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Information Entropy-Based Viewpoint Planning for
3-D Object Reconstruction

Y. F. Li, Senior Member, IEEE, and Z. G. Liu

Abstract—In this paper, we present an information entropy-
based viewpoint-planning approach for reconstruction of freeform
surfaces of three-dimensional objects. To achieve the reconstruc-
tion, the object is first sliced into a series of cross section curves,
with each curve to be reconstructed by a closed B-spline curve.
In the framework of Bayesian statistics, we propose an improved
Bayesian information criterion (BIC) for determining the B-spline
model complexity. Then, we analyze the uncertainty of the model
using entropy as the measurement. Based on this analysis, we pre-
dict the information gain for each cross section curve for the next
measurement. After predicting the information gain of each curve,
we obtain the information change for all the B-spline models. This
information gain is then mapped into the view space. The view-
point that contains maximal information gain about the object is
selected as the next best view. Experimental results show successful
implementation of our view planning method for digitization and
reconstruction of freeform objects.

Index Terms—B-spline, information entropy, 3-D reconstruc-
tion, uncertainty-driven, viewpoint planning.

1. INTRODUCTION

ECONSTRUCTING three-dimensional (3-D) object sur-

faces from 3-D data points is important to many appli-
cations such as reverse engineering, object recognition, inspec-
tion, computer graphics and medical imaging. Currently, a laser
range finder/scanner [1] is widely used for 3-D surface data
acquisition in industry. To increase the efficiency in the 3-D
imaging, the use of pattern projections has been explored [2].
Portable 3-D imaging systems based on such a principle have
been designed [3]. To plan the best viewpoints so that all the
information about the object surface can be acquired in an op-
timal way, the next best view (NBV) problem has been studied
in recent research. The problem of viewpoint planning [4] for
digitalization of 3-D objects can be treated in different ways,
depending on whether or not the object’s geometry is known be-
forehand [5], [6]. For an unknown object, since the number of
viewpoints and their viewing pose can not be determined prior
to data acquisition, the 3-D reconstruction has to be carried out
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in an incremental way with iterative cycles of viewpoint plan-
ning, data acquisition, registration, and view integration.

Over the years, different NBV algorithms have been pro-
posed in the literature. Connolly [7] used octree to represent
object space. The regions that have been scanned were labeled
as seen, regions between the sensor and surface as empty, and
all other regions as unseen. A set of candidate viewpoints was
enumerated with fixed increments around the object. The NBV
was calculated based on evaluation of the visibility of each can-
didate viewpoint. This algorithm is computationally expensive
and it does not incorporate the sensor geometry. Maver and Ba-
jesy [8] presented a solution to the NBV problem for a spe-
cific scanning setup consisting of an active optical range scanner
and a turntable. Unseen regions of the objects were represented
as polygons. Visibility constraints for the sensor to view the
unseen region were computed from the polygon boundaries.
However, this solution is limited to a particular sensor con-
figuration. Pito [9] proposed an approach based on an inter-
mediate position space representation of both sensor visibility
constraints and unseen portions of the viewing volume. The
NBV was determined as the sensor position that maximized
the unseen portion of the object volume. This approach was
demonstrated to have achieved automatic viewpoint-planning
for a range sensor constrained to move on a cylindrical path
around the object. Whaite and Ferrie [10] used superellipsoid
model to represent the object and defined a shell of uncertainty.
The NBV was selected at the sensor position where the uncer-
tainty of the current model fitted to the partial data points is
largest. This algorithm enables uncertainty-driven exploration
of an object to build its model. However, superellipsoid cannot
accurately represent objects with complex surface shapes. Fur-
thermore, surface visibility constraints were not incorporated in
the viewpoint-planning process. Reed and Allen [11] proposed
a target-driven viewpoint-planning method. The volume model
was used to represent the object by extrusion and intersection
operation. The constraints, such as sensor imaging constraint,
model occlusion constraint, and sensor placement constraint,
were represented as solid modeling volumes and incorporated
into the viewpoint planning. The algorithm involved expensive
computation on the volume in the solid modeling and intersec-
tion operation. Scott [12] considered viewpoint planning as in-
teger programming problem. Given a rough model of an un-
known object, a sequential set of viewpoints was calculated to
cover all surface patches of the object with the registration con-
straint. However, the object must be scanned before viewpoint
planning to obtain the prior knowledge about unknown objects.

This paper presents an information entropy based viewpoint-
planning method for the digitization and reconstruction of 3-D
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Fig. 1. Information entropy based viewpoint planning.

freeform object. The object is sliced into a set of cross section
curves, and a closed B-spline curve is used to reconstruct each
cross section curve by fitting to partial data points. An infor-
mation criterion is developed for selecting the B-spline model
structure. Based on the selected B-spline model, we use in-
formation entropy as the uncertainty measure of the B-spline
model, and analyze the uncertainty of each B-spline cross sec-
tion curve to predict the information gain for new measurements
to be taken. As a result, we can obtain the prediction of the in-
formation gain about the object. The information gain is then
mapped to the view space. The view that has the maximal infor-
mation gain about the object is then selected as the NBV. The
proposed information entropy based viewpoint-planning proce-
dure is illustrated in Fig. 1.

