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In this paper, we introduce a novel surveillance system based on thermal catadioptric omnidirectional
(TCO) vision. The conventional contour-based methods are difficult to be applied to the TCO sensor for
detection or tracking purposes due to the distortion of TCO vision. To solve this problem, we propose a
contour coding based rotating adaptive model (RAM) that can extract the contour feature from the TCO
vision directly as it takes advantage of the relative angle based on the characteristics of TCO vision to
change the sequence of sampling automatically. A series of experiments and quantitative analyses verify
that the performance of the proposed RAM-based contour coding feature for human detection and track-
ing are satisfactory in TCO vision. © 2012 Optical Society of America
OCIS codes: 100.3008, 100.4999, 110.2970, 110.3080, 110.6820.

1. Introduction

In the past few decades, automatic surveillance sys-
tems have become more and more popular in a large
variety of applications. However, most surveillance
systems [1–4] rely on the conventional imaging sys-
tem that requires proper illumination and has a lim-
ited field of view. In this paper, we propose a novel
surveillance system for human detection and track-
ing with thermal catadioptric omnidirectional (TCO)
vision, which consists of a thermal camera and a cat-
adioptric omnidirectional sensor. A thermal imaging
system is employed as it is a technology that enables
detection of people and objects in darkness and in di-
verse weather conditions. Although its performance
may be affected by some extreme weather conditions
[5], such as dense fog, heavy rainfall and snow, ther-
mal imaging cameras still allow us to see targets
better than is possible with visible-light imaging sys-
tems. Therefore, a thermal camera is suitable for sur-
veillance under diverse weather conditions. As the

price of thermal cameras has reduced dramatically,
they have become popular in civilian applications
in recent years. To achieve an extended field of view,
the catadioptric omnidirectional sensor is a good
choice to capture the global information with a single
image.

Compared with the conventional systems, detec-
tion and tracking in TCO vision are challenging as
only limited information can be used in thermal ima-
gery and the imaging distortion is severe in catadiop-
tric omnidirectional vision (COV). Therefore, it is
hard to apply the conventional concepts and algo-
rithms to the TCO vision directly. To the best of our
knowledge, there are very limited works that can be
referenced by our system. Based on the characteris-
tics of thermal vision, the contour can be considered
as an informative and stable feature, while the other
features, such as grayscale information and texture,
are limited in thermal vision. Although detection and
tracking in thermal imaging are difficult, more and
more researchers pay increased attention to the ther-
mal imagery vision driven by its merit. Recently,
there has been extensive literature in human
detection and tracking with thermal vision systems.
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In [6], the authors employ the support vector ma-
chine (SVM) for classification and Kalman filter to
integrate with mean shift for tracking pedestrian
in thermal imagery. Wang et al. extract the gray
and edge cues, and then use the motion information
to guide the fused cues for human tracking in infra-
red vision [7]. In [8], a two-stage template-based
method combined with the Adaboosted classifier
for pedestrian detection is presented. In [9], the
SVM is integrated with histogram of oriented gradi-
ent (HOG) [10] to detect the pedestrian in thermal
imagery. In [11], the authors adopt a generalized
expectation-maximization (EM) algorithm to sepa-
rate infrared images into background and foreground
layers first, and incorporate with SVM for pedestrian
classification. Then, they present a graph matching-
based method for tracking purpose.

The omnidirectional vision has drawn lots of con-
cerns in the computer vision community since last
century because of its wide field of view, which is a
unique advantage for the surveillance system. In
[12], a fisheye omnidirectional tracking system is in-
troduced, and the authors use optical flow to detect
the target and employ color feature based kernel par-
ticle filter (KPF) to realize the single target tracking
in omnidirectional vision. In [13], a catadioptric
omnidirectional surveillance system that uses multi-
background modeling and dynamic thresholding to
spot the sniper in the battlefield is presented. The
particle filter is proposed to incorporate with the col-
or feature to realize tracking in COV [14,15]. Schulz
et al. introduce a catadioptric omnidirectional pedes-
trian recognition system for vehicle automation,
where a method of boosted cascade of wavelet-based
classifiers is proposed to combine with a subsequent
texture-based neural network [16]. In the human de-
tection community, most state-of-the-art methods
are based on the contour information, which is devel-
oped under the hypothesis of up-right in the conven-
tional imaging system. Considering the inherent
distortion of COV, the contour distribution of target
varies as its azimuth angle changes in omnidirec-
tional image. Therefore, the conventional contour-
based methods are difficult to be applied to the
omnidirectional vision for detection and tracking
purposes. A common solution is to unwarp the
distorted catadioptric omnidirectional image to a
panoramic image or transform the coordinate of local
area of omnidirectional image into a rectified image
followed by using the conventional algorithms for de-
tection and tracking purposes [17,18]. However, the
computational load of this method is extensive as the
interpolation is involved in unwarping and coordi-
nate transformation (CT). Furthermore, unwarping
has a risk to split the target located at the border
of the panoramic image into two pieces, which likely
leads to failure during the detection and tracking
process. More importantly, unwarping and CT pro-
cesses could cause raw information loss and genera-
tion of noises, which will degrade the performance of
algorithm in TCO vision.

