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Uncalibrated Euclidean 3-D Reconstruction Using
an Active Vision System

Y. F. Li, Senior Member, IEEE, and R. S. Lu

Abstract—Uncalibrated reconstruction of a scene is desired in
many practical applications of computer vision. However, using a
single camera with unconstrained motion and unknown parame-
ters, a true Euclidean three-dimensional (3-D) model of the scene
cannot be reconstructed. In this paper, we present a method for
true Euclidean 3-D reconstruction using an active vision system
consisting of a pattern projector and a camera. When the intrinsic
and extrinsic parameters of the camera are changed during the re-
construction, they can be self-calibrated and the real 3-D model of
the scene can then be reconstructed. The parameters of the pro-
jector are precalibrated and are kept constant during the recon-
struction process. This allows the configuration of the vision system
to be varied during a reconstruction task, which increases its self-
adaptability to the environment or scene structure in which it is to
work.

Index Terms—Homography, self-calibration, three-dimensional
(3-D) reconstruction, uncalibrated reconstruction.

I. INTRODUCTION

RECONSTRUCTION of the three-dimensional (3-D)
model of a scene from images is important to many

practical applications, including reverse engineering, object
recognition, and synthesis of virtual environments. Passive
vision, including stereovision, has been attempted for this
purpose. In the past, this would require dedicated devices for
calibrating the intrinsic and extrinsic parameters of the cameras.
Due to the special calibration target needed, such a calibration
is normally carried out offline before a task begins. In many
practical applications, online calibration during the execution
of a task is needed. Over the years, efforts have been made in
the research to achieve efficient online calibrations. Maybank
and Faugeras [1] suggested the calibration of a camera using
image correspondences in a sequence of images from a moving
camera. The kinds of constructions that could be achieved from
a binocular stereo rig were further addressed in [2]. It was
found that a unique projective representation of the scene up to
an arbitrary projective transformation could be constructed, if
five arbitrary correspondences were chosen, and an affine rep-
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resentation of the scene up to an arbitrary affine transformation
could be constructed, if four arbitrary correspondences were
adopted. Hartly [3] gave a practical algorithm for Euclidean
reconstruction from several views with the same camera based
on Levenberg–Marquardt minimization. A new approach based
on stratification was introduced in [4], and various efforts have
been made in the research in recent years [5].

In this context, much work has been conducted in Euclidean
reconstruction up to a transformation. Pollefeys et al. [6]
proposed a method to obtain a Euclidean reconstruction from
images taken with an uncalibrated camera with variable focal
lengths. This method is based on an assumption that although
the focal length is varied, the principal point of the camera
remains unchanged. This assumption limits the range of
applications of this method. Similar assumptions were also
made in the investigations in [7] and [8]. In practice, when the
focal length is changed (e.g., by zooming), the principal point
may vary as well. In the work by Heyden and Åström [9], they
proved that it is possible to obtain Euclidean reconstruction
up to a scale, using an uncalibrated camera with known aspect
ratio and skew parameters of the camera. A special case of a
camera with a Euclidean image plane was used for their study.
A crucial step in the algorithm is the initialization, which will
affect the convergence. How to obtain a suitable initialization
was still an issue to solve [10]. Kahl [11] presented an approach
to self-calibration and Euclidean reconstruction of a scene,
assuming an affine model with zero skew for the camera. Other
parameters, such as the intrinsic parameters, could be unknown
or varied. The reconstruction, which needed a minimum of
three images, was an approximation and was up to a scale.
Pollefeys et al. gave the minimum number of images needed for
achieving metric reconstruction, i.e., to restrict the projective
ambiguity to a metric one according to the set of constraints
available from each view [10].

