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Robust Visual Tracking Using Flexible
Structured Sparse Representation

Tianxiang Bai and Youfu Li, Senior Member, IEEE

Abstract—In this work, we propose a robust and flexible appear-
ance model based on the structured sparse representation frame-
work. In our method, we model the complex nonlinear appear-
ance manifold and the occlusion as a sparse linear combination
of structured union of subspaces in a basis library, which con-
sists of multiple incremental learned target subspaces and a par-
titioned occlusion template set. In order to enhance the discrimi-
native power of the model, a number of clustered background sub-
spaces are also added into the basis library and updated during
tracking. With the Block Orthogonal Matching Pursuit (BOMP)
algorithm, we show that the new flexible structured sparse repre-
sentation based appearance model facilitates the tracking perfor-
mance compared with the prototype structured sparse representa-
tion model and other state of the art tracking algorithms.

Index Terms—Appearance model, block orthogonal matching
pursuit, sparse representation, visual tracking.

I. INTRODUCTION

ISUAL tracking is one of the most well-known and

fruitful research topics in computer vision communities
as it can be widely applied in video surveillance [1], human
computer interaction [2] and intelligent transportation system
[3], etc. However, tracking objects undergoing significant
viewpoint, pose and illumination variations has remained
challenges. In this work, we concentrate on designing a robust
and flexible sparse representation based appearance model that
confronts the aforementioned challenges.

For years, various appearance models have found a rich ex-
pression in the computer vision literature, in particular, formu-
lating with subspace representations [4]-[6] and sparse repre-
sentations [7]-[11], [23], [25], [28], which motivated this work.
Subspace representations are based on the core assumption that
the appearance manifold can be linearly approximated by single
or multiple low dimensional subspaces in a short time interval.
These methods have been justified that they are effective ap-
proaches to model the appearance changes, such as pose and
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illumination variations. However, as mentioned in [5], they are
sensitive to gross errors caused by significant occlusions. On the
other hand, the sparse representation based appearance models
exhibit promising performance against occlusions for robust vi-
sual tracking. These methods attempt to handle the occlusions
as a sparse noise component and approximate the target ap-
pearance via seeking a sparse linear combination in an over-
complete basis library consisting of target and trivial templates
[7]. Yet, these sparse representation based tracking algorithms
are still far from practical applications as they suffer from the
tremendous computational load. In addition, most of the basis
libraries in these methods are composed of raw target templates
that are directly sampled from the images, which limit their
generative capabilities. Extensive improvements such as using
feature extraction [8] and exploring the inherent structure of
the data [10], [11] for computational complexity reduction are
presented. In addition, there is also a growing interest in ap-
plying the machine learning techniques to enrich the descrip-
tive abilities of the appearance model [10], [11], [23]. Moreover,
a multitask learning based sparse representation [25], was pro-
posed to solve the tracking problem. It generalized the prototype
sparse representation based tracker [7] and showed significant
enhanced tracking accuracy and efficiency by exploring the joint
sparsity within the particle filter framework and the accelerated
proximal gradient algorithm.

Recent works reported impressive improvements of tracking
efficiency and robustness by using a structured sparse represen-
tation appearance model [10], [11], [29]. The object appearance
is modeled as a sparse linear combination of structured union of
subspaces instead of individual templates. It is verified that this
structured model is suitable for practical visual tracking tasks
by considering the predefined basis library structure and con-
tiguous spatial distribution of occlusions. The computational
load can also be significantly reduced by using the Block Or-
thogonal Matching Pursuit (BOMP) algorithm [12] to solve the
structured sparse representation problem. However, visual drifts
are still observed when there is extreme pose and illumination
variation. This is because the above method models the object
appearance with a single subspace and its descriptive abilities
are limited for approximating the complex and nonlinear ap-
pearance manifold.

In this work, we propose a new appearance model that
has richer expressiveness and stronger discriminative power
based on the structured sparse representation framework. Dif-
ferent from the original structured sparse representation based
tracking [10], [11], we model nonstationary object appearance
manifold with a number of low dimensional linear subspaces
rather than barely one subspace. On the other hand, a clustered
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background subspace set is also added in to the basis library
and is updated during tracking to enhance the discriminative
power, which is ignored in the prototype structured sparse
representation based method. Using the BOMP algorithm,
the object appearance can be represented by a sparse union
of subspaces in the target subspace set, while the continuous
occlusion can be adaptively masked out by occlusion template
sets. Finally, the proposed appearance model is integrated into
a particle filter framework for tracking.