Our work is original in the parameter estimation for the NBV
problem. Different from Whaite’s method [10], we analyze and
reconstruct B-spline model in the framework of Bayesian statis-
tics. The B-spline model is more powerful in describing objects
than superellipsoids. In addition, we introduce the principle of
model selection by which our proposed improved Bayesian in-
formation criterion (BIC) makes the B-spline model adaptable
when newly acquired data are available. The rest of this paper is
organized as follows. In Section II, we describe the reconstruc-
tion of cross section curves with closed B-splines and introduce
the modified BIC for selecting the B-spline model structure.
In Section III, we define the information entropy of B-spline
model to analyze its uncertainty and predict information gain
about an object. In Section IV, we evaluate the visibility of can-
didate viewpoints for selecting NBV. Finally, we present the ex-
perimental results in implementing the proposed method in Sec-
tion V, followed by conclusions in Section VI.

II. B-SPLINE RECONSTRUCTION AND MODEL SELECTION
A. Why B-Spline?

For object surface reconstructions, the 3-D shape can be di-
vided into a series of cross section curves, each representing
the local geometrical feature of the object. These cross section
curves can be described by a set of parametric equations. For
reconstruction purposes using parametric equations, the most

common methods include spline function (e.g., B-spline) [13],
implicit polynomial and superquadric (e.g., superellipsoid) [10].
Compared with implicit polynomial, and superquadric, B-spline
has the following main advantages.

1) Smoothness and continuity, which allows a curve to con-
sist of a concatenation of curve segments, yet be treated
as a single unit.

2) Built-in boundedness, a property which is lacking in im-
plicit or explicit polynomial representation whose zero
set can shoot to infinity.

3) Parameterized representation, which decouples the =,y
coordinates to be treated separately.

B. Closed B-Spline Curve Approximation

Let a closed cubic B-spline curve consist of n 4 1 curve seg-
ments, defined by
n+3

)= Bjalt)- ®; §))
j=0

where p(t) = [z(t),y(t)] is a point on the B-spline curve
with location parameter ¢. B; 4(t) is the jth normalized cubic
B-spline basis function defined over the following uniform
knots vector:

[u,g,u,%u,huo?...,...,un+4]
~1,0,...,n+4]. (2

The amplitude of Bj;4(t) is in the range of (0.0, 1.0), and
the support region of B; 4(t) is compact and nonzero for ¢ €

[uj, wjta] (P )"+3 are the cyclical control points which satisfy
the following condltlons
P11 =P, Ppyo=P;, Pyy3="o. 3)

For a set of m data points 7 = (r;)™, = ([z;, y:])™,, let d°
be the sum of the squared residual errors between the data points
and their corresponding points on the B-spline curve, i.e.,

Z Ir: — p(t:)]|* = Z

i=1

2
n+3

Z B4t

“
From the cyclical condition of control points in (3), there
are only n + 1 control points to be estimated. The least square
(LS) estimation of the » + 1 control points are obtained from
the curve points by minimizing d? in (4) with respect to ® =
(@, @11 = [®.0,..., Pun, Pyo, ..., Pyn]". By factoriza-
tion of B-spline, two separate solut1ons are obtained in matrix
as follows:

®, = [B"B]"'B'z )
®, = [B"B]"'B"y
where X = [z1,..., 2,7,y = [y1,...,Ym]T, B is shown in

the equation at the bottom of the next page, and B} , = B; 4(t;).
Here, we adopt the chord length method, which is the most
popular one, for the parameterization of the B-spline. The chord
length L of a curve is calculated as follows:
m—+1

L= Z lri — riza]| (6)
i=2
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where r,,, 41 = r; for a closed curve. The ¢; associated with the
point g; is given as

lri —riafl

ti - ti_l + L tmax (7)

where t1 = 0 and ¢ = n + 1.

C. Model Selection With Improved BIC Criterion

It is known that for a given set of measurement data, there
exists a model of optimal complexity corresponding to the
smallest prediction (generalization) error for further data.
The complexity of a B-spline model of a surface is related
to its control point (parameter) number [13]. If the B-spline
model is too complicated, the approximated B-spline surface
tends to over-fit noisy measurement data. If the model is too
simple, then it is not capable of fitting the measurement data,
making the approximation results under-fitted. The problem of
finding an appropriate model, referred to as model selection, is
important for achieving a high level generalization capability.
Model selection has been studied from various standpoints in
the field of statistics, including information statistics, Bayesian
statistics, and structural risk minimization. The Bayesian ap-
proach [14], [15] is perhaps the most general and most powerful
model-selection method. Based on posterior model probabili-
ties, the Bayesian approach estimates a probability distribution
over an ensemble of models. The prediction is accomplished
by averaging over the ensemble of models. Accordingly, the
uncertainty of the models is taken into account, and complex
models with more degrees of freedom (DOFs) are penalized.

