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a b s t r a c t

In this paper, we present a structured sparse representation appearance model for tracking an object in

a video system. The mechanism behind our method is to model the appearance of an object as a sparse

linear combination of structured union of subspaces in a basis library, which consists of a learned Eigen

template set and a partitioned occlusion template set. We address this structured sparse representation

framework that preferably matches the practical visual tracking problem by taking the contiguous

spatial distribution of occlusion into account. To achieve a sparse solution and reduce the computa-

tional cost, Block Orthogonal Matching Pursuit (BOMP) is adopted to solve the structured sparse

representation problem. Furthermore, aiming to update the Eigen templates over time, the incremental

Principal Component Analysis (PCA) based learning scheme is applied to adapt the varying appearance

of the target online. Then we build a probabilistic observation model based on the approximation error

between the recovered image and the observed sample. Finally, this observation model is integrated

with a stochastic affine motion model to form a particle filter framework for visual tracking.

Experiments on some publicly available benchmark video sequences demonstrate the advantages of

the proposed algorithm over other state-of-the-art approaches.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Visual tracking has been one of the essential and fundamental
tasks for intelligent video analysis as it can be widely applied
in video surveillance, human motion understanding, human–
computer interaction, etc. Not surprisingly, there is a fruitful
literature in tracking algorithms development that reports pro-
mising results under various scenarios [1]. However, tracking the
non-stationary appearance of objects undergoing significant pose,
illumination variations and occlusions still remains a challenge
for the community. Generally speaking, a visual tracking algo-
rithm can be decomposed into three components: an appearance
model which captures the visual characteristics of the target and
evaluates the similarity between observed samples and the
model; a motion model which locates the target between succes-
sive frames with certain motion hypothesis; and an optimization
strategy which associates the appearance model with the motion
model and finds the most likely location in the current frame. In
this work, we concentrate mainly on designing a robust appear-
ance model that confronts the aforementioned difficulties.

Supplementary material related to this article can be found
online at doi:10.1016/j.patcog.2011.12.004.

Traditional appearance models such as template [2–4] or sub-
space representations [5–8] usually focus on approximating the
target appearance itself, which is sensitive to gross errors caused by
occlusion. Recently, a class of appearance modeling techniques
named sparse representation has been shown to give state-of-the-
art robustness against various disturbances, particularly, in the
sense of occlusion [9–11]. Different from conventional approaches,
the sparse representation based methods attempt to jointly estimate
the target appearance as well as the occlusion by finding a sparse
linear combination over a basis library containing target and trivial
templates. The pioneer work was reported in [9], where the sparse
representation of observed samples is achieved via ‘1-minimization.
Although this method, referred to as the ‘1 tracker, appears to
promise robustness for visual tracking, its extensive computational
cost ensures that the tracker is not readily applicable to practical
implementations. Another drawback is that the expressiveness of
this model is limited as the target appearance can only be repre-
sented by the subspace spanned by the training templates directly
cropped from the images, which makes it difficult to handle
significant view or pose changes. Many remedies have been pro-
posed to improve the performance, e.g., by reducing the data
dimension via feature extraction, replacing the ‘1-minimization by
Orthogonal Matching Pursuit (OMP), and enforcing the dynamic
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group sparsity to the model [10,11]. However, the performance of
these methods, which depend on feature extraction, may become
degenerate associating with the reduction of the data dimension. In
addition, these algorithms neither attempt to account for any prior
information about the corruption or occlusion, nor the discrimina-
tive nature of sparse representation.

In this paper, we give a deeper insight into the sparse
representation model for the visual tracking problem to develop
an efficient algorithm. Our contention is that, in reality, the model
goes beyond simple sparsity by considering a priori information
on the predefined structure of the basis library and contiguous
spatial distribution of occlusions. We present a structured sparse
representation appearance model, which is robust against partial
occlusion, pose variations and illumination changes. As illustrates
in Fig. 1, in our proposed model, the nonzero entries in the sparse
coefficient vector have a particular structure that arises from
practical visual tracking. Our work is original in casting the
appearance model as a sparse linear combination of a structured
union of subspaces instead of individual templates. We show that
with this structured model, a more robust and efficient imple-
mentation of the sparse representation for visual tracking is
feasible. To further reduce the computational load, we introduce
the Block Orthogonal Matching Pursuit (BOMP) [12] rather than
‘1-minimization or OMP to solve the structured sparse represen-
tation problem. We also exploit the inherent discriminativity of
BOMP to eliminate the invalid observations during tracking,
which results in more accurate and efficient tracking results. In
addition, inspired by the adaptive appearance models [6,13,14],
we replace the raw target templates with incrementally learned
Eigen templates, which enrich the expressiveness of our appear-
ance model. Finally, the tracking procedure leads to a particle
filter framework with a stochastic affine motion model.

The remaining part of this paper is organized as follows.
We begin by reviewing the relevant work in the next section.
Section 3 gives the details of the structured sparse representation
based appearance model, BOMP algorithm and model update
scheme. The integration of our proposed appearance model
and particle filter for visual tracking is described in Section 4.

Section 5 presents experiments and performance evaluation of
our tracker and we conclude this paper in Section 6.

2. Related works

There is a rich literature in appearance modeling and repre-
sentation that aim at tackling non-stationary appearance tracking
problems. In this section, we review the two most relevant topics
that motivate this work: subspace representation and sparse
representation methods.

Subspace representation aims at adapting the appearance varia-
tions with a low-dimensional subspace based on the core desire for
dimensionality reduction. These methods have been justified that
they are effective approaches to model the object appearance
undergoing pose and illumination changes for visual tracking. Over
the years, various subspace models have been proposed for visual
tracking ranging from static subspace representations to adaptive
learning subspace approaches. In early works, the geometry and
illumination based parametric models [3] and eigenspace represen-
tations [5,8] are used for evaluating the similarity between the
current observed images and the model. However, these methods
mainly rely on training before tracking that may lead to failure if the
target experiences variations which are outside the set of training
samples. Moreover, in many real applications, it is neither practical
to construct a rich sample set nor perform extensive training off-
line. What is needed, therefore, is an adaptive model that has the
capabilities of online learning and updating for time-varying appear-
ance representations. Ross et al. propose an incremental Principal
Component Analysis (PCA) based learning subspace model that
shows robustness to gradual changes in pose, scale and illumina-
tion [6]. Later on, more sophisticated subspace formulation such as
graph-based learning subspace [15,16], Tensor Subspace [17], Rie-
mannian subspace [18] and data-driven constrained subspace [7]
are applied to find a more optimal subspace for performance
improvement. These methods, benefiting from the adaptive learning
or updating scheme, usually exhibit superiority compared to the
static models. However, the above algorithms, static or adaptive,

Fig. 1. Illustration of the structured sparse representation appearance model. An occluded target of interest (a) is represented as a sparse linear combination of the Eigen

templates and occlusion templates in the basis library (b). The decomposed coefficients appear clustering distribution (c) corresponding to the predefined basis library

structure and contiguous occlusions. The appearance of the target and the occlusion (d) can be jointly estimated.
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usually do not have mechanisms to handle occlusions and they
could suffer from failure caused by occlusion in a long duration.