This paper is organized as follows. Section II briefs the
principles of structured sparse representation based appearance
model. The proposed new appearance model with multiple
subspaces based target appearance learning and representation
as well as the clustered background subspaces learning scheme
are presented in Section III. Section I'V describes the integration
of the proposed appearance model and particle filter for visual
tracking. Experiments proceed in Section V and this work is
concluded in Section VI.

II. STRUCTURED SPARSE REPRESENTATION BASED
APPEARANCE MODEL

The framework of structured sparse representation aims at
approximating the observed object appearance y € R by a
sparse linear combination over a basis library A

y = Aw (1)

where A = [Ar I € REX(HLD) s a basis library consisting
of target template set A7 € R**¢ and the occlusion template
set that is a identity matrix I € R*% It is sensible to assume
w = [x e] € R¥*L is a block sparse coefficient vector, if we
consider the predefined basis library structure and continuous
spatial distribution of occlusion in practical visual tracking tasks
[10], [11]. The basis library A is a block-structured matrix, the
basis vectors of which are sorted in blocks, thus enabling block-
sparse representations for a variety of object appearances and
occlusions. We can treat the basis library A as a concatenation
of m column-blocks A[j] of size L x d;

A =[A[1] A[2]... A[m]] @)

where d; is the number of basis vectors that belong to the jth
block. Accordingly, the sparse coefficient vector w can be de-
noted as a concatenation of m blocks w[j] of length d;

Cwm]]t. 3)

The first block in A and w corresponds to the target template
set A7 and target coefficient vector x, respectively. Based on
a local region analysis, the remaining blocks in A are used to
represent the occlusions in the partitioned local regions [11].

Fig. 1. Complex and nonlinear appearance manifold M can be approximated
as a union of subspaces.

A block k-sparse vector w is defined as the nonzero values in
the vector that are concentrated in %k blocks only, as denoted by
lw|l2,0 < k, where

T

lwollz0 = I(lwl][l2 > 0). *

=1

The indicator function I( - ) counts the number of blocks in w
with nonzero Euclidean norm.

The coefficient vector w can then be estimated by approx-
imating the observation y using the basis library A under a
sparsity prior using the Block Orthogonal Matching Pursuit
(BOMP) algorithm [12]. The structured sparse representation
problem can be formulated as

w* = argmin ||y — Awl|2 subject to ||lwll20 < T (5)
w

where T is a parameter to impose the sparsity prior.

To capture the appearance variations, the raw target template
set At is replaced by an Eigen template set U obtained by the
SVD algorithm Az = UXV? firstly. Then the Eigen tem-
plates U are updated with incremental PCA [13], [14] during
tracking when new observed appearances are available. The
learned Eigen templates provide a richer description than the
raw templates because they span an optimal subspace that has
the smallest reconstruction error with not only the current nut
also the past appearance information.

III. FLEXIBLE STRUCTURED SPARSE REPRESENTATION BASED
APPEARANCE MODEL

The prototype structured sparse representation framework
can be used to represent the gradual appearance variations with
a single learned Eigen template set based on the assumption
that the appearance of the target can usually reside in a low
dimensional submanifold in a short time interval [6]. However,
in reality, the appearance manifold is complex and nonlinear
[15]. The expressiveness of the single subspace model is lim-
ited and difficult to handle the nonlinear appearance manifold.
Therefore a more flexible model that has richer descriptive
capabilities for appearance representation is needed. In addi-
tion, the original model is essentially a generative method that
ignores the background information so that it is prone to drift
away from the target in the case of background cluttering.

Inspired by the previous problems, we propose a new
structured sparse representation based appearance model that
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has richer descriptive capabilities and stronger discriminative
power for tracking. As shown in Fig. 1, the new appearance
model incrementally learns multiple low dimensional linear
subspaces instead of single subspace representation to ap-
proximate the nonlinear appearance manifold. To improve
the robustness of the model against background cluttering,
we add a background subspace set into the basis library that
provides additional discriminative power for the tracker. The
new overcomplete basis library is constructed as

A=[ATA T (6)
where AT = [AT[1],AT[2]...AT[p]] is the new target
subspace set that consists of p blocks that store the basis sets
for the low dimensional subspaces learned from the target
appearance, and A~ = [A [1],A [2]...A [q]] is the back-
ground subspace set that includes g basis sets from the clustered
background subspaces. Correspondingly, the block-sparse co-
efficient vector can be denoted as

w=[ww e’ 7
where w™' and w™ represent the decomposed coefficients that
correspond to new target subspace and background subspace
sets.

