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Motion trajectory is a meaningful and informative clue in characterizing the motions of human, robots or
moving objects. Hence, it is important to explore effective motion trajectory modeling. However, with
the existing methods, a motion trajectory is used in its raw data form and effective trajectory description
is lacking. In this paper, we propose a novel 3D motion trajectory signature descriptor and develop three
signature descriptions for motion characterization. The flexible descriptions give the signature high func-
tional adaptability to meet various application requirements in trajectory representation, perception and
recognition. The full signature, optimized signature and cluster signature are firstly defined for trajectory
representation. Then we explore the motion perception from a single signature, inter-signature matching
and the generalization of a cluster signature. Furthermore, three solutions for signature recognition are
investigated corresponding to different signature descriptions. The conducted experiments verified the
signature's capabilities and flexibility. The signature's application to robot learning is also discussed.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Motion trajectory is a compact and robust clue for motion char-
acterization and it has been extensively studied for describing ac-
tions, behaviors and activities in different applications. Calinon et
al. [1] applied motion trajectory to model manipulation task for hu-
manoid robot learning. Ude et al. [2] used motion trajectory to de-
scribe full-body movements in transferring human motion to a hu-
manoid robot. Bennewitz et al. [3] investigated human motion pat-
tern representation for robot learning using hidden Markov model
(HMM), in which each motion pattern is represented by a cluster
of motion trajectories. Common human motions were modeled by
motion trajectories in many works [4–8] in which the human ges-
tures, facial expressions and gaits were recognized. Even though the
full body motion of human or robot is usually complicated due to
the articulated structure, descriptive motion trajectories can still be
extracted from the body parts of concern such as the head, hands or
feet [8,9]. As the body parts that generate most of the motion tra-
jectories are relatively small in relation to human body, a significant
motion points (SMPs) method [10] was proposed towards reliable
trajectory tracking for human motion recognition. Chen and Chang
[11] explored motion trajectory based video object retrieval from
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database, in which wavelet transform was employed to partition the
motion trajectories according to different decomposition scales. In
general, motion trajectory can play an important role in the charac-
terization of diverse kinds of motions.

However, in most motion trajectory related work, a trajectory
was often used directly in its raw data form and effective trajectory
description is lacking. In fact, studying flexible trajectory represen-
tation is a key problem because it has direct and important influence
on trajectory based motion recognition and analysis. Little work was
conducted on trajectory representation. Rao et al. [12] presented a
dynamic instant based method to characterize salient motion fea-
tures along a trajectory, but it has difficulty in fully modeling a mo-
tion trajectory. Shim and Chang [13] built a moving object trajectory
representation scheme based on moving distance and spatiotempo-
ral relations, which is specifically for content-based object retrieval.
In our view, to build effective motion trajectory representation, it
will be useful to refer to the concept of `shape descriptor' [14]. Effec-
tive motion trajectory descriptor will outperform the raw trajectory
data.

In the existingwork, some shape descriptors have been developed
and used. However, most of them do not perform as well as expected
in descriptive capabilities and the adaptability to satisfy different
applications for motion characterization. Simple contour functions
such as chain code [15], centroid-contour distance and R–S curve
are mainly suitable for representation of simple shapes. The de-
scriptors based on Fourier descriptor (FD) [16], wavelet coefficients
[17,18] and curvature scale space (CSS) images [19] can represent
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shape in a coarse-to-fine or multi-resolution manner, in which only
partial salient features such as the wavelet skeleton, the lower fre-
quency information in FD and the curvature zero-crossing points in
CSS are of concern for shape description. This explains why they are
actually unable to represent shape uniquely. Also, it may be unde-
sirable to ignore much amount of less-important information when
the detailed features really matter. For example, in Fourier trans-
form, it is difficult to perform local motion analysis in the frequency
domain because the time information is lost. In CSS, the correspon-
dence problem has to be regulated since a curve's length shrinks
along with the Gaussian evolution. The algebraic curves and moment
functions [20] suffer from occlusion as they make use of global fea-
tures. The mathematical curves such as NURBS [21], B-spline [22]
and Bezier curve [23] need a fitting process that inevitably causes
inaccuracy in shape representation. In particular, the B-spline based
method may result in recognition ambiguity as it is hard to compare
B-spline parameters directly for recognition because a piece of curve
is not uniquely described by a single set of control points [22]. More
comparison about the shape descriptors can be found in the surveys
in Refs. [24,25].