Given a set of models { M}, k = 1,2, ..., kpax} and data r,
the Bayesian approach selects the model with the largest poste-
rior probability. The posterior probability of model My, is

p(r | M) p(My
p(M ) = AT M)

o1 p(r | Mp)p(My)
where p(r | My,) is the integrated likelihood of model M}, and
p(Mj,) is the prior probability of model My. To find the model
with the largest posterior probability, we evaluate p(Mj, | r) for

k=1,2,..., knhax and select the model that has the maximum
p(Mjy, | ), that is

®)

M=arg =~ max — {p(M]|r)}
M,,)p(M
— arg max kp(r| k)p(M,) . 9)
Mich=1-okmax | 3275 p(r [ My,)p(My)

Here, we assume that the models have the same likelihood a
priori,sothat p(My) = 1/kmax, (k = 1,..., kmax). Therefore,
the model selection in (8) will not be affected by p(Mj,). This
is also the case with lez‘l" p(r | Mr)p(Mrp,), since it is not a
function of M}. Consequently, we can ignore the factors p(M},)
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and Zi‘:{ p(r| Mp)p(Mg) in computing the model criteria.
Equation (9) then becomes

M = arg max {p(r| My)}. (10)
My k=

To calculate the posterior probability of model My, we

need to evaluate the marginal density of data for each model

p(r | M), which requires multidimensional integration

e 21) = [

Jao,

p(r|{>kMk)p(¢'k |Mk)dq)k (11)
where ®, is the parameter vector for model My, p(r | ®4, M})
is the likelihood and p(®y | M) is the prior distribution for
model M;,.

In practice, calculating the multidimensional integration is
very hard, especially for obtaining a closed-form analytical so-
lution. The research in this area has resulted in many approxi-
mation methods for achieving this. The Laplace approximation
method for the integration appears to be a simple one and has be-
come a standard method for calculating the integration of mul-
tivariable Gaussians [14]. This gives

pr | My) = / p(x | B1, My)p(®y | M) d®,

D)
= (2m) /2| H (@) 7 ?p(x | 1, Mi)p(®1 | Mi)
(12)

where <i>k is the maximum likelihood estimate of ®, d;, de-
notes the number of parameters (control points for B-spline
model) in model Mg, and H (<i>k) is the Hessian matrix of
—log p(r|®y, M},) evaluated at &,

9P logp(r| B, My)
09,0®7T

H(®,) = (13)

o,=d,

This approximation is particularly good when the likelihood
function is highly peaked around ®,.. This is usually the case
when the number of data samples is large. Neglecting the terms
of p(®1|M;,) and using log in the calculation, the posterior
probability of model M}, becomes

. 1 .
{logp(r | @k, M) = 5 10g|H(‘I’k)|}-
(14)

M=arg N

max

kok=1,....kmax

The likelihood function p(r|®;, My,) of a closed B-spline
cross section curve can be factored into z and y components

as
p(r| @y, My,) = p(x | ®4,, My) 'p(Y|‘i’ky7Mk) (15)

where @km and tiJky can be calculated by (5).

A1 51
Bya+ B
52 52
Bya+ B

By'y+ Bl s

Biys+ B4
B}, +B:s,

By + Bilo

51 51 51
B34+ B34 0 Bha
52 52 52
B34+ Bhysa B 4
B3y + Byl Byy
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Consider the z component. Assuming that the residual
error sequence is zero mean and white Gaussian with variance
o2 (P ), we have the following likelihood function:

p(x| B, M) =

1 m/2 1 m—1
_ expy ———— 71— Br®, 2
(m,%w(%)) p{ 2 (o 2 P }
(16)
with sz(‘i’kx, M},) estimated by

m—1
. 1 .
~2 2
Py,) = — . — Br®r]”. 17
i (Pha) mkE—O[wk K Pho] (17)
Similarly, the likelihood function of the y component can
also be obtained. The corresponding Hessian matrix M} of
—log p(r|®, M},) evaluated at Py, is

BYB 0
- 62 (D4,
H(&) = | 0 g (18)
&iy((i)ky)

Approximating (1/2) log |H(®)| by the asymptotic ex-
pected value of Hessian (1/2)(dk. + diy)log(m), we can
obtain the BIC for selecting the structure of B-spline curve

M =

arg max

~mlog 67, (Bre)— T log 67, (Bry)
My k=1,....kmax 5

—5 (i +diy) log(m)
(19)

where dj, and dj, are the number of control points in z and y
directions, respectively, m is the number of data points.