Recent advancements in sparse representation indicate
another path for us to model the appearance of an object by
means of sparsity. The sparse representation based appearance
models are initially inspired by the work on robust face recogni-
tion, where the discriminative nature of sparse representation is
used as a classifier that achieves by far the best recognition rate in
constrained experiments [19]. However, this method does not
deal with pose variations and misalignment errors, which usually
fails to recognize the true object in less controlled environments
[20]. Subsequently, Mei and Ling propose a sparse representation
based appearance model in a visual tracking scenario, in which
the target appearance is expressed as a sparse linear combination
with a basis library consisting of target templates, positive and
negative trivial templates via ‘1-minimization [9]. The tracking
result is then assigned to the observed sample that has the
smallest reconstruction residual with the target templates and
corresponding target coefficients. Qualitative experiments exhibit
impressive robustness of such approach, but the large computa-
tional load prohibits its further application in reality. Further-
more, this model also has the same weakness as the sparse
representation based classifier in [19], which is sensitive to pose
variations. Various improvements are proposed such as colla-
borative tracking with two stage sparse optimization [10] and
real-time compressive sensing tracking [11]. Both of these meth-
ods attempt to accelerate the algorithm by straightforward data
dimension reduction with feature extraction and achieves the
sparsity with a greedy algorithm rather than with ‘1-minimiza-
tion. More recently, Han et al. [21] explore an alternative
appearance model formulation with sparse representation, which
casts the tracking as finding a sparse representation of sub-image
feature sets sampled around the target. The tracking result is
associated with the candidate holding the most similar coefficient
distribution with the tracked object. This method is successful in
the experiments of occluded cases. However, it is not clear if such
a method is able to track objects effectively when they undergo
significant illumination and pose variations.

This paper studies the problem of designing a novel robust
appearance model for visual tracking, which is distinct from
aforementioned methods in the following two perspectives. From
the subspace representation point of view, our model jointly
represents the target appearance and occlusion with a structured
union of subspaces, which is adaptively constructed via a struc-
tured sparse representation, rather than a traditional subspace
with fixed formation. This strategy provides a more flexible
mechanism and richer expressiveness to harness the partial
occlusion problems. From the sparse representation point of view,
we analyze the intrinsic structure in the framework of sparse
representation with the prior knowledge of contiguous occlusion
in visual tracking. Such structured model can effectively alleviate
the computational load without reducing the data dimension and
yield more robust performance than the sparse representation
appearance model in conventional sense, thereby ignoring the
additional structure in the problem. Consequently, with an incre-
mental learning subspace scheme, our model facilitates tracking
objects undergoing significant illumination and pose change as
well as occlusion.

3. Structured sparse representation based appearance model

3.1. Sparse representation based appearance model

In visual tracking, it is reasonable to assume that the target
appearance can be represented by a linear subspace during a

short time interval [6,7,22]. Mathematically, we assume an
observed target sample yARL (stacked by columns to form a 1D
vector) approximately lies in a subspace spanned by d given
training templates AT ¼ ½a1 a2 . . . ad�ARL�d

ðL4dÞ

y�AT x¼ a1x1þa2x2þ � � � þadxd, ð1Þ

where x¼ ðx1,x2,. . .,xdÞ
T ARd is the corresponding target coeffi-

cient vector that denotes the contribution of each template in the
gallery.

To harness the unpredictable partial occlusions, the query
sample y is represented with the linear subspace ATx, plus a
sparse error eARL due to occlusion

y¼AT xþe¼ AT Ae½ �
x

e

� �
¼Ax: ð2Þ

Here, A¼ ½AT Ae�ARL�ðdþLÞ is a basis library that consists of
target template set AT and occlusion template set Ae, which is set
to the identity matrix I. It is sensible to assume xARdþL is a
sparse coefficient vector with non-uniform density, where the e
part of x is sparse, but the x part is usually dense. This is because,
in most of the video systems that have moderate frame rate, the
spatial coverage of occlusion usually changes gradually over time.
Suppose the subspace model ATx can represent the target appear-
ance together with occlusion well in the previous time step. The
innovation e caused by the moving occlusion in the current time
step is expected to occupy only a sparse spatial support. When
the vector x is sparse enough, it is shown that the target
coefficients x and sparse error e can be jointly recovered by
solving the ‘0 norm minimization problem [19]

min
x

:x:0 subject to :y�Ax:2oe, ð3Þ

where :U:0 is the ‘0 norm which counts the number of nonzero
entries and :U:2 is the ‘2 norm. The parameter e indicates the
level of the reconstruction error. Solving the minimum ‘0 norm of
the underdetermined problem, however, is both numerically
unstable and NP-hard [23]. The ‘1-tracker suggests that the sparse
solution can be obtained by converting the ‘0-minimization to an ‘1

norm convex optimization problem equivalently [9]. The tracking
result is specified to the candidate that has the smallest residual
against the recovered image with the target template set and
corresponding target coefficients (i.e. argmin:y�AT x:2). In addition,
a heuristic template update scheme is proposed to adapt the
appearance varying during tracking.

Although the ‘1-minimization is able to solve the sparse repre-
sentation problem via convex optimization in polynomial time by
standard scientific software [24,25], the costly computation and
complex implementation make them unavailable for real-time
visual tracking. Alternatively, the greedy approximation approaches
such as Matching Pursuit (MP) [26] and Orthogonal Matching
Pursuit (OMP) [27] show superiority in efficiency and implementa-
tion and comparable results for the ‘0-minimization approximation
[28]. When the basis library A and sparse coefficient vector x are
block structured, a more efficient implementation of MP and OMP is
possible [12]. In the next session, we investigate the block sparse
nature together with the Block Orthogonal Matching Pursuit (BOMP)
algorithm in visual tracking applications and achieve more efficient
and effective implementations.