According to the characteristics of the proposed
system, it seems that the contour information can
be considered as stable in thermal vision but it is
distorted in a catadioptric imaging system. A repre-
sentative image is shown in Fig. 1. To solve this pro-
blem, we propose a contour coding based RAM that
can take advantage of the characteristics of TCO
vision to realize the rotating adaptivity of contour
in TCO vision. The proposed RAM could work on the
omnidirectional image directly but neither involves
unwarping nor CT process. For tracking purposes,
we propose to make use of the probability confidence
of the classifier to calculate the observation likeli-
hood of particle filter. Since no existing TCO data-
base is available in public, we also collect a series of
TCO datasets with diverse environment tempera-
tures. For the merits of the proposed system, it
should have a wide range of applications, such as
surveillance in public, security in military bases,
conservation of wild animals, and automatic drive
assistance [19].

The paper is organized as follows. Section 2 pre-
sents a contour coding based RAM, which is able
to integrate with the state-of-the-art contour fea-
tures to form a series of contour coding based rotat-
ing adaptive features. Section 3 introduces the
proposed human detection and tracking algorithm
in a TCO system. Section 4 presents a TCO database
first, then a series of experiments and quantitative
analyses is given to verify the effectiveness of the
proposed algorithm for human detection and track-
ing in TCO vision. Finally, we conclude the paper
in Section 5.

2. Contour Coding Based Rotating Adaptive Model

Contour is an important cue that we can rely on in
object detection and tracking. We can distinguish a
human from other objects on the basis of its contour
information. In conventional vision, the contour
distribution of a human is generally following the
hypothesis of up-right. With the effect of distortion
in catadioptric vision, the distribution of contour is
varied as the azimuthal angle of target is changed

Fig. 1. (Color online) Representative image of TCO vision.
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in TCO vision. Therefore, the conventional contour
based methods cannot be applied to a TCO system
directly for detection and tracking purposes. To solve
this problem, we propose a contour coding based
RAM which requires neither unwarping the dis-
torted catadioptric omnidirectional image onto a con-
ventional panoramic image nor making the CT for
rectification, but is rotation invariant as the sam-
pling sequence of the contour feature can change
automatically based on its relative angle. According
to the imaging characteristics of a TCO system, the
effective imaging area is a circular image on the
catadioptric mirror. Naturally, the polar coordinate
is employed to fit the characteristics of TCO vision,
and the center of the omnidirectional image is
aligned with the origin of the polar coordinate. As
shown in Fig. 2, the origin O�0; 0� of the image XY
coordinates is located at the top left corner. Then,
the center Ol�0; 0� of the polar coordinate XlYl can
be obtained. As shown in Fig. 2, each point corre-
sponds to an angle θ relative to the reference line
in an omnidirectional image. With the relative angle
θ, each sample model can adaptively change the in-
itial sample point automatically. According to this
principle, the proposed RAM can accommodate the
rotation of a target in COV effectively. Then, the var-
ied contour distribution can be recovered back to the
reference plane through RAM. It should be noted
that the proposed RAM can be integrated with the
state-of-the-art contour coding features to form con-
tour coding based rotating invariance features in
TCO vision. Based on the complexity of coding mode,
we combine the proposed model with the gradient
information, Haar wavelet, and HOG to form three
different levels of rotating adaptive contour features,
respectively. With the different encoding levels, the
performance of the proposed contour coding based
rotating adaptive features is different.

The template of the proposed contour coding based
rotating adaptive feature is shown in Fig. 3, which
consists of multiple sector units to implement the
contour coding. In order to extract the contour infor-
mation uniformly, we employ the multiangle sectors

as the coding unit since the single angle interval
could cause oversampling at the inner ring and
under sampling at the outer ring. Each ring corre-
sponds to an angle interval φ that decreases with
the radius r increases. In the following, we introduce
three different types of contour coding based rotating
adaptive features on the basis of the complexity of
coding mode.