The above reconstruction methods are based on passive vi-
sion systems. As a result, they suffer from the ambiguity of cor-
respondences between the camera images, which is a difficult
problem to solve, especially when free-form surfaces [12] are
involved in the scene. To avoid the problem, active vision can
be adopted. Structured light or pattern projection systems have
been used for this purpose. To precisely reconstruct a 3-D shape
with such a system, the active vision system, consisting of a pro-
jector and a camera, needs to be carefully calibrated [13], [14].
The traditional calibration procedure normally involves two sep-
arate stages: camera calibration and projector calibration. These
individual calibrations are carried out offline, and they have to
be repeated each time the setting is changed. As a result, the ap-
plications of active vision systems are limited, since the system
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configuration and parameters must be kept unchanged during
the entire measurement process. In some applications, such as
seabed metric reconstruction with an underwater robot, when
the size or distance of the scene changes, the configuration and
parameters of the vision system need to be changed to optimize
the measurement. In such applications, uncalibrated reconstruc-
tion is needed. In this regard, efforts have been made in re-
cent research. Fofi et al. [15] studied the Euclidean reconstruc-
tion by means of an uncalibrated structured light system with
a color-coded grid pattern. They modeled the pattern projector
as a pseudocamera, and then the whole system as a two-camera
system. Uncalibrated Euclidean reconstruction was performed
with varying focus, zoom, and aperture of the camera. The pa-
rameters of the structured light sensor were computed according
to the stratified algorithm [4], [5]. However, it was not clear
how many of the parameters of the camera and projector could
be self-determined in the uncalibrated reconstruction process.
Further investigation is needed in uncalibrated Euclidean 3-D
reconstruction, using an active vision system when the param-
eters of the camera and the configuration of the vision system
are changed.

In this paper, we present a method of uncalibrated Euclidean
3-D reconstruction using an active vision system consisting of
a light pattern projector and a camera. The pattern projector is
assumed to be precalibrated offline, whereas both the intrinsic
and extrinsic parameters of the camera can be changed or even
totally unknown at the beginning of a reconstruction task. This
allows uncalibrated reconstruction of the 3-D models of a scene
and makes the vision system self-adaptable to the environment
in which it is to work. This paper is organized as follows. In
Section II, we introduce the notations and the basic principles
related to projective geometry which will be used throughout
the paper. Section III gives the projective model of our active
vision system. The calibration method for the light pattern pro-
jector is described in Section IV. In Section V, the method for the
uncalibrated Euclidean 3-D reconstruction is developed. Sec-
tion VI gives the experimental results in the implementation.
Section VII contains some conclusions drawn from the investi-
gation.

II. PROJECTIVE GEOMETRY IN 3-D SPACE

In this section, we will derive and prove some theorems re-
lated to projective geometry which will be used thereinafter.
First, we will define the notations used in the paper.

represent the projective planes. The image plane of
the charge-coupled device (CCD) camera is defined by , and
the th light stripe plane by .

represent the coordinate
frames. The subscript “2” specifies a 2-D coordinate frame,
and “3” defines a 3-D coordinate frame. We denote the known
world coordinate frame by , image coordinate system by

, and the coordinate frame of the th stripe light plane by
. The notation usually represents both and ,

when not given explicitly.
. An italic upper-case letter refers

to a point in space, which may be on a line or a plane. The
bold italic upper-case letter is used to denote the regular
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Fig. 1. Plane-to-plane homography.

coordinates, e.g., . The homogeneous
or projective coordinates are denoted by adding a “ ,” e.g.,

. Similarly, an italic lower-case
letter refers to a point in image plane or stripe light plane
relative to the projective space. The bold one refers to its 2-D
coordinates, e.g., and its homogeneous one

. The reader is reminded that and ,
for any nonzero scalar , denote the same point.

A. Homography

In 3-D projective geometry, the term homography refers to
the plane-to-plane transformation in the projective space [16],
[17]. Given four or more distinct noncollinear points , where

for , on a plane , and another four or
more distinct noncollinear points on the other plane ,
there is one and only one perspectivity under a projective center

, which carries the first point set, respectively, into the second.
There exists a unique homography , defined up to a scale, such
that

(1)

where ’s are unknown scalars, and

is a matrix

Definition 1: Under a projectivity in projective space , a
point is said to be an invariant point if ; a line

is said to be an invariant line if ; a line is said to
be pointwise invariant if and .

Lemma 1: A projectivity relating two planes in a projec-
tive space is perspective if and only if the common line of the
two planes is pointwise invariant [18].

Fig. 1 explains the implication of this lemma, which can be
seen as a natural extension of a similar theorem concerning the
projectivity relating two lines on a plane.