In this paper, we propose a novel 3D motion trajectory signature
descriptor and investigate flexible signature descriptions for adap-
tive motion characterization. The signature admits three flexible de-
scriptions; hence, it exhibits high functional adaptability. While the
full signature is a complete description to the raw trajectory data, the
optimized signature is the condensation of the full signature. In ad-
dition, a so-called cluster signature is also developed for more effec-
tive representation of motion patterns using mixture models. Based
on the signature based motion trajectory representations, we fur-
ther explore the motion characterization in two aspects: trajectory
recognition and motion perception. The full signature is particularly
good for visual motion perception and the optimized signature is ad-
vantageous for fast trajectory recognition. The cluster signature be-
haves well in both perception and recognition. Here the importance
of motion perception is particularly emphasized because it is related
much with high-level motion analysis and behavior understanding.

The remainder of this paper is organized as follows. Section 2
presents the definition and implementation of the three signature
descriptions. In Section 3, the motion perception is elaborated based
on the proposed trajectory signatures. Section 4 is dedicated to the
signature recognition. Experiments proceed in Section 5. Section 6
discusses the signature's application to robot learning, followed by
the conclusion.

2. Signature based trajectory representation

2.1. Motivation: flexible trajectory descriptor

Motion trajectories are involved in many different situations
where various requirements on motion characterization exist. The
basis to account for the different requirements lies in a flexible
trajectory description. Raw trajectory data can be used directly.
However, such a simple way of using the raw data is quite inflexible
because it relies much on the absolute positions of the data points.
Instead, building trajectory representations using some intrinsic
properties would be a better way to capture the shape features of
a trajectory and to avoid suffering from the constraints of absolute
coordinates. Furthermore, developing dynamic and adjustable tra-
jectory representation structures (for example, changeable in size)
can benefit the adaptability of trajectory descriptions.

Trajectory based motion recognition is one of the most important
objectives in motion characterization. The recognition mode, accu-
racy and efficiency are the three key factors related to the configura-
tions of trajectory representation and recognition engine. Recogni-
tion modes can be categorized according to the initialization modes.

The recognition can start with an empty database or it necessitates a
prior training database. While both high efficiency and accuracy are
desired for a motion recognition system, they may be compromised
considering practical situations. For instance, for the recognition out
of a large scale database, the need of real time capability sometimes
allows acceptable sacrifice in accuracy. Likewise, higher accuracy
may also have to bear lower recognition efficiency to some extent.
The key to adaptable recognition lies in the availability of flexible
trajectory representation mechanisms and classifiers for configuring
the appropriate solutions according to actual contexts.

Motion perception is an important function in motion character-
ization. We define motion perception as visualizing and perceiving
the distinctive motion features according to certain rules or refer-
ring to a feature profile. Perception can help human or robots to vi-
sually and intuitively perceive the concerned features attached in a
trajectory, and even to know more about the characteristics of the
underlying motion pattern. This is useful for further behavior un-
derstanding and reasoning in motion analysis. However, this kind of
research has attracted little attention in the past.

In view of the above analysis, building a flexible motion trajectory
descriptor is needed to allow high functional adaptability. Basically,
a descriptor's capabilities depend much on the kind of the feature
we are interested in and the descriptive structure. In the following,
we propose a novel signature descriptor and develop three flexible
signature descriptions: full signature, optimized signature and clus-
ter signature, which can be used adaptively for motion trajectory
representation, perception and recognition.

2.2. Definition of the full signature

The full signature is a complete description to the entire raw
trajectory data. Inspired by the 2D curve representation in differen-
tial geometry [26], we propose the following 3D trajectory signature
definition.

