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Integral imaging (II) is an important 3D imaging technology. To reconstruct 3D information of the viewed objects,
modeling and calibrating the optical pickup process of II are necessary. This work focuses on the modeling and
calibration of an II system consisting of a lenslet array, an imaging lens, and a charge-coupled device camera. Most
existing work on such systems assumes a pinhole array model (PAM). In this work, we explore a generic camera
model that accommodates more generality. This model is an empirical model based on measurements, and we
constructed a setup for its calibration. Experimental results show a significant difference between the generic
camera model and the PAM. Images of planar patterns and 3D objects were computationally reconstructed with
the generic camera model. Compared with the images reconstructed using the PAM, the images present higher
fidelity and preserve more high spatial frequency components. To the best of our knowledge, this is the first
attempt in applying a generic camera model to an II system. © 2011 Optical Society of America

OCIS codes: 100.3010, 110.6880, 100.6890.

1. INTRODUCTION
Integral imaging (II) [1–3] is important for implementing 3D
autostereoscopic display systems, which can operate in nat-
ural light and provide full parallax, continuous viewing points
to users without any special glasses. In general, II consists of
two processes: pickup and reconstruction. In the pickup pro-
cess, light rays from objects are captured through a lenslet
array by an image sensor such as a charge-coupled device
(CCD). The light rays passing through each lenslet are from
a particular view and are recorded in an elemental image
(EI). All the elemental images form an elemental image array
(EIA) that simultaneously captures multiple views of the 3D
scene. The reconstruction process is a reverse process of the
pickup, and it can be approached by either optical integral im-
age reconstruction (OIIR) [4–7] or computational integral ima-
ging reconstruction (CIIR) [8–11]. In OIIR techniques, the EIA
is displayed to an optical setup similar to the one used for
pickup to generate optical 3D image to observers with the
naked eye. On the other hand, CIIR explores appropriate di-
gital processing to computationally synthesize images of the
viewed 3D scene or, further, to reconstruct a 3D digital model
of the scene. This work focuses on the model and calibration
in CIIR for reconstructing 3D information from the EIA.

Because CIIR aims at digitally reversing the optical pickup
process, using an appropriate model to describe the optical
pickup process is of crucial importance. The most often used
model in existing CIIR methods is a pinhole array model
(PAM) [10,11]. The PAM works well for many II systems in
existing work [11–14]. However, there are still II systems
whose optical configurations are known only within a degree
of certainty. Theoretical analysis [15,16] shows that the mis-
alignment between optical pickup components would degrade

the image reconstruction quality. In particular, a loss of the
high spatial frequency component is observed in CIIR images
[15]. Furthermore, there might be nonlinear optical distortion
existing in the lenses, which cannot be accounted for by pin-
hole models. In some specific systems with limited fabrication
precision, when optical distortions and installation misalign-
ments amongst different optical components are coupled, the
real optical process becomes more complicated.

In this work, instead of assuming a PAM, we explore a gen-
eric camera model [17–19] that accommodates more general-
ity to describe the real optical pickup process. The generic
camera model was first proposed in modeling and calibrating
omnidirectional vision sensors whose optical geometry can-
not be described by traditional pinhole camera models. The
highly generic nature of generic camera models makes them
suitable for describing imaging systems with arbitrarily com-
plex imaging geometry, such as the II system studied in this
work. The generic camera model is an empirical model based
on measurements. In this work, a calibration setup was con-
structed for its calibration. Using an LCD panel as an active
calibration object, the correspondences between pixels in the
EIA and light rays in 3D space can be automatically estab-
lished in high density and precision. The integral imaging sys-
tem (IIS) used in this work is depicted in Fig. 1. The setup is
similar to those in the existing work [8,11].

Our experiments show that there is a significant difference
between the generic camera model of this IIS and a PAM.
Using the generic camera model, images of objects can be
computationally reconstructed. Compared with the images re-
constructed based on a PAM, the visual quality is enhanced in
terms of the reconstruction fidelity and the preservation of
high spatial frequency components. Experiments were
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conducted to reconstruct the positions of an object in a 3D
Euclidean coordinate frame.

Although this work focuses on a particular type of IIS, its
application can be extended to other IISs with different opti-
cal configurations. The generic calibration can accommodate
nonstandard distortions and thus allows an IIS to adopt more
diversified nontraditional optical designs to achieve the de-
sired properties such as larger field of view or larger depth
of field.