In the conventional BIC criterion as shown in (19), the first
two terms measure the estimation accuracy of the B-spline
model. In general, the variance (3']3 estimated from (17) tends
to decrease with the increase in the number of control points.
The smaller the variance value in 67, the bigger the value of
the first two terms (as the variance is much smaller than one)
and, therefore, the higher the order (i.e., the more the control
points) of the model resulting from (19). However, if too
many control points are used, the B-spline model will over-fit
noisy data points. An over-fitted B-spline model will have
poor generalization capability. Model selection, thus, should
achieve a proper tradeoff between the approximation accuracy
and the number of control points of the B-spline model. With
a conventional BIC criterion, the same data set is used for
estimating both the control points of the B-spline model and
the variances. Thus, the first two terms in (19) cannot detect
the occurrence of over-fitting in the B-spline model selected.
In theory, the third term in (19) could penalize over-fitting as
it appears directly proportional to the number of control points
used. In practice, however, we note from our experiences that
the effect of this penalty term is insignificant, compared with
that of the first two terms. As a result, the conventional BIC
criterion is rather insensitive to the occurrence of over-fitting
and tends to select more control points in the B-spline model to
approximate the data point, which normally results in a model
with poor generalization capability.

The reason for the occurrence of over-fitting in the conven-
tional BIC criterion lies in the way the variances o}, and o,%y

are obtained. A reliable estimate of 0, and 0}, should be based
on resampling of the data. In other words, the generalization ca-
pability of a B-spline model should be validated using another
set of data points, rather than the same data used in obtaining
the model. To achieve this, we divide the available data into two
sets: a training sample and a prediction sample. The training
sample is used only for model estimation, whereas the predic-
tion sample is used only for estimating data noise sz and ozy.
For a candidate B-spline model M;, with dj, and dj, control
points in the x and y directions, the BIC in (19) is, thus, evalu-
ated via the following steps:

1) estimate the model parameter ®, using the training
sample by (5).

2) estimate the data noise o; using the prediction sample by
7).

If the model <i>k fitted to the training data is valid, then the
estimated variance &3 from the prediction sample should also
be a valid estimate of the data noise. If the variance &; found
from the prediction sample is unexpectedly large, we have rea-
sons to believe that the candidate model fits the data badly. It is
seen that the data noise &4, estimated from the prediction sample
will, thus, be more sensitive to the quality of the model than the
one directly estimated from training sample, as the variance o3
estimated from the prediction sample also has the capability of
detecting the occurrence of over-fitting.

III. UNCERTAINTY ANALYSES

In Section II, we described our approach to model selection
and parameter estimation in the framework of Bayesian statis-
tics. In this section, we will discuss how the same framework for
B-spline curve approximation relates to the task of selecting the
NBYV for acquiring new data. For simplification of description,
we will replace ®, by ® to show that we are dealing with the se-
lected “best” B-spline model with dy, and dy,, control points. To
obtain the approximate B-spline model, we will predict the dis-
tribution of the information gain about the model’s parameter ®
along each cross section curve. A measure of the information gain
will be designed, whose expected value will be maximal when the
new measurement data are acquired. The measurement is based
on Shannon’s entropy whose properties make it a sensible infor-
mation measure here. We will describe the information entropy
of the B-spline model and how to use it to achieve maximal in-
formation gain about the parameters ® of the B-spline model.

A. Information Entropy of a B-Spline Model

Given ® and the data points r = (r;)7,; assumed to be sta-
tistically independent, with Gaussian noise of zero mean and
variance o2, the joint probability of r = (r;)™, is

1

P(I‘|‘I’)=W

Equation (20) has an asymptotic approximation representa-
tion defined by [16]

p(r|®) ~ plr | &) exp [—%@ )7 H,(@ - @)} @
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where @ is the maximum-likelihood estimation of ® given the
data points, and H,, is the Hessian matrix of — log p(r|®) eval-
uated at & given data points r = (r;)™,.

The a posteriori distribution p(® | r) of the given data is ap-
proximately proportional to

P@ 1) ~ p(r| &)
exp |- (@ = B, (8 - 8)| @) (2

where the p(®) is the a priori probability of the B-spline model
parameters. If the a priori has a Gaussian distribution with mean
& and covariance H,jll, we have
1 . .
p(®|r) o exp {—5(@ - ®)"'H,.(® - q»)} . (23)

From Shannon’s information entropy, the conditional entropy

of p(® |r) is defined by
En(®) = [p(®]0) logp(@ |1)de. (4)
If p(® | r) obeys Gaussian distribution, the corresponding en-
tropy is [17]
1
Ep = A+ ;log (detH,;") (25)
where A is a constant.

The entropy in (25) measures the information about the
B-spline model parameters, given data points (ri,...,rp).
The more information about ®, the smaller the entropy will be.
In this paper, we use the entropy in (25) as the measurement of

the uncertainty of the model parameter ®. Thus, to minimize
E,,, we will make det H ,;1 as small as possible.

B. Information Gain

In order to predict the distribution of the information gain,
we assume a new data point r,,y; collected along a contour.
The potential information gain is determined by incorporating
the new data point r,, 1. If we move the new point r,; along
the contour, the distribution of the potential information gain
along the whole contour can be obtained. Now, we will derive
the relationship between the information gain and the new data
point ry, 4.