Definition 1. For a free form motion trajectory �(t) parameterized
by �(t) = {X(t),Y(t), Z(t)|t ∈ [1,N]}, where N is the trajectory length
(frame number), its 3D Euclidean signature S is defined in terms of
four differential invariants: curvature (�), torsion (�) and their first
order derivatives (�s and �s) with respect to the Euclidean arc-length
parameter s, in the following form,

S = {[�(t),�s(t), �(t), �s(t)|t ∈ [1,N]} (1)

where

�(t) = ‖�̇(t) × �̈(t)‖/‖�̇(t)‖3 (2)

�(t) = (�̇(t) × �̈(t))· ···
� (t)/‖�̇(t) × �̈(t)‖2 (3)

Since s = ∫ t
0 ‖�̇(t)‖dt, we can derive that

�s(t) = d�(t)
ds

= d�(t)
dt

· dt
ds

= d�(t)
dt

· 1

‖�̇(t)‖
(4)

�s(t) = d�(t)
ds

= d�(t)
dt

· dt
ds

= d�(t)
dt

· 1

‖�̇(t)‖
(5)

Differential invariants are employed to construct the signature.
They are typical local features that enable Eqs. (2)–(5) to be calcu-
lated locally. However, the signature components depend on high
order derivatives that are sensitive to noise and round-off errors.
To reduce this effect and to make the signature robust, we imple-
ment an approximate signature that avoids calculating the high order
derivatives. To this end, the differential invariants in the signature
are solved by the joint differential invariants which involve multiple
neighbor points instead of a single point for the signature quaternion
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Fig. 1. Multiple neighbor trajectory points are involved for the signature approxi-
mation.

calculation. That is, the Euclidean signature is numerically approxi-
mated by using the joint Euclidean invariants (inter-point Euclidean
distances).

As illustrated in Fig. 1, let Pi−2, Pi−1, Pi, Pi+1 and Pi+2 be five
consecutively sampled points along a 3D discrete trajectory, �, in
which the inter-point Euclidean distances are indicated by from a to
n. Denote H+(H−) by the height of the tetrahedron with sides a, b, c,
d, e, f (a, b, c, g, n, m) with respect to point Pi+2(Pi−2). Then at Pi the
approximate signature quaternion S∗ = {�∗, �∗,�∗

s , �
∗
s } are derived as

follows by extending the derivations in Ref. [27].
Firstly, the curvature �∗ at point Pi can be approximated by the

curvature of the circle passing through points Pi−1, Pi and Pi+1. It has
been proved that the curvature of a circle is equal to the reciprocal
of its radius. Denote �abc by the area of the triangle with sides a,
b and c, and define ŝ = (a + b + c)/2, we can derive the following
curvature approximation,

�∗(Pi) = 4
�abc
abc

= 4

√
ŝ(ŝ − a)(ŝ − b)(ŝ − c)

abc
(6)

Based on the Taylor series expansion, the torsion is calculated by

�∗(Pi) = 1
2

(
6

H+
def · �∗(Pi)

+ 6
H−

gnm · �∗(Pi)

)
(7)

Here H+(H−) can be derived via the calculation of the tetrahe-
dron's (signed) volume, formulated as follows,

1
3!

·

∣∣∣∣∣∣∣∣
xi yi zi 1

xi−1 yi−1 zi−1 1
xi+1 yi+1 zi+1 1
xi+2 yi+2 zi+2 1

∣∣∣∣∣∣∣∣
= Vabcdef = �abc · H+

3
(8)

where {xj, yj, zj}i+2
j=i−1 denote the coordinates of vertex Pj.

