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Automatic Recalibration of an Active
Structured Light Vision System

Y. F. Li, Senior Member, IEEENd S. Y. ChenStudent Member, IEEE

Abstract—A structured light vision system using pattern pro- Self-calibration of vision sensors is an attempt to overcome
jection is useful for robust reconstruction of three-dimensional ob- - the above problem and it has been actively researched in recent

jects. One of the major tasks in using such a system is the calibra- ye4rg However, most of the studies are concerned with passive
tion of the sensing system. This paper presents a new method by ’

which a two-degree-of-freedom structured light system can be au- vision, i_ncluding_stergovision_. For exgmple, using the invariant
tomatically recalibrated, if and when the relative pose between the Properties of calibration matrix to motions, [4] proposed an op-
camera and the projector is changed. A distinct advantage of this timization procedure for recalibration of a stereovision sensor
method is that neither an accurately designed calibration device mounted on a robot arm. The technique for self-recalibration

nor the prior knowledge of the motion of the camera or the scene 4 /arying internal and external parameters of a camera was ex-
is required. Several important cues for self-recalibration are ex-

plored. The sensitivity analysis shows that high accuracy in-depth plored |n_[5]. The |ssues_ in dynamic Cam_era calibration were ad-
value can be achieved with this calibration method. Some experi- dressed in [6] to deal with unknown motions of the cameras and
mental results are presented to demonstrate the calibration tech- changes in focus. A method for automatic calibration of cameras

nique. was explored by tracking a set of world points [7]. Intensive ef-
Index Terms—Active vision, pattern projection, recalibration, ~ forts were also made in calibrating hand-eye systems, including
structured light system, three-dimensional reconstruction. the use of self-calibration techniques [8]-[10]. Such self-cali-

bration techniques normally require a sequence of images to be
captured via moving the camera or the target [11], although with
some special setup, two views can be sufficient for such calibra-
EVERAL METHODS have been explored for recoveringion [12]. These methods cannot be applied directly to an active
he three-dimensional (3-D) information of an object or gision system which includes an additional illumination system
scene, including stereovision, shape-from-motion, and active using structured light.
sion using structured light. Among them, the active vision ap- As for the calibration of active vision systems, most of the
proach has its advantages over others and has found successéthods are based on static calibration and manual operations
applications in different areas including robotics. In many pragt3]. Similar to the calibration of passive stereovision systems,
tical applications, the configuration of an active vision systemttempts were made in calibrating a structured light system via
needs to be changed online to achieve satisfactory meastrgnsformation from 3-D world coordinates to camera image
ments, in which case, it is desirable to be able to recalibrate fi@ne coordinates using perspective transformation matrices [1],
vision system without having to use special calibration appg]. To avoid using external calibrating devices and manual op-
ratus as required by traditional calibration methods. erations in the calibration, a self-reference method [14] was pro-
Most existing methods for calibrating active systems agsosed. A set of points was projected to the scene and was de-
based on static and manual calibration. During the calibratigscted by the camera to be used as reference in the calibration.
and 3-D reconstruction, the vision sensor is usually placedwith a cubic frame, Chet al. proposed a calibration-free ap-
a fixed location. The calibration target (with specially madproach for recovering unified world coordinates [15]. Fefi
features, e.g., circles or squares) needs to be placed at sevgitaliscussed the problem in self-calibrating a structured light
accurately known or measured positions in front of the senssgnsor [16]. A stratified reconstruction method based on Eu-
[1]-{3]. With a traditional method, the system must be calelidean constraints by projection of a special light pattern was
brated again if the vision sensor is moved or the relative pog&en. However, the work was based on the assumption that
between the camera and the projector is changed. Frequembjecting a square onto a planar surface, the more generic
recalibrations in using such a system are tedious tasks. guadrilateral formed onto the surface is a parallelogram,” which
may be questionable. For aninclined plane placed in front of the
camera or projector, projecting a square on it forms an irregular
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whereP.. is a 3x4 perspective matrix of the camera

VA
vy k xe0 O
Pc = 0 Uy Yeco 0 (2)
0 0 1 0 3
X 4.

Similarly, the projector is regarded as a pseudocamera in that
it casts an image rather than detects it. The relationship between

— Yo b YN i Yo . »X the 3-D coordinates of the object point from the view of the
A bl &5 e projectorX, = [X, Y, Z, 1]T and its back projection on the
Yy | Camera _ Ot projectorx, = [k, |7 is
rojector
xp, = P, X, 3)

Fig. 1. Schematics of the two-degree-of-freedom (2DOF) active ViSi(WIhereP isa2x4 perspective matrix
system. p

0
Pefs b EY, e

and move the object. A desktop approach to 3-D shape recon- 2x4.
struction was proposed by Bouguet and Perona based on “wealkhe relationship between the camera view and the projector
structured lighting” [18]. This method provides an inexpensiwgew is given by
;oluuon to th_e pr_ob_ler_n, but the accuracy achievable in practical X, = MX,, M = RyR,R,T ®)
implementation is limited. I /