A. Gradient Coding Based Rotating Adaptive Feature

Gradient is an intuitive information cue we can uti-
lize as the contour coding feature. With the sequen-
tial sampling, we could form a simple gradient coding
based rotating adaptive feature. In the TCO vision,
the contour distribution varies as the azimuthal
angle of a target changes. To keep the contour infor-
mation invariant, the sample sequence of a model
should be varied accordingly. Based on the character-
istics of TCO vision, the proposed RAM could take
advantage of a relative angle to adaptively adjust
the sampling sequence to form a rotating adaptive
contour feature. The extracted gradient information
g�r; θ� also contains geometric information �r; θ�,
combined into a single model through RAM. To effec-
tively encode the contour information, we adopt two
different configurations of radius intervals ri1 � 3
with 50% overlap sampling and ri2 � 6 with 25%
overlap sampling to make the contour coding on
the gradient map, respectively (the dimension of the
template is 48 × 48). The small radius interval ri1
could detect the minor change of the contour and
ri2 has a good response to larger variations. In order
to reduce the effect of the area difference of multisec-
tors in the model, we take the average of the coding
unit for unit normalization. Then, the resulting fea-
ture vectors are divided by their average for normal-
ization. Finally, the normalized feature vectors Fi
(i � 1, 2) are concatenated to form the final rotating
adaptive contour feature F. The performance of the

Fig. 2. (Color online) Principle of proposed contour coding based
RAM.

Fig. 3. (Color online) Template of contour coding based rotating
adaptive feature.
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proposed feature will be presented in the experiment
section.

B. Haar Wavelet Based Rotating Adaptive Feature

Haar wavelet transform [20] is a very important
contour coding based feature which has been well
used for object detection and tracking in computer
vision. It was developed based on the Haar wavelet
theory, which is a sequence of rescaled “square-
shaped” function [Fig. 4(a)].

The Haar wavelet’s mother wavelet function ψ�t�
can be described as

ψ�t� �
8<
:
1 0 ≤ t < 1=2
−1 1=2 ≤ t < 1
0 otherwise

: (1)

Its scaling function ϕ�t� can be described as

ϕ�t� �
�
1 0 ≤ t < 1
0 otherwise : (2)

Technically, the Haar wavelet is not continuous but
jumping. Therefore, it is well used for analysis of the
signal with sudden transition. Papageorgiou and
Poggio [20] present the two-dimensional (2D) Haar
wavelet transform for object detection in a conven-
tional imaging system. In this paper, we propose to
develop a Haar wavelet transform based rotating
adaptive feature for omnidirectional vision by means
of RAM. Conventionally, the rectangle Haar wavelet
feature is adopted to meet the requirement of a tra-
ditional imaging system. To realize the rotating
adaptivity of contour in TCO vision, we propose to
employ the sector unit to extract the Haar wavelet
transform based on the characteristics of omnidirec-
tional vision. The proposed RAM-based Haar wave-
lets are shown in Fig. 4(b). It is obvious that the
RAM-based Haar wavelet is different from the

conventional as the area of the sector units is varied
as the radial length is changed, such as radial and
diagonal components [Fig. 4(b)]. To reduce the effect
of difference of coding unit, we average the coding
units to the same level for unit normalization. We
adopt two sector configurations of radius interval
ri1 � 4 with 50% overlap sampling and ri2 � 8 with
25% overlap sampling to encode the RAM-based
Haar wavelet transform in TCO vision, respectively.
Each Haar wavelet is divided into three components:
angle, radial, and diagonal. For component normal-
ization, the obtained component vectors are divided
by their average. After normalization, the elements
of vector much larger than 1 indicate strong intensity
difference, the elements much less than 1 indicate
consistent uniform region, and elements close to 1
are random pattern. Finally, the normalized compo-
nent vectors are concatenated to form the final RAM-
based Haar wavelet transform. Its performance will
be presented in the experiment.

C. HOG-Based Rotating Adaptive Feature

Contour is a very useful feature that contains a lot of
information, such as gradient and orientation. Pre-
viously, we introduced a simple RAM-based gradient
coding feature that only encodes the gradient infor-
mation but ignores the orientation of contour. Then,
we presented the RAM-based Haar wavelet, which
effectively encodes the grayscale intensity to reflect
the local intensity variance of omnidirectional image.
In this part, we present a RAM-based HOG [10] to
adaptively represent the distorted contour informa-
tion, which makes good use of the gradient intensity
g�x; y� and the orientation θ�x; y� [Eqs. (3) and (4)].
Due to the good performance of HOG, it has been
widely used in conventional vision community. How-
ever, it is hard to simply integrate RAM with HOG
to realize adaptive representation of contour in TCO
vision since the distribution of contour and the orien-
tation of gradient vary as the azimuthal angle of tar-
get changes. According to the characteristics of TCO
vision, we develop an orientation transformation al-
gorithm to effectively handle the varied orientation
of gradient, which is able to effectively transform
the varied orientation of gradient into the reference
plane (Fig. 5). Then, we can make use of RAM to ex-
tract the recovered histogram of orientated gradient
feature sequentially to obtain the HOG-based rotat-
ing adaptive feature:

g�x;y� �
����������������������������������������������������������������������������������������������
�I�x;y�− I�x−1; y��2��I�x;y�− I�x;y−1��2

q
;