Furthermore, two stable signature approximations for �∗
s and �∗

s
are obtained as follows:

�∗
s (Pi) = 3

�∗(Pi+1) − �∗(Pi−1)
2a + 2b + d + g

(9)

�∗
s (Pi) = 4

�∗(Pi+1) − �∗(Pi−1) + r(�∗(Pi)�∗
s (Pi)/6�

∗(Pi))
2a + 2b + 2d + h + g

(10)

where r = 2a + 2b − 2d − 3h + g.
As the joint Euclidean invariants are local features, the approx-

imate signature also admits the computational locality. We define
Eqs. (6), (7), (9) and (10) as the full trajectory signature. Because the
full signature is based on the features extracted from all the sam-
pled trajectory points, the signature representation is a complete
trajectory description. This means that the signature data is capa-
ble of capturing and preserving most motion properties (e.g., shape,
speed, etc.) for motion perception. More importantly, rich descrip-
tive invariants can be deduced from the signature due to the compu-
tational locality. The signature representation is not only invariant

Fig. 2. A piece of 3D motion trajectory �.

with respect to rigid transformation and viewpoint change, but also
relatively invariant with respect to metric transformation and in-
sensitive to occlusion. These invariants offer substantial advantages
to enable the signature to perform better than the raw trajectory
data.

To ensure the mathematical calculability of the signature, trajec-

tory �(t) is assumed to be regular, say, for all t, �̇(t) �= ⇀
0 . For the

representation of irregular trajectories, the stationary points will be

firstly detected by examining the condition of �̇(t) = ⇀
0 and subse-

quent to this, we have two options to generate the signature. One is
to remove the stationary points to make the irregular trajectory be a
regular one. This means leaving one and removing other repeatedly
sampled points among a set of consecutive trajectory points. Mean-
while the positions and lengths of the removed points can be saved
for later use in motion perception and reconstruction. In this way an
individual signature can be calculated for the regulated trajectory.
The other option is to segment the irregular trajectory into multi-
ple regular segments according to the stationary points and then
combine the signatures of all the segments to represent the entire
trajectory. At this stage we adopt the first option, and the segmen-
tation method will be studied in the next stage for joint description
for temporally continuous motion trajectories.

Taking the trajectory � shown in Fig. 2 as an example, the basic
forms of its accurate and approximate signatures are illustrated in
Figs. 3 and 4, respectively. We have two observations by comparing
the signature curves. Firstly, the high signature shape similarity ver-
ifies that the approximation algorithms are reliable in preserving the
signature features. Secondly, the approximate signature looks more
smoothing and stable than the accurate signature, as the sawteeth
effects and disturbing saltation in Fig. 3, which were caused by cal-
culating the high order derivatives, are reduced. Hence, the approx-
imate signature is more robust.

In addition, trajectory smoothing is also an effective way to en-
hance a signature's computational stability by reducing the noise and
vibration in the trajectories. Meanwhile, note that trajectory shape
may be affected by the smoothing too. Therefore, noise reduction
and shape preservation have to be balanced. We design two trajec-
tory smoothers. The first is a moving average filter with an interac-
tively tunable parameter setting in which the span parameter can
be determined with a tradeoff between smoothing effect and shape
preservation. The other one is a wavelet smoother. To try to pre-
serve the underlying trajectory shape, the wavelet decomposition
level for approximate coefficient exaction can be tuned in correspon-
dence with the noise strength. In normal situations when we do not
know the noise strength in advance, in principle the decomposition
level is restricted to a relatively low range (e.g., 1–3) to avoid over-
influencing the trajectory shape. Fig. 5 demonstrates the smoothing
for noisy trajectories by the two smoothers. It is observed that the
smoothing effect is good with acceptable shape deviations.
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Fig. 3. The accurate signature of trajectory � shown in Fig. 2. (a) �, (b) �, (c) �s and (d) �s .

Fig. 4. The approximate version of the signature shown in Fig. 3.

2.3. Signature optimization by dimension reduction

The full signature has the same length as the motion trajectory.
In case of a complex and longer trajectory, the signature data will
be large, which may result in lower efficiency in recognition. In fact,
the signature data are interrelated so that they can be optimized by
reducing the redundancy to build a more compact signature descrip-
tion.

The optimized signature is achieved with a smaller signature data
set but preserving most variance of the full signature. This can speed
up trajectory recognition especially for large scale databases. How-
ever, it should be noted that most original motion features may be
ruined along with the optimization. Hence, it may have difficulty
in satisfying the requirements of precise motion perception. The
above explains the pros and cons of the optimized signature. In our
work, the linear principle component analysis (PCA) [28,29] is ap-
plied to the full signature to reduce the dimensions of the signature
data.