In this paper, we present our work in automatic calibration efhereRy, R, R, andT are 4x4 matrices standing for the
an active vision system via a single view without using any spghree-axis rotations and a translation.
cial calibration device or target. Here, self-recalibration deals Substituting (5) into (3) gives
with situations where the system has been initially calibrated

but needs to be calibrated again due to changed relative pose xp =PpMX.. ©)
between the camera and projector [19]. In our work, some im- Lot H—P .M | 7
portant cues are explored for the recalibration including the ge- € R od )

ometrical cue and focus cue.

wherer; andrs are four-dimensional row vectors. Equation (6)
may be written ag"’7| = [TIX °], from which we can derive
Il. SELF-RECALIBRATION TASK K T2 X,
The active vision system here consists of a liquid crystal dis- (zpr2 —11) Xe = 0. (8)
play (LCD) projector to cast a pattern of light onto the object Combining (1) and (8), we have
and a camera to sense the light pattern, as shown in Fig. 1. If a p <
beam of light is cast, and viewed obliquely, the distortions in the [ ¢ } X, = [ C] 9)
beam line can be translated into height variations. To make the TpT2 — I 0
o . : or
vision system adaptable to different objects/scenes to be sensed,
we incorporated two degrees of freedom (DOF) of relative mo- QX, =Xcy (10)
tion in the system design, i.e., the orientation of the project@ere[ P- X, = [%]Q s a 4x4 matrix.
(or camera) and its horizontal displacement. The X—Z plane isThen the world 3-D position of a point on the object surface
perpendicular to the plane of the projected laser stripe. The 3:B pe determined by
coordinate system is chosen based on the camera (or projector)
center and its optic axis. Xe = Q 'Xey (11)
At the static calibration stage, the camera and the projectorr,om the above equations, the 3-D object can be uniquely re-
are calibrated to obtain the focal lengths, (v,) and the optical constructed if we know the matrig that contains 13 parameters
centers {co, yeo, #po). ONCeE the perspective projection matrirom the two perspective matricd. andP, and one coordi-
of the camera and the equations of the planes containing Hige transformation matrix. As the two perspective matrices
sheets of light relative to a global coordinate frame are giveRn pe determined at the static calibration stage, the dynamic
from the calibration, the triangulation for computing the 3-Recajibration task is to determine the relativé between the
coordinates of object points simply involves finding the intefsamera and the projector. There are six unknown parameters in
section of a ray from the camera and a plane from the projectfg)’ ie.,
The recalibration task is to determine the relative pose be-
tween the camera and the projector so that the 3-D depth value u=1[0ap XYy Zo]. (12)
can be computed by the triangulation principle. For the camera,
the relationship between the 3-D coordinates of an object pofpifice the system considered in this paper has two DOFs, only
from the view of the camerX. = [X. Y. Z. 1]T and its pro- two of the six parameters are variable and the other four are
jection on the image&, = [Az. Ay. A]T is given by constants which can be known from the static calibration. If the
X-Z plane is not perpendicular to the plane of the projected
x. =P.X, (1) laser sheet, its angleé can also be identified at this stage. As
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Surface reflection
[Xc Yo Ze), [Xp Yy 2]

optical axis
A Z
[xcyc Vc] :

on camera!

on projector

[xp yp vl

X Fig. 3. Case when the rotational center is not at the optical center.

i optical I1l. GEOMETRICAL CUE

The geometrical cue describes the intrinsic relationship be-
Fig. 2. Triangulation in the 2DOF system. tween the stripe locations on the camera and the projector. The
geometrical constraint can be used to determine the unknown

. . _parameters of the vision system.
the angledy, = 90° — @ is small and the image can be recti-

fied by rotating the corresponding angle accordingly during th®  Geometrical Constraint

recalibration, we can assume tligt= 0. The displacement in . o Co .
o . Assume a straight line in the scene which is expressed in the
y-direction between the camera center and the projector center : .
) : : camera coordinate system and projected on the X-Z plane
Yoy, and the rotation anglé, are also small in practice. They do

not affect the 3-D reconstruction as the projected illumination Ze =C1Xc+ Ch. (15)
consists only of vertical line stripes here. Therefore, we may asThe geometrical constraint between the projection and

sume thaty = 0 andfp = 0. Thus, the unknown parameter§y,,ing"of the scene line is obtained by substituting (13) into
are reduced to only twanf andb) for the dynamic recalibra- (15)9 J y g (13)

tion. Here,h is a constant and,, andb have variable values
depending on the system configuration. [b — hecot(a)](ve — CiXe) — Cafve cot(a) + zc] = 0. (16)
the 3-D position of a point on the object surface is then simplietermined at the static calibration stage = z.; = =.(i) and

fied as (see Fig. 2) api = ap(i) are known coordinates on the sensors. Therefore,
b— heot(a) ag, b, C1, andCy, are the only four unknown constants and their
[X.Y. Z.] = [Xc Y. ve] (13) relationship can be defined by three points.