3.2. From sparsity to structured sparsity

The prototype sparse representation framework is applicable
to jointly model the target appearance and occlusion well without
considering any priori distribution of the sparse coefficients. In
fact, their sparse supports of x in (2) often have an underlying
order. Fig. 1 illustrates an example of structured sparse supports.
Considering a query sample occluded by a 20% contiguous patch,

T. Bai, Y.F. Li / Pattern Recognition 45 (2012) 2390–24042392
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it is expected that the nonzero entries are clustered in target
coefficient vector x. This is true when the test target sample y can
be well approximated by the training template set AT. Another
observation is that, in a practical visual tracking scenario, the
partial occlusion often appears as a contiguous spatial distribu-
tion in the observed target sample. It was shown that analyzing
the local image patches can promote the recognition performance
against partial occlusion whose spatial support is unknown but
contiguous [29–31]. In our approach, we employ such local region
based method to resolve the partial occlusion problem, and argue
that this approach preserves the block sparsity in the sparse
representation framework. We apply this scheme in both the
observed samples and the training templates since there is a one-
to-one spatial mapping relation between them. As shown in Fig. 2,
we first partition the observed sample and each of the training
templates into R local parts (Fig. 2(b)) and follow by stacking the
partitioned regions into 1D vectors, respectively. Then the 1D
observed sample y and training templates ai, iA ½1,d� are formed
by concatenating the corresponding vectors in order. With pre-
vious local region analysis, the contiguous occlusion can be
encoded as a block sparse vector having clustered nonzero entries
(Fig. 2(c)).

Recent works report impressive improvements of the recovery
threshold and efficiency by considering the block structured
sparsity [12,32,33]. In this work, we explicitly take the aforemen-
tioned structured sparsity into account, treating the basis library
A¼[AT I] and the sparse coefficient vector x¼[x e]T in the view of
concatenating by Rþ1 identical blocks (Fig. 3). The first block in A
and x maps the target template set AT and target coefficient
vector x, respectively, while the remaining blocks correspond to

the partitioned local regions and their coefficients. Mathemati-
cally, we assume that the dimension of the observed target
sample y in (1) is L, the length of the block is d and L¼ Rd with
integer R. Thus the basis library AARL�ðdþLÞ in (2) can be viewed
as a concatenation of Rþ1 identical blocks that have the same
length of d

A¼ ½a1 � � �ad|fflfflfflfflffl{zfflfflfflfflffl}
A½1�

9adþ1 � � �a2d|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
A½2�

9 � � � 9aRdþ1 � � � aðRþ1Þd|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
A½Rþ1�

�, ð4Þ

where aiARL and A½l�ARL�d represent the ith column and lth
block of the basis library A, respectively. Accordingly, we denote
the block sparse coefficient vector x as

x¼ ½o1 � � �od|fflfflfflfflfflffl{zfflfflfflfflfflffl}
xT ½1�

9odþ1 � � �o2d|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
xT ½2�

9 � � � 9oRdþ1 � � �oðRþ1Þd|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
xT ½Rþ1�

�T ð5Þ

where oi and x½l�ARd are the ith entry and the lth block of the
vector x, respectively. Conventionally, a vector xARdþL is called
m-sparse if it has at most m nonzero entries. The definition of
sparsity can be extended to block sparsity. A block k-sparse vector
x is defined as the vector that has at most k x[l] with nonzero
Euclidean norm, namely :x:2,0rk [12]. Denoting

:x:2,0 ¼
XRþ1

l ¼ 1

Ið:x½l�:240Þ, ð6Þ

where IðUÞ is the indicator function.
In [12], the authors prove that orthogonalizing the columns

within the blocks is able to achieve a higher recovery threshold. It
is also shown that this orthogonalization preserves the block
sparsity level, i.e., the distribution of the block with nonzero
entries in x will not be changed if we orthogonalize each block
within the basis library. The occlusion template set is the identity
matrix that satisfies this condition as all the columns in the
identity matrix are orthogonal mutually. The target template set,
however, is usually not orthogonal, but has a high coherence
because the templates are similar to each other. Thus, we exploit
the Principal Components Analysis (PCA) approach to orthogona-
lize the target template set and form an Eigen template set
instead

y¼ ½U Ae�
c

e

� �
¼Da, ð7Þ

where D¼ ½U Ae�ARL�ðdþ LÞ is the new basis library consisting of
the Eigen template set UARL�d and the original occlusion
template set Ae ¼ I. And the vector a¼ ½c e�T ARdþ L contains the
decomposed coefficients that correspond to the Eigen template
set and occlusion template set. The Eigen template set U is
obtained by Singular Value Decomposition (SVD): AT ¼URVT .

Using the Eigen templates in place of the raw templates comes
from the following two drawbacks in the original heuristic template

Fig. 2. Local region analysis that preserves block sparsity. The contiguous occlu-

sion (highlighted with blue) can be stacked as a block sparse vector that has

clustered nonzero entries. (a) Observed holistic sample or template image.

(b) Partitioned local regions. (c) Stack the partitioned patches into 1D vector.

(For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Fig. 3. Illustration of the block structured basis library A and coefficient vector x.

T. Bai, Y.F. Li / Pattern Recognition 45 (2012) 2390–2404 2393
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update scheme proposed in [9]. First, the expressiveness of the
subspace spanned by the raw templates is limited and hard to
harness the significant view point and pose variations, because it
deals with the templates that are only obtained from the previous
couple of time instants. Second, the prototype ‘1-tracker is vulner-
able to failure in the case of the basis library is updated with the
background image patches or significant occluded tracking results.
This is because the wrong templates are also possibly activated for
approximating the observations and achieve high likelihood with
the background or occlusion image patches. The Eigen template
model can solve and avoid these problems effectively because it has
the capability of learning the temporal correlation from the past
appearance data by incremental SVD update procedure. This model
has been successfully and prevalently used in visual tracking
scenarios [5–6,8]. The learned Eigen templates provide a richer
description than the raw templates to deal with the severe pose
changes, since they span an optimal subspace that has the smallest
reconstruction error with not only the current but also the past
tracked appearance. Furthermore, it can also remedy the drift
problems result from the incorrect updating by enforcing the
previous appearance information into the target template set. It is
notable that, we discard the nonnegativity constraints in [9], as PCA
allows the Eigen templates and coefficients to be of arbitrary sign,
and involves complex cancellations between positive and negative
numbers. Imposing the nonnegativity constraints may lead to
unexpected reconstruction failures.