The PCA transform, also known as Karhunen–Loeve transform, is
an effective method for dimension reduction. Via the PCA transform,
the interrelated original data are projected onto another feature
space where they are small in dimension, uncorrelated and capable
of preserving most variance of the original data. The PCA transform
can be described by corresponding PCA coefficients. A key problem
in the PCA is the choice of the number of principle components,
which can be determined by an optimal threshold in practice.

Assume that the singular value decomposition (SVD) is expressed
by X = U�VT, the PCA transform can be represented by

F = UTX (11)

where X denotes the original data of dimension p and F is the pro-
jected data. Note that only the firstm columns of U (principle compo-
nents) are picked to represent the PCA coefficients. Compared with
the dimension p of X, F is just m-dimensional and m>p. Therefore,
the dimension is much reduced while the data variance is mostly
preserved through the PCA transform.
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Fig. 5. Smoothing for noisy trajectories (a) by the moving filter (span = 11) (b) and the wavelet smoother (wavelet DB4 and the coefficients at level 2–5) (c).

Here the value of m is subject to the choice of the cumulative
accuracy �, which corresponds to the degree of data variance being
preserved. This problem can be analyzed based on the sorted eigen-
values 	i of the covariance matrix of X, formulated as follows:

� =
⎛
⎝ m∑
i=1

	i

/ p∑
i=1

	i

⎞
⎠ × 100% (12)

Hence,m can be determined by a cut-off of� such as�=95%. Then
the firstm columns of the principle components are extracted as Um,
which is sufficient to guarantee that the expected data variance (in
terms of �) is preserved in the PCA transform. In general, via the PCA
transform (Um), the higher dimension Xp is converted into the lower
dimension Fm, with a predefined accuracy expectancy indicated
by �.

The above method is carried out to project the full signatures,
Xp onto the PCA space to obtain the optimized signatures, Fm.
Note that the original data, Xp are composed of all the full sig-
nature samples where each sample is p-dimensional. As the full
signature is quaternion-based (four signature components), each
signature is rearranged as univariate data for the PCA transform
by concatenating the four series of signature profiles in the form
of Xp = [{k(t)}Nt=1{ks(t)}Nt=1{�(t)}Nt=1{�s(t)}Nt=1], where p = 4N. The
optimized signature, Fm is smaller in size. That is, more efficient
trajectory representation is attained at little cost in the decrease of
the description accuracy.

Here, an important problem about the signature length should
be pointed out. In the full signature space, a signature retains the
same length as the trajectory. Thus the full signatures might differ in
length as motion trajectories normally have diverse lengths. How-
ever, the PCA transform requires all the input signatures to have
the same length. Therefore, the input full signatures have to be pre-
normalized to the same length for PCA transform. The problem is
that in most cases the pre-normalization operation will affect the
original motion properties in the full signature. For example, the
speed profile may be changed by the pre-normalization. This means
that it may not be reliable to do precise motion perception from the
optimized signature. Yet, the optimized signature is useful in case
a trajectory is preferably perceived as a whole that is insensitive to
certain motion properties. That is, in that situation, it concerns more
about the description for a continuous trajectory rather than a se-
quence of discretely sampled points.

2.4. Cluster signature for motion class modeling

Both the full signature and optimized signature target the
representation of a single motion trajectory. In fact, the descrip-
tion to a motion class is also important. Assume that a motion
class is characterized by a cluster of similar trajectory signatures,
we propose a so-called cluster signature to describe the motion
class.

The cluster signature has two merits. Firstly, it is a model-based
abstract representation to a motion class. Thus, a motion pattern
can be described more efficiently in terms of signature model rather
than the combination of multiple individual full or optimized sig-
natures. Secondly, the cluster signature is not sensitive to trajectory
length. Hence, it can be compatible with both the full signature and
optimized signature. In our work, Gaussian mixture model (GMM)
is used to learn a model for a motion class by the density estimation
for a cluster of full or optimized signatures.