ve cot(a) + ze Denoted, = tan(ag) and A; = tan(ay,). The projection

whereu, is the distance between the camera sensor and the 8pgle of an illumination stripe is
tical center of the lensy = «(i) = g + a,(i) is the projection 1 —AgAi vy — Aoy

angle, and cot(ao + api) = Ao+ A; vp Ao + Tp ()

. wherez, = z,(i) is the stripe location on the projector’'s LCD
ap(i) = tan™" (xp—(L)> (14) andwy, is the distance between the LCD and the optical center.
Yp The x-coordinate value of the ith stripg, (i), can be determined
by (14). The stripe coordinatg, and the projection angle,,;
are illustrated in Fig. 2.
Equation (16) can be written as

wheres is the stripe index and,, (i) is the stripe coordinate on
the projection plane,, (i) = i x stripe width + z,(0).
If the projector’s rotational center is not at its optical center,

h andb shall be replaced by (bAog — Cy — h)vevp, + (RCy — bCLAg — CoAg)vpa e+
(b + A(]CQ + hAO)’UCLL‘p—
Iy : I}

' =h—rgsin(ag) and b’ = b — rg cos(ayg) (Cs + bCh + hCh Ag)ze, = 0 (18)
wherer is the distance between the rotational center and the or z. = W1 + Wax), + Wi(z.z)p) (19)
optical center as |IIustrateq in F|g. 3 Here,and ro can be whereW, = (VaVs — ViVa)/(VaVa) — V3 /Va, Wa = —V3/Va,
determined during the static calibration. Wy = Va/Vi, and

. h . . — V2 4y
Since conventional self-calibration methods need several
views to be acquired from different positions, they are inconve- Vi=bAg—Ca—h (20a)
nient for the automated recalibration task here. Using a single Vo =b+ AgCs + hAg (20b)
view, it is, in general, difficult to determine all the unknown Vi = hCy — bCy Ay — CyAg (20¢)

parameters in the calibration. Fortunately for the system here
with 2DOF, self-recalibration can be achieved by utilizing Va =02 +bC1 + hC1Ap. (20d)

the intrinsic cues. The use of geometrical cue and focus cueEquation (19) is the relationship between the stripe locations
for determining the unknowna, andb will be shown in the on the camera and the projector and is termed the geometrical
following sections. constraint.
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B. Rectification of Stripe Locations

Within a view of the camera, there can be tens or hundreds «
of stripes from the scene. The stripes’ coordinates €,) on
the image and the projector should satisfy (19), in theory. In
practice, however, the coordinaies ) obtained from the image
processing may not satisfy this constraint, due to the existence of "
noise. To reduce the effect of noise and improve the calibration ' I :
accuracy, the stripe locations on the image can be rectified by
using a curve-fitting method.

Let the projection error be

Qe (W1, Wo, W) = 3 [w() — i)

(W1 + Wazy, + Ws (zc2p) — :L’C]2 .
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ThenW;, W>, and W3 can be obtained by minimizing theFig. 4. Projection of illumination on the scene. (a) Pattern of the projector's

At ; source illumination. (b) Intensity distribution along a horizontal profile. (c)
projection erroe;, with respect tdVi Plane in the scene. (d) Intensity profile on the surface (without blurring).
8@61‘1‘

oW 0, k=1,23. (22) There exists an uncertain paraméters the rank of matriA
: : : is lower than its order by one. Using singular value decomposi-
Using (21) in (22) gives . . : ) .
g(21)in(22)g tion to solve the matrix equation (27) to find the least eigenvalue,

m Y Tp(i) iy we()wy(i) [[Wi]  we can obtain the optimal solution in the least-square sense.
> iy Tp(4) Sy Y iﬂc(i)xé(i) Wa In a practical system setup, the z-axis displacemeistad-
Yoy ae(B)wy (i) Yoimy we(i)wp(i) Yoimy x2(i),(i)|[Ws]  justed to O during a static calibration, and (29) gives a solution
m m s T for the relative orientationd, = v3 /vy anday = tan=*(Ap).
=1 @)Y wp(i)me(i) Y wp(i)al(i) (23) By settingb = 1 and solving (20) and (29), the 3-D reconstruc-
i=1 i=1 i=1 tion can be performed to obtain an object shape (with relative

size). If we need to obtain the absolute 3-D geometry of the ob-
ject, (29) is insufficient for determining the five unknowrs,
GW =X, W=G'X. (24) C1, O3, Ag, andk. To determine all these parameters, at least

one more constraint equation is needed. The focus cue or the

The stripe location in the camera coordinate is, thus, rectifiggst-focused distance is used here for this purpose.
as

s Wi+ Waxy, (25) IV. Focus CuE
‘ 1= Wszy The focus cue is based on the fact that for a lens with a speci-
fied focal length, the illumination pattern will be blurred on the
C. Solution Using the Geometrical Cue object surface unless itis projected on the best-focused distance.