Although the learned multiple subspaces capture the nonlinear
appearance manifold by allowing several possible subspace de-
scriptions, the exact subspaces that represent the new observa-
tion is unknown a priori. In visual tracking, it is reasonable to as-
sume that the new observed appearance can be well represented
by only a few subspaces within the target subspace set because of
the local linearity. We argue that the observation can be repre-
sented by, at most, one third of the subspaces in A™. Similar
to [11], we also set the tolerance of occlusion in our model is
one third of the sampling area. In this way, the structured sparse
representation problem in (5) can be rewritten as

wt
(W, e*) = argmin ||y — [ATA ] | w™
wt e e

2

subject to (w20 < 71 and |je||2,0 < T,

(®)

where the parameters are set to 73 = |[p/3] and Tp =
[(m —p—q)/3], and || returns the nearest integer less than
or equal to the value inside.

This new structured sparse representation problem can be
also solved using BOMP by adding constraints on w™ and
e. As mentioned in [11], a valid observation could be better
represented by the target templates rather than the background
and occlusion templates. Additionally, a valid observation
can achieve the highest correlation with the target basis sets
in A*. Therefore, the matching stage of BOMP can act as a
classifier that eliminates the outliers by judging whether the
target subspace basis is picked in the first iteration. Given that
the background subspace set is added into the basis library,
more invalid observations are expected to be eliminated, such
that the discriminative power and computational efficiency of
the model is improved. From the second iteration, the back-
ground template library is removed from the basis library for
computational load reduction.

A. Incremental Appearance Learning With Multiple Subspaces

In visual tracking, it is shown that the nonlinear appearance
manifold can be approximated by a number of low dimensional
linear subspaces [15]. In our approach, we employ a merging
and insert strategy (see Algorithm 1).

Algorithm 1: Incremental appearance learning with
multiple subspaces

Input: A sequence of samples {y1, ..., yn~ }, the dimension
of the target subspace d, and the maximum number of the
target subspaces p.

1. Form a new d-dimensional subspace
(I)new — (Unmu’Ane'zl,'7n71,mu) every (l ﬁ.ames:

rew {yi’ . ,Yi+d}

2. Ifan empty block A*[l],1 € [2, p] exists, then

3. AT[l] « U,

4. Else

5. (j3,k)* = argmax Sim(A*[j], At[k]).j. k €
[17 e 7p]7j # k,

6. AT[j]=AT[j]]U AT[k] and AT[k] « U™,

7. Endif.

Output: the target subspace set AT,

to perform an incremental learning procedure when the ob-
served samples are given in a sequential manner [16]. Given
that the maximum number of the subspaces is fixed, new
subspaces are created with d dimension periodically by SVD
during tracking and then inserted into the target subspace set.
If the number of existing subspaces is equal to the predefined
maximum, the two most similar subspaces are merged, and a
space is vacated for the new created subspace.
Mathematically, let & = {®4, ..., ®,} represent the object
appearance manifold and @, 4 € [1, ..., p| denote the local sub-
manifold. Let ®; = (U,;, A;, n;) denotes an eigenspace model
that approximates the ith local submanifold, where U;, A;, n;
represent the eigenvectors, eigenvalues, and the total numbers
of samples that form the subspace, respectively. Without loss
of generality, zero mean is assumed by removing the sample
mean. In the proposed algorithm, the similarity between two
subspaces is determined by the canonical angles [17]. Given
two subspaces ®; = (U, A1,nq) and P2 = (Usz, Ao, na),
such that ¢ = dim(P®y) > dim(P2) = b > 1, then there are b
canonical angles between the two subspaces. The similarity of
two subspaces can be represented as
b
I o (UTUy)

k=b—d+1

Sim(®q,®9) = &)

where o}, is the kth sorted eigenvalue computed using SVD.
This similarity metric is an approximate measurement using the
d largest principal angles.

For the subspace merging procedure, we use the method pro-
posed in [18] to update the model incrementally. To keep this
paper self-contained, we briefly introduce the algorithm here.
The first step is to construct an orthonormal basis set U’ =
[U; v] that spans the subspaces ®; and P, where v = orth(H)
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and orth( - )denotes the orthogonalization process. H contains
the residues of each of the eigenvectors in Uy with respect to
the eigenspace of P

G =UlU,, (10)

H=U, - U,G. (11)
By denoting the covariance matrices of subspaces ®; and @,
as C and D, the combined covariance matrix can easily be ob-
tained by

n1 no

E= C+ D. (12)

ny, + no ny + no

The second step is to solve a new eigenproblem with respect to
the combined covariance matrix E:

UTEY = ™ Ay O

GALT?

