
January 5, 2012 18:9 WSPC/S0219-8436 191-IJHR 00268

International Journal of Humanoid Robotics
Vol. 8, No. 4 (2011) 631–647
c© World Scientific Publishing Company
DOI: 10.1142/S021984361100268X

OPTIMIZED PARTICLES FOR 3D TRACKING

HUIYING CHEN

Department of Industrial and Systems Engineering,
The Hong Kong Polytechnic University, Hung Hom,

Kowloon, Hong Kong, P. R. China
velvet.chen@polyu.edu.hk

YOUFU LI

Department of Manufacturing Engineering
and Engineering Management,

City University of Hong Kong,
83 Tat Chee Avenue, Kowloon, Hong Kong, P. R. China

meyfli@cityu.edu.hk

Received 21 March 2011
Accepted 7 October 2011

3D visual tracking is useful for many applications. In this paper, we propose two different
ways for different system configurations to optimize particle filter for enhancing 3D
tracking performances. On the one hand, a new data fusion method is proposed to obtain
the optimal importance density function for active vision systems. With this method,
the importance density function in particle filter can be modified to represent posterior
states by particle crowds in a better way. Thus, it makes the tracking system more robust
to noise and outliers. On the other hand, we develop a method for reconfigurable vision
systems to maximize the effective sampling size in particle filter, which consequentially
helps to solve the degeneracy problem and minimize the tracking error. Simulation and
experimental results verified the effectiveness of the proposed method.
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1. Introduction

Three-dimensional (3D) tracking deals with continuous 3D state estimation and
update of moving objects.1 The task of 3D tracking is of paramount importance
for many applications and has been considered from widely different perspectives of
various theoretical backgrounds and interests. As one of the state-space estimation
problems, 3D tracking can be modeled with the aid of parametric models. However,
due to varying degrees of uncertainty inherent in system modeling and complex-
ity of system noise, visual system is often subject to elements of non-Gaussianity,
nonlinearity, and high dimensionality, which unfortunately, usually precludes ana-
lytic solutions. It is a strong belief that the issue of state measurement ultimately
remains best handled within the framework of statistical inference. Instead of using
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linearization techniques, the estimation problem is solved directly with Bayesian
methodology.2,3 However, the Bayesian paradigm involves calculation of high-order
integrals of the time state estimation. Thus, in the last few decades, many approx-
imation filtering schemes, which are well known as the methods of particle filtering
(PF), also known as condensation or sequential Monte Carlo methods (SMC),4–7

have been developed to seek a simulation-based way to surmount the problems.
However, a general 3D tracking problem with 6-DOF often requires thousands

of particles,8 which can run foul of computational complexity and further interfere
real-time performance for tracking agile motion. Moreover, degeneracy phenomenon
is a common problem with particle filters. As a result of degeneracy, all but one par-
ticle will have negligible weight after a few state transitions. Degeneracy implies the
wastage of computational resources that a large effort is engaged to update particles
whose contribution to the approximation to posterior states is almost zero. Doucet
has shown that the variance of the importance weights can only increase over time,
so that degeneracy is an inevitable phenomenon with general sequential importance
sampling scheme.9 There are commonly three methods to tackle the degeneracy
problem10: (1) brute force approach, (2) good choice of importance density, and (3)
use of resampling. The brute force approach uses a large enough sampling size to
cover the effect of weight degeneration. However, it is often impractical in real-time
estimation system. The method of choosing the optimal importance density can
maximize the effective sampling size,9–12 which is a suitable measure of degener-
acy. The third method involves using the resampling process to reduce degenerate
effects.4 Although resampling has been employed a lot in generic particle filter to
avoid degeneracy as one of the most popular methods, it introduces additional
computation complexity and cannot help to reduce the number of particles.

In this paper, we intent to explore possible ways to optimize the particle fil-
ter for enhancing 3D tracking performances. On the one hand, a new data fusion
method is proposed to obtain the optimal importance density function, so that par-
ticle crowds can represent the posterior states in a much more efficient fashion. As a
result, for achieving the same tracking accuracy, the number of particles used in 3D
tracking is greatly reduced. On the other hand, we develop a method for reconfig-
urable vision systems to maximize the effective sampling size in particle filter, which
consequentially helps to solve the degeneracy problem and minimize the tracking
error.