(3)

θ�x;y�� tan−1��I�x;y�−I�x;y−1��=�I�x;y�−I�x−1;y���:
(4)

The working principle of orientation transforma-
tion algorithm can refer to Fig. 5, and the right part

Fig. 4. Haar wavelet framework in omnidirectional vision.
(a) Haar scaling function and wavelet and (b) three types of RAM-
based 2D Haar wavelets in omnidirectional vision.
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of the figure details the transform items of the
algorithm based on its azimuthal angle in omnidirec-
tional image. As the effect of distortion in catadiop-
tric vision, the gradient orientation of target varies
with its azimuthal angle changes. In order to adapt
the view habit of a human, we set A as the reference
plane that lets the image of human stand vertically
(Fig. 5). We set three key variables: the practical
measuring angle β, the rotation angle of target θ,
and the transformed angle α. The rotation angle is
relative to the reference line and the measuring an-
gle refers to the positive direction of the horizontal
axis. Through the orientation transform algorithm,
we can realize the transformation of gradient orien-
tation from the practical plane to the reference plane.
To better explain the principle of transform algo-
rithm, we set the orientation π=2 as an example.
When the target locates at the bottom left of the co-
ordinate system, both rotation angle θ and practical
angle β are less than π=2 but greater than 0. There-
fore, it follows the item 1 of transform algorithm, and
the transformed orientation α equals the sum of θ
and β. Since the sum of the interior angle of triangle
equals π, the transformed angle α is always equal to
π=2. If the target falls on the upper left of the coor-
dinate system, the rotation angle θ is greater than
π=2 but less than π, the measuring angle β is negative
but greater than −π=2. Therefore, the sum of
rotation angle and measuring angle follows the item
1 of transform algorithm. In the same way, we can
normalize the distorted orientation based on the
transformation algorithm when the target locates
at the top right and bottom right of the coordinate
system. According to the proposed orientation trans-
form algorithm, the varied orientation of gradient
can be transformed into the reference plane to form
the unified HOG descriptor in TCO vision. To nor-
malize the coding unit, Dalal et al. [10] applied a

Gaussian spatial window to weight the pixel based
on its distance to the center of unit. Due to the varied
area of coding units in RAM, we take the average of
the orientation bins of the coding unit for unit
normalization. Then, we adopt L2-norm to normalize
the transformed feature vector for block normaliza-
tion [10]. Finally, the transformed RAM-HOG is
formed, which is robust to the rotation of contour.
Experiment shows that the model configuration of
ri � 3.5 with the 50% overlap sampling has the best
performance in the TCO vision.

According to above, the RAM-based rotating adap-
tive features have been proposed, which should be
able to well handle the distorted contour in TCO
vision. Finally, their performance will be verified
in the experiment section.

3. Detection and Tracking Algorithm

We introduced the contour coding based rotating
adaptive features previously. For detection and
tracking purposes, we adopt the well-know SVM as
classifier and integrate the probability confidence
of the classifier with the particle filter for tracking
in TCO vision.

A. SVM Detector

SVM [21–24] is a very useful algorithm for pattern
classification. It can discriminate the unlabeled sam-
ples correctly based on a trained model. Suppose the
training sample set is provided as fxi; yigmi�1, where yi
values in the set f−1;�1g, andm is the number of the
training samples. The SVMworks bymaximizing the
margin between two classes in feature space for
minimization of the following objective function [22]:

min J�w; b; ξi� �
1
2
wTw� C

XN
i�1

ξi: (5)

Fig. 5. (Color online) Working principle of transformation algorithm of gradient orientation in RAM.
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Subject to the constraints:

yi�wTφ�xi� � b� ≥ 1 − ξi; ξ ≥ 0;

where ξi is the slack variable, C is the penalty factor,
φ�·� is the mapping from input space to feature space.
By taking the Lagrangian of Eq. (5), the original pro-
blem can be derived as

max
Xl

i�1

αi −
1
2

Xl

i�1; j�1

αiαjyiyjk�xi; x�; (6)

where k�xi; x� � φ�xi� · φ�x� is a kernel function. The
function (6) follows the constraints of

Pl
i�1 αiyi � 0,

where αi ≥ 0 are the Lagrange coefficients which
can be used to calculate the hyperplane of the SVM.
Based on the formed hyperplane, the SVM could
realize the sample classification for detection in
computer vision.