N2 GA,GT
TA,TT

- = RART
N1+ ny FAQGT :| RAR ) (13)

where I' = v7'U,, and A is the eigenvalue of the merged sub-
space. The eigenvector is then obtained by a linear transform
that rotates the basis set U : U = U’R.

B. Incremental Background Learning With Clustered
Subspaces

Thebackground or negative samples are readily obtained com-
pared with the target appearance samples. Let L(z)and L denote
the location of the observation z and the object location, respec-
tively. We randomly sample the background image patches from
anannularregionZ = {z : a < || L(z) — L}|| < S}, where
o and 3 are thresholds that define the annular area. In this work,
we set the value of o to the diagonal length of the box that en-
closes the target, while 3 is assigned to twice of «v. These settings
allow us to extract the negative data not too close or too far from
the target such that the background subspaces are able to elimi-
nate the invalid observation. The negative samples exhibit more
diverse properties because the background is usually cluttered.
Therefore, we use a different strategy to learn the background
information with multiple subspaces (see Algorithm 2).

Algorithm 2: Incremental background Learning with
Clustered Subspaces

Input: A collection of background samples {z1, ..., 2.},
the dimension of the background subspace d, and the
maximum number of the background subspaces q.

1. Group the background samples into ¢ clusters using
the k-means algorithm.
2. Form ¢ new d-dimensional subspaces
opew = (UPew AW prew) | = 1. g
with the clustered samples.
If A~ is empty then
A7l = ®p™,1=1,...,q.
Else
Forl =1 toq.
J* = argmax Sim(A~[j], ®7°"), 5 € [1,...,q].
A[j] < AU e
End for.

WX~k Ww

10. End if.

Output: the target subspace library A~

To initialize the background subspace set A~, we apply the
K -means algorithm to group the sampled image patches into
q clusters. Then we create ¢ low dimensional subspaces for
each of the cluster and add them into the background sub-
space set A~ . Once the clustered background subspaces are
initialized, they are updated incrementally. During the tracking
process, the online sampled background image patches are
firstly clustered and form ¢ subspaces. Then we find the most
similar existing background subspace with the new created
subspace and then perform the merging process as mentioned
previously.

IV. TRACKING ALGORITHM WITH THE PARTICLE FILTER

We embed the proposed appearance model into a Bayesian
inference framework to form a robust tracking algorithm.
The model recursively updates the posterior distribution
p(X:|y1.¢) over the target state x; given all the observation

plying the Bayes’ theorem, the Bayes filter can be written as

p(xt|Y1:t)O<P(Yt‘xt) / P(Xt|Xt71)P(Xt71|Y1:t71)dxt717
le—l

(14)

where p(y:|x;) is the observation model and p(x;|x;_1) is the
motion model. In the particle filter framework [19], the poste-
rior distribution p(X;|y1.+) is recursively approximated by a set
of weighted samples. The observation model indicates the sim-
ilarity between an observed target candidate and the recovered
image as determined by

i 0 if y'f; is outlier
= 15
b (Yt|xt) { exp M else (s)
where A denotes the weighting parameter, and r; = ||y — ¥¢||2

is the residual between the observed target sample y,and the re-
covered image ¥; = A;w;. We set A = 5 in all our experiments
similar to the prior work [11], [22].

The motion model predicts the current state based on the pre-
vious state. In this paper, an affine image warping is used to
model the target motion between two consecutive frames. We
formulate the state vector x; = (Z¢, Y. ¢, St, O¢, P¢) at time
t with six parameters of affine transformation wherex,, y; de-
note the x, y translation and 7y, s, 3:, ¢ represent the rotation
angle, scale, aspect ratio, and skew direction at time ¢ respec-
tively. Each parameter in x; is governed by a Gaussian distri-
bution around their previous state x;_; and are assumed to be
mutually independent:

P(Xe|xe-1) = N(Xe5 % 1. %) (16)
where 9 is a diagonal covariance matrix. The current state is
then estimated by maximum a posterior (MAP) that associates
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with the highest likelihood under the observation model. The
tracking algorithm is summarized in Algorithm 3.

Algorithm 3: Proposed tracking algorithm

Initialization: Construct the first target subspace A™[1] by
manually labeling the first 5 frames in a test video sequence.
Sample the background image patches from an annular
regionZ = {z: a < ||L{(z) — L}|| < ) and group them
into g clusters. Then create background subspace set A ™.

1. Fort = 6 to N, where N is the total number of frames.

2. Generate P candidate samples y; at state Xi

according to the affine motion model (16).