3.3. Block orthogonal matching pursuit (BOMP)

Considering the block structured sparse representation, intui-
tively, the BOMP [12] is applied for seeking the sparsest linear
combination for target representation efficiently. The BOMP
algorithm consists of three major stages in each iteration:
matching stage, estimation stage and updating stage. The major
difference between BOMP and standard OMP is the matching
stage. BOMP selects the block having the highest correlation
whereas only one best matched template is chosen by OMP. Once
the block is found, the corresponding coefficients are estimated
via least-squares minimization at the estimation stage. Then the
residual is updated at the third stage.

An inherent benefit of the BOMP algorithm comes from its
discriminative ability of inferring whether the observed samples
are invalid. Since we know a priori that a valid observation should
be better represented by the target templates rather than the
occlusion templates and it is able to achieve the highest correla-
tion with the target template set. The matching stage thus can act
as a classifier that eliminates the outliers by judging whether the
target template set is picked in the first iteration. It is also
possible to shorten the running time of the algorithm if we
terminate the loops in an early stage once the observed sample
is determined as outliers. Fig. 4 depicts the inferred outliers in our
experiments. We show that this discriminative nature promotes
both efficiency and accuracy of our tracker in the experiment
session. The BOMP with outlier elimination procedure is sum-
marized in Algorithm 1.

Algorithm 1. BOMP with outlier elimination

Input: Given the observation sample y and basis library D.

1. Initialization: Initialize the residual as r0¼y, l¼1 and a¼[].
2. Matching stage: Choose one block that is best matched to rl�1

according to

il ¼ argmax
i

:DT
½i�rl�1:2, ð8Þ

where D[i] is the ith block of basis library D.

3. Outlier elimination: Break and return y as an outlier if l¼1 and
ila1.

4. Estimation stage: Solve the least-squares problem

min

��������y�X
iA I

D½i�al½i�

��������
2

, ð9Þ

where al[i] is the estimated block coefficients of vector a over
the set of chosen indices: I¼{i1, y, il}.

5. Updating stage: Update the residual

rl ¼ y�
X
iA I

D½i�al½i�: ð10Þ

6. Increment l and go back to step 2, until the ‘2-norm of residual
99rl992 is below the destination threshold or the maximum
number of iterations is reached.

Output: The sparse coefficient vector a.

3.4. Computational complexity

The computational cost of OMP is much better compared with
the ‘1-norm minimization with standard convex programming for
sparse representation problems [27,28]. We now address the further
computational complexity reduction of BOMP based on standard
OMP algorithm by exploiting the block structure. The computational
time of OMP is dominated by the matching stage (step 2) and the
least squares estimation stage (step 4). Suppose there are m nonzero
entries in total in the block k-sparse coefficient vector a and we
assume all m nonzero entries are clustered into k d-length blocks
identically ðk¼m=dÞ. The total cost of running the matching and
estimation stage in OMP are O(mLN) and O((mþ1)mL/2), respec-
tively [27]. The computational load of BOMP at the matching stage
in each iteration is the same as OMP because all the templates are
selected inevitably for inner product calculation. However, BOMP
picks d templates (length of the block) at a time. Thus, the
number of iterations is reduced to k and the time complexity
drops to O(kLN) if the pervious assumption holds. Similarly, the
computational complexity of the estimation stage decreases to
O((kþ1)kdL/2). The margin total time complexity ratio between

Fig. 4. Illustration of inferred outliers (enclosed in the red solid box) and

estimated tracking target (indicated with green dashed box). (For interpretation

of the references to color in this figure legend, the reader is referred to the web

version of this article.)

T. Bai, Y.F. Li / Pattern Recognition 45 (2012) 2390–24042394
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BOMP and OMP is OðkLN=mLNÞ ¼Oð1=dÞ for the matching stage
and Oðððkþ1ÞkdL=2Þ=ððmþ1ÞmL=2ÞÞ ¼Oðkþ1Þ=ðkdþ1Þ �Oð1=dÞ for
the estimation stage. It means that the time complexity of BOMP
is 1/d of OMP if all the whole nonzero entries are clustered by
d-length blocks identically.

In practice, the previous assumption may not be strictly satis-
fied. The coefficient vector a is likely not block k-sparse if
the sampled observations are not well aligned to the target. The
algorithm has to take more loops to approximate the observations
and generate denser distributed coefficients. However, such com-
putational load for invalid samples is undesired and time consum-
ing. On the other hand, as mentioned earlier, it is sensible to assume
that the spatial coverage of innovation caused by occlusion in each
time constant is sparsely distributed. It is also shown that the
tolerance of occlusion is 33% for reliable face recognition with ‘1-
minimization [19]. Although the theoretical bound of the greedy
algorithm is somewhat lower than ‘1-minimization, it is worth to
note that, the role of sparse representation in visual tracking is to
jointly approximate the target appearance and occlusion rather
than perfect reconstruction for face recognition. We thus argue that
the tolerance of occlusion in our model is consistent with [19],
which means the sparse error vector e has at most one third of the
blocks that have nonzero entries. Since it is proven that the number
of iterations for recovering a block k-sparse vector is at most k [12],
we set the maximum number of iterations to k¼ bR=3þ1c, where
bUc returns the nearest integer less than or equal to the value inside.
The value of k counts the blocks for coding the target appearance
and occlusion. And the stopping threshold of the residual is set to
0.1 empirically in all our experiments.

3.5. Incremental learning scheme

Since the appearance of a target changes over time, the fixed
Eigen templates are impossible to capture the appearance varia-
tions for a long duration. It is important to update the model
online to enhance the adaptivity of the tracker. In our approach,
we employ the incremental PCA algorithm to perform an incre-
mental learning procedure when a new target sample is observed
[34,35]. To make this paper self-contained we briefly introduce
the incremental PCA algorithm here. Suppose we have an existing
data matrix BARL�d with its SVD B¼URVT and a matrix CARL�n

whose columns contain new observation samples. All the
observed samples are normalized by a zero-mean-unit-norm to
partially compensate for photometric contrast variations and zero
mean is assumed by removing the sample mean. Considering the
following partitioned form of [B C]

½B C� ¼ ½U K�
R UT C

0 KT C

" #
VT 0

0 I

" #
¼ ½U K�R

VT 0

0 I

" #
, ð11Þ

where K is the orthonormal basis of C orthogonal to U and

R¼
R UT C

0 KT C

" #

is an upper triangular matrix having size dþn. We can obtain K
and R via QR decomposition of ½UR C�: ½U K�R¼ ½UR C�. In order to
update the SVD of [B C], it is necessary to diagonalize R with

R ¼
SVD

U0R0V0T . We can then rewrite (11) as

½B C� ¼ ð½U K�U0ÞR0 V0T
VT 0

0 I

" # !
: ð12Þ

With this incremental updating scheme, the new Eigen tem-
plate set ~U can be calculated with ~U ¼ ½U K�U0. In each update
procedure, the first d Eigen templates remain to form the Eigen
template set.