2. PINHOLE ARRAY MODEL
CIIR can be performed using a PAM, as depicted in Fig. 2. In a
PAM, each EI is formed through a pinhole projection. Then a
virtual pinhole array is used to simulate the reverse process of
the optical pickup of EIA. Several assumptions are made:
(i) the EIs are aligned to form a square array, (ii) the pinhole
of each EI is aligned with the EI’s image center in the lateral
direction, and (iii) all the pinholes are located in a virtual
plane parallel to the elemental image plane. Following the
PAM, a CIIR method [10,11] can reconstruct an image by pro-
jecting each EI through this virtual pinhole array and magni-
fying it by a factor of A=a, where a is a focal length of the
virtual pinhole and A is a distance between the pinhole array
and the desired reconstruction plane (see Fig. 2). Then an im-
age is obtained on the reconstruction plane by linear super-
position of each inversely mapped and magnified EI. The
reconstructed image in this case presents a low depth of field
(DOF), and only the 3D objects that are located at the depth of
this virtual plane are clearly focused. Another method for CIIR
extracts one pixel or a set of pixels from each corresponding
EI and combines them into an image [12]. Depending on the
selected pixel position, the reconstructed images have differ-
ent viewing points. The PAM is also implicitly assumed in such
a method.

3. GENERIC CAMERA MODEL
A. Integral Imaging System
Figure 3(a) shows the apparatus of our IIS, which consists of a
lenslet array, a 25mm imaging lens, and a color CCD camera.
A standard LCD panel is used as the calibration object. The
lenslet array is fabricated by attaching 625 lenslets on the sur-
face of a flat glass panel, as shown in Fig. 3(b). The lenslets are
arranged in a 25 by 25 matrix. Each lenslet has a 4mm by
4mm square shape with a spherical surface, whose equivalent
optical focal distance is 8:95mm. All the optical axes of the
lenslets are parallel, and they are perpendicular to the flat
glass panel. The lenslet array and the camera are mounted
on a precision translation stage, which allows fixing and ad-
justing their relative positions. As limited by the fabrication
precision, the alignment of the lenslets presents some defi-
ciencies, as shown in the close-up view in Fig. 3(c).

B. Construction of a Generic Camera Model
In the IIS of this work, the light rays captured in each EI are
refracted through both the corresponding lenslet and the ima-
ging lens. The misalignment of the lenslets also introduces ex-
tra distortions. Instead of constructing a mathematical model

Fig. 1. Configuration of the IIS used in this work.

Fig. 2. CIIR by using a PAM.

Fig. 3. (Color online) Integral imaging system and the calibration setup.
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to explicitly describe all the optical process during image for-
mation, this work focuses on an empirical approach that ex-
plores the generic camera calibration concept proposed in the
work [17–19]. Compared with the PAM, the generic camera
model releases all three assumptions of PAM mentioned in
Section 2. This makes it provide more generality to describe
the real optical pickup process.

Following the generic camera model concept, the studied
IIS is considered as a black box. The input to the IIS is the
intensity of light rays in 3D space. This information is com-
monly modeled as A light field and is encoded in the plenoptic
function [20]. The plenoptic function Φðq; p; t; λÞ gives the in-
tensity of light at each point q ∈ R3 in space, from direction
p ∈ R3, at an instant of time t, and at wavelength λ. By con-
sidering still images and CCD sensors with A determined spec-
trum response, the time and wavelength can be set apart and
the plenoptic function becomes a function on R6, depending
only on the position and direction:Φðq; pÞ. In this work, a “two
plane parameterization” method is used to represent the ple-
noptic function. This method parameterizes a light ray by its
intersection points with two reference planes. Let φ1 and φ2

be the two reference planes and qφ1 ¼ ðXφ1; Yφ1; Zφ1Þ and
qφ2 ¼ ðXφ2; Yφ2; Zφ2Þ be the two intersection points defined
in a 3D Euclidean coordinate X–Y–Z. Then the plenoptic func-
tion becomesΦðqφ1; qφ2Þ. Let the two planes be parallel to the
X–Y plane and pass ð0; 0; ~Zφ1Þ and ð0; 0; ~Zφ2Þ, respectively.
Then Φðqφ1; qφ2Þ is essentially dependent only on four vari-
ables: Xφ1, Yφ1, Xφ2, and Yφ2. The cost of this simplification
is the inability of describing light rays parallel to φ1 and φ2.
However, because the field of view of IIS is far less than
180°, Φðqφ1; qφ2Þ is sufficient to characterize all the light rays
directed into the IIS.