Following the principle of model-based method, we model each
motion class by a probability distribution model. Assume that
the number of motion classes is C, then via training, C models
will be learned that are characterized by respective model pa-
rameters {
i}Ci=1. Assume that Xi contains M signature samples
(note that the samples do not necessitate the same length), say,
Xi = {Xi,m}Mm=1, which serve as the training samples to train an indi-
vidual model 
i. We firstly rearrange these samples in the form of
Xi = [Xi,1,Xi,2, . . . ,Xi,m, . . . ,Xi,M]. Then the underlying probability den-
sity function (PDF) of Xi can be estimated by a mixture of Gaussian
model in the following form:

P(Xi|
i) =
K∑

k=1

wkN(Xi;�k,�k) (13)

where K is the number of mixing Gaussian components, wk is
the mixing weights, wk = P(k|
i) meeting

∑K
k=1wk = 1, and

N(Xi;�k,�k) denotes themultivariate Gaussian function (mean � and
covariance �)

f(�,�)(Xi) = 1
√
2
d√

det�
exp

(
−1
2
(Xi − �)T�−1(Xi − �)

)
(14)

It is worthy to emphasize the format of the signature Xi,m for
the GMM modeling. Besides the signature data, the temporal index
T of a motion trajectory is also incorporated to form an augmented
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signature structure in the format of Xi,m = [T(t); k(t); ks(t); �(t); �s(t)]
when the full signature is used. The reason for incorporating T is
that it is capable of capturing the temporal characteristics of a mo-
tion. However, note that because the signatures may have differ-
ent lengths, T may need a pre-normalization to have the signa-
tures aligned reasonably in temporal correspondence. Denote the
lengths of theM signatures by {Ti}Mi=1, we define a bound of temporal
range by Tlow and Thigh (usually Tlow = 1 and Thigh =maxi∈[1,M]{Ti}),
then the temporal index of each signature can be normalized to
the range of [Tlow, Thigh]. Note that this pre-normalization just ad-
justs the temporal index for the purpose of reasonable temporal
alignments among different signatures, in which the real signa-
ture data are not affected at all. This is different from the pre-
normalization for PCA transform. With the augmented signature,
the dimension d of f(�,�)(Xi) will be 5 (1D temporal index plus 4D
signature components) for the full signature and 2 (1D temporal
index plus univariate signature data) for the optimized signature,
respectively.

From the definition of GMMmodel, amotion class
i is character-
ized by the corresponding model parameter set 
i={wk,�k,�k}Kk=1.
The key problem now is the model parameter estimation. Assume
that the number of classes C is known a priori and the training sam-
ples are labeled knowing which sample belongs to which class, we
combine the expectation–maximization (EM) algorithm [30] and the
iterative pairwise replacement algorithm (IPRA) [31] to learn an op-
timal GMM model parameter set 
i.

The EM algorithm is an iterative maximum likelihood estima-
tion (MLE) algorithm. It transfers a single and difficult optimization
problem into a sequence of smaller and simpler problems. The EM
algorithm seeks to maximize the likelihood function by gradient de-
scent (hill-climbing) technique. Here the likelihood function is de-
fined by the log-likelihood L(
i)=

∑M
m=1 log

∑K
k=1wkN(Xi,m;�k,�k).

The GMM parameter set 
∗
i is learned following the MLE principle


∗
i = arg max L(
i).
It should be noted that the results of EM algorithm depend much

on the initial parameter setting because the EM algorithm is al-
ways monotonically convergent to find the local maximum. There-
fore, the choice of the initial parameter values is critical. In practice,
the GMM mixing number, K should be estimated at first, followed
by the initialization of the respective GMM component parameters,
{wk,�k,�k}Kk=1. Thus, setting a good initial value to K is the most im-
portant basis for successful model learning. Usually, K is just roughly
fixed according to user's guess or determined by trial and error. Re-
lying on user's guess is quite inflexible and inaccurate. The actual sit-
uation is that a user has to pay much effort to guess a good value to
K for every GMM model. To improve on this and achieve automatic
model learning, we propose to use the IPRA algorithm to iteratively
refine the results of the EM algorithm to obtain optimal learning re-
sults. That is, our approach is based on the combination of the EM
and IPRA algorithms.