4. Proposed tracking algorithm with particle filter

We embed the structured sparse representation appearance
model into a Bayesian inference framework to form a robust
tracking algorithm. The model recursively updates the posterior
distribution pðxt9y1:tÞ over the target state xt given all the
observation y1:t ¼ fy1,y2, . . ., ytg up to and include time t. Applying
Bayes’ theorem, we have the Bayes filter

pðxt9y1:tÞppðyt9xtÞ

Z
xt�1

pðxt9xt�1Þpðxt�19y1:t�1Þdxt�1, ð13Þ

where pðyt9xtÞ is the observation model and pðxt9xt�1Þ is the motion

model. In the particle filter framework [36], the posterior distribution

pðxt9y1:tÞ is recursively approximated by a set of weighted samples

fxðiÞt�1,pðiÞt�1g
N

i ¼ 1, where pðiÞt�1 is the weight for particles xðiÞt�1 and N is

the total number of particles. We substitute the integration of the
Bayes filter (13) with Monte Carlo approximation

pðxt9y1:tÞ � kpðyt9xtÞ
X

i

pðiÞt�1pðxt9x
ðiÞ
t�1Þ, ð14Þ

where k is a normalization constant. The candidate samples fxðiÞt�1g
N

i ¼ 1

are drawn from an importance distribution qðxt9x1:t�1,y1:tÞ and then

the weights of the samples are updated as

pi
t ¼ p

i
t�1

pðyt9x
i
tÞpðx

i
t9x

i
t�1Þ

qðxt9x1:t�1,y1:tÞ
: ð15Þ

It is often reasonable to choose the motion model prior
qðxt9x1:t�1,y1:tÞ ¼ pðxt9xi

t�1Þ as the importance density function.
The motion model predicts the current state given the previous
state. In this paper, an affine image warping is applied to model
the target motion of two consecutive frames. We formulate the
state vector xt ¼ ðxt ,yt ,Zt ,st ,bt ,ftÞ at time t with six parameters of
affine transformation where xt ,yt denote the x, y translation and
Zt ,st ,bt ,ft represent the rotation angle, scale, aspect ratio, and
skew direction at time t respectively. Each parameter in xt is
governed by a Gaussian distribution around their previous state
xt�1 and assumed they are mutually independent

pðxt9xt�1Þ ¼Nðxt ;xt�1,wÞ, ð16Þ

where w is the covariance matrix. Then, applying the Grenander’s
factored sampling algorithm, (16) can be rewritten as [40]

pi
t ¼ pðyk9x

i
tÞ, ð17Þ

where pðyk9x
i
tÞ is the observation model. The observation model

indicates the similarity between an observed target candidate and
the recovered image. It is determined by

pðyt9x
i
tÞ ¼

0 if xi
t is outlier

exp�lrt else
,

(
ð18Þ

where l denotes the weighting parameter,1 and rt ¼ :yt�ŷt:2 is
the residual between the observed target sample yt and the
recovered image ŷt ¼Dtat . Notice that, unlike previous men-
tioned work [9–11], where the observation likelihood barely
relies on calculating the reconstruction with the target template
set and the target coefficients (i.e. ATx), we consider both the
reconstruction of the appearance and the estimated occlusion in
our tracking algorithm. The posterior distribution pðxt9y1:tÞ can be
approximated in the following weighted form:

pðxt9y1:tÞ �
XN

i ¼ 1

pni
t dðxt�xi

tÞ, ð19Þ

1 We set l to 5 in all of the experiments.
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where pni
k is the normalized weight obtained by

pni
k ¼

pi
kPN

i ¼ 1 pi
k

: ð20Þ

The current state is then estimated by maximum a posterior
(MAP) that associates with the highest likelihood

xt ¼ argmax
xt

pðxt9y1:tÞ: ð21Þ

The proposed tracking algorithm is summarized in Algorithm 2.

Algorithm 2. Structured sparse representation appearance model
based tracker

Input: The initial state of the target x0 ¼ ðx0,y0,Z0,s0,b0,f0Þ.

1. Initialization: Construct the target template set AT and normal-
ize using the zero-mean-unit-norm and generate the Eigen
template set U via SVD.

2. Sampling: Sample the target area according to the affine
motion model (16).

3. Sparse approximation: Calculate the block sparse coefficient
vector a through Algorithm 1 of each sample and obtain the
likelihood under the observation model (18).

4. Maximum a posterior: Estimate the current state xt by MAP
according to the particle filter framework and store the result
image yt.

5. Incremental learning: Update the Eigen template set with yt

using incremental PCA.
6. Advance to the next frame and go to step 2, until the last frame

of the video is reached.

Output: The current state xt.

5. Experiments

In this section, we present experiments to demonstrate the
efficiency and effectiveness of our proposed algorithm. Eight
publicly available benchmark video sequences2 are used for
evaluating the performance of our tracker under challenges of
significant occlusion, pose and illumination changes. The details
of the selected video sequences are listed in Table 1, where the
start and the end frames, the initial position for tracking (indi-
cated by the image coordinates), and the main challenges are
included. All the experiments are conducted using a MATLAB
implementation on a 3 GHz machine with 2 GB RAM. Addition-
ally, we also tested the prototype sparse representation based
‘1 tracker [9], IVT tracker [6] and Mean Shift (MS) [37] for

comparison.3 As ‘1 tracker and IVT tracker are also particle filter
based approaches, we set the parameters of both the motion
model and observation model as consistent as possible with our
tracker for fair comparison. For the motion model, the settings of
the variance for translation are maintained the same in all three
particle filter based trackers. However, the definition of the
remaining four parameters of the ‘1 tracker is different from
others. We use the default value for the ‘1 tracker and keep the
other two identical. Each observed target sample is resized to a
12�15 patch for the observation model of the first three trackers.
Note that the default size of a sampled image is 32�32 for the
IVT tracker; down sampling the image may lead to degenerate
experimental results compared with [6]. We draw 600 particles
per frame for all three particle filtering methods to approximate
the observation likelihood. The models are set to update every
frame in order to adapt the appearance changes in the full extent.
The block size d is assigned to 30 to balance the computational
efficiency and tracking accuracy. The effectiveness of d will be
discussed in the session of quantitative analysis. Accordingly, we
partition the observed samples and Eigen templates into six local
areas in our experiments. We also adopt 30 Eigen templates for
the IVT tracker. The MS tracker is implemented in Cþþ with
OpenCV functions. All the trackers start with the same initial
position of the videos. For the trackers that involve particle filter,
the quantitative results are obtained over 25 runs. We perform
the MS tracker only 1 time, since it is a deterministic tracker. The
representative visual results are reported in Fig. 5–7 for qualita-
tive analysis. In the experiments, our algorithm runs at around
1.5–1.8 s per frame whereas the original sparse representation
based tracker with ‘1-norm optimization solver [9] spends about
27 seconds per frame. Our algorithm is over 15 times faster
compared with the ‘1 tracker in the experiments. It is also
possible that the efficiency of our tracker could be further
increased using feature extraction such as random projection
[11] and Gabor filtering [38] for dimension reduction, since the
sparsity pattern is not affected by choosing a different basis for
each subspace [32]. This point, however, is beyond the scope of
the present paper.