The output of the IIS is the EIA, which is denoted as Eðx; yÞ.
Here ðx; yÞ is defined in an image plane. As the EIA is a digital
image, the pixel location ðx; yÞ takes discrete values. For each
pixel location, the intensity value Eðx; yÞ reflects the light en-
ergy from a bundle of light rays in space. For computational
purposes, this bundle of rays is represented by a chief light
ray. Following this, a correspondence is established between
each pixel ðx; yÞ and a light ray ðq̂φ1; q̂φ2Þ, as shown in Fig. 4.
Then Eðx; yÞ can be considered as a sampling of the plenoptic
function and it can be written as

Eðx; yÞ ¼
Z

∞

−∞

Z
∞

−∞

c • δðqφ1 − q̂φ1; qφ2 − q̂φ2Þ

•Φðqφ1; qφ2Þdqφ1dqφ2: ð1Þ

Here c is a constant that represents a linear intensity re-
sponse of the CCD. The Dirac delta function δðq̂φ1; q̂φ2Þ equals
to one when qφ1 ¼ q̂φ1 and qφ2 ¼ q̂φ2 and equals to zero else-
where. It can be seen that in Eq. (1), the correspondence be-
tween image pixels and light rays in 3D space is defined by
δðq̂φ1; q̂φ2Þ. As q̂φ1 and q̂φ2 are both dependent on ðx; yÞ, they
can be written as q̂φ1 ¼ ðX̂φ1ðx; yÞ; Ŷφ1ðx; yÞ; ~Zφ1Þ and q̂φ2 ¼
ðX̂φ2ðx; yÞ; Ŷφ2ðx; yÞ; ~Zφ2Þ. Note that ~Zφ1 and ~Zφ2 are constants
that are determined in the world coordinate. Therefore, the
geometric model of the IIS is specified by the four mapping
functions: X̂φ1ðx; yÞ, Ŷφ1ðx; yÞ, X̂φ2ðx; yÞ, and Ŷφ2ðx; yÞ.

For the studied IIS, the lenslets are in a square array of M
rows and N columns. As the configuration is determined, the
lenslet boundaries can be outlined. Besides these boundary
pixels, denote em;n to be the image region of the EI corre-
sponding to the lenslet in row m and column n. In this work,
the mapping from image to light field within each lenslet is
assumed to be smooth. Following this, the geometric model
of the IIS consists of four piecewise smooth mappings
X̂φ1ðx; yÞ, Ŷφ1ðx; yÞ, X̂φ2ðx; yÞ, and Ŷφ2ðx; yÞ, which are de-
fined on the EI regions ðx; yÞ ∈ em;n, for m ¼ 1; 2;…; M and
n ¼ 1; 2;…; N . In this work, for an EIA image with R × C
pixels, the parameters of the generic camera model are repre-
sented by four R × C matrices. These matrices are stored as
lookup tables and accessed at high speed. This workmakes no
further assumptions for the four mapping functions except for
the piecewise smooth property. Therefore, the four mapping
functions must be determined via calibration, which will be
described in Subsection 4.A.

By using this model, the light ray associated with pixel
ðx; yÞ can be expressed as

Lx;yðrÞ ¼ q̂φ1ðx; yÞ þ rðq̂φ2ðx; yÞ − q̂φ1ðx; yÞÞ: ð2Þ

Here r is a variable that makes Lx;yðrÞ traverse all positions in
the light ray.

4. METHODS AND ALGORITHMS
A. Method to Calibrate the Generic Camera Model
In this work, the generic camera model is experimentally de-
termined through a generic calibration method. A calibration
setup is used as shown in Fig. 3(a) and illustrated in Fig. 5. A
flat LCD panel is used as an active calibration plane. As stated
in [21], an LCD panel is a precise planar object whose planar-
ity deviation is no more than 0:05 μm. The LCD panel is placed
on the optical table, which is equipped with threaded holes at
25:0mm square grids. Using these holes, the translation of
LCD on the optical table can be precisely controlled and mea-
sured. By displaying a bright circular spot on the LCD, a set of
points can be highlighted with known positions in 3D space.
This provides an accurate source for calibrating the GCM. The
proposed method is similar with that used in [18]. In their
work, the LCD was translated to two positions in the calibra-
tion. To make the estimation more accurate, more positions
have been used here. Also, a bright spot pattern is used to
encode the plane positions instead of the Gray code [18] to
make the method more robust to the nonlinear intensity
variations in the EIA.

