x) ≡ D.

IV. MAIN RESULTS: BI-CRITERIA DELAY BOUNDS

We study the two delay metrics, including the maximum
delay and the average delay, when we sacrifice any ε ∈ (0, 1)
portion of flow rate for each of the three network optimization
problems, leading to several tight or near-tight constant bi-
criteria delay bounds independent of network topology and
link delay function. The results are summarized in Table III.

Note that in the proof to any theorems of bi-criteria delay
bounds in this section, the correctness that corresponding flow
can support at least (1−ε) fraction of rate R is skipped, since it
holds straightforwardly according to the definition of fSO[(1−
ε)R], fDF[(1−ε)R], fNE[(1−ε)R] and fMM[(1−ε)R] presented
in Sec. 2. Thus we only focus on proving the correctness of
bounded delay and the tight or near-tight analysis.

A. Comparing fSO[(1− ε)R] with Optimum
For the system-optimal flow with a rate (1− ε)R, we prove

its average delay must be no worse than the optimum with full
rate R in Thm. 1, but its maximum delay is bounded above by
a delay-function-dependent ratio to the optimum in Thm. 2.

Theorem 1: Compared with fSO(R), fSO[(1 − ε)R] has a
bi-criteria average delay bound (1− ε, 1), which is tight.

Proof: Since fSO[(1− ε)R] is the optimal solution to SO
with a rate requirement (1−ε)R and fDF[(1−ε)R] is a feasible
solution to SO with a rate requirement (1− ε)R, we have

A(fSO[(1− ε)R]) ≤ A(fDF[(1− ε)R]). (9)

In addition, according to (7) in Lem. 1, we get

A(fDF[(1− ε)R]) ≤ A∗(R) = A(fSO(R)). (10)

Thus, (9) and (10) lead to

A(fSO[(1− ε)R]) ≤ A(fSO(R)). (11)

Such a bound is tight for the network in Fig. 1, where the
link delay function is a constant D(x) ≡ D. For both fSO[(1−
ε)R] and fSO(R), the average delay is D.

Similar to the optimal maximum delay (Lem. 2) and the
optimal total delay (Lem. 3), Thm. 1 says that the optimal
average delay is non-decreasing w.r.t. the rate R.

Theorem 2: Compared with fMM(R), a bi-criteria maximum
delay bound for fSO[(1− ε)R] is (1− ε, γ(L)), where γ(L) is
the minimal number that meets: (D̂(x) is defined in Lem. 6)

D̂(x) ≤ γ(L) · D(x),∀D(x) ∈ L,∀x ∈ [0, R] (12)

Proof: The maximum delay bound γ(L) can be proved
directly from the maximum delay gap in Tab. II comparing
SO to MM under the same rate and Lem. 2.

The delay-function-dependent maximum delay bound γ(L)
can be fairly large or even infinite in theory as explained in
our report [15]. Although γ(L) has been proved to be tight

�� �� �� ������� ��
Fig. 2: A graph with n nodes and 2(n − 1) links. All upper
dashed links have a constant delay 1, while all lower solid
links have a delay function D(x) defined in (15). It is used to
prove the near-tightness in Thm. 4 and Thm. 6.

in [11] without sacrificing flow rate, whether it is tight remains
unknown in our setting where we accept the cost of losing
ε ∈ (0, 1) portion of flow rate in order to obtain both maximum
delay and average delay that are close-to-optimal.

Overall, to solve problem SO with a reduced rate does not
necessarily result in an improved constant-bounded maximum
delay gap for any network and arbitrary delay function. When
applied to cloud video conferencing, solving SO between a
pair of cloud relays with a reduced rate could still make users
experiencing unacceptably large delay even when they are
willing to loss some traffic.

B. Comparing fDF[(1− ε)R] with Optimum

Drawbacks from fSO[(1− ε)R] motivate us to design a new
approach (Algorithm 1) to sacrifice the rate from the system-
optimal flow, leading to the solution fDF[(1 − ε)R]. In this
subsection, for fDF[(1 − ε)R], we show its average delay is
no worse than the optimum under full rate in Thm. 3, and
furthermore its maximum delay is close-to optimal within a
near-tight constant-ratio gap in Thm. 4.

Theorem 3: Compared with fSO(R), a bi-criteria average
delay bound for fDF[(1− ε)R] is (1− ε, 1), which is tight.

Proof: The correctness of the bound has been proved in
Lem. 1. The tightness is proved similarly as in Thm. 1.