2. Developing the Particle Framework

At time step k, when a measurement yk becomes available, according to the Bayes’
rule,2 the posterior probability function of the state vector can be calculated using
the following equation

p(xk|y1:k) =
p(xk|xk−1)p(yk|xk)

p(yk|y1:k−1)
, (1)
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P (y) is a normalizing constant and Eq. (1) can be written as

p(xk|y1:k) ∝ p(xk|xk−1)p(yk|xk). (2)

Suppose that at time step k, there is a set of particles, {xi
k, i = 1, . . . , Ns}, with asso-

ciated weights {wi
k, i = 1, . . . , Ns} randomly drawn from importance sampling,9,11

where Ns is the total number of particles. The weight of particle i can be defined as

wi
k ∝ wi

k−1

p(xi
k|xi

k−1)p(yk|xi
k)

q(xi
k|xi

k−1,y1:k)
, (3)

where q(xi
k|xi

k−1,y1:k) is the importance density function. In this paper, we use the
transition prior p(xk|xk−1) as the importance density function. Then, Eq. (3) can
be simplified as

wi
k ∝ wi

k−1p(yk|xi
k). (4)

Furthermore, if we use Grenander’s factored sampling algorithm,12 Eq. (4) can be
modified as

wi
k = p(yk|xi

k). (5)

The particle weights then can be normalized using

w∗i
k =

wi
k∑Ns

i=1 wi
k

(6)

to give a weighted approximation of the posterior density in the following form

p(xk|y1:k) ≈
Ns∑
i=1

w∗i
k δ(xk − xi

k), (7)

where δ is the Dirac’s delta function.

3. Data Fusion for Importance Density Optimization

3.1. Methodology

3.1.1. Data fusion algorithm and the pseudo likelihood

The 3D tracking task here is performed with an active vision system13 using pattern
projection, which is similar to a passive stereo vision system with one of the cameras
replaced by a projector. Using a color-encoded structured light pattern,14 the active
vision system can yield good results in 3D visual sensing with a single view.

In order to obtain better expression of posterior states, the importance density
function should be moved toward the region of high likelihood. Notwithstanding,
because the support valuables are different, likelihood functions cannot be used
directly to modify the importance density. To surmount this problem, a pseudo
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likelihood function is first generated with the latest passive sensing data. Then, the
pseudo likelihood is projected to the importance density space and the importance
density is modified by fusing the sensing data in it. The pseudo likelihood function
is generated with the most current observation of certain reference feature points
through passive sensing. It is a subset of the likelihood function and it can represent
the likelihood function to certain extent. The advantage of the pseudo likelihood
function is that it can be projected to the importance density space easily by using
the inverse procedure of passive sensing observation model (a monocular camera
model). The basic idea of the proposed approach is illustrated in Fig. 1. Suppose
that in a set of reference points, the observation of passive sensing (of a monocular
camera) can be expressed as a function of the current state with noise

yR
kj

= gj(xk, ζ), j = 1, . . . , NR, (8)

where ζ is noise and NR is the number of reference points.
Equation (8) can be looked on as a pseudo likelihood function

yR
k ∼ L̂y = P (y|xR

k ). (9)

On the contrary, the current state can be estimated using the inverse function
of Eq. (8) as

xk = g−1(xk−1, y
R
k , ζ), (10)

which is in fact a projection of the pseudo likelihood to the importance density (xk)
space

L̂x = P (xk|xk−1, y
R
k , ζ). (11)

Then, Eq. (11) can be used to achieve the algorithm for data fusion as shown in
Table 1.

target

projector

cameraactive sensing 

passive sensing

pseudo likelihoodthe prior

posterior estimation

Fig. 1. Data fusion with updated passive sensing data.
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Table 1. Passive data fusion algorithm in particle filter.

Assume that at the previous state k − 1, we have the particle crowd {xi
k−1, wi

k−1}N
i=1, then

proceed as following at time k
1. Sampling: simulate xi

k ∼ P (xk|xk−1).
2. Calculate weights: compute the weights according to likelihood function and conduct

normalization.