Assume that a new data point r,,+1 has been collected.
Let P(®|ry,...,rm,Tme1) be the probability distribution
of model parameter ® after a new point r,,4; is added. Its
corresponding entropy is Ep,41 = A + 3 log (detH ;li_l). The
information gain then is

1 detH !
AE = Ep — Eppyy = = log ——m (26)
2 TdetH,

From (18), the new data point r,,, ; will incrementally update
the Hessian matrix as follows:

mAl = 0 J%-BZ;HBmH
(27)
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Fig. 2. Viewpoint representation.
where &fn_ﬂ ~ 62,. B,uy1 is defined by
D] _ Ipm+1 nm+1 nm+1 nm+1 nm-+1
Byy1 = [By ™ + By, BU + By, B
The determinant of H,, 41
det Hm+1
L.BT B 0
det T4 | 77 —mitomH H-!
~ de e L a7 &
0 57" B 1 Bmi1 m
-det H,,

can be simplified to
detHp i1 &~ (14 By - [BTB]™ - BT, |)*-detH,,. (28)
Since det H=1 = 1/ det H, (26) can be simplified to

AE =log(1+ Bmy1-[B'B]"*-BL. ). (29

Assuming that the new additional data point r,,4; travels
along the contour, the resulting potential information gain of
the B-spline model will change, according to (29). In order to
reduce the uncertainty of the model, we would like to have the
new data point at such location that the potential information
gain attainable is largest. Therefore, after reconstructing the sec-
tion curve by fitting partial data acquired from previous view-
points, the NBV should be selected as the one that sense those
new data points which give the largest possible potential infor-
mation gain for the B-spline model.

IV. NEXT BEST VIEW
A. View Space Representation

A view space is a set of 3-D positions where the sensor
(vision system) takes measurements. We assume that the 3-D
object is within the field of view and the depth of view of
the vision system. The optical settings of the vision system
are fixed. Based on these assumptions, the parameters of the
vision system to be planned are the viewing pose of the sensor.
In this section, the candidate viewpoints are represented in a
spherical viewing space. The view space is usually a continuous
spherical surface. To reduce the number of viewpoints used in
practice, we discretize the surface by using the icosahedron
method. In addition, we assume that the view space is centered
around the object, and its radius is equal to a priori specified
distance from the sensor to the object. As shown in Fig. 2,
since the optical axis of the sensor passes through the center of
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the object, the viewpoint can be represented by pan-tilt angles
#([—180°,180°]) and #([—90°,90°]).

According to the representation of the viewing space, the fun-
damental task in the view planning here is to obtain the visibility
regions in the viewing space that contain the candidate view-
points where the missing information about the 3-D object can
be obtained without occlusions. The NBV should be the view-
point that can give maximum information about the object.

B. Viewpoint Evaluation

With the above view space representation, we can now map
the predicted information gain to the view space for viewpoint
planning. For a viewpoint v (6, ¢), we say one data point on the
object is visible if the angle between its normal and the view
direction is smaller than a breakdown angle « of the sensor. The
view space V, for each data point ry,, (k = 1,2,...) is the set of
all possible viewpoints that can see rj. The view space V}, can
be calculated via the following procedure.

1) Calculating the normal vector nj of a point rp(k =
1,2,...) on the object, using a LS error fitting of a 3 x 3
local surface patch in its neighborhood.

2) Extracting viewpoints from which ry is visible. These
viewpoints are denoted as view space V.

After the view space Vi, (k = 1,2,...) is extracted, we con-
struct a measurement matrix M. The components my, ; of an
l-by-w measurement matrix is given as

o <1’1k . V]'>7 if ry, is visible to Vj
Mg = { 0, otherwise 30)
where v; is the direction vector of viewpoint v;.

Then, for each view v(f, ¢), we define a global measure of the
information gain I(6, ¢) as the criterion to be summed over all
visible surface points seen under this view of the sensor. I(6, ¢)
is defined by

Li(05,0;5) = Y mak;- AE
kER;

€1y

where A F, is the information gain at surface point ry, which is
weighted by my, ;.

Therefore, the NBV (6*, ¢*) is one that maximizes the infor-
mation gain function of I(, ¢)

(0*7 ¢*) = gna'd)XI]<HJ7 (:bj)

VERV)

(32)

V. EXPERIMENTS

The information entropy based viewpoint-planning algorithm
is implemented as part of the work for 3-D object reconstruc-
tion. The setup of a general 3-D shape measurement system is
schematically shown in Fig. 3. The sensor mounted on a robot
consists of a projector that projects structured light onto the
object and a charge-coupled device (CCD) camera that cap-
tures the image of the illuminated object surface [2]. This range
sensor can give depth information of the scanned surface of an
object in the form of “data cloud.” In the current implementa-
tion, the object is placed on a stationary platform. The robot has
6 DOFs and is able to take a measurement of the object from
any viewing pose specified within its work space. The modeling

& ‘_\ e
Py CCD Camera

Projector

Fig. 3. System setup.