Foreachy!,i =1:P

4. Perform BOMP to solve (8). Break the BOMP loops
and return y? as an outlier if the target subspaces are
not picked in the first iteration.

5. Calculate likelihood with (15) according to the
observation model.

6. End for.

7. Obtain the current state X; using MAP and store the
tracking result y;.

8. Update the basis library A; every 5 frames with
algorithm 1 and 2.

9. End for.

w

V. EXPERIMENTS

The proposed tracking algorithm is implemented using
MATLAB on a 3 GHz machine with 2 GB RAM. The maximum
numbers of the target subspaces and background subspaces
are set to p = 12 and ¢ = 4, respectively. The dimensions of
target and background subspaces are both 5. In other words,
the length of the blocks in the target and background subspace
set is 5. Each observed sample is resized to a 12 x 15 patch
and is partitioned into six 6 x 5 subimages for local region
analysis. Correspondingly, the length of the remaining blocks
in the occlusion template set is set to 30. The first five frames
are manually labeled to initialize the tracker and the model is
updated every five frames.

For comparison, we evaluate the proposed tracker against
two latest sparse representation based trackers, namely, the
£y tracker [9], multitask sparse learning based tracker (MTT)
[25] and the structured sparse representation based tracker
(SSRT) [11], as well as four other state-of-the-art trackers:
mean shift (MS) [20], incremental visual tracker (IVT) [5],
multiple instance learning based tracker (MILTrack) [21], and
visual tracking decomposition (VTD) [22]. The MS algorithm
is implemented with the function in OpenCV. The source
or binary codes of other six trackers can be obtained in the
corresponding project website or the authors. All the reference
trackers are implemented with the parameter settings given
in their respective papers or use their default initialization.
However, as SSRT, IVT, #; tracker, MTT, VTD and the pro-
posed tracker are Monte Carlo sampling based methods, we
used the same number of samples, 600, to track an object for
fair comparison. For the particle filter based trackers (i.e., 1
tracker, SSRT, MTT, IVT, and the proposed method), we set

TABLE I
DETAILS OF THE VIDEO SEQUENCES

Initial

Video Clip  Frames .. Challenges
Position
Dudeck 1~573 188,192  Large posc variation and short time
full occlusion
Faceocc2 1~814 158,107  Significant and long duration
occlusion as well as large pose
variation
OLSR2cor  1~260 121,153 Non-rigid deformation and significant
occlusion
David 1~462 160,106  Significant illumination and pose
changes
Trellis 1~502 200,100  Difficult illumination conditions and
large pose changes
Sylvester 1~1344 145,77 Uneven illumination and pose
variations
Singer 1~351 68,136 Drastic illumination and scale
variations
Football 1~362 225,85 Background cluttering and occlusion

the parameters of both the motion and observation model as
consistent as possible. All the trackers start with the same
initial position of the videos. For the probabilistic trackers, the
quantitative results are obtained by calculating the mean over
five runs. Our tracker runs at about 1 frame per second, which
is faster than the prototype structured sparse representation
based tracker (SSRT) [11] (1.5-1.8 seconds per frame), the /1
tracker [7] (2 seconds per frame), and the sparse representa-
tion based tracker [23] (9 seconds per frame). The reason for
yielding more efficient tracking performance compared to the
other methods is the use of background learning scheme that
is able to identify the invalid observations in the early stage
of the algorithm so that the computational can be effectively
reduced. Eight publicly available benchmark video sequences
from the prior works [5], [21], [22] are used to evaluate the
performance of our tracker under the challenges of significant
occlusion, pose, scale and illumination variations as well as
background cluttering. The details of the selected datasets are
listed in Table I, where the start and the end frames, the initial
position for tracking (indicated by the image coordinates) and
the main challenges are included. It is also worth to notice that
the maximum number of tracking frames for VTD tracker is
1000 with the released source code. The representative tracking
results are shown in Figs. 2 and 3.

A. Qualitative Analysis

In the Faceocc? and OneLeaveShopReeter2cor sequences
[Fig. 2(a) and (b)], the objectives are to track the face and pedes-
trian with significant occlusions. It is worth notice that there
are also challenges regarding to pose variation and nonrigid
deformation in the Faceocc2 and OneLeaveShopReeter2cor
sequences, respectively. The VTD, SSRT, MTT, and the pro-
posed method perform well in the first sequence. The proposed
method has a tracking performance similar to that of the pro-
totype structured sparse representation based tracker because
they use the same strategy (partitioned occlusion template set)
to handle the occlusions. The ¢; tracker is robust to occlusion,
but fails to handle the pose variations. The other methods can
also track the target, but are not as accurate as the proposed
method. As shown in Fig. 2(b), SSRT, ¢; tracker, MTT and
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(d)

Fig. 2. Screen shots of comparison tracking results. The results of the proposed tracker, MS, MILTrack, IVT, VID, £, Tracker, MTT, and SSRT are indicated by
red, cyan, orange, green, blue, magenta, white, and yellow boxes. (a) Faceocce2. (b) OneLeaveShopReeter2cor. (c) Dudek. (d) Sylvester.