The calibration method can be summarized in the follow-
ing steps:Fig. 4. Illustration of the generic camera model.
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1. Place the LCD in front of the IIS at an initial position
denoted as position 1 (see Fig. 5). The LCD plane is adjusted
to be perpendicular with the optical table and parallel to the
lenslet array plane. Define a world coordinate frame X–Y–Z
with its X–Y plane parallel to the LCD plane. With the optical
table, the LCD’s position on the X–Z plane can be precisely
controlled. Then, the LCD is translated along the Z axis to
K positions, where the Z coordinates are Z1, Z2;…; ZK . At
each position, steps (2) and (3) are performed.

2. Establish a correspondence between points on the LCD
and image pixels in the EIA. Assume that the LCD is at posi-
tion k with depth Zk. A point on the LCD is denoted by
ðXk; YkÞ, and an EIA pixel position is denoted by ðx; yÞ. Then
the correspondence can be represented by two 2D mappings
Xkðx; yÞ and Ykðx; yÞ. They are then estimated through a com-
puter controlled procedure as follows:

a. Display a circular bright spot centered at ðCX; CY Þ on
the LCD against an all-black screen.

b. Capture an EIA. Because the EIs share overlapping
views, the spot will appear in multiple EIs. We apply an image
processing algorithm to extract these spots and fit each one to
an ellipse [22]. The centers of the ellipses are recorded as a set
of pixel locations fðxi; yiÞg. Then for each of them, let
Xkðxi; yiÞ ¼ CX and Ykðxi; yiÞ ¼ CY .

c. Move ðCX; CY Þ to a new position ðCX þΔX; CY þΔYÞ
and repeat steps (a) and (b).

Repeat steps (a), (b) and (c) until the LCD screen is traversed
by ðCX; CY Þ at intervals ΔX and ΔY . The values of ΔX and
ΔY determine the sampling rate on the LCD, and they should
be small enough so that a sufficient number of pixels would
observe some points on the LCD for at least one time.

3. Interpolate the correspondence in step (2) to be dense.
The correspondence established in step (2) is represented as
K × 2 mapping functions: Xkðx; yÞ, Ykðx; yÞ, where
k ¼ 1; 2;…; K . However, only a subset of pixels in these func-
tions has been assigned values. As the optical property within
each EI is considered to be smooth in the GCM, a smooth
surface is fit to each function and the mapping functions
are interpolated to be dense.

4. For each pixel ðx; yÞ in the EIA, given the mapping func-
tions obtained in step (3), the light ray associated with ðx; yÞ
passes a set of K points fXkðx; yÞ; Ykðx; yÞ; Zkg. Then a
straight line in 3D space is fit to the K points with a least-
squares minimization (LSM) estimation [23]. This associates
a straight line (light ray) to each pixel ðx; yÞ in the EIA.

5. For each pixel ðx; yÞ in the EIA, let the straight line ob-

tained in step (4) intersect with two reference planes φ1 and φ2

and assign the coordinates to X̂φ1ðx; yÞ, Ŷφ1ðx; yÞ, X̂φ2ðx; yÞ,
and Ŷφ2ðx; yÞ respectively. This provides all the parameters
of the GCM.

B. Integral Imaging Using the Generic Camera Model
With Eq. (2), given a pixel ðx; yÞ in the EIA, a light ray Lx;y can
be determined based on the GCM. Denote all the light rays
captured by the IIS as a set S ¼ fLx;yg. It is known that these
light rays intersect within a volume of 3D space. By choosing a
viewpoint within this space, a digital image can be computa-
tionally reconstructed. For this, a GCM-based CIIR method is
introduced, which is referred to as the GCM-CIIR method. In
comparison, we refer to the method in [10] as the PAM-based
CIIR method (PAM-CIIR). The GCM-CIIR method consists of
the following steps:

1. Select a viewpoint v ¼ ðXv; Yv; ZvÞ and determine a sub-
set of light rays that pass a small neighborhood of v. Denote
this subset of light rays as Sv⊂S.

2. For a light ray that satisfies Lx;y ∈ Sv, a pixel location in
the EIA can be determined as ðx; yÞ. Assume that Sv contains a
number of W light rays and the associated set of image pixel
locations are indicated by Rv ¼ fðxðmÞ; yðmÞÞg, where m ¼
1; 2;…; W .