3. Pseudo likelihood computation: calculate L̂x = P (xk|xk−1, yR
k , ζ).

4. Data fusion: simulate xi
k, draw αN samples from the prior P (xk|xk−1) and (1 − α)N samples

from the pseudo likelihood projection P (xk|xk−1, yR
k , ζ), where α is a data fusion factor,

0 ≤ α ≤ 1.
5. Update weights: compute the weights according to the new likelihood function and conduct

normalization.
6. Resampling.

3.1.2. Importance density optimization

Degeneracy is a common phenomenon with particle filters.9 As a result of degener-
acy, all but one particle will have negligible weight after a few state transitions.
Degeneracy implies the wastage of computational resources that much effort is
devoted to updating particles whose contribution to the approximation to posterior
states is almost zero.

We can here adopt the effective sampling size Neff
k ,15 which is a suitable measure

of degeneracy, as a criterion to guide the optimization process for data fusion. As
Neff

k cannot be evaluated exactly,10 an estimate N̂eff
k of Neff

k can be calculated by

N̂eff
k =

1∑N
i=1(w̃

i
k)2

, (12)

where w̃i
k is the normalized weight indicated in Eq. (6).

A large Neff
k implies that the likelihood is located closely to the prior

P (xk|xk−1), so that the particle crowd from the prior xi
k can be relied on bet-

ter. Thus, the percentage of effective sampling, N̂eff
k /N , can be used to defined to

data fusion factor α (see Table 1) for importance density optimization by choosing

α = ρ
N̂eff

k

N
, (13)

where ρ is a positive scale factor, ρ ≥ 1.
According to our previous study, when the configuration of the vision system

(i.e., relative location to the object, optical and physical parameters of the camera
and the projector) is not well designed, the percentage of effective sampling, N̂eff

k /N ,
can be very small, even may drop down to 5% sometimes. Since the effective sam-
pling size is corresponding to the tracking error to some extent,16 a small effective
sampling size may cause a large tracking error by particle estimation. In this case,
the transition prior P (xk|xk−1) is not suitable to guide the importance density on
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its own. The pseudo likelihood, which represents the most current sensing data, will
help the PF obtain better sampling and reduce tracking error.

The value of ρ can be determined empirically, or it can simply be chosen as 1
(one). Then, the new particle crowd after data fusion is

x∗i
k = α xi

k + (1 − α) x̂i
k, (14)

where xi
k is drawn from the prior and x̂i

k is drawn from the pseudo likelihood
projection.

3.2. Simulation results

Figure 2 shows the estimation error for 3D location tracking by different meth-
ods. The generic PF, which employed 800particles, performed the best, while the
extended Kalman filter (EKF), with 100 particles, performed the worst because of
its disadvantage in dealing with multi-modality. The proposed PF with data fusion,
even only with 100 particles, achieved performance approximately as good as the
generic PF.

With a well-expressed importance density, the proposed PF can achieve better
real-time performance with expedition. Simulation results demonstrate the supe-
riority of the proposed method in comparisons with EKF and generic PF (GPF).
Because the EKF does not involve calculations of sampling, it can achieve faster
real-time performance with an average 0.0146 s for each state. The algorithm run-
ning times for GPF with 200, 400, and 800 particles are 0.0271, 0.0522, and 0.0998 s

Fig. 2. Tracking accuracy comparison.
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Fig. 3. Visual tracking using a PF with 100 particles and ρ = 2.

respectively. With only 100 particles, the proposed PF excels the GPFs in running
time and only spent 0.0150 s in average.

We then compared the tracking errors with different data fusion factors. A PF
with 100particles was adopted for the tracking shown in Fig. 3. In this simula-
tion, the average percentage of effective sampling, N̂eff

k /N(before resampling), is
about 36%.

As shown in Fig. 4, the data fusion factor affects tracking performance. Accord-
ing to our simulation study, even with the same vision system configuration,
the effective sampling size may change during the tracking process and it is not

Fig. 4. Tracking error comparison.
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Table 2. Some choices of ρ or α.

N̂eff
k /N value < 0.05 0.1–0.2 0.2–0.3 > 0.3

ρ or α value α ≈ 0.1 ρ ≈ 3 ρ ≈ 2 ρ ≈ 1

(a) (b)

Fig. 5. The active vision system using color-encoded structured light.

necessary to adopt the same ρ when performing visual tracking. Table 2 indicates
some possible choices of ρ (or α) according to our simulation results.