Theorem 4: Compared with fMM(R), a bi-criteria maximum
delay bound for fDF[(1− ε)R] is (1− ε, 1/ε).

The bound (1−ε, 1/ε) is near tight in the sense that for any
ε ∈ (0, 1), there exists a problem instance where the bi-criteria
maximum delay bound is (1− ε, d1/εe − 1).

Proof: Considering the definition of fSO(R), we have

T ∗(R) = T (fSO(R)) ≤ T (fMM(R)) ≤ R · M(fMM(R)).
(13)

Leveraging inequality (8) in Lem. 1, it is

M[fDF((1− ε)R)] ≤
T ∗(R)− T [fDF((1− ε)R)]

εR

≤ T
∗(R)

εR

(a)

≤ R · M(fMM(R))

εR
=
M(fMM(R))

ε
. (14)

Here inequality (a) follows (13).
Then we prove the near-tightness by claiming the bi-criteria

maximum delay bound is (1− ε, d1/εe − 1) in Fig. 2.
For any ε ∈ (0, 1), it holds that 1/ε > d1/εe − 1. Thus we

can always find an α > 1 such that 1/(αε) = d1/εe − 1. We
also denote n = d1/εe = 1/(αε)+1. Clearly, we have n ≥ 2.
We construct a network as in Fig. 2, where there are n nodes
and 2(n − 1) links, and assume R = 1, s = a1, and t = an.



All dashed links have a constant delay 1, while all solid links
have a delay function as below

D(x) =

{
0 if 0 ≤ x ≤ n−2

n−1 ,

[(x− n−2
n−1 )/(

1−1/α
n−1 )]2 if x > n−2

n−1 .
(15)

It is straightforward to verify that D(x) satisfies our assump-
tion that link delay functions are non-negative, non-decreasing,
and differentiable. Moreover, we can obtain that D(n−2n−1 ) = 0,
D(n−1−1/αn−1 ) = 1, and D(R) = D(1) > 1.

We first show M(fMM(R)) = 1 by directly constructing a
feasible flow with maximum delay of 1. It is straightforward
thatM(fMM(R)) ≥ 1. We note that there are (n−1) different
s − t paths containing exactly one dashed link. f(R) routes
1/(n−1) rate on each of these (n−1) paths. Hence, all solid
links have a flow rate of n−2

n−1 , thus with a delay D(n−2n−1 ) = 0.
In f(R), all flow-carrying paths have a path delay of 1 and
its maximum delay is also 1. Therefore, M(fMM(R)) = 1.

We then prove thatM(fDF[(1− ε)R]) = n−1 = d1/εe−1
by constructing fDF[(1−ε)R] following Algorithm 1. Accord-
ing to Lem. 6, we get fSO(R) by obtaining fNE(R) with new
link delay functions D̂e(xe). For our example in Fig. 2, the
new link delay function for dashed link is again the constant
1, but for solid link is D̂(x) = D(x)+xD′(x) where D(x) is
defined in Equation (15). It is easy to verify that D̂(x) is non-
decreasing and continuous over x ≥ 0 and strictly increasing
over x ∈ [n−2n−1 ,

n−1−1/α
n−1 ]. Also we have

D̂(n− 2

n− 1
) = 0, D̂(n− 1− 1/α

n− 1
) > 1.

Thus it is fair to define λ ∈ (n−2n−1 ,
n−1−1/α
n−1 ) such that D̂(λ) =

1. By the definition of Nash equilibrium and Lem. 6, now we
can claim that in the system-optimal flow, all solid links have
a rate of λ and all dashed links have a flow rate of (1− λ).

Then one possible path-based flow fSO(R) is: a rate of (1−
λ) is assigned to the path p1 containing all dashed links whose
delay is n − 1, and a rate of λ is assigned to the path p2
containing all solid links whose delay is (n−1)D(λ) < n−1.

