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Automatic Recalibration of an Active
Structured Light Vision System

Y. F. Li, Senior Member, IEEE,and S. Y. Chen, Student Member, IEEE

Abstract—A structured light vision system using pattern pro-
jection is useful for robust reconstruction of three-dimensional ob-
jects. One of the major tasks in using such a system is the calibra-
tion of the sensing system. This paper presents a new method by
which a two-degree-of-freedom structured light system can be au-
tomatically recalibrated, if and when the relative pose between the
camera and the projector is changed. A distinct advantage of this
method is that neither an accurately designed calibration device
nor the prior knowledge of the motion of the camera or the scene
is required. Several important cues for self-recalibration are ex-
plored. The sensitivity analysis shows that high accuracy in-depth
value can be achieved with this calibration method. Some experi-
mental results are presented to demonstrate the calibration tech-
nique.

Index Terms—Active vision, pattern projection, recalibration,
structured light system, three-dimensional reconstruction.

I. INTRODUCTION

SEVERAL METHODS have been explored for recovering
the three-dimensional (3-D) information of an object or a

scene, including stereovision, shape-from-motion, and active vi-
sion using structured light. Among them, the active vision ap-
proach has its advantages over others and has found successful
applications in different areas including robotics. In many prac-
tical applications, the configuration of an active vision system
needs to be changed online to achieve satisfactory measure-
ments, in which case, it is desirable to be able to recalibrate the
vision system without having to use special calibration appa-
ratus as required by traditional calibration methods.

Most existing methods for calibrating active systems are
based on static and manual calibration. During the calibration
and 3-D reconstruction, the vision sensor is usually placed at
a fixed location. The calibration target (with specially made
features, e.g., circles or squares) needs to be placed at several
accurately known or measured positions in front of the sensor
[1]–[3]. With a traditional method, the system must be cali-
brated again if the vision sensor is moved or the relative pose
between the camera and the projector is changed. Frequent
recalibrations in using such a system are tedious tasks.
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Self-calibration of vision sensors is an attempt to overcome
the above problem and it has been actively researched in recent
years. However, most of the studies are concerned with passive
vision, including stereovision. For example, using the invariant
properties of calibration matrix to motions, [4] proposed an op-
timization procedure for recalibration of a stereovision sensor
mounted on a robot arm. The technique for self-recalibration
of varying internal and external parameters of a camera was ex-
plored in [5]. The issues in dynamic camera calibration were ad-
dressed in [6] to deal with unknown motions of the cameras and
changes in focus. A method for automatic calibration of cameras
was explored by tracking a set of world points [7]. Intensive ef-
forts were also made in calibrating hand-eye systems, including
the use of self-calibration techniques [8]–[10]. Such self-cali-
bration techniques normally require a sequence of images to be
captured via moving the camera or the target [11], although with
some special setup, two views can be sufficient for such calibra-
tion [12]. These methods cannot be applied directly to an active
vision system which includes an additional illumination system
using structured light.

As for the calibration of active vision systems, most of the
methods are based on static calibration and manual operations
[13]. Similar to the calibration of passive stereovision systems,
attempts were made in calibrating a structured light system via
transformation from 3-D world coordinates to camera image
plane coordinates using perspective transformation matrices [1],
[3]. To avoid using external calibrating devices and manual op-
erations in the calibration, a self-reference method [14] was pro-
posed. A set of points was projected to the scene and was de-
tected by the camera to be used as reference in the calibration.
With a cubic frame, Chuet al. proposed a calibration-free ap-
proach for recovering unified world coordinates [15]. Fofiet
al. discussed the problem in self-calibrating a structured light
sensor [16]. A stratified reconstruction method based on Eu-
clidean constraints by projection of a special light pattern was
given. However, the work was based on the assumption that
“projecting a square onto a planar surface, the more generic
quadrilateral formed onto the surface is a parallelogram,” which
may be questionable. For an inclined plane placed in front of the
camera or projector, projecting a square on it forms an irregular
quadrangle instead of parallelogram as the two line segments
will have different lengths on the image plane due to their dif-
ferent distances to the sensor. Jokinen’s method [17] of self-cal-
ibration of light-stripe systems is based on multiple views. The
object needs to be moved by steps and several maps are required
for the calibration. The registration and calibration parameters
are obtained by matching the 3-D maps via least errors. The lim-
itation of this method is that it requires a special device to hold
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Fig. 1. Schematics of the two-degree-of-freedom (2DOF) active vision
system.