Theorem 1: In projective space , if two projective planes
and have homographies and with respect to a

common projective plane under a projective center , then
the two projective homographies will follow:

(3)

(4)
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Fig. 2. Relations between the homographies of two planes in a projective
space.

where is a scale factor. is the homogeneous coordinates of a
arbitrary point on the cross line between the light planes 1 and 2,
with respect to a world coordinate system. and represent
the normal vectors of the two projective planes, respectively.

and , and and , are the two planes’ transformations
relative to the world coordinate system, respectively. They are
related by

(5)

if defining the principal points of the local coordinates on the
two planes as relative to the world coordinate
system. The other constant matrices are

(6)

Proof: As shown in Fig. 2, if there exist three projective
planes and in the projective space under the pro-
jective center , let the world coordinate system be , the 3-D
local coordinate system of plane be , and that of plane

be . Then, according to (1), we have

(7)

A point relative to is given
by . In the same way,
is represented as relative to frame . Let

and be these points in and , respectively,
and then we have

(8)

Assume an arbitrary point on the intersection line between
the two planes, and , and we have
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Integrating the above formula yields

(9)

Expanding the above equation, we obtain

(10)

From (9), it is seen that the scale factor is unique. That is
to say, for all points on the common line of the two planes, the
factors are equal.

B. Cross Ratio

Assume four collinear points on the line of the plane
in 3-D space, as illustrated in Fig. 3. Based on the properties of
projective geometry, the four points’ correspondences projected
on the projective plane (such as a CCD camera-image plane)
under projective center are collinear on the corresponding line

of the line . Thus, we have the following theorem.
Theorem 2: If four collinear points are projected

from a vertex into four collinear points , then [19]

(11)

where is called cross ratio and is given by

(12)

This theorem implies an important property of projective ge-
ometry: cross ratio is invariant under projection. In (12), none
of . In case one of or ,
we set if if

if and if [20].
The cross ratio of any four points on a line is independent of
the coordinate system established for the line. In particular, if
points are four points of the line , with parameters

, then

(13)

III. ACTIVE VISUAL SENSING USING PATTERN PROJECTIONS

The structure of our vision system is illustrated in Fig. 4. A
projector is used to illuminate the scene to be measured with
a pattern of light which consists of plane stripes here. Each
of the stripes intersecting with the scene produces a deformed
curve on its light plane in 3-D space . The pattern of the
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Fig. 4. Structure of the active vision system.

curves is then detected using a camera, and the scene can be
reconstructed in the image processing.

Here, we will model the system via homographic transfor-
mation of each light stripe plane relative to the camera. As-
sume a world coordinate system with three coordinate axes

. For each of the stripe planes, if we know a point on
it, then we can define a coordinate frame on it. A simple way
is to translate the origin of the world coordinate system to this
known point on the stripe light plane, and then rotate it around
a vector perpendicular to its axis and the normal vector of the
stripe light plane until its plane is aligned with the stripe light
plane.

Suppose the normal vector of the th stripe light plane is
in the frame . The angle between

and the axis of the frame , is simply the
inner product of the two vectors

(14)

The unit vector, , perpendicular to both the
axis of the frame and the normal vector , is

(15)

Then the rotation matrix can be given by Rodrigues’ formula

(16)

where is the skew-symmetric matrix, i.e.,

(17)

If and are parallel, then , and .
Assuming the origin of the frame being

, the transformation between the frames
and can be represented by

(18)

If an arbitrary point on the stripe light plane is defined as
, its homogeneous coordinates are

. Then matrix would trans-
form the world point in frame into the following in
frame :

Thus, the coordinate relation between the world coordinate
system and the coordinate system of stripe light plane
follows:

(19)

where is the corresponding homogenous
coordinates of in frame ; is defined in (6). The
equation of the stripe light plane in frame is given by

(20)

As for the camera, we will model it as a projective one using
a pinhole model. As shown in Fig. 4, the optical center of
the camera is used as the projective center . The coordinate
system on the image plane is defined to have its origin at the
upper-left corner of the image plane, as shown in Fig. 4. We
denote this coordinate frame as . According to (2), given

, the relation between them satisfies

Substituting this equation into (19), we obtain

(21)

That is

(22)

The formula can be expanded to

(23)

where . Equations (22) and (23) are the model
equations of our vision system using the pattern projection.