B. Particle Filter

The particle filter [25–27] has been widely used
for its advantage of nonlinear/non-Gaussian. It can
approximately fit the continuous posterior distribu-
tion through a series of weighted particles
fxik; wi

kgi�1;2;���;N . In Bayesian framework, the particle
filter recursively obtains the state xk at time k, given
the available observations z1∶k � z1; z2; � � � ; zk up to
time k. Suppose posterior p�xk−1jz1∶k−1� at time
k − 1 is available, the posterior p�xkjz1∶k� can be ob-
tained recursively by prediction and update. The pre-
diction stage makes use of the probabilistic system
transition model p�xkjxk−1� to predict the posterior
probability of state at time instant k. When the
observation zk is available, state posterior can be
updated through the observation model p�zkjxk�.

The observation model characterizes the observa-
tion likelihood of particle filter. It is an important
component to measure the probability confidence
of the observed data for state updating. In this paper,
we utilize the probability confidence q of the detector
to calculate the observation likelihood of the particle
filter for effective tracking in TCO vision. We define a
parameter d to express the distance between candi-
date sample and standard positive sample [Eq. (7)].
Then, the observation likelihood p�zkjxk� and the
probability confidence of classifier are connected suc-
cessfully as Eq. (8), where λ is variance:

d � 1 − q; (7)

p�zkjxik� ∝ exp�−λ · d2�; (8)

wi
k ∝ wi

k−1p�zkjxik�: (9)

The obtained observation likelihood p�zkjxk� is
used to affect the weight wi of particles in Eq. (9).
With the above relationship, it can be concluded that

the distance d is inversely proportional to the weight
of particles. Therefore, we can realize human track-
ing in TCO vision based on the integration of the
probability confidence of the classifier and the parti-
cle filter.

4. Experiment

In this section, we present a series of experiments
and quantitative analysis to verify the effectiveness
of the proposed algorithm in TCO vision. For testing
purposes, we establish a TCO database that covers a
variety of environmental temperatures. In the fol-
lowing, we give a description of the TCO data collec-
tion and the experiments on the proposed algorithm.

A. TCO Database

Due to the lack of publicly available TCO databases,
we have to manually collect the positive (foreground)
samples and TCO image sequences. The negative
samples are obtained automatically from a set of
TCO images not containing human. For data collec-
tion, we build a TCO sensor that consists of an FLIR
Therma CAM PM 695 camera and a hyperboloid
catadioptric omnidirectional mirror, as shown in
Fig. 6. Some extracted representative samples are
shown in Fig. 7. All TCO image sequences are of
320 × 240 grayscale images, and the extracted fore-
ground/background samples are scaled to 48 × 48 in
dimensions. The established TCO database contains
several image sequences with different ambient con-
ditions. Each set of image sequences contains hun-
dreds of TCO frames that are sampled with 20 Hz
by an FLIR thermal camera. In the following, we test
the proposed rotating adaptive features on the estab-
lished TCO database to verify their performance in
TCO vision.

B. Detection

To verify the performance of RAM-based contour cod-
ing features for human detection in TCO vision, we
present a comparison experiment with the CT-based
contour coding features. First of all, it should be

Fig. 6. (Color online) Configuration of TCO surveillance system.
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noted that the performance of features is highly de-
pendent on the complexity of the coding mode. Since
HOG makes good use of the gradient intensity and
the gradient orientation, it should be able to robustly
represent the contour of object. As shown in Fig. 8,
HOG achieves the best performance among all the
features. In addition, Haar wavelet outperforms the
gradient due to its advanced coding mode on grays-
cale intensity level. Second, the sample extraction
method (RAM or CT) affects the performance of
features as well. For simplicity, the RAM-based and
CT-based contour coding feature is abbreviated as
RAM-feature and CT-feature, respectively. As Fig. 8
shows, RAM-features perform better than that of
their corresponding CT-features because the trans-
formed coordinate is hard to fall on the integer pixel
precisely through the CT process. Therefore, it is ne-
cessary to calculate the intensity of the transformed
point approximately through interpolation. However,
this process is time consuming. Additionally, it
is very easy to cause the information loss and

generation of noises during the CT process even
though interpolation is involved. Hence, the CT pro-
cess may lead to the performance degradation of the
algorithm. On the contrary, RAM works directly on
the original TCO image, which could maximally
maintain the integrity of information. Therefore, the
performance of RAM-features is superior to their
corresponding CT-features in the TCO vision. It is
worth mentioning that the CT-HOG adopted the con-
ventional HOG descriptor, which applied a Gaussian
spatial window to weight the pixel in the coding unit.
Due to the varied area of coding units of RAM-HOG,
we take the average of the orientation votes of the
coding unit for unit normalization. As a matter of
fact, the Gaussian weighting only improves the per-
formance of HOG by 1% [10], so it is not enough to
make up the information loss caused by CT. As
shown in Fig. 8, it is proved that the proposed
RAM-HOG has a better performance than that of
CT-HOG in the TCO vision. Some representative de-
tection examples of RAM-feature are given in Fig. 9.
To test the robustness of the RAM-feature, we set
some interferences in the experiment. In the dark cir-
cumstance, some small animals appear in the test
scene. As expected, the RAM-features are still able
to accurately distinguish the human from the inter-
ferences. Therefore, it can be concluded that the
RAM-features perform robustly in TCO vision.