Now following Algorithm 1, since p1 is the slowest flow-
carrying path and 1−λ > 1− n−1−1/α

n−1 = ε = εR, all εR rate
will be deleted from path p1. In addition, after deleting, path
p1 still contains a strictly positive rate, which implies

M(fDF[(1− ε)R]) = n− 1. (16)

Therefore, for this example, we have that

M(fDF[(1− ε)R])
M(fMM(R))

= n− 1 = d1/εe − 1,

which prove that the bound (1− ε, 1/ε) is near tight.
Different from the system-optimal flow under a reduced

rate, according to Thm. 3 and Thm. 4, fDF[(1 − ε)R] is able
to guarantee constant-ratio gaps for both maximum delay and
average delay compared to the optimums, and can be obtained
in polynomial time following our approach (Algorithm 1).
Thus in applications, fDF[(1− ε)R] provides a solution where
any user can experience a delay with known upper bound and
guaranteed to be close to optimum, and in the mean time the

Fig. 3: A graph with two nodes and two parallel links. It is
used to prove tightness in Thm. 5 and Thm. 7. The lower solid
link has a delay function D(x) = xp for a large p > 1, and
the upper dashed link has a constant delay 1.

total network will see an efficient utilization of resources since
the average delay is also optimized.

C. Comparing fNE[(1− ε)R] with Optimum
Compared with SO, NE has an advantage of solving in

polynomial time even for non-convex link delay functions
(see Tab. I). In this subsection, for the Nash flow with a rate
requirement (1− ε)R, i.e., fNE[(1− ε)R], we prove both the
average delay and the maximum delay must be bounded by a
constant ratio of 1/ε to the optimums in Thm. 5 and Thm. 6.

Theorem 5: Compared with fSO(R), a bi-criteria average
delay bound for the Nash flow fNE[(1− ε)R] is (1− ε, 1/ε),
which is tight.

Proof: The bound is a direct result from Lem. 5 which is
the Theorem 3.2 in [14]. Tightness can be proved using Fig. 3.
More details can be found in our technical report [15].

Theorem 6: Compared with fMM(R), a bi-criteria maximum
delay bound for fNE[(1− ε)R] is (1− ε, 1/ε).

The bound (1 − ε, 1/ε) is near tight in the sense that for
any ε ∈ (0, 1), there exists a problem instance such that the
bi-criteria maximum delay bound is (1− ε, d1/εe − 1).

Proof: By leveraging Lem. 4 and Thm. 5, we obtain

M(fNE[(1− ε)R]) = A(fNE[(1− ε)R])

≤ A(fSO(R))

ε
≤ A(fMM(R))

ε
≤ M(fMM(R))

ε
. (17)

The near-tightness example is again Fig. 2 with same setting
as Thm. 4. The intuition is that fNE[(1 − ε)R] shall route
(1− ε)R flow rate to the path with all solid links.

Compared with fDF[(1− ε)R], although fNE[(1− ε)R] can
provide both maximum delay and average delay that are close
to optimal, its average delay bound is worse. Thus, although
the Nash flow is easy to obtain even for non-convex delay
functions and provides an alternate routing to obtain both good
maximum delay and good average delay, its average delay
performance is outperformed by that of fDF[(1−ε)R] in theory.

D. Comparing fMM[(1− ε)R] with Optimum
Although MM is NP-hard, theoretically it still remains an

interesting problem to evaluate its average delay performance
as studied in [11], [12]. For the min-max flow with a rate
requirement (1 − ε)R, i.e., fMM[(1 − ε)R], in this subsection
we show that its average delay is bounded by a constant ratio
to the optimum in Thm. 7 and its maximum delay is no worse
than the optimum with full rate requirement in Thm. 8.

Theorem 7: Compared with fSO(R), a bi-criteria average
delay bound for fMM[(1− ε)R] is (1− ε, 1/ε), which is tight.

Proof: Leveraging Lem. 4 and Thm. 5, we have

A(fMM[(1− ε)R]) ≤M(fMM[(1− ε)R]) ≤M(fNE[(1− ε)R])
= A(fNE[(1− ε)R]) ≤ A(fSO(R))/ε. (18)



The tightness of the delay bound can be proven using Fig. 3.
More details are presented in our report [15].

Theorem 8: Compared with fMM(R), a bi-criteria maximum
delay bound for fMM[(1− ε)R] is (1− ε, 1), which is tight.

Proof: The bound can be proved easily following Lem. 2
and its tightness is a direct result from Fig. 1.

We already know different path-based system-optimal flows
under the same rate requirement may have different maximum
delay, and in the worst case the maximum delay is upper
bounded just by a delay-function-dependent ratio (Thm. 2) if
we solve SO directly with a reduced rate. Similarly, different
path-based min-max flows under the same rate requirement
could have different average delay, too. However, according
to Thm. 7 and Thm. 8, both the maximum delay result and
the average delay result by solving MM with a reduced rate
are constant-bounded to the two optimums.