IV. PRECALIBRATION OF THE PROJECTOR

In our work, the projector is precalibrated at an offline stage.
Although this requirement seems to be a limitation of the ap-
proach, from the engineering point of view, this is acceptable,
as a projector can be expected to be accurately calibrated at the
manufacturer or laboratory floor. In many practical applications,
it is the camera and its relative pose that need to be online ad-
justed. Assuming a calibrated projector allows more camera pa-
rameters to be changed and calibrated online [13], [14]. Here,
rather than using affine transform [11], the calibration follows
the plane-based formulation using homography to take advan-
tage of the stripe planes in the pattern projection. This also over-
comes the potential problem due to the nonpoint nature of the
light source if the projector is modeled as a pseudocamera, as
adopted by others [15]. Here, our method to calibrate the stripe
light plane is based on cross-ratio invariant and point-to-point
calibration [16], [21]. To improve the calibration accuracy, we
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Fig. 5. Calibration of the light stripe projector.

used a pattern plane with many circles on it as a calibration
target to produce a number of known points in the world coor-
dinate system, instead of four known noncoplanar sets of three
collinear world points, as used by Huynh et al. [16].

Define

(24)

as the th image to world (2-D–3-D) transformation between
a 3-D point on the th stripe light plane, relative to frame
and its correspondence on the image plane of the camera. Here,

is a 4 3 matrix with 12 unknown parameters, but with
only 11 independent. For each stripe light plane and its , a
point on the plane and its correspondence on the image plane
will give three independent equations based on (23). Therefore,
to compute the transformation , at least four points’ 3-D
coordinates on the plane and their correspondences on the image
plane need to be known.

Here, a precision 1-D translation stage is used to move the cal-
ibration target to different positions, as shown in Fig. 5. When
the calibration pattern plane is moved to a different position,
the stripe light plane will intersect with line on the pattern
plane and produce a number of points . The correspondence
of the points, , will appear on the image plane. As mentioned
above, any four or more points in general positions define a
stripe light plane, and their corresponding image projections de-
fine a unique homography . To obtain , the calibration
pattern plane will be placed at two positions, at least. Three po-
sitions are normally sufficient to achieve a reasonably high cali-
bration accuracy. The calibration procedure is given as follows.
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Fig. 6. Uncalibrated reconstruction.

Step 1) Based on (12) and (13), compute the 3-D coordi-
nates of the points, , on the th stripe
light plane relative to the world coordinate frame

. Any point coordinates on a four-point collinear
line can be obtained if the coordinates of the other
three points are known. As shown in Fig. 6, more
than four known points can be collinear on both the
calibration pattern plane and the image plane. To im-
prove the computing accuracy of a point , besides
the unknown point , we should arbitrarily select
three other known points on the collinear line on the
pattern plane and their correspondence on the image
plane to compute the cross ratio and the point ’s
coordinates relative to the world coordinate frame.
Then use the mean value of these results as the esti-
mate of the point ’s coordinates.

Step 2) Compute the unit normal vector and correct the
point ’s coordinates. As shown in Fig. 6, if the
equation of the th stripe light plane relative to
frame were known, we could easily obtain its
unit normal vector . Unfortunately, this is not
the case in practice. Nevertheless, we can recon-
struct the equation of the stripe plane and its unit
normal vector from the known points . Under
the constraint condition of a stripe light plane, all
the points on the th stripe light plane should be
coplanar. In practice, due to projective and compu-
tational errors, the points may not all be exactly
coplanar. Thus, we use the least square method
to reconstruct the light plane and its unit normal
vectors. Then we project all of the points onto
the least square plane in Euclidean space , and
use the coordinates of these projective points as the
estimations for them.

Step 3) Establish the stripe light plane coordinate
system ( and ) and compute the
world-to-stripe light plane transformation . Since
the homography exists regardless of the choice of
the 2-D coordinate frames in the projective planes,

and can be arbitrarily defined. Without
loss of generality, the centroid of the computed
world points is used as the origin of
the coordinate frame. The frames and
are set up by translating the origin of the frame
to the centroid , and then rotating around the
unit vector perpendicular to both the axis of the
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frame and the unit normal vector of the stripe
light plane to align the coordinates plane
of the frame with the stripe light plane. Using
(14)–(19), we can compute the world-to-stripe light
plane transformation .

Step 4) Go to step 1 and compute the other stripe light plane
transformations until all of them are obtained.

V. UNCALIBRATED RECONSTRUCTION

After the parameters of the projector (i.e., the unit normal
vector of stripe light plane, the origin of the frames

and , and the world-to-stripe light plane transforma-
tion ) are obtained, we can use the active vision system to
carry out uncalibrated reconstructions of a scene surface, even
though the parameters of the camera are unknown or varying.
The crucial problem in the uncalibrated reconstruction is how to
self-recover these unknown parameters. That is, how to self-cal-
ibrate the unknown homographic matrix between the stripe
light planes and camera image plane .