and move the object. A desktop approach to 3-D shape recon-
struction was proposed by Bouguet and Perona based on “weak
structured lighting” [18]. This method provides an inexpensive
solution to the problem, but the accuracy achievable in practical
implementation is limited.

In this paper, we present our work in automatic calibration of
an active vision system via a single view without using any spe-
cial calibration device or target. Here, self-recalibration deals
with situations where the system has been initially calibrated
but needs to be calibrated again due to changed relative pose
between the camera and projector [19]. In our work, some im-
portant cues are explored for the recalibration including the ge-
ometrical cue and focus cue.

II. SELF-RECALIBRATION TASK

The active vision system here consists of a liquid crystal dis-
play (LCD) projector to cast a pattern of light onto the object
and a camera to sense the light pattern, as shown in Fig. 1. If a
beam of light is cast, and viewed obliquely, the distortions in the
beam line can be translated into height variations. To make the
vision system adaptable to different objects/scenes to be sensed,
we incorporated two degrees of freedom (DOF) of relative mo-
tion in the system design, i.e., the orientation of the projector
(or camera) and its horizontal displacement. The X–Z plane is
perpendicular to the plane of the projected laser stripe. The 3-D
coordinate system is chosen based on the camera (or projector)
center and its optic axis.

At the static calibration stage, the camera and the projector
are calibrated to obtain the focal lengths (, ) and the optical
centers ( , , ). Once the perspective projection matrix
of the camera and the equations of the planes containing the
sheets of light relative to a global coordinate frame are given
from the calibration, the triangulation for computing the 3-D
coordinates of object points simply involves finding the inter-
section of a ray from the camera and a plane from the projector.

The recalibration task is to determine the relative pose be-
tween the camera and the projector so that the 3-D depth value
can be computed by the triangulation principle. For the camera,
the relationship between the 3-D coordinates of an object point
from the view of the camera and its pro-
jection on the image is given by

(1)

where is a 3 4 perspective matrix of the camera

(2)

Similarly, the projector is regarded as a pseudocamera in that
it casts an image rather than detects it. The relationship between
the 3-D coordinates of the object point from the view of the
projector and its back projection on the
projector is

(3)

where is a 2 4 perspective matrix

(4)

The relationship between the camera view and the projector
view is given by

(5)

where , , , and are 4 4 matrices standing for the
three-axis rotations and a translation.

Substituting (5) into (3) gives

(6)

Let (7)

where and are four-dimensional row vectors. Equation (6)

may be written as , from which we can derive

(8)

Combining (1) and (8), we have

(9)

or

(10)

where is a 4 4 matrix.
Then the world 3-D position of a point on the object surface

can be determined by

(11)

From the above equations, the 3-D object can be uniquely re-
constructed if we know the matrix that contains 13 parameters
from the two perspective matrices and and one coordi-
nate transformation matrix . As the two perspective matrices
can be determined at the static calibration stage, the dynamic
recalibration task is to determine the relative between the
camera and the projector. There are six unknown parameters in
(5), i.e.,

(12)

Since the system considered in this paper has two DOFs, only
two of the six parameters are variable and the other four are
constants which can be known from the static calibration. If the
X–Z plane is not perpendicular to the plane of the projected
laser sheet, its angle can also be identified at this stage. As
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Fig. 2. Triangulation in the 2DOF system.

the angle is small and the image can be recti-
fied by rotating the corresponding angle accordingly during the
recalibration, we can assume that . The displacement in
y-direction between the camera center and the projector center,

, and the rotation angle are also small in practice. They do
not affect the 3-D reconstruction as the projected illumination
consists only of vertical line stripes here. Therefore, we may as-
sume that and . Thus, the unknown parameters
are reduced to only two ( and ) for the dynamic recalibra-
tion. Here, is a constant and and have variable values
depending on the system configuration.