3.3. Experimental results

The proposed tracking method was tested with an active vision system that consists
of a PULNIX TMC-9700 CCD camera and a PLUS V131 DLP projector (as shown
in Fig. 5(a)). When the system is used in a visual tracking task, the projector
projects a color-encoded structured light (see Fig. 5(b),17) onto the surface of the
target object. Via triangulation, the system returns a time sequence of 3D object
positions and orientations. This provides the measurement (given in Sec. 2) for the
tracking formulation.

We used a concave object as the target (Fig. 6), which was moved arbitrarily
by hand in 3D space to give motions with 3-DOF translational and 2-DOF rota-
tional. The tracker (formulated in Secs. 2 and 3) was used to estimate the target’s
5-DOF position. Here, a PF with 100particles was employed. Since the object was
moved randomly and the tracking was performed in real-time, quantitative results
on tracking accuracy were hard to obtain due to the lack of the ground truth. We
thus re-projected the estimated object positions and orientations onto the camera
image (the red circles shown in Fig. 6) for qualitative evaluation. Some examples of
snap shots in the tracking are shown in Fig. 6. With a sampling rate of about 12 fps,
correct and reliable trackings were observed in the implementation. In Fig. 6, the
tracking errors were mainly caused by the sensing itself, rather than the tracker. For
example, in the frame shown in the bottom-right, relatively larger tracking error
is observed. This is because the target happened to move to a position where the
structured light pattern could not be detected clearly.
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Fig. 6. Tracking a concave object with the proposed method.

4. Dynamic View Planning for Maximizing the Number
of Effective Particles

4.1. Methodology

The 3D tracking task here is performed with a reconfigurable vision system.16 In this
section, we intend to use the reconfigurability of the vision system to reduce those
effects of degeneracy in particle filter. According to Refs. 11 and 12, the effective
sampling size Neff

k at state k is defined as

Neff
k =

Ns

1 + Var(wi
k)

, (15)

where wi
k is referred to as the “true weight” indicated in Eq. (4) and Ns is the

number of samples. As Neff
k cannot be evaluated exactly,10 an estimate N̂eff

k of
Neff

k can be calculated by

N̂eff
k =

1∑Ns

i=1(w
∗i
k )2

, (16)

where w∗i
k is the normalized weight indicated in Eq. (15).

We then define the rate of effective particles as

λeff
k =

N̂eff
k

Ns
. (17)
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Table 3. Dynamic view planning algorithm.

Assume that at the previous state k − 1, we have the particle crowd {xi
k−1, w∗i

k−1}Ns
i = 1 and a

viewpoint configuration ζ∗k−1, then proceed as following at state k

DO when ζkεCv
k (search the kth viewpoint configuration space)

{
Sampling:
Simulate {xi

k, i = 1, . . . , Ns}
Weights calculating and normalizing:
Make observation at each ζk, calculate wi

k and w∗i
k according to

(5), (6), calculate the rate of effective particles λeff
k

}

View planning:
Use the least-squared method to choose the best view plan ζ∗k according to (18), and
mark its corresponding particles and particle weights

Estimation:
Use the marked particles and weights corresponding to ζ∗k to calculate p(xk|y1:k)
according to (7)

View plan executing:
Move the current viewpoint to ζ∗k

Then continue to make observations and calculations at state k + 1.

Finally, the view planning16 task is achieved by computing the best configuration
ζ∗k in the viewpoint configuration space Ck

v of the camera through the following
equation

ζ∗k = argζk
min

(
Ns∑
i=1

(w∗i
k )2

)∣∣∣∣∣
ζk∈Ck

v

=arg max(N̂eff
k )|ζk∈Ck

v
. (18)

Our dynamic view planning algorithm is described in Table 3. At state k, first,
for every candidate of viewpoint configuration ζk, we sample xi

k from the prior
P (xi

k|xi
k−1) and calculate its corresponding particle weights w∗i

k and rate of effec-
tive particles λeff

k . Then, we use the least-squared method to search for the best
configuration ζ∗k that maximizes λeff

k and mark its particle weights and samples.
Finally, these samples and weights are used to calculate the posterior by a weighted
sum indicated in Eq. (7).