A. Basic Principle

As shown in Fig. 6, when the th stripe light plane inter-
sects with the scene, a curve on the stripe light plane will
be illuminated. If an arbitrary point on the curve is identified
as and, simultaneously, the point is on a known plane
in the world frame , then the point satisfies the equation of
plane

(26)

where is the plane’s normal vector and the is a known
point on the plane. As point is also on the stripe light plane,
substituting (22) into the plane equation above, we obtain

(27)

where is the projective point on the camera image plane of
point . In (27), the unknown argument is the homographic
matrix of the stripe light plane , which has eight indepen-
dent unknown elements. If we have eight or more general points
on the curve lying on eight or more known planes, we can ob-
tain eight independent equations, based on (27). Then the un-
known homographic matrix can be solved. According to
(22) or (23), the scene can then be reconstructed in Euclidean
space. The crucial issue is how to obtain the eight or more known
planes. As illustrated in Fig. 6, if adding much more than eight

stripe light planes perpendicular to
or intersecting with the stripe light plane , this
problem can be solved. The parameters of these stripe planes
can be obtained at the precalibration stage for the projector.

B. Algorithm

For the matrix, shown at the bottom of the page, assuming
two points and , the third row of the vector is nonzero.
Define

(30)

Then (27) can be simplified to

The above equation can be expanded to

...
...

...
...

...
...

...
...

...

(31)

where , and
then simplified as

(32)

According to (2), the homography between the stripe light
plane and the camera image plane is a unique one up to a scale
factor. To solve for the homography, the following approach is
taken.

Equation (31) can be expanded to

(33)

and then further simplified as

(34)

where

(35)

Assume that only the image coordinates and will change,
whereas and are kept constant. Using more than two sets

(28)

(29)
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TABLE I
HOMOGRAPHIC RELATIONS BETWEEN STRIPE LIGHT PLANES

Projection center C (-4.071, -22.262, 212.802)

1M 2M
3M 4M

(0.467, -10.000, 30.000) (29.029, -10.000, 30.000) (57.760, -10.000, 30.000) (86.809, -10.000, 30.000)

1n 2n 3n 4n

(2.162, 51.783, -205.011) (2.162, 51.783, -205.011) (2.162, 51.783, -205.011) (2.162, 51.783, -205.011)

1T 2T 3T 4T

- 0.123 0.011 -0.992 29.935

0.011 1.000 0.000 29.935

0.992 -0.009 -0.123 29.935

0 0 0 1

-0.081 0.008 -0.997 32.341

0.008 1.000 0.007 32.341

0.997 -0.007 -0.081 32.341

0 0 0 1

-0.038 0.005 -0.999 32.221

0.005 1.000 0.005 32.221

0.999 -0.005 -0.038

0 0 0 1

0.006 0.002 -1.000 29.491

0.002 1.000 0.002 29.491

1.000 -0.002 0.006 29.491

0 0 0 1

12H 13H 14H Evaluated homography
'

14H

2.857 -0.030 270.300
0.030 2.472 15.936
-0.002 0.000 1

7.338 -0.111 917.895
0.117 6.011 56.741
-0.007 0.000 1

33.247 -0.627 4660.856

0.666 26.461 301.195
-0.038 0.002 1

33.247 -0.627 4660.856
0.666 26.461 301.195
-0.038 0.002 1

Estimation error
72

14

2'

14 10922.1 −×−=− HH

32.221

of the image coordinates , we can first solve the ratios of
the variables and , defined as

(36)

As shown in Fig. 6, when the vision system takes more than
two images of an object from different viewpoints, all the points
illuminated on the scene by the intersection line of the two stripe
planes and satisfy the equation of the stripe light plane

. The three variables, and are kept constant. These
points’ correspondences on the CCD image plane will be dif-
ferent. With six stripe light planes , from (36), we have the
matrix

...
...

...
...

...

... (37)

We can obtain the first two columns’ elements of the homog-
raphy if defining . Using the following equation, the
last column’s elements can be obtained:

(38)

We then normalize the homography by defining the homo-
graphic matrix’s lower-right entry .