Equati 18 b it This gives another intrinsic constraint for the vision system in
quation (18) can be written as the self-recalibration.
VeUp Vi + vpx Vo + vex, Vs — zpa Vy = 0. (26) .
) o ) ) A. Focus Cue Formulation
For an illumination pattern with. (n > 3) stripes on the , ) L . N
Fig. 4 shows the profile of a projection using synthetic illumi-

image plane, (26) can be expressed as . ; . A L
gep (26) P nation data. Fig. 4(a) is a typical illumination pattern on the LCD
vpve veAL v Xy A Xy TV to be projected and its intensity profile is illustrated in Fig. 4(b).
Upve VeAy 0p Xy —ArXy Va| _ 0 (27) Consider the straight line (15) in the scene [Fig. 4(c)]. When the

V3 illumination pattern casts on such a line, the intensity distribu-
e VeAn vpXn —AnXnl LV tion is nonlinear and is given by
orA-V=0 (28) . (20 + v,)?
I'(z)) = 0T » I (30)

whereA is ann x 4 matrix, X; = z.(i), 4;i = z,(i), andV is
a 4x 1 vector. The following theorem is used for solving (27).
Theorem 1: (the rank of the matriA). Rank (A) = 3.
The proof is given in Appendix A.
Equation (27) has a solution in the form of

") 2
(2+0p)? + (2 + L)
when(=T/2 < (v,)/(2)x, — 2nT < T/2), n € N. T is the
stripe width of the source pattern.
Fig. 4(d) illustrates the curve (30) without considering the ef-
fect of blurring. However, the illumination is usually blurred
V = Ek[vy vavsvg] T,k €R. (29) unless it is projected on a plane at a special distaface=
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The Fourier transform of (37) is
wT
=5 wT

I = o202 ) g, <7> . @9

N 2
N Sincel(xz;) [the curve on the shaded area in Fig. 5(c)] is mea-

sured by the camera, its Fourier transfafp{w) can be calcu-
lated. Rewriting (35) and integrating on both sides of it gives

- ! 02,2 o T
(b) /6_ 2 dw = IUT / g F((g) dw. (39)
120) . ' . . ' @ 2
;‘ | . Since the left side is found to be
x ! =l i - +oo ow)?
3 a ol S Q/ () 4 <ﬂ> _ V2T (40)
F‘-‘ o e 7 Jooo V2 7
‘ / | the blur radius can be computed by
L < svrg - vam
o » R '/__/_‘_/, g = W (41)
- B IT [ S:(ﬂ) dw
© (d) Neglecting the effect of blurring caused by multiple illumi-

nation stripes, we have the following theorem to determine the
Fig. 5. Determination of blur diameters. (a) Gaussian point spread functigsiur radius with a lower computational cost.
(b) Blur intensity distribution. (c) Area for determining the blur diameter. . PR . . . .
(d) Determination of the best-focused location. Theore_:m 2: When pr(_)Jec_tlng a source illumination with a
step profile, the blur radius is proportional to the area under the
vpfo/(vp — f»). For all other locations in the scene, the disblurring curve
placement will be NeT
Vp fp o=-1-8 (42)
— . (31) Iy
vp — Jp

The corresponding blur radius is proportionalda

Az =|z—2]=|z—

wherel is the intensity without considering the blurring and
S is the area as illustrated in Fig. 5(c). The proof is given in

oo Iop, (32) Appendix B.
vanum
whereF,,m = f,/r is the f-number of the lens setting. C. Best-Focused Location

With Theorem 2by integrating the blur curve on each stripe
edge, its blur radius can be calculated and a set of data are ob-

The blurring in the illumination is not evenly distributed intained. Since the blur diameters are unsigned, in order to obtain
the blur circle. It can be described by a point spread functipstraight line corresponding to the changing depth in the scene,
due to diffraction effects of light wave. A Gaussian model caje need to find the minimum value in the data set and separate
be used to describe the blurring effect. For the one-dimensiogg set into two parts. Their linear best fits give two straight lines

B. Determination of Blur Diameters

case, the spread function is [Fig. 5(a)] [Fig. 5(d)]
0o (7) = 21 g 33) o(x) = kyo + ks and o, () = ko + k. (43)
) Too ) . Finding the intersection of the left line and the right line gives
The brightness of the scene illuminated by the projector is kg — ko
the convolution of the blur model with the ideal illumination Thest = (44)

[

intensity (30) [Fig. 5(b)] which corresponds tdz = 0 or z = (v, f,)/(v, — fp). On the

—+oo . . .
I(z)) = Ii(l,l) ® go (1) = / Ii(u)ga(zl —u)du. (34) image, (¢ bests Ye,best) IS the best-focused location.
The Fourier transform of (34) is D. Combination of the Two Cues
Ir(w) = Ih(w) Gy (w) (35) For the projector, the length of the light path is
2 _ 2, 2 2
whereG, (w) is the Fourier transform of the Gaussian function F=@-b"+y +(z+h)
too e _ vt hanf? + [bsin (@) = heos (@) uZ e
Go—(w) = ] 2,”.0_8 202 ¢ J /”dx = e 2 . (36) [vc cos (a) + T Sin (a)]2 °
Ii(z;) can be approximated by averaging the intensity on aAt the bist}focused location, we have
light stripe to simplify the Fourier transforni(z;) = I(x;). If — L = [hest cos (@ — ap) (46)
a coordinate system with its original at the center of the bright v~ fr )
stripe is used, this value can be written as Vp fp _
- - T T (vp — fp) cos (a — ag)
I(z) = I e - = 37
(@) =1To [5 (l * 2) ° <$ 2 )} (37) [bve + hare]? + [b sin (a) — h cos ()] 42