(d

Fig. 3. Screen shots of comparison tracking results. The results of the proposed tracker, MS, MILTrack, IVT, VID, £; Tracker, MTT, and SSRT are indicated by
red, cyan, orange, green, blue, magenta, white, and yellow boxes. (a) David. (b) Trellis. (c) Singer. (d) Football.

our tracker can successfully track the woman in the whole
sequence, but visual drifts of the £; tracker and SSRT were
observed at frame #196 and #214. The other four trackers fail
to track the target when the occlusion presents.

The Dudek, Sylvester, and David sequences [Fig. 2(c) and (d)
and 3(a)] are used to test the flexibilities of the proposed appear-
ance model for tracking objects undergoing large pose varia-

tions. Given that the proposed method adapts the nonlinear ap-
pearance manifold with multiple subspaces, it always outper-
forms the SSRT, which uses only one single subspace for ap-
pearance modeling and representation in these sequences. The
proposed tracker can track the targets successfully in all these
sequences. However, the ¢; tracker fails to track the target un-
dergoing significant pose variations such as at frame #845 in
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Fig. 4. Tracking location error plots.

the Sylvester sequence and at frame #150 in the David sequence.
The IVT and SSRT lose the target as a result of a combination of
drastic pose and illumination changes in the Sylvester sequence.
The VTD fails to track the face at frame #150 in the David se-
quence probably because it requires more samples (e.g., 800) to
produce better accuracy. We also observe that MTT may drift
away from the target when it undergoes a combination of large
pose and illumination variations in the Dudek and David se-
quences. The MILTrack is capable of tracking the target in the
Sylvester sequences, but drifts to the background in the Dudek
and Trellis video clip.

Fig. 3(b) and(c) shows the tracking results in the Trellis and
Singer sequences that involves challenges of severe illumina-
tion changes. The proposed appearance model shows stronger
capabilities to adapt the illumination and pose variations, and
yields more accurate tracking result than SSRT in the Trellis
sequence. There is a significant visual drift at frame #334 in
the Trellis sequence produced by MTT, but MTT can resume
tracking the target after a few frames. The other five trackers
lose the target successively as shown in Fig. 3(b). In the Singer
sequence, the proposed tracker, VID, MTT and the ¢; tracker
can stably track the singer even when it under dramatic lighting
variations at the stage. The MS, IVT, and SSRT algorithms are
vulnerable to drift after the illumination and scale changes.

Fig. 3(d) presents the tracking results under background clut-
tering environment using the Football sequence. The proposed
tracker can robustly track the target, but SSRT has difficult at
frame #285. It is proven that the introduction of clustered back-
ground subspaces learning enhance the discriminative capabil-
ities of tracker. In the sequence, VTD also produces accurate
tracking results; however, the other trackers are hijacked by
other objects looking similar to the target.

B. Quantitative Analysis

1) Performance of the Tracking Algorithms: We use the av-
eraged tracking location error to quantify the performance of
the proposed tracker and the reference trackers in our experi-
ments. In our work, the averaged location errors measure the
Euclidean distance between the tracking window center and
the ground truth. The location error with respect to the frame

350

number and the averaged location error are summarized in Fig. 4
and Table III, respectively. In most sequences, the proposed
tracker has the lower averaged location errors than the original
SSRT and has better tracking performance than other reference
trackers.

In addition, we used the PASCAL score based detection rate
and f-score similar to the work [26] to further evaluate the
tracking performance. The detection rate is interpreted by two
indices: precision and recall. The precision is defined as the
number of true positives divided by the number of retrieved
instances, while recall is the number of true positives divided
by the total number of frames that contains target of interest
(i.e., the sum of retrieved instances and negative falses). Given
the score based on the PASCAL challenge [27]

area(ROIT N ROIgT)
area(ROIT U ROIgr)

score = 17
where ROIy is the tracked bounding box and RO Iy is the
ground truth bounding box. A frame is indicated as true pos-
itive when its PASCAL score is exceeds 0.5, and is identified
as retrieved instance when its PASCAL score is larger than 0.
False negatives are counted if the PASCAL score is zero but
the target is still visible. Precision typically indicates the extent
of visual drift if there is still overlap area between the tracked
result and ground truth. On the other hand, recall usually inter-
prets the tracking failure level since the cases of no overlap area
are also counted. The f-score measures the tracking accuracy by
considering both the precision and recall

precision - recall

J=score =12 precision + recall” (18)
Table II summarized the detection rates and f-scores on eight
different dataset. It was shown that the proposed tracker
achieves the higher detection rate and f-score than the original
SSRT and has the best or second best performance than the
other reference trackers in most of the sequences.