The accuracy achievable by the above method would be lim-
ited, as the algorithm is sensitive to the noise of the scene image
and that of the vision system. This is due to the iterative nature of
the algorithm, as can be seen from (33)–(38). To improve on the

accuracy, a nonlinear optimization algorithm can be employed.
Based on (27), we use the following objective function for the
optimization:

(39)

where denotes the index to the horizontal stripe planes, and
is the index to the image point along the intersection line be-

tween the horizontal stripe planes and the th vertical stripe light
plane. The objective function can be optimized using the Leven-
berg–Marguardt algorithm. The remaining problem in the non-
linear optimization is how to determine the initial value of the
homography . As described in the projector calibration in
Section IV, we can obtain the homographies between the pro-
jector stripe light planes and the camera image plane. Here, we
call the homographies the normal ones. In uncalibrated recon-
struction, the homographies do not change significantly after
the parameters of the camera are adjusted. We can thus use
the normal homographies in the initialization of the optimiza-
tion. In cases when the normal homographies are unknown or
they changed significantly after the camera’s parameters are ad-
justed, the algorithm given via (37) and (38) can be used to ob-
tain the initialization for the optimization.

C. Discussion

In recovering the homographies, if the normal vector , the
origin and the transformation are obtained in the offline
calibration and remain unchanged or are known during the re-
construction, we do not need to obtain all the light stripe planes’
transformations relative to the camera. Instead, only the homo-
graphic relations between any two or more stripe light planes
relative to the camera image plane will be needed. Those of the
other light stripe planes relative to the camera image plane can
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be obtained by Theorem 1. This makes the uncalibrated recon-
struction more feasible and flexible.

Now rewrite (3) as

(40)

If the homography and point are known, the
above equation will have nine independent unknowns, including
the factor . If we select two points on an intersection line
between two stripe planes and , (31) will provide five
independent equations. Thus, during the online calibration, only
two arbitrary light stripe planes’ homographies relative to the
camera need to be computed. The other homographies can be
derived from (31).

In a case study as shown in Table I, we arbitrarily selected
four light stripe planes, , to simulate their ho-
mographic relations. Define the projective center as and the
plane as the camera image plane. We can compute the homo-
graphies of the other three stripes planes with respect to plane

. Assume known homographies . Then based on
(31), we can obtain the homography . The estimated value

and the estimation error are also given in Table I. The above
result was obtained in the absence of noise. In practice, how-
ever, the offline calibration results for the projector are subject
to errors. If we use only two arbitrary planes’ homographies to
derive the other planes’ homographies, the accuracy achievable
will be limited. In such a case, the knowledge of more than two
known stripe planes will be desired to obtain the other stripe
planes’ homographies.

D. Implementation Procedures

The implementation of the uncalibrated 3-D Euclidean re-
construction with unknown intrinsic and extrinsic parameters in
the camera consists of two steps: the precision calibration of the
projector and reconstruction with an uncalibrated camera. The
procedure for the projector calibration is given in Section IV.
After the parameters of the stripe light projector have been
obtained, the vision system can be used for uncalibrated Eu-
clidean reconstruction without knowing the camera parameters.
The procedure of the uncalibrated Euclidean reconstruction
consists of the following steps.

Step 1) Based on the scene properties, adjust the projector’s
position and orientation to illuminate the scene prop-
erly. The projector’s transformation with respect to
the world frame is assumed to be known. Then adjust
the camera’s parameters, including its orientation,
optical length, and zoom, as needed to enable the
visual sensor to capture the illuminated scene fully.
Then acquire the scene image.

Step 2) According to the scene image, use the algorithm de-
veloped in Section V-B to compute the homogra-
phies of the stripe light planes with respect to the
camera image plane.

Step 3) After the homography between the th stripe
light plane and the image plane of camera is ob-
tained, use (23) to reconstruct the scene.

Fig. 7. Projection pattern.

Fig. 8. Calibration target.