47
wheree(.) is a unit step function. [v. cos (a) + z. sin (a)]? (“7)
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Equation (47) is a constraint equation derived from the focusConsider a camera with a focal length = 30 mm and a
cue. Hereh, v, and f,, are known constants archas appeared sensor’s pixel widthd = 11.6 x m. If the projector is 0.5 m
in the geometrical constraint.., y., anda are replaced by the away from the camera, its orientation angle is,46 = 0 or
Te,best» Ye,best - Uhest (DEStdeterminedin the above formulation. < b, and the object is at a distance of 1 m from the camera,
Thus, together with the four equations in (29), there are five uthe relative orientation error is

known parameter§ = (k,b, 1, Cy, a) thatcan be found by~ Aag 1 Zy N Zyve + Zo (Z — v.)] sin®(a) 6
solving the five equations. Using the steepest-descent approach, o~ 7 72 vear /12
which is an iterative method based on local gradients, we can ob- ~ 0.00547%. (52)

tam anaccurate solution _ofthg nqnlmearquaﬂon system. Theﬁl]—e relative position error is
gorithm for the self-recalibration is summarized as follows.

2

1) Project the illumination patterns on the scene and capture % =— (v,ffp) 5 ved 5

the images from the camera. Find a line that is illuminated vgsec?(a) + Y2 bZ (v, — f,)° V12

by at least three stripes. ~ 0.0112%. (53)
2) Compute the stripe locations inthe image by a gradient ophe relative depth error is

erator and record their coordinates;( y.;, i) with i being B — Ab (hx. + bu.) ZAag

the stripe index. T b—hoot(a) ' o, b — hcot ()2 sin®(a)
3) Calculate the geometrical c¥e(29) based on (27). ~ 0.0284%. (54)

4) Determine the blur diameter for each stripe. Use linear fit-
ting method to find the best-focused location (44).
5) Combine the two cues, (29) and (47), to find the relati

By utilizing a large number of stripes in an image and em-
\I%oning a subpixel method in the image processing, the accu-
racy can be improved significantly. However, there exists noise

parameters. resulting from the projector emission, surface reflection, and
6) Obtain the matriceH (7) andQ (11) for performing 3-D 9 e proje oo ’
reconstruction. sensor perception. Static calibration errors are also passed on

to the dynamic recalibration. These require a separate treatment

in the analysis.
V. SENSITIVITY ANALYSIS y

A. Recalibration Error B. Error Propagations

In this section, the sensitivity of the depth error to the recali- The error propagation from initial static calibration to dy-
brated parameters (i.e\o andAb) is analyzed. The relative namic recalibration is analyzed in two steps. First, the static cal-

reconstruction error of the scene depth is ibration error itself will cause depth error in the reconstruction.
AZ  OZAb  IZ Aag Second, the static calibration error can pass on to the dynamic

B, = 7 T 0b 7 " oae 7 recalibration and then to depth reconstruction. The static cali-

Ab (hte + bv.) ZAaq bration is usually performed by placing a target in front of the

= . (48) sensor. The error resulting from this calibration stage will lead
b — hcot — 2 gin? . . L
Lo (@) v b hicot ()] sin"(e) to 3-D reconstruction errors directly and indirectly.
Now we consider the computational error of the stripe loca- 1) Errors Directly Caused by Initial Static CalibrationThe

tion on the captured image which can cause errors in the recalipy o onstruction error directly caused by initial static calibra-

brated parameters. We have tion error can be estimated by computing the partial derivative
bu. — hcot(a)v.

Cize + Cy = (49) 0f (49). Forexample, assume that the camera focal lengdias
' ve cot(a) + e an amount of uncertaintv... This will give rise to a relative
A 27 — O N Cibv,. — 72 + CoZ z-depth error
Qo =~ AZ Z Av
(h’+Z)UC Ve h+Z2 E = — = /11- - _(.'. 55
( ) e A v btan (a) —h| w. (55)

-2
Az,. 50 . . .
) _X Slm (@) Az ] (50) To prevent the static calibration err@f,. = Av./v.) from
Taking the derivative of (47) with respecti@ndz., we can - pejng magnified or accumulated in the reconstruction, we need

obtain 11— (Z/(btan(a) — h))| < 1,ie.,0 < Z < 2btan(a) — 2h.
Ab = Ignoring the effect of smalk and considering a case with a
(M)Q [ve c0s () + 0 sin ()] sin(er) — bhv, — h2a 45° projection angle, we only need to ensufe< 2b. Hence,
vfe) ° ‘ ‘ ‘A to achieve satisfactory 3-D reconstruction results, the object
(bve+hae) vet[bsin (o) —hcos (@)] y2 sin(a) " should be placed not farther away than twice the baseline dis-
In the image processing, the stripe-location error in the imagihce. The influences of the uncertainties on the other param-
can be given as eters obtained from the initial calibration can be analyzed in a

similar way and the resulting errors are found to be in the same
(51) order as the uncertainties.