3. Let Ψ be a plane that is parallel to the lenslet array
plane and is located at a depth fΨ from viewpoint v along
the Z axis. By projecting local EI image patches that are cen-
tered at positions Rv ¼ fðxðmÞ; yðmÞÞg ontoΨ, an output image
Ioutput can be computationally reconstructed. This is per-

formed by the following W iterations. Let Ið0Þoutput be a null im-
age with all white pixels, then from m ¼ 1 to m ¼ W , repeat
the following operation:

IðmÞ
outputðxðmÞ

Ψ þΔx; yðmÞ
Ψ þΔyÞ ¼ Iðm−1Þ

outputðxðmÞ
Ψ þΔx; yðmÞ

Ψ þΔyÞ
� ð1 − GðΔx;ΔyÞÞ þ EðxðmÞ

þΔx; yðmÞ þΔyÞ
� GðΔx;ΔyÞ: ð3Þ

Here ðxðmÞ
Ψ ; yðmÞ

Ψ Þ is the image coordinate of the intersection
point of the light ray LxðmÞ;yðmÞ withΨ. Eðx; yÞ is the EIA image.
Pixel coordinate ðΔx;ΔyÞ is defined on a circular region with

radius w so that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þΔy2

p
< w. Gðx; yÞ is a weighting

function that is constructed by normalizing the function va-
lues of a 2D Gaussian to the interval ½0; 1�. The final obtained

image is Ioutput ¼ IðWÞ
output.

The above process projects the captured light rays that pass
near the selected viewpoint onto a virtual image plane. There-
fore, the reconstructed image is an approximation of a per-
spective image. The resolution of the reconstructed image
is determined by a number of factors, such as the light field
sampling rate of the lenslet array, the image resolution of the
EIs, and the configuration of the image reprojection process.
Configuration of the reprojection process includes the selec-
tion of the viewpoint, the size of the neighborhood of the view-
point, and the depth of the virtual image plane. Dependent on
the selected viewpoint, a different subset of the captured light

Fig. 5. Illustration of the calibration setup.
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rays are used in image reconstruction. This would lead to dif-
ferent sizes and shapes of a reconstructed image, which is de-
pendent on the specific optical path of the involved light rays.
For a fixed viewpoint, the farther the virtual image plane is,
the larger the image size is. However, the largest virtual image
plane distance is limited by the sampling rate of the light field.

With the image reconstructionmethod, increasing the object
distance would lead to degradation in the reconstructed image
quality because some assumptions become less satisfied. In the
proposed algorithm, the neighborhood of a selected viewpoint
defined in step 1works as an equivalent aperture. Ideally, if this
neighborhood shrinks to a single point and the light field is in-
finitely dense, the reconstructed image is a perspective image
with an infinite depth of field. However, because theEIA is only
a discrete sample of the light field, two compromises have been
made in the algorithm. First, the neighborhood has a volume to
contain a sufficient number of light rays. Second, an image
patch centered at each selected pixel is used in the projection
to fill the gaps in the virtual image plane. In the optical process,
an image patch corresponds to a cone in 3D space. Thus, this
cone is used to approximate a light ray. For an object, as its
distance increases, a larger part of the object surface would
be included in this cone. This makes the approximation to
be less appropriate. The consequent image quality degradation
appears as the blur of image details. This effect is shown with
an experiment in Subsection 5.A.2.

C. 3D Reconstruction Using the Generic Camera Model
Because an object point can be simultaneously observed in a
set of EIs from different viewpoints, the position of the point
in 3D space can be reconstructed by multiview triangulation.
For point q ∈ R3, denote the set of its corresponding pixels in
the EIA as Bq ¼ fðxðnÞ; yðnÞÞg, where n ¼ 1; 2;…; Q. Then a set
of light rays can be determined as Sq ¼ fLxðnÞ;yðnÞ g, where
n ¼ 1; 2;…; Q. As the calibrated GCM has already provided
the light ray functions for each pixel in the EIA, Sq ¼
fLxðnÞ ;yðnÞ g is known. Then the 3D position of point q is deter-
mined by finding an optimal point ~q that satisfies the following
equation:

~q ¼ argmin
q

� X
ðxðnÞ ;yðnÞÞ∈Bq

Dðq;LxðnÞ ;yðnÞ Þ
�
: ð4Þ

Here Dðq;LxðnÞ ;yðnÞ Þ indicates the Euclidean distance be-
tween a point q and a straight line LxðnÞ;yðnÞ . In this work,
the optimization problem is approached by a LSM [23]. The
proposed 3D reconstruction method is essentially a variant
of the multiview stereo method. As the stereo algorithms,
the precision of the estimated depth would decrease as the
object distance becomes large.

5. EXPERIMENT
In the experiment, the EIA image used has a resolution of 815
pixels by 700 pixels and contains 14 (columns) by 12 (rows)
EIs. The size of each EI is 56 pixels by 56 pixels. For the cali-
bration procedure in Subsection 4.A, the LCD was translated
to four positions with an interval of 25mm. The smallest dis-
tance between the lenslet array and the LCD panel is 163mm.
The obtained GCM consists of four mapping functions, and
they are stored as four 815 by 700 matrices. The algorithms
are programmed in MATLAB and executed on a PC with a

2:2GHz CPU and 2G RAM. The computational time is about
7 min.