TABLE II
VERTICAL PLANE FITTING ERRORS (UNIT: mm)

Vertical plane fitting errors

max min mean

1 0.0255 0.0693 0.0014 0.0198

2 0.0386 0.0981 0.0013 0.0249

3 0.0159 0.0399 0.0010 0.0109

4 0.0372 0.0933 0.0009 0.0264

sigma

TABLE III
VERTICAL PLANE HOMOGRAPHIC ERRORS (UNIT: mm)

mean

1 0.2106 0.0129 0.0944 0.0458

2 0.2371 0.0145 0.1025 0.0501

3 0.1960 0.0070 0.0834 0.0425

Vertical plane homographic errors

max min sigma

4 0.2479 0.0173 0.0962 0.0483

VI. EXPERIMENTS

The active vision system used in our experiment consists of
an LCD pattern projector and a CCD camera. To obtain the hor-
izontal and vertical stripe light planes, we projected the pattern
of white and black square grids, as shown in Fig. 7. To maximize
the angles between the two adjacent stripe planes, the stripe
planes were chosen to evenly span the entire range of the pro-
jector’s field of view (FOV). The calibration object is a metal
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TABLE IV
SELF-CALIBRATION RESULTS OF STRIPE LIGHT PLANES’ HOMOGRAPHIES

Planes
1

H
2

H
3

H
4

H

0.6107 -195.9155 0.0827 0.6210 0.0850 -212.4794 0.6338 0.0876 -229.9556 0.6456 0.0901 -247.8107

-0.0945 0.5022 -93.3482 -0.0968 0.5110 -92.6657 -0.1003 0.5194 -91.5238 -0.1031 0.5290 -90.7105

Standard

S
H

0.0005 0.0000 1.0000 0.0005 0.0000 1.0000 0.0006 0.0000 1.0000 0.0006 0.0000 1.0000

0.6592 0.0764 -195.8976 0.6754 0.0704 -212.4642 0.6259 0.0859 -229.9428 0.6433 0.0852 -247.7863

-0.1048 0.5029 -93.08630 -0.1086 0.5134 -92.3818 -0.0991 0.5195 -91.3269 -0.1031 0.5292 -90.3592

Recovered

R
H

0.0006 -0.0000 1.0000 0.0006 -0.0000 1.0000 0.0006 0.0000 1.0000 0.0006 -0.0000 1.0000

0.0484 -0.0063 0.0179 0.0544 -0.0145 0.0151 -0.0078 -0.0016 0.0128 -0.0023 -0.0049 0.0244

-0.0103 0.0006 0.2619 -0.0117 0.0024 0.2840 0.0011 0.0001 0.1969 -0.0000 0.0003 0.3513

Error

SR
HH −

0.0001 -0.0000 0.0000 0.0001 -0.0000 0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000

Error
2

SR
HH − 0.267 0.290 0.197 0.352

60.20

25.20

25.20

70.10

1

2

3

4

Length unit: mm

Fig. 9. Workpiece dimensions.

Fig. 10. Image of the workpiece.

plate with an array of circular rings, as shown in Fig. 8. This
calibration object is for use in precalibrating the normal vec-
tors of the stripe light planes only. Least-square fitting method
was employed in obtaining the equations of the vectors in the
world frame. The fitting errors, defined as the distance of the
corresponding spatial points from the fitted stripe planes, are
given in Table II. Here, we listed only the results of the 11 4
stripe light planes in the rectangular area in Fig. 7. The homo-
graphic errors, defined as the distance of the back-projected spa-
tial points of the corresponding points on the image from their
corresponding stripe light planes, are given in Table III. As a
comparison, we used the image points and the corresponding
points in the world frame to compute the vertical stripe planes’
homographies relative to the camera image plane. The results

50 60 70 80
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-20

0

20

40

60

80

-50

0

50 Length unit: mm

Fig. 11. Reconstructed 3-D points.

TABLE V
DISTANCE ERRORS IN UNCALIBRATION RECONSTRUCTION (UNIT: mm)

Standard distance 35.00 49.90

Recovered distance 34.84 44.95

Distance error -0.06 0.05

plane1 to plane3 plane2 to plane 4

are given in the second row of Table IV. Then we used the points
on the image plane and the calibrated normal vectors of the
stripe light planes to conduct the uncalibrated reconstruction of
the vertical stripe light planes’ homographies, with the results
given in the third row of Table IV. In this implementation, the
result was obtained using the nonlinear optimization algorithm
given in Section V-B. The homographic errors relative to their
standard value are listed in the fourth and fifth rows of Table IV.
The results in Table IV show that our uncalibration reconstruc-
tion is valid. The rectangular vertex coordinates on the stripe
planes were extracted manually here. This is due to the limited
number of black and white rectangular grids used in this exper-
iment. In practice, the projected patterns can be encoded, for
example, by a certain color array [14], [22], in which case, the
correspondences can be identified automatically.