2) Error Propagation From Static to Dynamic Calibra-
whereé is the pixel width of the sensor. For a common chargéion: The static calibration error will also cause dynamic
coupled device (CCD) cameré,is usually between 5 and 20calibration error, which, in turn, will cause 3-D reconstruction
m. error. Among the initially calibrated system parametegs 4y,

Az, =

[\)
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Zco, andxyg), we observed that the noise4n andz. has no
influence on the results af, and b. Hence, from (27), we only
need to analyze the error propagation due to the noisg émd

zpo. However, the theoretical analysis is intractable here. In
this research, we experimentally proved that the relative errors
of both the recalibration parameterA¢, and Ab) are linear
combinations ofAw,, /v, and Az /zp0. Consider the above
case with a similar assumption for the system configuration, we
generated perfect data for the matfixin (28), and fictitiously
added the perturbationg\¢, and Az,) to it. The dynamic
parameterscd, and b) were then computed. The two error sur-
faces against the perturbationsjjpnandz o, were numerically
found to be in the form Fig. 6. System setup.

Ab Aw, Azpg
2% —1.19092% _ 1956220
b Up Zpo
A A A
0 _ _0.6058222 — .1286 2120

(1) Up Tpo

The above dynamic calibration errors then will cause errors {§
in the 3-D reconstruction. The relative errors so caused can bef}
determined quantitatively by (48).

In summary, the reconstruction errors can be traced to three @) (b)
sources: 1) directly fromthe static calibration; 2) directly fromthe
dynamic calibration; and 3) indirectly from the static to dynamic
calibration and to the final reconstruction. As the initial static
calibrationerrorwill cause both directandindirectreconstruction
errors, special care needs to be exercised at this stage. In practice ’
however, the static calibration is normally performed offline 2 ‘ ' -
(before being installed on the robot). Therefore, the parameters = =
canbecalibratedwitharelatively highaccuracy (usuallybetween = * = = = = % comomom s
0.001%—-0.1%) [1], [17], [20]. This makes it possible to achieve © @
high reconstruction accuracy with the dynamic recalibratidﬁgj-_ De“?rmi”a;_ilon Ofsrt]”p.e locations. (52 The stripe i”]}.’lmi”;“o” p“?jeCte‘f"
approach. In our investigation, we found that an overall relalti\gﬁ)ipAé1 ;’Q,tgeg;'ty profile on the image. (c) lts derlvative proflle. (d) Locations o
3-D reconstruction accuracy of about 0.03% is achievable.

ST RAMAARRARARARDARRRA R4 Nb A
ARRARR AR E AL AL AARARRAAAAM

For each stripe, the blur radius was determined by (42). The

VI. EXPERIMENTAL STUDY linear regression of these data gave two straight lines (Fig. 8)
The experimental setup is shown in Fig. 6. It consists of Ri(xz) = — 1.0107z + 400.1845
an LCD projector from ABW GmbH Ltd Co. and a PULNIX Ro(z) =1.6425z — 348.1617.

TMC-9700 camera \.N'th a C.CD of 74Q180 pixels and a The location of the minimum blur radius was determined by
25-mm Iens_. The projector is fixed, Whereas,_ the camera Canfpﬁiing the intersection of the two lineg, = 282.0507.
.mo"e‘?' v_ertlcgl_ly and rotated about the y-axis. .Thr-_? light stripe The best-focused location on the camera coordinate system
index is identified by a gray-encoded stripe projection metho

At the static calibration stage, the intrinsic parameters of the _

. . . T best = <x00_$05> Sz

camera and the projector were obtained. Then at the dynamic
recalibration stage, the illumination was projected onto a white =(369.5 — 282.05) x 0.0116=1.0144.
background without predefined features. The camera’s orienta- Ye,best = (Yco — Yos) Sy = (240 — 231) x 0.0136=0.1224
tion and horizontal position were adjusted so that the camera (11 — 10)(282.0507 — 258.089)
could fully detect the illuminated area. tp,best = 284.109 — 258.089

Fig. 7(a) illustrates an image captured when the illumination
was projected on the background wall. Fig. 7(b) shows an inten-
sity profile, and Fig. 7(c) shows its derivative profile. The stripe e
locations were determined by finding the peaks [Fig. 7(d)] afot (e ) = —F— = 9L2155 _ 51 4e7s.
the derivative curve. Table | lists the results computed from the Tpbest  —4.4522
image, of the rectified stripe locations by (25), and blur radiusesThe two parameters for the relative pose were obtained by
by (42). combining (29) and (47)

Using (27), the solution of the geometrical cue was found to ag = —37.3084° b = 588.9788 mm.

be On average, the above dynamic recalibration takes about 0.6
k (v1,v9,v3,v4) = (—0.0973,2.8569, —1.3123, 1.0). sin our implementation on a Pentium 111-800 PC. The method is