For such a 2DOF system, the triangulation (9) for determining
the 3-D position of a point on the object surface is then simpli-
fied as (see Fig. 2)

x y (13)

where is the distance between the camera sensor and the op-
tical center of the lens, i i is the projection
angle, and

(14)

where is the stripe index and i is the stripe coordinate on
the projection plane i i stripe width .

If the projector’s rotational center is not at its optical center,
and shall be replaced by

and

where is the distance between the rotational center and the
optical center as illustrated in Fig. 3. Here,and can be
determined during the static calibration.

Since conventional self-calibration methods need several
views to be acquired from different positions, they are inconve-
nient for the automated recalibration task here. Using a single
view, it is, in general, difficult to determine all the unknown
parameters in the calibration. Fortunately for the system here
with 2DOF, self-recalibration can be achieved by utilizing
the intrinsic cues. The use of geometrical cue and focus cue
for determining the unknowns and will be shown in the
following sections.

Fig. 3. Case when the rotational center is not at the optical center.

III. GEOMETRICAL CUE

The geometrical cue describes the intrinsic relationship be-
tween the stripe locations on the camera and the projector. The
geometrical constraint can be used to determine the unknown
parameters of the vision system.

A. Geometrical Constraint

Assume a straight line in the scene which is expressed in the
camera coordinate system and projected on the X–Z plane

(15)

The geometrical constraint between the projection and
imaging of the scene line is obtained by substituting (13) into
(15)

x (16)

The parameters , , and are constants that have been
determined at the static calibration stage. (i) and

(i) are known coordinates on the sensors. Therefore,
, , , and are the only four unknown constants and their

relationship can be defined by three points.
Denote and . The projection

angle of an illumination stripe is

(17)

where (i) is the stripe location on the projector’s LCD
and is the distance between the LCD and the optical center.
The x-coordinate value of the ith stripe,(i), can be determined
by (14). The stripe coordinate and the projection angle
are illustrated in Fig. 2.

Equation (16) can be written as

(18)

or (19)

where , ,
, and

(20a)

(20b)

(20c)

(20d)

Equation (19) is the relationship between the stripe locations
on the camera and the projector and is termed the geometrical
constraint.
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B. Rectification of Stripe Locations

Within a view of the camera, there can be tens or hundreds
of stripes from the scene. The stripes’ coordinates (, ) on
the image and the projector should satisfy (19), in theory. In
practice, however, the coordinates obtained from the image
processing may not satisfy this constraint, due to the existence of
noise. To reduce the effect of noise and improve the calibration
accuracy, the stripe locations on the image can be rectified by
using a curve-fitting method.

Let the projection error be

(21)

Then , , and can be obtained by minimizing the
projection error with respect to

(22)

Using (21) in (22) gives

(23)

or

(24)

The stripe location in the camera coordinate is, thus, rectified
as

(25)

C. Solution Using the Geometrical Cue

Equation (18) can be written as

(26)

For an illumination pattern with stripes on the
image plane, (26) can be expressed as

(27)

or (28)

where is an matrix, (i), (i), and is
a 4 1 vector. The following theorem is used for solving (27).

Theorem 1: (the rank of the matrix ). .
The proof is given in Appendix A.
Equation (27) has a solution in the form of

R (29)

(a) (b)

(c) (d)

Fig. 4. Projection of illumination on the scene. (a) Pattern of the projector’s
source illumination. (b) Intensity distribution along a horizontal profile. (c)
Plane in the scene. (d) Intensity profile on the surface (without blurring).