Next, we used a workpiece to verify the uncalibrated 3-D re-
construction using our experimental vision system. The work-
piece dimensions were measured by a caliper and are given in
Fig. 9. The workpiece was placed at an arbitrary position and
was illuminated by the pattern projection system. The pattern
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TABLE VI
ANGULAR ERRORS IN UNCALIBRATION RECONSTRUCTION (UNIT: DEGREE)

plane 1 and plane 2 plane 2 and plan3 plane 3 and plane4

Nominal angle

angle

90.00 90.00 90.00

Recovered 90.268 90.281 89.920

Angle error 0.268 0.281 -0.08

Fig. 12. Dummy head.

Fig. 13. Edge detection result from the pattern projected.

projector’s parameters and its orientation relative to the world
frame were precalibrated and were kept unchanged during this
experiment. Thus, the stripe light plane’s equations and their
2-D local coordinate systems with respect to the world frame
were known during the reconstruction. We adjusted the cam-
eras’ intrinsic and extrinsic parameters to be able to capture
the workpiece image illuminated by the projector, as shown in
Fig. 10. No limits were imposed on the camera parameters. To
reconstruct the 3-D surface of the workpiece, we need to recover
the homographic matrices of the stripe light planes illuminating
the object relative to the camera image planes. After the homo-
graphies were obtained, the object’s 3-D surface were recon-
structed, based on (23). The 3-D reconstruction result is shown
in Fig. 11. Comparing the results with the real dimensions of the
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Fig. 14. Result of uncalibrated reconstruction.

workpiece given in Fig. 9, we obtained the reconstruction errors
in distance between two planes, as given in Table V. The angular
errors are given in Table VI. From the results, it is observed that
the accuracy of the uncalibration reconstruction is quite high. In
this experiment, the workpiece was placed at about 0.5 m from
the baseline, defined as the line between the camera and pro-
jector’s projective centers. The angle between the projector’s
projective axis and the baseline was around 45 degrees. In our
experimental investigation of the sensitivity of the reconstruc-
tion, it was observed that the reconstruction accuracy could be
affected by the distance from the object to the system/projector.
In our tests, when the work piece was placed within the range of
0.4–0.8 m from the baseline, the maximum distance and angular
errors in the reconstruction were found to be 0.11 mm and 0.47
degree, respectively. The increase in the errors is due mainly to
the blurring effects in the projected stripe edges when the work
piece is off from the best-focused location. This suggests a ref-
erence distance be used as an approximate standoff for an object
to be measured by the system. As the reconstruction is also sub-
ject to the calibration errors of the projector [13], better results
in the reconstruction can be expected if a more precise approach
is taken in precalibrating the projector.

In yet another experiment, we conducted the uncalibrated re-
construction of a freeform surface, the face of a dummy head,
as shown in Fig. 12, using the same experimental setup. Fig. 13
shows the preprocessed image. The horizontal curves and the
vertical lines were extracted from the projected pattern by the
Canny algorithm. As pointed out previously, only the horizontal
curves contributed to the uncalibrated reconstruction. The ver-
tical lines were merely used for recovering the homographies of
the stripe planes. The reconstruction result is given in Fig. 14.
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As can be seen, although the horizontal curves are quite sparse,
so that the sampling points along the perpendicular direction are
not dense, the reconstruction results turned out to be quite sat-
isfactory.

VII. CONCLUSION

In this paper, we studied the issues in uncalibrated 3-D
Euclidean reconstruction by active vision using pattern pro-
jections. The pattern projector is assumed to be precalibrated
offline, whereas both the intrinsic and extrinsic parameters
of the camera can be changed or even totally unknown in a
reconstruction task. This allows the use of totally uncalibrated
camera in the Euclidean reconstruction of the 3-D surface
of a scene. The developed method was implemented with
satisfactory experimental results. The system can work well for
reconstructing free-form surfaces without requiring apparent
features.

In traditional shape from motion, the camera’s parameters
are normally assumed to be constant, e.g., in 3-D reconstruc-
tion using a stereo head. Using our active vision system and the
developed methodology, the 3-D Euclidean data of the scene
can be obtained without any constraint on the parameters of the
camera. Therefore, in our reconstruction, the camera parame-
ters can be adjusted to suit the environment, giving the vision
system the adaptability needed in many practical applications.
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