4.2. Simulation results

In the first simulation, we compared the effective particles (sample size) N̂eff
k of the

proposed view planning method to the generic particle filter with a fixed viewpoint.
We used 100 particles for each method and ran the simulation for 100 times with
nine state transitions. The average number of effective particles of the two methods
is plotted as shown in Fig. 7. The generic PF without view planning obtained a
very low rate of effective particles (7%), while our approach maximized the rate
of effective particles λeff at about 53% via dynamic view planning. Our algorithm
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Fig. 7. Number of effective particles.

realizes view planning and achieves the best configurations of the vision system
by maximizing N̂eff

k (or minimizing
∑Ns

i=1(w
∗i
k )2). In the second simulation, we

checked tracking errors of different viewpoint configurations (camera locations) to
prove that the best configuration in the sense of sampling efficiency is consistent
with the best configuration in the sense of minimizing tracking error. We tested view
planning results with different position parameters. As shown in Fig. 8, the average
values of

∑Ns

i=1 (w∗i
k )2 and tracking errors are plotted with different configurations

and estimation states. Here, the tracking error is defined as the distance between
the estimated location and its true location. 100 tests each with 100 particles were
employed. Nine viewpoint locations in camera coordinates, xi = 170 × i(mm), when
i = 1, . . . , 9, were employed. These locations were chosen empirically considering
both the sensitivity and the kinematics constraints of the system.

It can be seen in the Fig. 8 that these two evaluation criteria shared the same
tendency in viewpoint configuration. The comparison in 2D figure at the 6th esti-
mation state is shown in Fig. 9. Different evaluation values with their values of
standard deviation are plotted. Figure 9 clearly shows that tracking error reaches

Fig. 8. Testing different evaluation criteria with position parameter x(3D).
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Fig. 9. Testing different evaluation criteria with position parameter x (2D).

its minimum (at the 4th x location, x = 680mm) when
∑Ns

i=1 (w∗i
k )2 reaches its

minimum value. In other words, the view planning driven by optimizing particle
sampling actually minimizes the tracking error and improves tracking performance.

Then, we compared our method with the “centering” view planning method and
the “error-orientated” view planning method. The centering method has been usu-
ally adopted in visual servoing,18 which controls the viewpoint to keep the image
feature of the target object always at the center point of the image screen. In the
“error-orientated” view planning method,19 the view planning process was directly
driven by minimizing the estimated tracking error. The tracking errors of the afore-
mentioned methods are plotted in Fig. 10, and their tracking performances are

Fig. 10. Tracking errors using different methods.
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Table 4. Tracking performance with different methods.

Method Evaluation

Total Average Average Average rate
number of relative tracking estimation of effective
particles error (%) time (s) particles (%)

Effective particles 100 2.7 0.032 49.5
Resampling PF No. 1 100 7.5 0.030 6.6∗
Resampling PF No. 2 1000 4.5 0.266 7.6∗
Centering 100 6.5 0.027 6.1
Error-orientated 100 5.5 0.111 7.1

(*This is the rate of effective particles λeff before resampling. After resampling, the rate of
effective particles is compulsory modified to 100%. Even though it shows no improvement
in tracking performance).

evaluated in Table 4. In these tests, our view planning method by effective particles
was superior to others in tracking performance with the smallest tracking error and
reasonable tracking speed. When the resampling method was used, although it could
reduce the effects of weights degeneracy, the tracking error was large when using
a small number of particles, whereas tracking speed was slow when using a large
number of particles. Without testing the particle weights to obtain the best con-
figuration, the centering method showed its advantage in tracking speed. However,
because it can only compensate for a part of the sensing error and because it still
suffers from particle degeneracy, its tracking error was larger than our method.
The error-orientated method was supposed to be the one that could achieve good
results in tracking accuracy. However, practically, it needs direct backward calcula-
tions and random search in the parameter space that may preclude unique solutions
and yet, cannot overcome the degeneration, which affects its tracking accuracy and
the achievable tracking speed as well.