A. Evaluation of the Generic Calibration by
Computational Integral Imaging Reconstruction
The accuracy of the calibration is closely related with the qual-
ity of the CIIR. CIIR was performed on both 2D and 3D objects
to examine the accuracy of the calibration. An image recon-
structed by the GCM-CIIRmethod in Subsection 4.B is referred
to as a GCM-CIIR image, and an image reconstructed by the
PAM-CIIR method [10] is referred to as a PAM-CIIR image.
For comparison, all the reconstructedCIIR images are cropped
to contain the same object of interest, and they are normalized
to 100 pixels by 75 pixels.

1. Computational Integral Imaging Reconstruction for 2D
Planar Patterns
The GCM-CIIR and PAM-CIIR methods were applied to a
checkerboard pattern. The pattern is displayed on an LCD pa-
nel parallel to the lenslet array, as shown in Fig. 6(a). The EIA
image is shown in Fig. 6(b).

Figure 6(c) shows the GCM-CIIR image and Fig. 6(e) shows
the PAM-CIIR image. The distortion and misalignment of the
lenslets are not accounted by the PAM, which induces artifacts
near the edges in thePAM-CIIR image. In Figs. 6(d) and6(f), the
dotted lines represent the edges of the check board and are
generated by aligning the checkerboard with that in the recon-
structed image. These dotted lines represent the ground truth.
The Harris corner detector [24] is often used to automatically
locate corners in an image. It is known that the localization pre-
cision of Harris corners decreases when the image is blurred.
Therefore, the magnitude of deviation of the Harris corners
from their true positions reflects the lost of image information.
The detected Harris corners in Figs. 6(c) and 6(e) are shown in
Figs. 6(d) and 6(f) as crosses. The average deviation is two
(pixels) in the GCM-CIIR image and six (pixels) in the PAM-
CIIR image. This shows that the GCM-CIIR image provides
more spatial accuracy in representing the geometry of a viewed
object. Notice that in Fig. 6(d), there are still some alignment
errors left between the detected Harris corners and the real
corners. These errors can be further reduced by improving
the optical component fabrication and the calibration method.
Because this experiment focuses on the comparison between
the GCM-CIIR image and the PAM-CIIR image, such accuracy
improvement is left for a future work.

A resolution test pattern in Fig. 7(a)was used to examine the
loss of details in the high spatial frequency component. The
GCM-CIIR and PAM-CIIR images are shown in Figs. 7(c) and
7(e). The discrete Fourier transform (DFT) was performed
for Figs. 7(a), 7(c), and 7(e). For visualization, the logarithm
of the DFT magnitude was scaled to the same gray range as
shown in Figs. 7(b), 7(d), and 7(f). The zero-frequency coeffi-
cient is displayed in the center. Figure 7(b) shows that the ideal
image contains a rich spectrum of high spatial frequency com-
ponents alongdifferent directions.ComparedwithFig. 7(f), the
spatial frequency components in Fig. 7(d) appear brighter in
the high-frequency region (farther from theDFT image center).
This shows that the GCM-CIIR image recovers more high
spatial frequency components than the PAM-CIIR image.

Furthermore, the visual quality of the reconstructed
images was compared quantitatively in terms of the
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peak-signal-to-noise ratio (PSNR). The PSNR is often used in
engineering to compare the visual quality of image reconstruc-
tion. A higher PSNR indicates a better approximation of the
original image. The original image was aligned with the recon-
structed image by image registration. Then the PSNR between
them were calculated. The PSNR for the GCM-CIIR image in
Fig. 6(c) is 18:60dB, and the PSNR for the PAM-CIIR image
in Fig. 6(e) is 14:43dB. Also, the PSNR for the GCM-CIIR image
in Fig. 7(c) is 16:42dB, and thePSNR for thePAM-CIIR image in
Fig. 7(e) is 13:77dB. These comparisons show that the GCM-
CIIR images are closer to the original images in visual quality.

2. Computational Integral Imaging Reconstruction for 3D
Objects
The GCM-CIIR method was tested with a 3D object (a space
shuttle model) as shown in Fig. 8(a). The EIA is shown in
Fig. 8(b). GCM-CIIR images reconstructed from the same
EIA with different viewpoints are shown in Figs. 8(c)–8(h).
The viewpoint varies only along the horizontal direction in
Figs. 8(c)–8(e). It canbe seen that the relative positionbetween
the head and the vertical tail of the shuttle varies along the hor-
izontal direction. The viewpoint varies only along the vertical
direction in Figs. 8(f)–8(h). It can be seen that the relative posi-
tion between the front window (black part) and the wings of
the shuttle varies along the vertical direction.