2) Performance of Flexible Structured Sparse Representa-
tion: Although the experimental results show that the flexible
structured sparse representation strategy facilitates robustness
of visual tracking, the contributions of multiple subspaces
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TABLE II
DETECTION RATES. RED BOLD FONT INDICATES THE BEST PERFORMANCE, GREEN ITALICS FONT INDICATES THE SECOND BEST

Video Clip D::f::“ MS MIL IVT VTD o1 MTT  SSRT  Our method
Dudek Recall 0.32 0.48 0.97 0.84 0.49 0.19 0.40 0.97
Precision 0.30 0.79 0.97 0.84 0.66 0.29 0.41 0.97
f-score 0.25 0.52 0.97 0.84 0.56 0.22 0.40 0.97
Faceocc2 Recall 0.08 0.47 0.80 0.71 0.52 0.77 0.80 0.83
Precision 0.13 0.47 0.80 0.71 0.60 0.77 0.80 0.83
f-score 0.10 0.47 0.80 0.71 0.55 0.77 0.80 0.83
OLSR2cor Recall 0.70 0.79 0.88 0.79 0.97 0.93 0.92 0.99
Precision 0.70 0.82 0.88 0.79 0.97 0.95 0.92 0.99
f-score 0.70 0.80 0.88 0.79 0.97 0.94 0.92 0.99
David Recall 0.12 0.20 0.80 0.43 0.39 0.32 0.88 0.86
Precision 0.23 0.20 0.90 0.50 0.78 0.45 0.88 0.86
f-score 0.15 0.20 0.84 0.46 0.50 0.36 0.88 0.86
Trellis Recall 0.16 0.20 0.53 0.29 0.38 0.63 0.70 0.79
Precision 0.28 0.41 0.86 0.66 0.71 0.71 0.75 0.79
f-score 0.20 0.27 0.65 0.40 0.49 0.67 0.72 0.79
Sylvester Recall 0.29 0.69 0.50 1 0.3 0.93 0.73 0.94
Precision 0.30 0.69 0.95 1 0.51 0.93 0.84 0.95
f-score 0.30 0.69 0.65 1 0.37 0.93 0.78 0.94
Singer Recall 0.33 0.22 0.66 0.68 1 0.93 0.34 0.89
Precision 0.37 0.22 0.66 0.68 1 0.93 0.34 0.89
f-score 0.35 0.22 0.66 0.68 1 0.93 0.34 0.90
Football Recall 0.16 0.63 0.87 0.93 0.45 0.78 0.64 0.92
Precision 0.86 0.64 0.91 0.93 0.80 0.82 0.69 0.92
f-score 0.27 0.64 0.89 0.93 0.56 0.80 0.66 0.92
TABLE III 100 Sylvester
TRACKING LOCATION ERROR (PIXELS). RED BOLD FONT INDICATES THE BEST Multiple subspaces based appearance learning [mean: 12.05 pixels]
PERFORMANCE, GREEN ITALICS FONT INDICATES THE SECOND BEST ~ [['='=" Single subspace based appearance learning [mean: 21.47 pixels]
T 80 [| = = = Tracking failure threshold %
X —
Video MT Our 8 AT
Clip MS MIL IVT  VID 4T  SSRT T aefiod 5 3 a“ v rﬁ'
2 =i 1
Dudek 122 141 7 14 168 75 114 6 o 60 a N4
Face2 78 20 13 9 34 11 11 11 5 ii H
Olst2cor 15 7 4 12 3 2 4 2 g ']
David 80 23 24 27 57 5 57 7 S 40t H
Trellis 71 60 124 54 65 12 24 8 2 i
sylv 22 9 29 6 36 21 7 6 § i
Singer 87 15 6 5 2 8 2 5 e (eI
Football 117 13 6 5 50 9 10 5 !M,J.-" w3
b 260 460 660 860 10‘00 1260
based appearance learning and clustered background subspaces -
rame #