There exists an uncertain parameteras the rank of matrix
is lower than its order by one. Using singular value decomposi-
tion to solve the matrix equation (27) to find the least eigenvalue,
we can obtain the optimal solution in the least-square sense.

In a practical system setup, the z-axis displacementis ad-
justed to 0 during a static calibration, and (29) gives a solution
for the relative orientation: and .
By setting and solving (20) and (29), the 3-D reconstruc-
tion can be performed to obtain an object shape (with relative
size). If we need to obtain the absolute 3-D geometry of the ob-
ject, (29) is insufficient for determining the five unknowns,,

, , , and . To determine all these parameters, at least
one more constraint equation is needed. The focus cue or the
best-focused distance is used here for this purpose.

IV. FOCUSCUE

The focus cue is based on the fact that for a lens with a speci-
fied focal length, the illumination pattern will be blurred on the
object surface unless it is projected on the best-focused distance.
This gives another intrinsic constraint for the vision system in
the self-recalibration.

A. Focus Cue Formulation

Fig. 4 shows the profile of a projection using synthetic illumi-
nation data. Fig. 4(a) is a typical illumination pattern on the LCD
to be projected and its intensity profile is illustrated in Fig. 4(b).
Consider the straight line (15) in the scene [Fig. 4(c)]. When the
illumination pattern casts on such a line, the intensity distribu-
tion is nonlinear and is given by

(30)

when , n N. is the
stripe width of the source pattern.

Fig. 4(d) illustrates the curve (30) without considering the ef-
fect of blurring. However, the illumination is usually blurred
unless it is projected on a plane at a special distance
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(a) (b)

(c) (d)

Fig. 5. Determination of blur diameters. (a) Gaussian point spread function.
(b) Blur intensity distribution. (c) Area for determining the blur diameter.
(d) Determination of the best-focused location.

. For all other locations in the scene, the dis-
placement will be

(31)

The corresponding blur radius is proportional toz

(32)

where is the f-number of the lens setting.

B. Determination of Blur Diameters

The blurring in the illumination is not evenly distributed in
the blur circle. It can be described by a point spread function
due to diffraction effects of light wave. A Gaussian model can
be used to describe the blurring effect. For the one-dimensional
case, the spread function is [Fig. 5(a)]

(33)

The brightness of the scene illuminated by the projector is
the convolution of the blur model with the ideal illumination
intensity (30) [Fig. 5(b)]

(34)

The Fourier transform of (34) is

(35)

where is the Fourier transform of the Gaussian function

(36)

can be approximated by averaging the intensity on a
light stripe to simplify the Fourier transform, . If
a coordinate system with its original at the center of the bright
stripe is used, this value can be written as

(37)

where is a unit step function.

The Fourier transform of (37) is

(38)

Since [the curve on the shaded area in Fig. 5(c)] is mea-
sured by the camera, its Fourier transform can be calcu-
lated. Rewriting (35) and integrating on both sides of it gives

(39)

Since the left side is found to be

(40)

the blur radius can be computed by

(41)

Neglecting the effect of blurring caused by multiple illumi-
nation stripes, we have the following theorem to determine the
blur radius with a lower computational cost.

Theorem 2: When projecting a source illumination with a
step profile, the blur radius is proportional to the area under the
blurring curve

(42)

where is the intensity without considering the blurring and
is the area as illustrated in Fig. 5(c). The proof is given in

Appendix B.

C. Best-Focused Location

With Theorem 2, by integrating the blur curve on each stripe
edge, its blur radius can be calculated and a set of data are ob-
tained. Since the blur diameters are unsigned, in order to obtain
a straight line corresponding to the changing depth in the scene,
we need to find the minimum value in the data set and separate
the set into two parts. Their linear best fits give two straight lines
[Fig. 5(d)]

and (43)

Finding the intersection of the left line and the right line gives

(44)

which corresponds to or . On the
image, ( , ) is the best-focused location.