+10=10.9209

Lp best :(ip,best +Z'p0) Wstripe
=(10.921 — 21) x 0.44=—4.4522
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TABLE | &

STRIPE LOCATIONS AND BLUR RADIUSES 700
=lzzgleze| zo] 2| =22 ;.
Tlese|ZeR| SE| 2| B -
= X = |5 X a S ) 2 w0
k4 g8 |27 o 8 = 2
S E =78 g =S @ -

2 8 a 8

w N 200 ,

1 15.6402 -4.1048 -4.1160 394.136 100, T R A
2 429004 | 27.260 | -3.7886 -3.7921 341.153 X- the stipe location
i ;ggggg ;;?;g _g?igg :gﬂ(l)g ;izggg Fig. 8. Determination of the best-focused location.
5 124.980 | 27.024 | -2.8364 -2.8342 266.668 ) AEE—— P
6 152.085 | 27.105 | -2.5220 -2.5194 241.496 4 =
7 178.884 | 26.799 | -2.2111 -2.2068 196.548
8 205.751 | 26.866 | -1.8995 -1.8965 207.838
9 231.917 | 26.165 -1.5960 -1.5883 153.154
10 | 258.089 | 26.172 | -1.2924 -1.2823 148.398
11 | 284.109 | 26.020 | -0.9905 -0.9784 115.748
12 | 310.702 | 26.593 -0.6820 -0.6766 156.415
13 | 336.678 | 25975 | -0.3807 -0.3769 171.202
14 | 362.160 | 25.481 -0.0851 -0.0793 227.485
15 | 387994 | 25.834 | 0.2145 0.2163 240.614 ) .
16 | 413.648 | 25.653 | 0.5121 | 0.5099 | 291.551 Fig. 9. 3-D object reconstructed.
17 | 438.915 | 25.267 | 0.8052 0.8015 363.936
18 | 464.515 | 25.600 1.1022 1.0910 490.529
19 | 489.102 | 24.586 1.3874 1.3787 526.596
20 | 513.822 | 24.719 1.6741 1.6643 570.515
21 | 538.055 | 24.234 1.9552 1.9481 578.125
22 | 562.455 | 24.399 2.2383 2.2299 614.716

quite stable, with the steepest descent algorithm normally con-
verging after no more than 10 iterations. Finally, the relative ma-

trices in (5), (7), and (10) were Fig. 10. Workpiece for dynamic test.
M = R;T TABLE Il
r 0.7954 0 —0.6061 —468.4647 EXPERIMENTAL RESULTS IN DYNAMIC MEASUREMENTS
= 0 1 0 0 . Pose | Feature | True | Measured | Relative | Relative error
—0.6061 0 0.7954  —356.9830 value value error | to scene depth
L 0 0 0 1 v (mm)| v (mm) | Av/V) | (AV/Z)

96.947 0 —23.272 —-57100

H=P.M = . 0 D 35 | 351623 | 0.00464 | 4.178x10"
P 0.6061 0 0.7954 —356.98 0 L 55 | 552851 | 0.00518 | 7.388x10™
r30.089 0 0 96.947x, — 0.6061 1 D 35 35.2588 | 0.00739 | 6.662x10"
0 31415 0 0 1 L 55 [ 554975 | 0.00905 | 0.001281
Q=|3605 2395 1 23272z, —0.7954 B T
L 0 0 0 —57100zx, + 356.98 - - -

The 3-D coordinates of a point on the object surface Wefgq | in Fig. 10) of the object were then measured following

recovered by the dynamic recalibrations. Some typical results are listed in
X, =Q x., forz,e[-N,N]. Table II. At Pose 0_, the _resu!ts contain the reconstruction errors
caused by the static calibration error only. Pose 1 and Pose 2 are
With the above calibration results, an example for 3-D objetwo arbitrary sensor configurations. Our experiments showed
reconstruction was conducted. The reconstructed 3-D surfacétadt the 3-D measurement errors using the dynamic calibra-
the object (a computer mouse) is shown in Fig. 9. tion were about 1.5-3.0 times of those using static calibration
To test the dynamic performance of the method, we coonly. In our multiview dynamic experiments, no accumulative
ducted another experiment using a precisely machined medffect of the static calibration errors was observed. This is be-
workpiece (shown in Fig. 10) as the object to be reconstructeruse the dynamic calibration is only relative to the initial pose
The workpiece was placed in front of the vision sensor at(Rose 0). With our initial calibration technique currently imple-
distance ofZ = 388.5 mm from the lens. We then arbitrarily mented, we can achieve a dynamic accuracy of 0.015%—0.3%
changed the camera pose several times. The depth and widthinEhe scene depth measurements.
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Such an achievable accuracy is considered quite satisfactoryith row operations, it can be transformed to
since we did not make special attempts to improve the static,
calibration accuracy. The success in the dynamic recalibral