Figure 8(i) shows a GCM-CIIR image, and Fig. 8(j) shows a
PAM-CIIR image, which are both reconstructed from the same
EIA in Fig. 8(b). It can be seen that all features on the space
shuttle at different depth are focused in the GCM-CIIR image.
In comparison, the PAM-CIIR image presents a narrow depth
of field (DOF). Though the head is in focus, the wings and
vertical tail are blurred. This demonstrates that the GCM-CIIR
method achieves a larger DOF.

Figure 9 shows the effect of object distance on the GCM-
CIIR image. A ping-pong ball was placed at four depths and
an image was reconstructed at each position. The diameter

Fig. 6. (Color online) Experiment of CIIR for 2D planar pattern
displayed on an LCD: (a) experiment setup, (b) EIA image,
(c) GCM-CIIR image, (d) corners in (c), (e) PAM-CIIR image, and
(f) corners in (e).

Fig. 7. Comparison of the DFT magnitudes of the GCM-CIIR image
and the PAM-CIIR image.

Fig. 8. Experiment of CIIR for a 3D object—a space shuttle model.
(a) Experiment setup. (b) EIA image. (c)–(h) GCM-CIIR images from
different viewpoints. A GCM-CIIR image (i) is compared with a
PAM-CIIR image (j).
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of the ball was 40mm. The distance from the ball to the lenslet
array was 275, 325, 375, and 425mm for Figs. 9(a)–9(d), re-
spectively. All the images are reconstructed with the same
parameters. The figures show that the object contour appears
more blurred when the distance increases. The blur is more
visible at the edge of the black bar that supports the ping-
pong ball.

B. Analysis of the Generic Camera Model
The GCM consists of four mapping functions stored in four
matrices. For visualization, we retrieve the light ray asso-
ciated with each pixel in EIA via Eq. (2) and calculate its angle
to the Z axis. These angle values are encoded with color and
shown in Fig. 10.

Figure 10 shows that the optical property of anEI is different
when its location in the EIA varies. The angle distribution of
light rays within an EI tends to be symmetric to the EI’s center
when theEI is near theEIA’s center. As theEImoves away from
the EIA’s center, the angle distribution becomes more asym-
metric. This is different from the situation in a PAM, where
all the EIs have the same optical properties. For the studied
IIS, the angle of view (calculated as the maximum angle
spanned by the light rays) of an EI varies from 34:6° (for a lens-
let at the center of the EIA) to 32:1° (for a lenslet at the fringe of
theEIA). The light rays in anEI canbe fit by a viewing cone. The
axis of this cone can represent a viewing angle of the EI. The
angle between the cone axis and the normal of the glass panel
varies from 0° (for a lenslet at the center of the EIA) to 4:6° (for
a lenslet at the fringe of the EIA).

Figure 11 quantitatively presents the above difference be-
tween the GCM and a PAM. Figure 11(a) shows an EIA taken
for a white screen. Against the white screen, the lenslet bound-
aries appear as the dark pixels between theEIs. In thePAM, the
pinholes are the centers of an array of squares on a virtual plane
parallel to the image plane. Then the pinhole array can be de-
picted as an array of squares (outlined by the dotted lines)
aligned with the EIA, as shown in Fig. 11(a). The grids are con-
sistent with the lenslet boundaries, though some random mis-
alignments exist due to the fabrication. Figure 11(b) shows the
same grids as those in Fig. 11(a). A “þ” icon at the center of
each square indicates the pinhole. In the PAM, the pixel at this
center position is assumed to be associatedwith a light ray par-
allel to the Z axis. On the other hand, using the GCM, as shown
in Fig. 10, the pixel in each EI whose associated light ray is par-

allel to the Z axis can be identified and displayed as a “o” icon.
An error vector in each EI is shown as a line segment connect-
ing the icons “þ” and “o.” This error vector reveals the differ-
ence between the two models in each EI. In general, all the
error vectors are oriented toward the center area of the EIA.
As an EI is located farther away from the EIA center, the mag-
nitude of the error vector becomes larger. The maximum error
magnitude is 15 pixels. Noticing that the size of each EI is 56
pixels by 56 pixels, this error is significant.