5.1. Qualitative analysis

The experimental results from the first video (Occluded Face2)
validates our argument that using the structured sparse repre-
sentation scheme is able to improve the robustness against
occlusion. The parameters of our tracker are set as
w¼ ½2 2 0:01 0:01 0:001 0:001�. As can be seen in Fig. 5(a), our
method can track the face during the whole sequence even when

Table 1
The details of video sequences.

Video clip Frames Initial position Challenges

Occluded Face2 1–814 158,107 Significant and long duration occlusion

David Indoor 1–462 160,106 Illumination and pose variations

Trellis 1–502 200,100 Drastic illumination and pose variations

Car4 1–658 109,92 Sudden illumination changes

Car11 1–392 88,138 Difficult illumination conditions

Sylvester 1–1344 145,77 Significant illumination and pose variations

PETS2001 1–210 301,185 Non-rigid shape deformation, occlusion and background cluttering

OneLeaveShopReenter2cor 1–260 121,153 Non-rigid shape deformation and significant occlusion

2 These video sequences are available at http://www.cs.toronto.edu/�dross/ivt/,

http://vision.ucsd.edu/�bbabenko/project_miltrack.shtml, http://www.cvg.cs.rdg.ac.

uk/PETS2001/ and http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/.

3 The code of ‘1 tracker and IVT algorithm can be obtained from http://www.

ist.temple.edu/ hbling/code data.htm and http://www.cs.toronto.edu/�dross/ivt/

respectively.
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it is significantly occluded by the book or cap and their combina-
tions. However, the MS tracker is sensitive to the occlusions and
drifts away when statistical features are similar between the
background and the target. The ‘1 tracker shows competitive
performance in the first 250 frames, but fails to locate the target
at frame 594 due to the large pose varying. The IVT tracker drifts
away from the face (frame 272, 416, 708), when long duration
occlusion occurs.

We utilize David Indoor and Trellis sequences to evaluate the
tracker performance under illumination changes, pose variations and
a moving camera. The David Indoor data set (see Fig. 5(b)) is captured

by a moving camera that experiences uncertain camera motions. We
set the parameters as w¼ ½5 5 0:01 0:02 0:002 0:001�. Our tracker
is able to track the face of the person during the whole sequence.
However, the IVT tracker fails in the last few frames and the ‘1

tracker drifts from the face in frame 159. The superior results
produced by our model and IVT tracker confirm that the incremental
learning subspace spanned by Eigen templates has richer expressive-
ness against pose and illumination changes than the ‘1 tracker that
relies on the raw templates directly sampled from the images. The MS
tracker totally loses the target in frame 111 where it encounters
ambiguous grayscale statistics. The Trellis data set provides an

Fig. 5. Screen shots of a comparison tracking results of the proposed tracker (red solid box) with the ‘1 tracker (magenta dashed box), the IVT tracker (green dot dashed

box) and the mean shift tracker (cyan dotted box). More results are shown in the accompanying video. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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even more challenging scenario where the person undergoes a
combination of significant illumination and pose variations. The
parameters for this video sequence are set as w¼ ½3 3 0:01 0:01
0:001 0:001�. As illustrated in Fig. 5(c), no competitors can track the
person in the whole sequence. Our tracker survives in the longest
duration while the IVT tracker, ‘1 tracker and MS miss the target in
early stage. Interestingly, our tracker exhibits the capability to resume
tracking the target after the person turning round his head to the

front (frame 422). The result implies that even though our tracker and
IVT tracker share the same subspace learning scheme and motion
parameter setting in the experiment, the integration with structured
sparse representation is superior compared to the individual imple-
mentation of subspace representation based IVT tracker.

The car4 and car11 videos, shown in Fig. 6(a) and (b), represent
some potential real-world applications of our tracker. The para-
meters are set as w¼ ½5 5 0:01 0:01 0:001 0:001� for these two

Fig. 6. Screen shots of a comparison tracking results of the proposed tracker (red solid box) with the ‘1 tracker (magenta dashed box), the IVT tracker (green dot dashed

box) and the mean shift tracker (cyan dotted box). More results are shown in the accompanying video. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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sequences. For the car4 sequence, it tests the robustness of the
trackers in sudden illumination changes. Although it is claimed
that the ‘1 tracker can handle such situation via imposing the
nonnegative constraint in the basis library [9], it still drifts from
the target in our experiments. Similar results can be also found in
[10]. It might be induced by the setting of the initial position or
other parameters. Our tracker can track the car successfully, and
the IVT tracker is also able to follow the car in most of the
experiments. The MS tracker is unable to handle the illumination
changes and has difficulties tracking the car in our experiment.
The car11 data set emphasizes that both MS and ‘1 tracker show
unsatisfied performance in difficult illumination conditions. The
MS tracker drifts from the car in the very beginning of the video,
and the ‘1 tracker loses its way from frame 233.

The Sylvester sequence, shown in Fig. 6(c), exhibits challenges
on dramatic illumination and pose variations. The parameters for
this dataset are set as w¼ ½3 3 0:01 0:01 0:001 0:001�. The ‘1

tracker fails after frame 849, due to the large lighting and pose
changes. Both our algorithm and IVT tracker are able to get
through this frame, however, failures are observed in frame
1111 and 1116 for our tracker and the IVT tracker due to
combination of extreme pose and illumination variation. The
slight better performance of the IVT tracker may come from the
benefits of using the forgotten factor, which allows the tracker to
focus on the short-term observations. The MS tracker is able to
follow the target for the whole clip but drifts away from the target
frequently.