3% 3 25 2 15 - 8 o as

Fig. 4. Cross section curves after preprocessing.

process for a 3-D object consists of a sequence of four repeated
steps: acquiring data of the object surface from a viewpoint, reg-
istering the acquired data, integrating the new data with the par-
tial model, and determining the NBV. This cycle will be repeated
until the NBV terminates.

To slice the acquired “data cloud,” we define an interval dis-
tance between cross section curves in a certain direction (e.g.,
z direction) and project the data in the neighborhood of each
cross section curve onto the plane on which the cross section
curve lies. The preprocessing results of the 3-D “data cloud”
are shown in Fig. 4. Here, the interval between two cross sec-
tion curves was set as 1.5 mm and the neighborhood of each
cross section curve is set as 0.2 mm.

These points projected onto a cross section curve were dis-
tributed randomly. They need to be sorted out before the curve
reconstruction can be performed. For each section curve, these
projected points were transformed into polar coordinate system.
The phase angle was used to sort these points. To reconstruct
these cross section curves via B-splines, we need to select an
appropriate model structure first. The model selection is impor-
tant for automated 3-D modeling, to account for the data already
acquired and to avoid over-fitting of the model.

A. Model Selection

In this section, the improved BIC criterion proposed will be
used to select the B-spline model to represent the cross section
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COMPARISON OF THE RESULTS OF OUR IMPROVED BIC WITH CONVENTIONAL BIC.
IN THE CASES OF PARTIAL DATA AND COMPLETE DATA AVAILABLE, RESPECTIVELY
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In the case of complete data available
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curves. Two cross section curves from a series of sliced cross
section curves will be used as examples to demonstrate the ef-
fectiveness of our approach. To evaluate the selected models,
the following performance indexes are used.

1) Model complexity, which refers to the number of control
points of the B-spline model.

2) Estimation accuracy, which is defined as the mean
squared errors (MSEs) between the actual data points
and the reconstructed model chosen by a selection
criterion.

The model complexity and estimation accuracy provide
insights into the appropriateness of model fitting (i.e., over-
fitting or under-fitting). In the current implementation, uniform
B-spline is used for reconstructing the cross section curves,
whose control points are uniformly distributed in the interval
between the two end points of the curve in the parameter space.
In selecting the model for a cross section curve, the number

of control point is iteratively incremented by one from the
initial minimum number, while the corresponding BIC value is
evaluated using (19). The minimum number of control points
of a B-spline model is normally set as six here.

We first conducted experiments with only partial data of an
object surface acquired by our range sensor from the first view.
The object is the head of a statue as shown in Fig. 4. For each
of the cross section curves, some data points were available for
its reconstruction. Here, we describe the modeling process via
an example in reconstructing one cross section curve. To im-
plement our improved BIC, the available data were first divided
into two parts: a training sample set and a prediction sample
set. The training sample set was used to estimate the parameters
of a candidate B-spline model by (5), followed by the estima-
tion of the variance o}, and o}, by (17) using the prediction
sample set. The corresponding BIC value for each of the can-
didate B-spline models was evaluated by (19). The model with
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Fig. 5. Reconstruction of cross section curve and predicted potential information gain under the first viewpoint. (a) Data on a cross section curve acquired from
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Fig. 6. The reconstructed cross section curves.

maximum BIC value was selected as the optimal one to approx-
imate the data points, giving the resulting model complexity of
nine. This model was then verified by using another set of data
on the same cross section. The resulting curve is given in the
second row in Table I. The estimation accuracy which is the
mean squared errors between the actual data points and the re-
constructed model was found to be 0.0406 mm. As a compar-
ison, the conventional BIC was also applied to the same curve.
However, all 240 data points were used in selecting the model
via evaluating the BIC value by (19), giving the selected model
complexity of 150. Again, using another set of data (the same set
as used in the above verification), this model was verified, with

100 ="
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'
\
\
\
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&
i
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Fig. 7. “View space visibility” for the first NBV.

the resulting curve given in the third row in Table 1. The esti-
mation accuracy in this case was found to be 1.8015 mm. This
large error shows that the conventional BIC results in over-fitted
approximation for the whole curve via the partial data. This
illustrates the limitation of the conventional BIC criterion: its
insensitivity to over-fitting. Note that in Table I, the scales of
the figures are set differently, which is to show the resulting er-
rors in the reconstructed curves by different criteria which are
significantly different in magnitudes. Similar phenomena were
observed for other cross section curves. Here, only the results
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The process in determining the second NBV. (a) Data acquired from the first two viewpoints after slicing. (b) Data on a cross section acquired from the

first two viewpoints. (c) Reconstructed B-spline curve based on the first two viewpoints. (d) The information gain based on the first two viewpoints. (e) “View

space visibility” for determining the second NBV.