Overall, recall that according to existed studies [11], [12], a
pessimistic result says that a flow cannot simultaneously obtain
maximum delay and average delay even within constant-ratio
gaps to the optimums for general network topology and arbi-
trary link delay function. However, as analyzed in this section,
our results pose an optimistic note that maximum delay and
average delay are in fact “largely” compatible, because there
exist many different flows, i.e. fDF[(1−ε)R], fNE[(1−ε)R] and
fMM[(1−ε)R], that can theoretically guarantee both maximum
delay and average delay to be close to optimums even in
the worst case, only in the cost of losing ε fraction of flow
rate, calling for future studies on improving the network delay
performance in more practical delay-sensitive applications by
sacrificing a controllable portion of the flow rate.

V. EXPERIMENTS

In this section we investigate the maximum delay and aver-
age delay for the solutions of SO, NE and MM with sacrificed
flow rate, compared to the optimal maximum delay and aver-
age delay with full rate. We use a real-world continent-scale
network GEANT, the main European research and education
computer network with 45 nodes and 57 undirected links [18].
The capacity ce (Gbps) for a link e ∈ E is set according to
the GEANT map [18], and ce ∈ {5, 10, 20, 30, 100}. Each
undirected link is treated as two directed links that operate
independently and have identical capacities, same to the setting
in [9]. Due to the page limit, the detailed network topology
with link capacity is shown in our technical report [15]. We
assume that there are 1000 video conferencing sessions from
the top-left node Iceland (source) to the bottom-right node
Israel (receiver) in GEANT. We further assume the link delay
function to be the queuing delay formulated as (1) which is
also used for Nash equilibrium studies in [9].

Our test environment is an Intel Core i5 (2.40 GHz) pro-
cessor with 8 GB memory running Windows 64-bit operating
system. The edge-based system-optimal flow and Nash flow
are modeled as convex programs and solved using CVX in
Matlab. All the other experiments including flow decompo-
sition and Algorithm 1 are implemented in C++. Note that
we cannot find the exact min-max flow fMM(R) since it is
NP-hard and the network is a dense graph. Instead we find a
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Fig. 4: Empirical and theoretical bi-criteria delay bounds for
fDF[(1− ε)R].
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Fig. 5: Empirical and theoretical bi-criteria delay bounds for
fNE[(1− ε)R].

feasible flow f̂MM(R) which is a min-max flow under rate R in
a sub-network of GEANT to approximate fMM(R). Comparing
f̂MM(R) to fMM(R) from maximum delay, the average (resp.
maximum, minimum) relative error in our experiments is
bounded above by 1.73% (resp. 4.58%, 0.21%) for all R from
0 to 10 with a step of 0.1. The relative error is defined as:

Relative Error =
M(f̂MM(R))−M(fMM(R))

M(fMM(R))
.

Hence, for GEANT f̂MM(R) is a very good approximation to
fMM(R). Details of finding f̂MM(R) and the correctness of the
upper bounded relative error are presented in our report [15].

A. Maximum Delay Ratios compared with the Optimum

We assume that the video conferencing traffic demand for
each session is 10Mbps, leading to a total rate requirement
R = 10Gbps from the source to the receiver. As a benchmark,
without sacrificing flow rate, we first obtain the maximum
delay ratio comparing fSO(R) to f̂MM(R), which is 1.128, and
the maximum delay ratio comparing fNE(R) to f̂MM(R), which
is 1.017. In this section, we show that we can obtain a better
maximum delay bound when we can sacrifice a small portion
(3% for example) of rate requirement. We remark that 3% loss
rate is very acceptable for video conferencing engines with
loss protection/recovery and error resilience capabilities [19].

In our experiment, we increase the sacrificing ratio ε from
0.01 to 0.99 with a step of 0.01. Fig. 4a presents the maximum
delay ratio comparing fDF[(1− ε)R] to f̂MM(R), which plots
the theoretical near-tight gap (1 − ε, 1/ε) (red dotted line),
the theoretical lower bound (1 − ε, d1/εe − 1) for the tight
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Fig. 6: Empirical and theoretical bi-criteria delay bounds for
f̂MM[(1− ε)R].

gap (green dashed line), and the empirical maximum delay
ratio (blue solid line). Clearly the empirical maximum delay
bound is substantially smaller than the proposed theoretical
maximum delay bound, implying that empirical maximum
delay of fDF[(1 − ε)R] with reduced rate is close to or even
smaller than the maximum delay of f̂MM(R). Besides, we
can observe that more sacrifice of flow rate results in better
maximum delay. In addition, for the acceptable small loss in
flow rate for video conferencing, i.e., ε = 0.03, the maximum
delay ratio is 1.007, which is much better than that of the
system-optimal flow without rate loss, i.e., 1.128.