Figure 3(c) shows some misalignments in the lenslets.
These misalignments are one of the sources that make the
imaging process different from that described by a PAM. Still,
it can be seen that the misalignments alone cannot explain the
structural error pattern in Fig. 11(b). This indicates that with a
precision fabrication of this lenslet array to eliminate the mis-
alignments, calibration is still necessary.

Compared with traditional camera models, the GCM has a
larger number of parameters. However, the GCM provides a
complete description of the imaging system’s geometric prop-
erty and a solid basis for building models of more appropriate
parameterizations.

C. 3D Reconstruction Experiment
The method in Subsection 4.C was performed to reconstruct
the position of a ping-pong ball. The experiment setup is shown
in Fig. 12(a) and a top-down view is depicted in Fig. 12(b). A
Euclidianworld coordinateXw–Yw–Zw is defined in Fig. 12(b).
The optical table provides threaded holes arranged in 25mm
grids. By moving the optical holder to these threaded holes,
the Xw and Zw positions of the ball can be measured. By using
the pillar holder, the Yw position of the ball can be measured.
This way, the ball can be set to known positions in 3D space.
This experiment tested the positions on the two diagonals of a
square, which are labeled a1–a9 and b1–b9 in Fig. 12(b). The
ballwas placed at eachposition, and the 3D reconstructionwas
performed. Note that there is a translational motion between
the coordinate Xw–Yw–Zw and the coordinate X–Y–Z used in
calibration. This motion was measured as the LCD’s relative
position to the optical table. The reconstructed 3D positions
were then transformed to the coordinateXw–Yw–Zw to be com-
pared with the ground truth data.Fig. 9. (Color online) GCM-CIIR with different object distance.

Fig. 10. (Color online) Visualization of the generic camera model.
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The image regions of the ping-pong ball were extracted by
using a color filter. Some image regions were degraded due to
the lenslet defects, and they were removed by image proces-
sing. An ellipse fitting algorithm [22] was then used to fit the
center of each region. The corresponding pixels of these cen-
ters are mapped to their corresponding light rays given in the
GCM. Then, using the method in Subsection 4.C, the ball’s 3D
position was reconstructed.

The positions of the ball in Fig. 12(b) were reconstructed,
and the results are shown in Fig. 12(c). In Fig. 12(c), the two
diagonals are represented by two lines, and the ground truth
data are represented by the crosses on them. The circular
icons indicate the reconstructed positions for a2–a9, and the
triangular icons indicate the reconstructed positions for b2–
b9. Positions a1 and b1 are beyond the effective field of view
of the IIS and cannot be reconstructed. In Fig. 12(c), we can
see that the reconstructed 3D positions are distributed near
the two reference diagonals and are consistent with the
ground truth. The reconstructed position ðX 0

w; Y 0
w; Z0

wÞ for
each test position is compared with the ground truth position
ðXw; Yw; ZwÞ. The majority of the reconstructed X 0

w and Y 0
w

are near their true values. The largest errors in X 0
w and Y 0

w

are within 6 and 2mm, respectively. Compared with X 0
w

and Y 0
w, the accuracy of depth reconstruction Z0

w is not as
high. The largest error in Z0

w reaches 27:1mm. This error

comes from the uncertainty of the image processing algo-
rithms and the noise in the GCM. Further improvement on
the reconstruction accuracy may rely on employing more ad-
vanced 3D reconstruction algorithms with capabilities to re-
ject noise points by optimization.

6. CONCLUSIONS
In this work, a generic camera model has been investigated to
describe and calibrate the optical pickup process of an IIS.
Significant differences are found between the generic camera
model and a PAM. Based on the generic camera model, CIIR
for planar and 3D objects achieves better image quality in
terms of reconstruction fidelity and the preservation of high
spatial frequency components than the previous method. This
shows that the nonstandard configuration in the IIS can be
effectively compensated. Furthermore, based on this generic
camera model, 3D positions of an object can be reconstructed
in a Euclidian coordinate frame.

Future work will include improving the quality of image re-
construction and the precision of 3D reconstruction. The op-
tical constraints enabled by the multiview nature of the
integral imaging process can be further explored. By incorpor-
ating additional prior information such as the interrelation-
ship between lenslets, parameterization and optimization
can be introduced to further improve the calibration in terms
of efficiency and accuracy.

Fig. 11. (Color online) Difference between the GCM and PAM.

Fig. 12. (Color online) (a) Experiment setup for 3D reconstruction.
(b) A top-down view of the setup in (a). A ping-pong ball is placed at
the points marked a1–a9 and b1–b9. (c) 3D reconstruction result com-
pared with ground truth.
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