D. Combination of the Two Cues

For the projector, the length of the light path is

(45)

At the best-focused location, we have

(46)

(47)
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Equation (47) is a constraint equation derived from the focus
cue. Here , and are known constants andhas appeared
in the geometrical constraint. , , and are replaced by the

, . (best determined in the above formulation.)
Thus, together with the four equations in (29), there are five un-
known parameters that can be found by
solving the five equations. Using the steepest-descent approach,
which is an iterative method based on local gradients, we can ob-
tainanaccuratesolutionof thenonlinearequationsystem.Theal-
gorithm for the self-recalibration is summarized as follows.

1) Project the illumination patterns on the scene and capture
the images from the camera. Find a line that is illuminated
by at least three stripes.

2) Compute the stripe locations in the image by a gradient op-
erator and record their coordinates (, , i) with i being
the stripe index.

3) Calculate the geometrical cue(29) based on (27).
4) Determine the blur diameter for each stripe. Use linear fit-

ting method to find the best-focused location (44).
5) Combine the two cues, (29) and (47), to find the relative

parameters.
6) Obtain the matrices (7) and (11) for performing 3-D

reconstruction.

V. SENSITIVITY ANALYSIS

A. Recalibration Error

In this section, the sensitivity of the depth error to the recali-
brated parameters (i.e., and b) is analyzed. The relative
reconstruction error of the scene depth is

(48)

Now we consider the computational error of the stripe loca-
tion on the captured image which can cause errors in the recali-
brated parameters. We have

(49)

(50)

Taking the derivative of (47) with respect toand , we can
obtain

In the image processing, the stripe-location error in the image
can be given as

(51)

where is the pixel width of the sensor. For a common charge-
coupled device (CCD) camera,is usually between 5 and 20

m.

Consider a camera with a focal length mm and a
sensor’s pixel width m. If the projector is 0.5 m
away from the camera, its orientation angle is 45, or

, and the object is at a distance of 1 m from the camera,
the relative orientation error is

(52)

The relative position error is

(53)

The relative depth error is

(54)

By utilizing a large number of stripes in an image and em-
ploying a subpixel method in the image processing, the accu-
racy can be improved significantly. However, there exists noise
resulting from the projector emission, surface reflection, and
sensor perception. Static calibration errors are also passed on
to the dynamic recalibration. These require a separate treatment
in the analysis.

B. Error Propagations

The error propagation from initial static calibration to dy-
namic recalibration is analyzed in two steps. First, the static cal-
ibration error itself will cause depth error in the reconstruction.
Second, the static calibration error can pass on to the dynamic
recalibration and then to depth reconstruction. The static cali-
bration is usually performed by placing a target in front of the
sensor. The error resulting from this calibration stage will lead
to 3-D reconstruction errors directly and indirectly.

1) Errors Directly Caused by Initial Static Calibration:The
3-D reconstruction error directly caused by initial static calibra-
tion error can be estimated by computing the partial derivative
of (49). For example, assume that the camera focal lengthhas
an amount of uncertainty . This will give rise to a relative
z-depth error

(55)

To prevent the static calibration error from
being magnified or accumulated in the reconstruction, we need

, i.e., .
Ignoring the effect of small and considering a case with a

45 projection angle, we only need to ensure . Hence,
to achieve satisfactory 3-D reconstruction results, the object
should be placed not farther away than twice the baseline dis-
tance. The influences of the uncertainties on the other param-
eters obtained from the initial calibration can be analyzed in a
similar way and the resulting errors are found to be in the same
order as the uncertainties.

2) Error Propagation From Static to Dynamic Calibra-
tion: The static calibration error will also cause dynamic
calibration error, which, in turn, will cause 3-D reconstruction
error. Among the initially calibrated system parameters (, ,
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, and ), we observed that the noise in and has no
influence on the results of and b. Hence, from (27), we only
need to analyze the error propagation due to the noise inand

. However, the theoretical analysis is intractable here. In
this research, we experimentally proved that the relative errors
of both the recalibration parameters ( and b) are linear
combinations of and . Consider the above
case with a similar assumption for the system configuration, we
generated perfect data for the matrixin (28), and fictitiously
added the perturbations ( and ) to it. The dynamic
parameters ( and b) were then computed. The two error sur-
faces against the perturbations inand , were numerically
found to be in the form

The above dynamic calibration errors then will cause errors
in the 3-D reconstruction. The relative errors so caused can be
determined quantitatively by (48).