The PETS2001 and OneLeaveShopReenter2cor sequences are used
to test the performance of our algorithm in the case of tracking the
non-rigid objects undergoing occlusions. The parameters for these
two sequences are set as w¼ ½1 1 0:005 0:005 0:001 0:001� and
½3 3 0:01 0:01 0:001 0:001�, respectively. In the PETS2001

sequence (Fig. 7(a)), our algorithm is able to track the person
walking through the lamp pole and with occlusion by the bicyclist
in most of the experiments. The IVT tracker loses the target from
frame 125 due to the occlusion caused by the pole. Both the ‘1

tracker and MS tracker can track the target after this frame. But the
‘1 tracker gets stuck on the background that is similar with the
target in frame 187, and the MS tracker is distracted by the bicyclist
in frame 196. The experimental results of OneLeaveShopReenter2cor

sequence, shown in Fig. 7(b), demonstrate that both the proposed
tracker and ‘1 tracker can track the woman walking in the corridor
when she is partially occluded by the man. However, the ‘1 tracker
is not as stable as our tracker. Drift can be found in the 202th frame.
On the other hand, the IVT tracker and MS tracker drift away from
the target significantly when the occlusion occurs.

5.2. Quantitative analysis

The ground truth of Occluded Face2, David Indoor and Sylvester

video clips are provided by the authors of [39]. For the other five
sequences, we manually labeled the ground truth for the quanti-
tative analysis. We use two metrics to quantify the performance
of the proposed tracker and the reference trackers. The first one is

Fig. 7. Screen shots of a comparison tracking results of the proposed tracker (red solid box) with the ‘1 tracker (magenta dashed box), the IVT tracker (green dot dashed

box) and the mean shift tracker (cyan dotted box). More results are shown in the accompanying video. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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the location error that measures the Euclidean distance between
the tracking window center and the ground truth. The maximum,
mean and standard deviation of the location error and the
averaged location error with respect to frame number are sum-
marized and plotted in Table 2 and Fig. 8, respectively. The second
one is the failure rate that indicates the number of the tracking
failure frame, divided by the total number of frames in a testing
video clip. The tracking failure frame is indicated when the
deviation of the tracking window center from the ground truth
is larger than half of the diagonal length of the rectangle enclosing
the target. The averaged failure rates in our experiments are
reported in Table 3. We show that our tracker, on the mean
location error metric, outperforms the other three competitors.
And our method achieves the lowest standard deviation in the
Occluded Face2, David Indoor, Trellis, Car4, PETS2001 and OneLea-

veShopReenter2cor sequences that implies the proposed tracker
can attach the target closely against various disturbances. Overall,
the lowest maximum, mean and standard deviation of the
location errors are associated with the proposed tracker. We also
observe that our tracker has the lowest failure rate compared
with the other three trackers except for the Sylvester dataset.
Considering the overall performance, our tracker only has 8.08%
of failure rate which is far lower than the others in all eight video
sequences that contain thousands of frames.

However, the above simplistic comparison does not necessarily
imply that the proposed tracker is better than the reference trackers.
We conduct a standard statistical one-sided hypothesis testing [41]
on above two metrics to further evaluate whether the tracking
performance is significantly improved. The test is made of the null
hypothesis H0 that the proposed tracker is not superior to the
reference trackers against the alternative hypothesis H1 that the
proposed tracker is significantly better than the others. At the jth
repetition, we calculate the sample performance differences

Dj
¼ Cj

REF�Cj
SSR, ð22Þ

where Cj
REF and Cj

SSR denote the quantified performance of the
reference trackers and the proposed structured sparse representa-
tion appearance model based tracker, respectively. In our case, Cj

represents the mean location error or the failure rate in run j. The
hypothesis test is based on the sample mean of above differences

D ¼
1

J

XJ

j ¼ 1

Dj, ð23Þ

and its standard error

dD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J2

XJ

j ¼ 1

ðDj
�DÞ2

vuut : ð24Þ

The alternative hypothesis H1 is accepted (H0 is rejected) if
the test statistic D=dD exceeds a threshold ma, that represents a
point on the standard Gaussian distribution corresponding to the
upper-tail probability of a. In this work, we set the threshold
ma¼1.65, where the corresponding significant level a is 0.05. It is
worth noticing that, the test is not applicable to the cases that the
standard error dD becomes zero. These cases usually come from
the comparisons that both the competitors produce 0% failure
rates in all experiments (both Dj and D are 0), or the comparisons
involve MS tracker that yields consistent results against the
proposed tracker have 0% failure rates in all repetitions (Dj

¼D).
The results of the hypothesis testing on location error and failure
rate with respect to different video sequences and all experiments
are shown in Table 4. We observe that the test statistic in Table 4
is greater than m0.05¼1.65 in the majority of experiments. More-
over, if we consider the overall performance, the alternative
hypothesis H1 is accepted. Therefore, it is reasonable to infer that
the performance of our tracker is significantly superior to the
other three state-of-the-art algorithms.

Although the results of the experiments show that the struc-
tured sparse representation strategy works well for visual track-
ing, there are still two unanswered questions regarding the
contribution of the block structure and the discriminativity of
BOMP to improve tracking performance. To demonstrate the
effectiveness against partial occlusion of the block structure, we
conduct tracking experiments on the Faceocc2 sequence with
varying block length d (d¼1, 5, 10, 15, 30, 60) and report the
mean location errors in Fig. 9. Since the number of Eigen template
can also affect the tracker’s performance, we keep 30 Eigen
templates in all the experiments to avoid the influence of the
varying Eigen space representation. For the case of d¼60, we set
the length of the first block as 30, while the length of others as 60.
This setting allows us to eliminate the influence of the Eigen
templates model to make sure that the varying block length is the
only cause of the tracking performance difference. It is worth to
note that, the BOMP is the traditional OMP when d¼1. As shown
in Fig. 9, when the block length is moderate (d¼10, 15, 30), it is
shown that the tracking performance with BOMP produces
slightly better accuracy (11.26–11.70 pixels) compared with
traditional OMP (11.98 pixels). However, we also observed that
the location error rises significantly if the block length is too large
(d¼60). This is because in our algorithm, the maximal sparsity
level kd is set as a constant. As the block length d increases, the
block sparsity level k reduces accordingly. A higher block sparsity
level k can represent the appearance and occlusions more flexibly
by selecting more blocks within the basis library and relevant
local regions to construct the union of subspaces. A bigger block
length d can increase the implementation speed of the algorithm.
This suggests that a compromise between the running efficiency

Table 2

Location errors of the proposed tracker, IVT tracker, ‘1 tracker and mean shift. Bold font with underline indicates the best performance.