and reconstruction can be attributed to the specialized dev|é¢e?c VA vp X1

(the projector) adopted and the recalibration method develo e ve (A2 — Ay) vp Xy — vp Xy .
in our work. This can be compared with the case when using0 0 vp (X3 —X1) — vy (Xz - X3 jj%‘ji)
a desktop system, as in [18]. Although their application is fi (A2)
static only, the achievable accuracy is limited compared with

our static calibration (in Pose 0). This is due to the errors thatFrom (19) and (20), we have

might be introduced in calibrating their table, light source, and VaVe — VAV

the camera, and in localizing the shadow edge of the stick. This Uy = L,Zl‘l

is the cost paid for the inexpensive hardware setup. An LCD Vi

projector is not a too-expensive device. The benefit gained in _vevy (1+ AF) G2 (Crb+ Co + h) (A3)
employing such a specialized system will well justify its use N (Co + bCy + hClA0)2 '

in many applications where a stable accuracy is needed in theS that the ob dline d N h hth
measurement, and in particular, when dynamic recalibration js uppose that the observed fine does not pass through the op-

desired. tical center of either the camera or the projector, i.e.,

Cy #0, and Cyb+ Cy+ h=h— Z(0,b) £ 0. (Ad)

VII. CONCLUSION Hence,Us # 0. (A5)

This paper presents our work in developing an active vision For any pair of different light stripes illuminated by the pro-

system which can be self-calibrated automatically. A recalibri@Ctor, i-€.,4; 7 Aj, from (19)

tion method is developed that can be used in a dynamic ap- Us

plication. The recalibration method does not require a special Xy =U+ Us + 0,4, (A6)
calibration target with predefined patterns or known motions i

of the sensor or the object. While most previous self-calibrje haveX; # X;, and

tion methods require multiple views at different positions, our

!/
method only needs to take a single view. A“/(l’ 1)=vevp #0 (A7)
The intrinsic cues of the system have been explored for theAur (2,2)=vc (A2 — A) #0 (A8)
self-recalibration. By taking advantage of the active sensing A/ (3,3) =1, (X3— X1)—v, (Xo— X)) A — Ay
system, the geometrical cue and the focus cue have been Ar—Aq
successfully used in the calibration of the structured light Uy (A= Az)(Ay— Ay) 0. (AG
vision system with 2DOF relative motion between the sensor o Us+v,A1)Us+v,A2) Uz +v,A3) #0. (A9)

and the illumination. The sensitivity analysis shows that with ,
this method, a high accuracy in the depth measurement igieéncerank(A) > rank(A;;) = rank(Ay’) = 3.
achievable. This can be further improved if a good subpixel ON the other hand, rewrite matrix A using four column vec-
method and multistripe optimization techniques are employetp!s: I-€.,

Experiments were performed to apply the developed calibra- A=[cmi cmi cmi ol (A10)
tion method to a real vision system. The results show that usiagI meome me

the dynamic recalibration, stable and accurate 3-D reconstrif1€"® .
tion can be achieved. Current work is going on in extending the Cm1l = [VpVe UpUe .. UpUc] (A11)
method to the self-recalibration of a vision system with more tm2 = [VeA1 v.As ... v.A, ]T (A12)

DOFs of motion and testing the dynamic performance using a
robot work cell. Applications of the method will include ad- T
vanced robotic applications where automated operations entail ~ ¢ma = [=X141 —Xp4, ... —X,A,]". (Al4)
dynamically reconflgurab_le sensing and gutomatlc recallbratlonWith the fourth column

to be performed online without operator interference.

Cm3 = [’Ule ’UPXQ .. /Uan ]T (A13)

Us + U U U.
cma = {—XiAi} = {—M —UiAi + —3Xi}
Up Up
APPENDIX A = {11vevp + T2V A + T30, X}
Proof of Theorem 1:Rank(A) = 3 =T1Cm1 + T2Cm2 + T3Cm3. (A15)

Consider the 8 3 matrixA; in the left-top corner of the x 4

. X This means that the matrix’s fourth colu , has alinear
matrix A.. If det (Ay;) # 0, thenrank(A) > 3is true. Mihs

relationship with the first three columns,; — ¢;u3. So the max-
imum rank of matrixA is three, i.erank(A) < 3.

vpve Vedr v Xi Therefore, we can conclude that

Ay = Up Ve VoA vaQ (Al)
vpve veds X3 |, . rank(A4) = 3. (A16)
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APPENDIX B [5]

Proof of Theorem 2:The blur radius is proportional to the
area under the blurring curve= (v/27/1))S. el
Consider the illumination whose intensity profile is a step

[7]

Iy, x<0

0, x>0
minated scene is the convolution of Gaussian function and thds]
source pattern (9]

function Iy(z) . The brightness on the illu-

+oo [10]
I(z) = /Io(u)g(x—u)du
_oo [11]
r : 2]
=1y / L Y (AL7)
2mo
- [13]
ECE)
—(z2==)? [z —u
o / N d(ﬁ) 4
+oo
I 2 [15]
=/ e ¥ dy. (A18)
Vio
[16]

The size of the blurred area is the integration of the intensity
profile function from 0 to+oo
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