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Resource Allocation is Critical

0O Utilize resource

— Efficiently
— Fairly
— Distributedly

0 TCP: A bottom-up
example

— No loss: increase the rate

— Loss detected: decrease
the rate




Convex Network Optimization:
Popular and Effective

0 Formulate resource allocation as a utility
maximization problem [Kelly 98, Low et. al. 99, ...]

0 Design distributed solutions
— Local decision, adapt to dynamics




Combinatorial Network Optimization:
Popular but Hard

0 Joint routing and flow control problem

Ax < C,

l A € {feasible

outing matrices}

0 Many others: Wireless utility maximization,
channel assignment, topology control ...



Observations and Messages

Convex: solved Combinatorial: open

e Top-down approach e Top-down approach
e (mostly) convex problems e Combinatorial problems

e Theory-guided distributed e /)

solutions

0 This paper: Theory-guided design for distributed
solutions for combinatorial network problems



Markov Approximation: Our New Perspective

Combinatorial network
Convex network problems

problems
Formulation Formulation

\4 v

Penalty/decomposition

Log-sum-exp approximation

approach
Primal/dual/primal-dual Distributed Monte Carlo

design Markov Chain




Generic Form of Combinatorial Network
Optimization Problem

maXij: Wf

Y
g

0 System settings: “{;\
— A set of user configurations, f =[f,, f,, w{‘)‘@ o

— System performance under f, W;

0 Goal: maximize network-performance by \
choosing configurations Q’W

\



Examples

O Wireless network utility maximization New
— Configuration f: independent set perspective




Wireless Network Utility Maximization

Wireless link 0
max Z Us(zs) | capacity constraints L
z>0,p>0
seS r Ll
s.t Z Zs < pr, Vie L L L
s:les,seS f:lef r
D pr=1 L, s
ferF
3-links interference L, L3
O z.: rate of user s graph independent
0 L: set of links, each with unit capacity sets

0 ‘T : set of all independent sets (configurations)
O ps: percentage of time f is active



Scheduling Problem: Key Challenge

r>\n>113 r;ag(})c Us( ZZSZ)\Z+maXprZ)\l

seS seS les - feF lef

S.t. = 1. :
2P (scheduling)
feF

0 An NP-hard combinatorial Max Weighted
Independent Set problem

max A — ma A
T ID 3175 SIS Y
feF lef lef

S.t. Z Pr = 1.

feF
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Related Work on Scheduling

0 Wireless scheduling is NP-hard [Lin-Shroff-Srikant 06, ...]

O It is recently shown that bottom-up CSMA can solve the
scheduling problem approximately

— [Wang-Kar 05, Liew et. al. 08, Jiang-Walrand 08,
Rajagopalan-Shah 08, Liu-Yi-Proutiere-Chiang-Poor 09, Ni-
Srikant 09, ...]

0 Our framework provides a new top-down perspective

— Note that our framework applies to general combinatorial
problems
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Step 1: Log-sum-exp Approximation

I}leaj}__( Aj ~ % log (Z exp (6 Z Az) )

lef feF lef

. . 1
0 Approximation gap: 3 log | F|

O The approximation becomes exact as 3
approaches infinity
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Step 1: Log-sum-exp Approximation

max Z Al

7 s

— log (Z exp (62)\1))

I Log-sum-exp is a concave and
closed function, double conjugate

is itself
1
mex e XA 5 3 prlos
feF  lef feF
S.t. pr:
fer
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Big Picture After Approximation

1
0 The new 220.p>0 2 Uslzs)|- 3 2 prlogps
. seS ferF
primal problem - Z ) < Z pr, VieL
s:l€s,sER filef
Z pf = 1.
. feFx . L 2
0 Solution: Distributed.
( , +
b0 = 0 |Ul(25) = Tiey M] v
: ’ +
< AL = ki |:ZSZlES,S€S “s T Zlef pf(ﬂ)‘)} A J
_ Schedule f for ps(0BA) percentage of time. ?
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Schedule by a Product-form Distribution

Q

r}léa}}__( oy % log (Z exp (ﬁ Z )\l) )

lef fEF lef
A pr(A) A ps(A) = C(;)\) exp (ﬂZN)
lef
1. | A
ferF fer

0 Computed by solving the Karush-Kuhn-Tucker conditions to
the entropy-approximated problem
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Step 2: Achieving p{( ) Distributedly

pr (N) agp =pg (A) gy

0 Regard p; (A) as the steady-state distribution of a
class of time-reversible Markov Chains

— States: all the independent sets f € ‘F
— Transition rate: new design space
— Time-reversible: detailed balance equation holds
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Design Space: Two Degrees of Freedom

749 § 74N

pr(N)ary =pp (N ap.s

0 1) Add or remove transition edge pairs
— Stay connected
— Steady state distribution remains unchanged

0 2) Designing transition rate
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Design Goal: Distributed Implementation

Implement a Markov chain <>Q
Realize the transitions <> (/JY

0 What leads to distributed implementation?
— Every transition involves only one link
— Transition rates Involve only local Information
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Every Transition Involves Only One Link

0 From fto ' =f U {L}: L starts to send
0 From f =f U {L} to f: L, stops transmission

—
N
—

N

L

(e

L, starts/stops

3-links conflict graph Designed Markov chain
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Transition Rates Involve Only Local Information

0 Consider transition between fand f" =f U {L }
0 A is available to L locally

exp (ﬁ D ey )\l) exp (ﬂ D e )\l)

]
1

exp (Z YRS ml) — exp AL,

lef’ lef
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Distributed Implementation

0 Link L, counts down at rate <>Q
exp(5 Ay)

L

— Count down expires? Z v\/
transmit <> (/JY

— Interference sensed? Freeze
the count-down, and
continue afterwards

0 Reinvent CSMA using a le @ w

top-down approach
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The Total Solution

Distributed ”
p -+
2o = o |Ud(2s) = Lie M| v

. +
At =k {ZSZZES,SES s T Zlef Dy (5>‘)} A J
| Distributed MCMC achieves distribution p(8A). J

/

/"

0 The distributed system converges to the
optimal solution

— Proof utilizes stochastic approximation and mixing
time bounds
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Conclusions and Future Work

Combinatorial network

Combinatorial problem problems
e Top-down approach Formulation
e Combinatorial problems v

Log-sum-exp

e Markov approximation approximation

for designing distribution
solutions

Distributed Monte Carlo
Markov Chain

O Future: Convergence (mixing) time, and applications
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