Fig. 5a shows the results for the maximum delay from
fNE[(1−ε)R]. For a small loss of rate (ε = 0.03), the maximum
delay ratio is 0.953 which is better than 1.017 when we do not
sacrifice rate requirement. The ratio 0.953 is below 1 because
fNE[(1− ε)R] is the flow with smaller rate and thus we could
obtain a maximum delay strictly better than the optimum for
flows with larger full rate. We observer similar results from
f̂MM[(1− ε)R] (Fig. 6a).

B. Average Delay Ratios compared with the Optimum

Similar to Sec. V-A, we set R = 10Gbps and ε is increased
from 0.01 to 0.99 with a step of 0.01.

Fig. 4b illustrates the average delay ratio comparing
fDF[(1 − ε)R] to fSO(R). Obviously, the average delay of
fDF[(1− ε)R] is always no greater than that of fSO(R). Inter-
estingly the average delay of fDF[(1− ε)R] is not monotonic
increasing w.r.t. the flow rate ratio (1−ε). From Fig. 5b (resp.
Fig. 6b), we can see that fNE[(1− ε)R] (resp. f̂MM[(1− ε)R])
provides a much better empirical average delay gap than the
theoretical bound (1− ε, 1/ε).

Moreover, even for a small rate loss, for example ε = 0.03,
the average delay ratio is 0.972 both for fNE[(1 − ε)R] and
f̂MM[(1 − ε)R]. This again shows the benefit of controllably
sacrificing flow rate: without sacrificing rate, the experimental
average delay ratio is 1.037 for both fNE(R) and f̂MM(R).

Overall from Fig. 4, Fig. 5 and Fig. 6, we can see that
for the three network delay optimization problems, observed
empirical delay gaps are mush smaller than our bi-criteria
bounds (see Tab. III) which are guaranteed even in the worst
theoretical case, verifying the correctness of our proposed
theoretical results and further calling for possible future studies
to improve our delay gaps with more practical parameters

involved for network delay optimization applications with a
tolerance of a small fraction of traffic loss.

VI. CONCLUSIONS

We consider the scenario where a source streams a flow
at fixed rate to a receiver across a network, and transmission
over a link incurs a delay modeled as a non-negative, non-
decreasing and differentiable function of the link aggregated
transmission rate. We study three fundamental network de-
lay optimization problems, concerning two popular metrics,
namely maximum delay and average delay experienced by
the flow. The three problems are (i) minimizing the maximum
delay, denoted as problem MM, (ii) minimizing the average
delay, denoted as problem SO, and (iii) finding the Nash
equilibrium, denoted as problem NE. Our focus is on under-
standing the fundamentals of the two delay metrics.

For general network and arbitrary link delay function, a
well-known pessimistic result says that a flow cannot si-
multaneously achieve optimal maximum delay and average
delay, or even within constant-ratio gaps to the optimums. But
we design three solutions, all of which can deliver (1 − ε)
fraction of the flow with maximum delay and average delay
simultaneously within 1/ε to the optimums. Hence, our results
pose an optimistic note on the fundamental compatibility of
the two delay metrics. The ratio 1/ε is independent to the
network size and link delay function, and is at least near-tight.
As byproducts, we derive two polynomial-time bi-criteria
approximation algorithms to solve the NP-hard problem MM.

Simulations based on real-world continent-scale network
topology verify our theoretical findings. The empirical delay
gaps observed under practical settings are much smaller than
1/ε, which is the proposed theoretical delay gap guaranteed
even under the worst case setting upon sacrificing ε fraction
of the flow rate, calling for future studies to improve our
proposed gaps with more practical parameters involved in
network delay optimization applications. Our results are of
particular interests to delay-centric networking applications
that can tolerate a small fraction of traffic loss, including cloud
video conferencing that recently attracts substantial attention.
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APPENDIX

A. Straightforward or Existing Useful Lemmas

First, due to the non-decreasing property for link delay
functions, directly it holds that the optimal maximum delay
and optimal total delay are non-decreasing w.r.t. the rate.