for one curve are given in Table 1. In practical implementation,
some physical constraints need to be given. For example, due to
self-occlusion, the back of the object will not be visible from the
first view. Some points were, thus, defined between the two end
points of the available cross section data to limit the range of oc-
cluded part of the object. It is useful and reasonable to confine
the occluded part of the object within the range of the two end

points of the available data beyond which the part would actu-
ally become visible to the current view. These defined points are
highlighted in the box in the figures in the first row in Table I.
The second experiment conducted was the one when com-
plete data of a surface were available. The procedures in re-
constructing the cross section curves were the same as those in
the first experiment. For each section curve, verifications of the
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viewpoints. (c) The information gain based on the first three viewpoints. (d) “View space visibility” for determining the third NBV.

models reconstructed by the two methods (our improved BIC
and conventional BIC) were again conducted using another set
of data (different from that used for reconstructing the model)
on the same curve, with the results listed in the second column in
Table I. From the results, it is observed that even with complete
data for a curve, the conventional BIC still results in over-fitted
model as seen in the large errors in the verification, while our
improved BIC method can reconstruct these cross section curves
satisfactorily. With more data available in this experiment, the
complexities of the selected models increased using both selec-
tion criteria. Yet, the conventional BIC performed poorly with
apparent over-fitting in its reconstructed models.

B. Determining the NBV

In Section V-A, we showed how our improved BIC criterion
selects the B-spline model for the reconstruction of cross section
curves. In this section, we will analyze the uncertainty of the
B-spline model selected by our improved BIC for each cross
section curve, and predict the information gain of the model
along each curve using (29). Based on this analysis, we then
map the information gain onto the view space. The view with
maximum information gain is selected as the NBV. Then the
vision sensor can take another measurement from the NBV to

update the B-spline model. We will take one cross section curve
as an example to illustrate the process in determining the NBV.

1) Determining the First NBV: First, we take the measure-
ment from an arbitrary initial viewpoint to acquire the first part
of data of the unknown object. The data points on one of the
cross section curves are shown in Fig. 5(a). The box in Fig. 5(a)
contains the points to confine the range of the occluded part of
the object. Since these points are few in number, their effects
on the predicted information gain of the B-spline model can be
ignored. Fig. 5(b) is the reconstructed B-spline model using the
partial data acquired from the first viewpoint. This model is a
rough approximation for the whole cross section curve. Using
this model, we predict the potential information along the re-
constructed curve. As shown in Fig. 5(c), the place on the curve
where the data are missing (the missing part) corresponds to
high potential information gain. This indicates that the occluded
part should be given high priority in the next measurement. Note
that the information gain [in Fig. 5(c)] is given in the parameter
space of the B-spline curve here.

Following the above procedure, each cross section curve is
reconstructed in a B-spline model, with the corresponding in-
formation gain obtained. Here, each cross section curve is con-
sidered to be equally important, so that we can normalize the
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Fig. 10. Reconstruction of a cross section curve and information gain. (a) Data acquired from the first four viewpoints. (b) Data on a cross section curve acquired
from the first four viewpoints. (c) Reconstruction result of a cross section curve based on the first four viewpoints. (d) The information gain based on the first four

viewpoints.

predicted information gain for each of the cross section curves
covered by the current view. Fig. 6 shows all the cross section
curves reconstructed from the 3-D data points taken from the
first viewpoint.

In the above reconstruction, since only the data points from
the first viewpoint are available, the obtained B-spline model
cannot describe the whole object accurately. Yet, it enables us
to obtain a rough shape and the information gain about the ob-
ject. Based on the reconstructed partial model, we then map the
predicted information gain onto the view space. As a result, we
can obtain the relationship between the predicted information
gain about the object and the viewpoints, which is also referred
to as “View Space visibility.” As shown in Fig. 7, the viewpoint
at [—3.0°,107°] that has maximum information gain is, thus,
selected as the NBV.

2) Determining Further NBVs: After the first NBV was se-
lected, the robot was commanded to move the vision sensor to
this viewpoint to take new measurement. The newly acquired
data were then sliced and registered, to give the data acquired
from the first two viewpoints as shown in Fig. 8(a).

Using the available data, model selection and information
gain prediction were performed following the same procedures
as described above. For an example, cross section shown in
Fig. 8(b), the newly reconstructed curve is given in Fig. 8(c)

TABLE 11
THE RESULTS IN THE VIEW PLANNING FOR THE STATUE

Next Best View viewpoit ~ INBV ~ 2"NBV  3YNBV
Model complexity 7 11 22 26
Entropy of B-spline -15.81 -16.23 -18.95 -19.79

Fig. 11. Final reconstruction result of the statue.

and the updated information gain is given in Fig. 8(d). The pre-
dicted information gains for all the cross section curves were
then mapped onto the view space, to give the updated view space
visibility [shown in Fig. 8(e)] for determining the second NBV.
From this view space visibility map, the second NBV was se-
lected at [5°, 160°].
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Fig. 12. Reconstruction of cross section curves and predicted information gain. (a) Data acquired from the first viewpoint of the duck model. (b) Data on a cross
section acquired from the first viewpoints. (c) Reconstructed B-spline curve. (d) The information gain. (e) “View space visibility” for the first NBV.