In summary, the reconstruction errors can be traced to three
sources:1)directly fromthestaticcalibration;2)directly fromthe
dynamic calibration; and 3) indirectly from the static to dynamic
calibration and to the final reconstruction. As the initial static
calibrationerrorwillcausebothdirectand indirect reconstruction
errors, special care needs to be exercised at this stage. In practice,
however, the static calibration is normally performed offline
(before being installed on the robot). Therefore, the parameters
canbecalibratedwitharelativelyhighaccuracy(usuallybetween
0.001%–0.1%) [1], [17], [20]. This makes it possible to achieve
high reconstruction accuracy with the dynamic recalibration
approach. In our investigation, we found that an overall relative
3-D reconstruction accuracy of about 0.03% is achievable.

VI. EXPERIMENTAL STUDY

The experimental setup is shown in Fig. 6. It consists of
an LCD projector from ABW GmbH Ltd Co. and a PULNIX
TMC-9700 camera with a CCD of 740480 pixels and a
25-mm lens. The projector is fixed, whereas, the camera can be
moved vertically and rotated about the y-axis. The light stripe
index is identified by a gray-encoded stripe projection method.

At the static calibration stage, the intrinsic parameters of the
camera and the projector were obtained. Then at the dynamic
recalibration stage, the illumination was projected onto a white
background without predefined features. The camera’s orienta-
tion and horizontal position were adjusted so that the camera
could fully detect the illuminated area.

Fig. 7(a) illustrates an image captured when the illumination
was projected on the background wall. Fig. 7(b) shows an inten-
sity profile, and Fig. 7(c) shows its derivative profile. The stripe
locations were determined by finding the peaks [Fig. 7(d)] of
the derivative curve. Table I lists the results computed from the
image, of the rectified stripe locations by (25), and blur radiuses
by (42).

Using (27), the solution of the geometrical cue was found to
be

Fig. 6. System setup.

(a) (b)

(c) (d)

Fig. 7. Determination of stripe locations. (a) The stripe illumination projected.
(b) An intensity profile on the image. (c) Its derivative profile. (d) Locations of
stripe edges.

For each stripe, the blur radius was determined by (42). The
linear regression of these data gave two straight lines (Fig. 8)

The location of the minimum blur radius was determined by
finding the intersection of the two lines .

The best-focused location on the camera coordinate system
was

The two parameters for the relative pose were obtained by
combining (29) and (47)

mm

On average, the above dynamic recalibration takes about 0.6
s in our implementation on a Pentium III-800 PC. The method is
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TABLE I
STRIPE LOCATIONS AND BLUR RADIUSES

quite stable, with the steepest descent algorithm normally con-
verging after no more than 10 iterations. Finally, the relative ma-
trices in (5), (7), and (10) were

The 3-D coordinates of a point on the object surface were
recovered by

for N N

With the above calibration results, an example for 3-D object
reconstruction was conducted. The reconstructed 3-D surface of
the object (a computer mouse) is shown in Fig. 9.

To test the dynamic performance of the method, we con-
ducted another experiment using a precisely machined metal
workpiece (shown in Fig. 10) as the object to be reconstructed.
The workpiece was placed in front of the vision sensor at a
distance of mm from the lens. We then arbitrarily
changed the camera pose several times. The depth and width (D

Fig. 8. Determination of the best-focused location.

Fig. 9. 3-D object reconstructed.

Fig. 10. Workpiece for dynamic test.