Lemma 2: M∗(R) is non-decreasing w.r.t. the rate R.
Lemma 3: T ∗(R) is non-decreasing w.r.t. the rate R.
Second, for Nash flows we have the following two lemmas.
Lemma 4: The maximum delay and average delay of a Nash

flow are equal, i.e.,

M[fNE(R)] = A[fNE(R)] = T [fNE(R)]/R. (19)

Proof: By the definition of a Nash flow (Definition 1),
all flow-carrying paths share the same path delay.

Lemma 5: [14, Theorem 3.2] If f ′ is any flow with |f ′| =
(1 + β)R where β > 0, then the total delay of Nash flow
fNE(R) is upper bounded by

T [fNE(R)] ≤
1

β
T (f ′).

In addition, the bound is tight.
Lem. 5 presents a tight total delay bound between the Nash

flow fNE(R) with rate requirement R and any feasible flow
with a larger rate requirement (1 + β)R where β > 0.

Third, we can find the system-optimal flow by obtaining a
Nash flow or vice verse, according to the following lemma.

Lemma 6: [14, Corollary 2.5] If for any link e, function
xe · De(xe) is convex, then a flow is a system-optimal flow
in the original graph with link delay functions De(xe) if and
only if it is a Nash flow in the same graph with link delay
functions D̂e(xe) = De(xe) + xeD′e(xe).

B. Proof of Our Proposed Lemma 1

Note in this subsection fSO(R) denotes the specific path-
based system-optimal flow returned in line 4 of Algorithm 1.

According to Algorithm 1, fDF[(1 − ε)R] is obtained by
iteratively deleting εR rate from fSO(R). Suppose that there
are in total K iterations to get fDF[(1 − ε)R]. We use fk to

represent the flow at the beginning of the k-th iteration (or
equivalently, at the end of the (k − 1)-th iteration) for 1 ≤
k ≤ K + 1. Obviously, f1 = fSO(R), fK+1 = fDF[(1− ε)R].

We denote Pk as the set of of flow-carrying paths in flow
fk, and pk ∈ Pk as the slowest flow-carrying path in fk.
According to Algorithm 1, in the k-th iteration, we delete
some rate, say xk > 0, from pk.

Since all link delay functions are non-decreasing, the path
delay of all flow-carrying paths cannot increase with reduced
flow rate. Thus, the maximum delay cannot increase, i.e.,

M(fk+1) ≤M(fk), (20)

implying that

M(fDF[(1− ε)R]) ≤M(fSO(R)). (21)

Considering the total delay, for any k, we have

T (fk) =
∑
e/∈pk

[xeDe(xe)] +
∑
e∈pk

[xeDe(xe)]

=
∑
e/∈pk

[xeDe(xe)] +
∑
e∈pk

[(xe − xk)De(xe)] + xk
∑
e∈pk

De(xe)

(a)
=
∑
e/∈pk

[xeDe(xe)] +
∑
e∈pk

[(xe − xk)De(xe)] + xkM(fk)

(b)

≥(
∑
e/∈pk

[xeDe(xe)] +
∑
e∈pk

[(xe − xk)De(xe − xk)]) + xkM(fk)

(c)
=T (fk+1) + xkM(fk)

(d)

≥ T (fk+1) + xkM[fDF((1− ε)R)].
(22)

In (22), equality (a) holds because
∑
e∈pk De(xe) is the path

delay of the slowest flow-carrying path pk. Inequality (b)
follows the non-decreasing property of link delay functions.
Equality (c) holds because flow fk+1 is the resulting flow
when flow fk deletes xk rate in path pk. Inequality (d) comes
from (20) and fK+1 = fDF[(1− ε)R]. We then do summation
for (22) over k ∈ [1,K], and get

T ∗(R) = T [fSO(R)] = T (f1)

≥ T (fK+1) +

(
K∑
k=1

xk

)
· M[fDF((1− ε)R)]

= T [fDF((1− ε)R)] + εR · M[fDF((1− ε)R)],

which proves (8).
For the average delay, we have

A(fk) =
T (fk)
|fk|

≥ T (fk+1) + xkM(fk)

|fk|
//by (22)

=
A(fk+1)(|fk| − xk) + xkM(fk)

|fk|

=
A(fk+1)|fk|+ xk(M(fk)−A(fk+1))

|fk|

≥ A(fk+1)|fk|+ xk(M(fk+1)−A(fk+1))

|fk|
//by (20)

≥ A(fk+1)|fk|
|fk|

= A(fk+1), (23)

which proves (7) by iterating k from 1 to K.