learning are still unclear. To demonstrate the effectiveness of
the proposed appearance model compared to the prototype
structured sparse representation model, we conduct tracking
experiments on the Sylvester sequence without cluster back-
ground subspaces learning scheme. We use the Sylvester video
sequence because the target undergoes a combination of signif-
icant pose and illumination changes, which is a representative
example of tracking nonlinear appearance variations. This
setting allows us to eliminate the influence of the background
subspaces learning and make sure that the tracking performance
only depends on multiple subspaces learned from the target
appearance. As shown in Fig. 5, the location error curve for
the multiple subspaces based appearance learning scheme with
the mean error 12.05 pixels is lower than SSRT that uses only
a single subspace to represent the target appearance with the
mean error 21.47 pixels. Fig. 6 describes how the proposed
algorithm actively selects appropriate subspaces to represent
the target appearance in Sylvester sequence. Fig. 6(d) shows
that only one or two subspaces are selected to represent the
target appearance. From frame #500 to #504 and from frame

Fig. 5. Tracking location error plots for comparison of single subspace based
appearance learning and multiple subspaces based appearance learning. The
tracking failure threshold is defined as the tracking location error that is 20%
of the diagonal length of the rectangle enclosing the target in the first frame.

#541 to #544, the BOMP algorithm picks the 11st and 3rd
subspaces to represent the frontal and side appearances of the
target in Fig. 6(a) and (b), respectively. It is shown that the first
principle components of these two selected target subspaces
appear similar frontal and side appearance. At frame #571
[Fig. 6(c)], our method selected two subspaces from the target
subspace set that indicates the union of these subspaces can
also be used to represent the target appearance. With help of
such a flexible multiple subspaces representation, the proposed
appearance model leads to more accurate tracking in spite of
severe pose and illumination changes.

We also assess the contribution of the clustered background
subspaces learning scheme and how this procedure facilitates
the discriminative power or the model. The Football sequence



546 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 1, FEBRUARY 2014

L0 R i L EEEE (REEE ©
9_ ............... -
5¢
3 s
2
o I .
8
& s -
2
8 gl -
w
4 i
3_ S——
2r- : ; i ' : H : prezeseey)
1 Iodedetode 1 1 1 1
500 510 520 530 540 550 b 570 580 590 600

Frame # (Sylvester)
(d)

Fig. 6. (a)—(c) Flexible appearance representation of the proposed model.
(d) Selected subspaces (indicated by *) with respect to frame number.
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Fig. 7. Tracking location error plots for comparison of with and without clus-
tered background subspaces learning. The tracking failure threshold is defined
as the tracking location error that is 20% of the diagonal length of the rectangle
enclosing the target in the first frame.

provides another representative example of tracking a target
in the situation of background cluttering. We rerun the tracker
without adding the background subspace set into the basis li-
brary. In this case, a larger averaged tracking location error (7.84
pixels) than that with clustered background subspaces learning
strategy (4.04 pixels) is observed. The location error curves are
plotted in Fig. 7. Although the two curves are similar with each
other in the first 255 frame, a significant drift of the approach
without using the background information is observed due to
the background cluttering and occlusion, and this leads to a dra-
matic increase of the tracking location errors in the last 100
frames. The mechanisms of yielding more accurate tracking re-
sults with clustered background subspaces learning scheme are
shown in Fig. 8. As shown in Fig. 8(a), the proposed method
with background learning scheme inferred averaged 293.43 par-
ticles as outliers, which are far more than that without learning
the background information. Fig. 8(b) provides the intermediary
results and illustrates that the proposed model with background
learning infers more outliers that covers larger area around the

Football
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Fig. 8. Comparison of the outlier elimination scheme with and without back-
ground learning.

target than that without using the background information. The
reason for contributing a more accurate tracking performance is
that, the more outliers are identified, the larger effective sam-
pling size is obtained to reduce the effects of degeneracy in the
particle filtering procedure [11], [24].

VI. CONCLUSION

In this paper, we have presented a novel robust and flexible
appearance model based on the structured sparse representation
framework. The basis library is constructed with target subspace
set, background subspace set and partitioned occlusion template
set. The target appearance manifold is represented by a sparse
union of low dimensional subspaces in the target subspace set.
An insert and merging strategy is proposed to learn the multiple
target subspaces incrementally. The background information is
also introduced into the background subspace set by learning the
clustered negative image patches to improve the discriminative
capabilities. We use the BOMP algorithm to solve the new struc-
tured sparse representation problem. The proposed appearance
model and an affine particle filter are integrated to form a robust
visual tracking algorithm. Both the qualitative and quantitative
results show that our tracker is more accurate than the original
structured sparse representation based tracker and the other state
of the art methods.
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