The above-described procedures in determining the NBV and
acquiring new data are repeated for subsequent next NBVs. The
procedures and results in determining the third NBVs are given
in Fig. 9. Each time, when new data are available from the
new viewpoint, the corresponding cross section curves [e.g., the

curve in Fig. 5(b)] are updated [as shown in Figs. 8(c) and 9(b)].
The prediction of the information gain is also updated at each
new viewpoint, as seen in Figs. 8(d) and 9(c). As a result of the
updated “view space visibility” evaluation at the second NBV's
[see Fig. 9(d)], the third NBV was selected at [7°, —10°].
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TABLE III
THE RESULTS IN VIEW PLANNING FOR THE DUCK MODEL

Next Best View 1% viewpoint 1" NBV 2" NBV
Model complexity 7 35 68
Entropy of B-spline -14.26 -20.23 -30.56

3) Complete Reconstruction: After the third NBV is deter-
mined, we obtained the complete data about the object as shown
in Fig. 10(a). The complete data points and final reconstruction
result of a cross section curve is shown in Fig. 10(b) and (c),
respectively.

As shown in Figs. 5(c), 8(d), and 9(c), the information gain
has an outstanding peak on the part where the 3-D data are
missing. This peak will become less and less outstanding with
the increase of the 3-D data available from new viewpoints.
When complete data on these cross section curves are obtained
(as from the third NBV here), the peak in the information gain
becomes nonapparent and appears more “noise, ” like [as seen
in Fig. 10(d)], which indicates that there are no apparent missing
data or occluded parts on the on the object surface. The disap-
pearance of the peak (significant decrease in the peak value) in
the information gain was used as the termination condition in
automated planning of the NBVs.

From the experiment results, it is observed that the recon-
structed model complexity tends to increase with the availability
of additional data, which indicates that the model can describe in
more and more details about the previously unknown object as
new measurements are taken. At the same time, the uncertainty
about the object decreases gradually. The results for a typical
cross section curve are shown in Table II. The finally recon-
structed model is visualized in Fig. 11. The final reconstruction
accuracy evaluated using MSE between the actual data points
and the reconstructed cross section B-spline curves was 0.0061
which is quite satisfactory.

C. Another Example

Another experiment was also conducted using a model of a
duck. For simplicity, we only give the results (in Fig. 12) to show
the procedures of determining the first NBV.

The viewpoint [0°,175°] with maximum information gain
was selected as the NBV. The procedures of determining other
NBVs are the same as those described in above section.
In this example, three viewpoints in total were needed to
reconstruct the duck model. The results in view planning for
a typical cross section curve are shown in Table III. The
accuracy of the finally reconstructed object surface is 0.0076.
The reconstructed object is shown in Fig. 13. It is observed
that the model complexity for the finally reconstructed cross
section curve (68) here is higher than that for the example
curve (26) in the previous experiment. This is due to the
difference in the shapes from the actual data points. The shape
of the former curve [partly given in Fig. 12(b)] is simpler and
smoother than the latter [Fig. 10(b)]. A higher complexity in
the selected model indicates the higher level of confidence in
the reconstruction for a simpler shape. For a complex shape,
a lower complexity in the selected model gives it stronger

IEEE TRANSACTIONS ON ROBOTICS, VOL. 21, NO. 3, JUNE 2005

Fig. 13.  The finial reconstruction result of the duck model.
ability in preventing over-fitting the data, which is of particular
importance for NBV planning.

VI. CONCLUSION

In this paper, we present a novel viewpoint-planning method
by incrementally reducing the uncertainties of the reconstructed
models. With this method, the object’s surface is first decom-
posed into a set of relative simple cross section curves, with
each to be reconstructed by a set of closed B-spline curves. Then
the uncertainties of the B-spline models are analyzed with the
information entropy as the measurement of the uncertainty for
guiding the selection of the NBV. The information gain of the set
of cross section B-spline model is predicted and mapped onto
the view space. The viewpoint with maximum visibility is se-
lected as the NBV. In addition, an improved BIC criterion is
proposed for the model selection. With this new criterion, the
acquired data points are divided into two parts: one for esti-
mating the B-spline model parameters and the other for esti-
mating the data noise. The re-sampling of the data enables reli-
able estimate of noisy data, since the generalization capability
of a B-spline model should be validated using another set of
data points rather than those used for the approximation. Com-
pared with the conversional BIC criterion, the model selected
with our improved BIC criterion is more sensitive to over-fitting
and, thus, has better generalization capability, which is particu-
larly important for NBV planning.
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