Our method with effective particles minimizes tracking error by revealing the
system to a better swarm of importance samples and interpreting the posterior state
in a better way. Furthermore, it reduces particles’ degeneracy significantly, so that
a relative smaller particle crowd can be used to achieve the same level of tracking
performance, and thus increases possible tracking speed.

4.3. Experimental results

The implementation of the proposed view planning method was conducted using our
reconfigurable vision system, with a PC-based IM-PCI system and a variable scan
frame grabber. This system supports many real-time processing functions including
some feature extraction such as edge detection. Our algorithms were developed
in VC++ programming language and run as imported functions by ITEX-CM.
The system setup consists of a color CCD camera (model Pulnix TMC-6), with a
resolution of 640 × 480 pixels, a pan-tilt unit (model PTU-46-17.5) for two-axis
angular motion, and a linear motion system with a guideway (model KK86-20) and
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Fig. 11. Reconfigurable vision system with 3 DOFs.

motion controller (model Elmo BAS-3/320-2). A photo of this 3-DOF system is
shown in Fig. 11.

For simplicity’s sake, we used a point object for the experiment and made the
object undergo uniform circular motion around the center with different diameters
on a plane perpendicular to the optical axis of the camera at its original location
(see Fig. 12). Using this motion, we can eliminate both influence of image feature
location and influence of velocity on tracking error.1

The average tracking errors on different concentric circles with different methods
were calculated and are given in Table 5. These results show that our view planning
method with effective particles can achieve small tracking error then other two
methods.

Average tracking speeds with different methods are listed in Table 6. Because
our method and centering method do not involve random search procedure that the
error-orientated method uses, they both achieved very nice real-time performance.

Fig. 12. Uniform circular motion at different diameters.
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Table 5. Absolute tracking errors with different view planning methods.

Test Effective particles Centering Error-orientated
diameter 2r
(pixel) Mean Standard Mean Standard Mean Standard

tracking deviation tracking deviation tracking deviation
error (mm) (mm2) error (mm) (mm2) error (mm) (mm2)

400 6.2 19.1 7.2 18.5 8.8 21.6
360 6.1 21.1 9.1 19.7 9.0 19.1
320 4.1 18.8 8.3 16.1 8.9 19.6
280 5.6 17.8 6.6 18.8 7.0 19.6
240 5.9 19.5 6.5 15.5 5.5 18.5
200 5.3 19.3 6.2 16.5 8.4 19.5
160 4.6 17.1 7.0 17.3 4.7 18.1
120 5.2 16.6 6.3 15.6 5.9 19.6
80 5.8 18.3 7.5 16.1 5.9 18.6

Mean 5.4 18.6 7.2 17.1 7.1 19.4

Table 6. Tracking speed with different view planning methods.

Method Effective particles Centering Error-orientated

Tracking speed (fps) 24 24 7

Our method with effective particles was then implemented to track a pen tip
that was moving randomly with an average speed about 1m/s. The pen tip was
detected and tracking based on the segmentation with color and contour cues. Some
examples of snapshots in the tracking with their corresponding viewpoint locations
(best configurations) are shown in Fig. 13. In this experiment, every pair of two
sequential frames was employed and compared to calculate the depth information
z, and beside the current configuration information, the Chinese calligraphy back-
ground was used as correspondence between every two frames for further modifi-
cation. Even with this process, a tracking rate of about 17 fps was achieved in the
implementation. We then reprojected the estimated 3D locations of the pen tip
onto the image space for tracking error analysis. The red target marks in Fig. 13

Fig. 13. Dynamic view planning in 3D tracking by our method.
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represent those estimations from our tracking algorithm. Experimental results show
that the tracking was conducted with very good accuracy, with an average tracking
error of 2.8 pixels.

5. Conclusion

In this paper, two different methods for active vision and reconfigurable vision
system are explored respectively to optimize particle filter for enhancing 3D tracking
performance. A new data fusion method has been proposed to obtain the optimal
importance density function for active vision, so that particle crowds can represent
the posterior states in a much more efficient fashion. As a result, for achieving
the same tracking accuracy, the number of particles used in 3D tracking is greatly
reduced. We have also developed a method for reconfigurable vision systems to
maximize the effective sampling size in particle filter, which consequentially helps
to solve the degeneracy problem and minimize the tracking error. Simulation and
experimental results have verified the effectiveness of our methods.
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