To further analyze the performance of RAM-
feature, we make a comparison with the method pro-
posed in [11], which presented a simple but effective
algorithm for human detection in the conventional
thermal vision. As shown in Table. 1, we select eight
sets of representative image sequences from the TCO
database for comparison. In this experiment, RAM-
HOG and RAM-HW outperform the method [11] to-
tally, and RAM-G performs better than the method
[11] in average. The method in [11] has a good sensi-
tivity in some particular image sets (set 2, 3, 4, and 8)
that are collected in the night time with a high

(a) positive samples 

(b) negative samples 

Fig. 7. Representatives of extracted TCO samples.

Fig. 8. (Color online) Performance of the RAM/CT-gradient,
RAM/CT-Haar wavelet, and RAM/CT-HOG.
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contrast ratio. In contrast, the RAM-features are
robust through all the experiments. In addition,
the RAM-features have low false positives (FPs) as
they contain a wealth of information to represent
the characteristics of the target. It is notable that
RAM-HOG achieves the best performance with the
highest sensitivity 0.99 and the lowest FP among
all the features. Through the above quantitative ana-
lysis and comparative experiments, the effectiveness
of the proposed RAM-feature is verified for human
detection in TCO vision.

C. Polarity Switch

Polarity switch is a particular phenomenon in ther-
mal vision, when it occurs, hot and cold ranges of
thermal sensors get reversed. Although this phenom-
enon is different from conventional thermal imaging
obviously, the outline of the target is still visible in
the thermal image. Therefore, the contour informa-
tion is still stable in polarity switch. The experiment
verifies that the proposed RAM-feature is robust to
the phenomenon of polarity switch, as shown in
Fig. 10.

Fig. 9. (Color online) Representatives of the human detection on TCO vision database with RAM-feature (RAM-HOG).

Table 1. Detection Results of RAM-Gradient (RAM-G), Haar Wavelet (RAM-HW), and HOG (RMA-HOG) in TCO Vision Database (TP, True Positive; FP,
False Positive; Sensitivity, Hit Rate)

TP FP Sensitivity

Dataset Frames People RAM-G
RAM-
HW

RAM-
HOG [11] RAM-G

RAM-
HW

RAM-
HOG [11] RAM-G

RAM-
HW

RAM-
HOG [11]

1 81 85 79 85 85 68 11 3 0 18 0.93 1 1 0.8
2 78 84 61 84 84 76 24 3 0 27 0.73 1 1 0.90
3 71 134 128 134 134 119 9 2 0 34 0.96 1 1 0.89
4 43 81 73 81 81 76 8 1 0 19 0.90 1 1 0.94
5 58 111 101 108 110 101 4 3 1 16 0.91 0.97 0.99 0.91
6 37 136 130 134 135 94 11 1 0 31 0.96 0.99 0.99 0.69
7 37 182 161 173 181 149 10 4 2 24 0.88 0.95 0.99 0.82
8 26 112 101 106 111 102 5 1 0 14 0.90 0.95 0.99 0.91
Total 430 925 834 905 921 785 82 18 3 183 0.90 0.98 0.99 0.86
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D. Tracking

As discussed above, the performance of RAM-
features for human detection in TCO sensors has
been verified. In this section, we intend to further
discuss the effectiveness of the proposed RAM-
features on human tracking in TCO vision.

According to the characteristics of a thermal ima-
ging system, a thermal image reflects the distribu-
tion of environment temperature field. With the
difference of temperature field, the image of a human
is salient against the background in thermal vision.
Also, grayscale intensity of pixel corresponds to the
value of temperature directly. Therefore, grayscale
intensity is an intuitive feature that can be adopted
in thermal vision. In this section, we compare the
performance of the proposed RAM-feature with CT-
feature and grayscale feature for tracking in TCO
vision. Through tests on a number of datasets, the
effectiveness of the RAM-feature for tracking in
TCO vision is verified. For simplicity, we abbreviate
the compared trackers as follows:

(1) “RAM-Gradient-PF, RAM-Haar-wavelet-PF,
and RAM-HOG-PF” are RAM-Gradient, RAM-Haar
wavelet, and RAM-Hog based particle filters,
respectively.