TABLE II
EXPERIMENTAL RESULTS IN DYNAMIC MEASUREMENTS

and L in Fig. 10) of the object were then measured following
the dynamic recalibrations. Some typical results are listed in
Table II. At Pose 0, the results contain the reconstruction errors
caused by the static calibration error only. Pose 1 and Pose 2 are
two arbitrary sensor configurations. Our experiments showed
that the 3-D measurement errors using the dynamic calibra-
tion were about 1.5–3.0 times of those using static calibration
only. In our multiview dynamic experiments, no accumulative
effect of the static calibration errors was observed. This is be-
cause the dynamic calibration is only relative to the initial pose
(Pose 0). With our initial calibration technique currently imple-
mented, we can achieve a dynamic accuracy of 0.015%–0.3%
in the scene depth measurements.
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Such an achievable accuracy is considered quite satisfactory,
since we did not make special attempts to improve the static
calibration accuracy. The success in the dynamic recalibration
and reconstruction can be attributed to the specialized device
(the projector) adopted and the recalibration method developed
in our work. This can be compared with the case when using
a desktop system, as in [18]. Although their application is for
static only, the achievable accuracy is limited compared with
our static calibration (in Pose 0). This is due to the errors that
might be introduced in calibrating their table, light source, and
the camera, and in localizing the shadow edge of the stick. This
is the cost paid for the inexpensive hardware setup. An LCD
projector is not a too-expensive device. The benefit gained in
employing such a specialized system will well justify its use
in many applications where a stable accuracy is needed in the
measurement, and in particular, when dynamic recalibration is
desired.

VII. CONCLUSION

This paper presents our work in developing an active vision
system which can be self-calibrated automatically. A recalibra-
tion method is developed that can be used in a dynamic ap-
plication. The recalibration method does not require a special
calibration target with predefined patterns or known motions
of the sensor or the object. While most previous self-calibra-
tion methods require multiple views at different positions, our
method only needs to take a single view.

The intrinsic cues of the system have been explored for the
self-recalibration. By taking advantage of the active sensing
system, the geometrical cue and the focus cue have been
successfully used in the calibration of the structured light
vision system with 2DOF relative motion between the sensor
and the illumination. The sensitivity analysis shows that with
this method, a high accuracy in the depth measurement is
achievable. This can be further improved if a good subpixel
method and multistripe optimization techniques are employed.

Experiments were performed to apply the developed calibra-
tion method to a real vision system. The results show that using
the dynamic recalibration, stable and accurate 3-D reconstruc-
tion can be achieved. Current work is going on in extending the
method to the self-recalibration of a vision system with more
DOFs of motion and testing the dynamic performance using a
robot work cell. Applications of the method will include ad-
vanced robotic applications where automated operations entail
dynamically reconfigurable sensing and automatic recalibration
to be performed online without operator interference.

APPENDIX A

Proof of Theorem 1:
Consider the 3 3 matrix in the left-top corner of the

matrix . If det , then is true.

(A1)

With row operations, it can be transformed to

(A2)

From (19) and (20), we have

(A3)

Suppose that the observed line does not pass through the op-
tical center of either the camera or the projector, i.e.,

and (A4)

Hence, (A5)

For any pair of different light stripes illuminated by the pro-
jector, i.e., , from (19)

(A6)

we have , and

(A7)

(A8)

(A9)

Hence, .
On the other hand, rewrite matrix A using four column vec-

tors, i.e.,

(A10)

where

(A11)

(A12)

(A13)

(A14)

With the fourth column

(A15)

This means that the matrix’s fourth column, , has a linear
relationship with the first three columns, . So the max-
imum rank of matrix is three, i.e. .

Therefore, we can conclude that

(A16)
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APPENDIX B

Proof of Theorem 2:The blur radius is proportional to the
area under the blurring curve .

Consider the illumination whose intensity profile is a step

function
x

x
. The brightness on the illu-

minated scene is the convolution of Gaussian function and the
source pattern

(A17)

(A18)

The size of the blurred area is the integration of the intensity
profile function from 0 to

(A19)

(A20)

That gives

(A21)
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