Video clip IVT tracker ‘1 Tracker Mean shift Proposed tracker

Max Mean Std Max Mean Std Max Mean Std Max Mean Std

Occluded Face2 42.09 13.27 9.54 152.35 33.75 36.27 141.83 77.96 36.21 38.21 11.32 8.44
David Indoor 270.42 18.62 44.81 227.22 61.77 58.85 178.40 80.48 52.99 19.87 4.66 2.79
Trellis 344.99 124.09 85.16 220.34 65.34 65.34 198.20 70.88 55.00 90.41 11.50 15.48
Car4 177.03 9.77 28.81 209.76 71.82 60.61 138.36 53.69 30.33 12.74 3.59 1.90
Car11 8.53 2.33 1.61 114.23 26.88 34.97 155.28 85.23 47.81 8.07 2.28 1.64

Sylvester 189.11 28.91 45.32 163.84 36.46 43.63 82.04 22.23 13.90 146.91 21.47 30.30

PETS2001 114.65 28.55 30.94 43.28 5.78 8.50 24.71 8.33 4.45 27.68 2.56 3.26
OneLeaveShopReenter2cor 31.89 4.30 5.35 28.78 3.43 3.56 58.41 15.25 14.92 11.22 2.23 1.55

Overall 344.99 29.12 54.21 227.22 42.65 51.23 198.20 51.80 44.55 146.91 10.87 19.09

Std: standard deviation.
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Fig. 8. Location error plots for the proposed tracker, ‘1 tracker, IVT tracker and mean shift for eight video sequences.
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and tracking accuracy is needed for determining d. In this work,
we show that setting d¼30 is a rational trade off in our
experiments.

We also assess the contribution of the outlier elimination
procedure of BOMP to show how this inherent discriminative
ability enhances the overall tracking performance. The David

Indoor sequence is used for experiments, evaluating the tracking
accuracy with and without outlier elimination. We re-run the
tracker without removing the outliers elimination in the match-
ing stage of BOMP. This caused a larger increase in mean location
error, to 5.12 pixels, comparing with 4.66 pixels of our proposed
approach. The location error curves are plotted in Fig. 10.
Although the two curves are similar with each other in the first
350 frames, the curve of the approach without outlier elimination
becomes apparently higher than that with such rejection criteria
in the last 100 frames. In particular, a significant drift from the
target is observed in the 445th frame without the outlier
elimination scheme. Correspondingly, the running time of the
algorithm without outlier elimination increases to 1.65 s per
frame while the original tracker runs at 1.55 s per frame. We
show that such discriminative capability of BOMP provides
around 10% and 6% measurable boost to tracking accuracy and
efficiency in our experiment, respectively. The reason for yielding
more accurate tracking performance is that, the outlier elimina-
tion procedure essentially enlarges the effective sampling size so
that the effects of degeneracy in the particle filter is reduced.
According to [36], the effective sample size of the particle filter
can be estimated by

d
Neff

t ¼
1PN

i ¼ 1 ðpni
t Þ

2
, ð25Þ

where N is the number of particles and pni
t is the normalized

weight, which is calculated with the observation model (18) and
normalized with (20). It has been shown that a larger effective

Table 3

Failure rates of the proposed tracker, IVT tracker, ‘1 tracker and mean shift. Bold

font with underline indicates the best performance.

Video clip IVT
tracker
(%)

‘1

Tracker
(%)

Mean
shift (%)

Proposed
tracker (%)

Occluded Face2 0 15.89 46.12 0
David Indoor 6.90 53.56 64.43 0
Trellis 75.63 51.90 65.87 8.98
Car4 6.77 55.06 44.51 0
Car11 0 36.14 87.05 0
Sylvester 25.73 37.06 14.32 24.13

PETS2001 46.86 14.14 8.57 2.33
OneLeaveShopReenter2cor 3.05 1.13 7.03 0

Overall 19.61 36.05 40.18 8.08

Table 4

Statistical test results for the proposed tracker against the IVT tracker, ‘1 tracker and mean shift in different video clips.

Test statistic D=sD
IVT tracker ‘1 Tracker Mean shift

Location FR Location FR Location FR

Occluded Face2 3.23 N/A 11.55 5.47 185.58 N/A

David Indoor 3.29 2.54 9.09 10.16 72.54 N/A

Trellis 89.10 50.06 7.46 9.21 93.44 42.59

Car4 0.86 1.05 10.71 15.50 147.71 N/A

Car11 0.56 N/A 14.04 25.93 104.40 N/A

Sylvester 2.67 0.34 12.15 5.15 0.61 �3.91

PETS2001 9.13 10.94 5.08 5.36 20.52 5.63

OneLeaveShopReenter2cor 4.36 2.50 8.88 6.34 183.06 N/A

Overall 5.16 5.60 10.00 11.67 12.83 10.75

FR: failure rate.

N/A: not applicable.

Fig. 9. Tracking location error with varying block length.

Fig. 10. Location error plots for comparison of with and without outlier

elimination.
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sampling size
d
Neff

t produces better tracking performance [40]. In
our proposed observation model, the observation likelihood is
assigned to be 0 once the candidate is identified as an outlier.
More identified outliers can result in a smaller sum of squared
normalized weights

PN
i ¼ 1 ðpni

t Þ
2 in (25) that can contribute to a

larger effective sample size for the particle filter.

6. Conclusions

In this paper, we have presented a robust visual tracking
algorithm with a structured sparse representation appearance
model. The structured sparse representation framework allows us
to jointly model the appearance of the target and contiguous
distributed occlusions with a sparse linear combination of struc-
tured union of subspaces. We state that this framework is
applicable for visual tracking since it can capture the intrinsic
structured distribution of sparse coefficients effectively in prac-
tice. For computational load reduction, we introduce the BOMP
algorithm to solve the structured sparse representation problem.
This leads to a significant improvement of the efficiency and
towards to the practical implementation. In addition, an incre-
mental PCA based Eigen template update scheme is proposed to
improve the capturing of the changes of target appearance online.
With this learning strategy, the appearance model has a richer
expressiveness to tackle significant view and pose variation. We
implement our method together with the state-of-the-art ‘1

tracker, IVT tracker and MS tracker on many publicly available
benchmark video sequences. The empirical results show that our
tracker achieves the most accuracy and robust performance in the
tests with respect to partial occlusions, illumination and pose
variations.

Although our proposed tracker performs well in our experi-
ments, drifts are observed when there is extreme pose and
illumination variation. This is because the description of subspace
model is limited for approximating the complex and nonlinear
manifold of appearance. A possible remedy is considering the
background information in order to enforce additional discrimi-
native power to the model. This issue should be investigated in
the future work.
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