(2) “CT-Gradient-PF, CT-Haar-wavelet-PF, and
CT-HOG-PF” are CT-Gradient, CT-Haar wavelet,
and CT-HOG based particle filters, respectively.

(3) “G-PF” is the grayscale feature based particle
filter.

Both (1) and (2) are contour coding feature based
particle filters, which utilize the probability confi-
dence of the classifier to calculate the observation
likelihood of particle filter. The observation likelihood
of G-PF is determined by the Bhattacharyya dis-
tance. For a fair comparison, the above trackers are
implemented with some identical parameter set-
tings, such as particles numberN and particle distri-
bution variance λ. The dynamicmodels of trackers are
randomwalkingmodel as xk � xk−1 � vk, where vk is a
zero-mean Gaussian random variable. For the track-
ing experiments, we test the trackers on the estab-
lished TCO database with diverse environment
temperatures. Since the environment parameters
vary in practice, the contrast ratio of thermal image

becomes different. For example, thermal imaging sys-
tem may achieve a higher contrast ratio in the night
as the relatively low temperature during night. On
the contrary, the contrast ratio may be relatively
lower at the daytime as the environment tempera-
ture increases, which results in a blurry contour of
human target. This is because the difference of tem-
perature between background and foreground is
reduced in the day. Therefore, the trackersmay easily
capture the target in the night but meet more chal-
lenges due to the vague outline in the day.

As described previously, it is difficult to apply the
conventional contour based method on TCO vision
unless the distorted omnidirectional image is recti-
fied through the CT process. However, it is possibly
hard to achieve a satisfactory tracking accuracy in
TCO vision. The reason is that the original image
is difficult to be approximated by the transformed
image closely even though interpolation is employed.
Therefore, working on the original omnidirectional
image is able to achieve more important information
and avoid noises generation during the CT process.
To verify the tracking performance of the RAM-
feature based trackers, we conduct a series of quan-
titative analyses in the following. The average root
mean square errors (RMSE) with different particle
numbers are presented to measure the stability of
proposed RAM-features. As shown in Fig. 11(a), the
RAM-Gradient-PF performs better than the CT-
Gradient-PF in general, but their difference is small
on account of the original encoding method of gradi-
ent feature. As Figs. 11(b) and 11(c) show, the RAM-
Haar-wavelet-PF and RAM-HOG-PF achieve much
higher tracking accuracy comparing to their corre-
sponding CT-Haar-wavelet-PF, and CT-HOG-PF. The
RMSE of RAM-Haar-wavelet-PF is around 3 and its
accuracy is higher than that of the corresponding
CT-Haar-wavelet-PF by 1.3 times. The RMSE of
RAM-HOG-PF is around 2 and its tracking accuracy
is almost 2 times higher than that of CT-HOG-PF.
Furthermore, it is obvious that the RAM-features
perform better than the grayscale feature, as shown
in Fig. 11(d). Among them, the G-PF has the worst
performance (RMSE is around 6.3). It can be
concluded that the contour feature is more stable
than grayscale feature in TCO vision. In addition,

Fig. 10. (Color online) Experiment for human detection in TCO vision with polarity switch.
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it should be noted that the RAM-HOG-PF has the
most stable performance among all of the trackers,
and it achieves the best accuracy (RMSE � 1.66)
using 300 particles. Therefore, it can be concluded
that the RAM-feature based trackers have a satisfied
stability in focusing on the center of human, while
the grayscale based tracker is not stable to apply
in TCO vision. To further discuss the effectiveness
of RAM-feature based trackers, we present the fol-
lowing experiments and analyze the results in detail.

To verify the performance of the proposed RAM-
feature, we test the algorithms on the designed ex-
periments with different environment temperatures.
In experiment I, two persons walk in the vicinity of
TCO sensor at the forenoon. Due to the moderate en-
vironment temperature in the forenoon, we obtain a
TCO image sequence with medium contrast ratio. At
the beginning of the experiment, all the trackers
track the human target successfully. Several frames
later, G-PF tends to drift away from the target on
account of it suffers from the interference of back-
ground, and its performance degrades seriously

under the interference of a heat source point. Finally,
the G-PF loses one target at the Frame 199 (Fig. 12,
experiment I). In contrast, the RAM-feature based
trackers track both targets successfully until the
end of experiment even they also are affected by
some interferences occasionally. The reason is that
the RAM-feature based trackers adopt the contour
feature, which is robust to the discrete interference
of grayscale intensity compared to the grayscale
feature, and it only responds to the correct contour
distribution. Therefore, the contour coding based
tracker has a great immunity from the numerous
background interferences in the TCO vision. In ex-
periment II, three persons appear in the scene at
noon. As shown in Fig. 12 (experiment II), an image
sequence with a low contrast ratio is obtained since
the environment temperature reaches the peak at
noon. It is obvious that the G-PF loses one of three
targets very quickly due to the small intensity differ-
ence between foreground and background. Although
there is a weak contour response of target in experi-
ment II, the RAM-feature based trackers still can

Fig. 11. (Color online) RMSE of RAM/CT-feature-PFs with the different number of particles. (a) RAM-Gradient-PF and CT-Gradient-PF.
(b) RAM-Haar-wavelet-PF and CT-Haar-wavelet-PF. (c) RAM-HOG-PF and CT-HOG-PF. (d) RAM-Gradient-PF, RAM-Haar-wavelet-PF,
RAM-HOG-PF, and G-PF.
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track the target stably and successfully survive until
the end of the experiment. In experiments III and
IV, the image sequences are collected at the different
time period of night (experiment IV is collected later
than experiment III). Since the environment tem-
perature of night is lower than that in the day, both
experiments III and IV have the optimal contrast
ratio among all of the experiments. Therefore, the
performance of the trackers should be improved ob-
viously. However, the G-PF fails again as previously
at the heat source points in experiments III and IV.
From experiments III and IV we can conclude that
there is very limited single channel grayscale infor-
mation can be utilized in thermal vision, which di-
rectly results in a poor immunity from interference
of G-PF even in the nighttime with the high contrast
ratio. Therefore, grayscale information is unstable
compared to the contour feature in TCO vision, espe-
cially under the settings with low number of parti-
cles. On the contrary, RAM-feature based trackers
are able to track the target successfully through
all the experiments. Furthermore, it should be noted
that the RAM-HOG-PF achieves the best perfor-
mance among all of the RAM-feature-PFs in the

experiments. According to the above analysis, we can
conclude that the RAM-feature-PFs have a stable
performance compared to G-PF in the TCO vision.

Through the above experiments, we have analyzed
the performance of RAM-features on human detec-
tion and tracking in the TCO system. Compared with
the CT-feature, the proposed RAM-feature achieves
much better performance in TCO vision. In addition,
it is proved that contour feature is more stable than
the grayscale feature for tracking in TCO vision.
Through a variety of experiments, we can conclude
that the effectiveness of the proposed RAM-feature
has been verified for human detection and tracking
in TCO vision.

As stated previously, CT-feature is time consuming
as interpolation is involved. In contrast, the proposed
RAM works on the original TCO image directly,
which greatly improves the efficiency of the algo-
rithm. With HOG descriptor as an example (because
HOG achieves the best performance and its coding
method is most complex), RAM-HOG achieves
70.36 s=frames for exhaustive detection (1650 times=
frames) at a scale of 48 × 48without optimization, and
it is implemented in MATLAB on a PC of an Intel

Fig. 12. (Color online) Experiments for human tracking in TCO vision. From left to right they are G-PF, RAM-G-PF, RAM-Haar-wavelet-
PF, and RAM-HOG-PF. Experiment I: forenoon, experiment II: noon, experiment III, IV: night.
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Pentium 2.7 GHz with 2 G memory. In contrast,
CT-HOG consumes 148.98 s=frames and 101.17 s=
frames at the scale of 48 × 48 and 48 × 24, respectively.
Therefore, RAM-feature is efficient and it should have
a great potential for real-time application in surveil-
lance if it is implemented in C/C++ and takes advan-
tage of GPU processing.

5. Conclusion

In this paper, we introduced a novel TCO surveil-
lance system that is able to work in darkness and
has a wide field of view. Due to the inherent distor-
tion of omnidirectional vision, most of the conven-
tional contour features are difficult to be applied
to the omnidirectional image directly unless the dis-
torted omnidirectional image is rectified in advance.
However, the rectified image may involve informa-
tion loss and noise generation even when interpola-
tion is implemented. To maximally maintain the
integrity of information in TCO vision, a RAM is de-
veloped which could realize contour coding on the
original TCO image directly. The effectiveness of
the proposed RAM-feature is verified through a large
number of experiments on human detection and
tracking in TCO vision.

Since the proposed RAM-feature is developed
based on the entire human model, its performance
could be degraded when occlusion occurs. In our
future work, we propose to develop a part based
RAM-feature to handle occlusion. Then, the proposed
algorithm should be robust to more challenging si-
tuations for human detection and tracking in TCO
vision.

This work was supported by the Research Grants
Council of Hong Kong (Project No. CityU 118311)
and City University of Hong Kong (Project
No. 7008176).
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