The basic principle is as follows: firstly, we activate the EM al-
gorithm by an arbitrary initialization of the mixing number K; sec-
ondly, we apply the IPRA algorithm to further refine the resulting
GMM model parameters 
i from the EM algorithm, in which K is
also adjusted correspondingly.

In detail, K is initially set to a relatively big number which can
guarantee that the K-component GMM model is adequately capable
of modeling the density. Since a bigger K leads to more accurate
modeling, the more complex the signatures are, the bigger the K
should be set. For example, we can set K = 50 if we estimate that
a 50-component GMM is sufficient to describe the signatures we
face. Once K is initialized, the k-means method is used to esti-
mate the initial GMM parameter values 
(0)

i = {w(0)
k ,�(0)

k ,�(0)
k }Kk=1.

With these initial parameter estimations, the EM algorithm iter-
ates the E (expectation) step and M (maximization) step defined as

follows:
E step. calculate the mixing weights (probability P(k|Xi,m,
i)) of

each signature Xi,m, m ∈ [1,M] that belongs to each component k ∈
[1,K],

P(k|Xi,m,
(0)
i ) = P(k|
(0)

i )P(Xi,m|k,
(0)
i )

P(Xi,m|
(0)
i )

=
w(0)
k N(Xi,m;�(0)

k ,
∑(0)

k )∑K
k=1w

(0)
k N(Xi,m;�(0)

k ,
∑(0)

k )
(15)

M step. update the weighted mean, covariance and the new mix-
ing weights,

�(1)
k =

∑M
m=1P(k|Xi,m,
(0)

i )Xi,m∑M
m=1P(k|Xi,m,
(0)

i )
(16)

∑(1)

k
=

∑M
m=1P(k|Xi,m,
(0)

i )(Xi,m − �(1)
k )(Xi,m − �(1)

k )T∑M
m=1P(k|Xi,m,
(0)

i )
(17)

w(1)
k = 1

M

M∑
m=1

P(k|Xi,m,
(0)
i ) (18)

The superscript (0) and (1) in the above formulae denote the it-
eration index. The E step and M step are repeated until the conver-
gence condition is arrived. The convergence condition here is defined

as a threshold for the function L(
i), say,
L(t+1)(
i)−L(t)(
i)

L(t)(
i)
<Cstop

(e.g., Cstop = 1e–7).
Because K was initialized by an arbitrary big number, the con-

vergence of the EM process does not guarantee that the resulting
GMM model is an optimal learning result. For instance, certain mix-
ing components may be very close or similar. Therefore, we subse-
quently apply the IPRA algorithm to further optimize the results of
the EM algorithm. The core of the IPRA is, among the resultingmixing
components {wk,�k,�k}Kk=1 from the EM algorithm, to construct a
minimum spanning tree connecting all the components, with all the
inter-component similarities then measured and examined to itera-
tively merge the most similar pairs of the mixing components, along
which the component parameters are updated correspondingly. Af-
ter arriving at the predefinedminimum similarity threshold, the IPRA
process stops eventually giving rise to the optimal GMM model pa-
rameters (the mixing number K and the corresponding component
parameters {wk,�k,�k}Kk=1).

For the two mixing components represented by [w1,N1] and
[w2,N2], respectively, we define the similarity measure between
them based on the Hellinger metric as follows,

H([w1,N1], [w2,N2]) =
∣∣∣∣√w1w2

(
1 − 2

∫ √
N1N2 dx

)∣∣∣∣ (19)

where∫ √
N1N2 = (2

√
2
)d|�1|1/4|�2|1/4N(0;�1 − �2, 2�1 + 2�2) (20)

If H([w1,N1], [w2,N2]) is smaller than the predefined merg-
ing similarity threshold Hmerge, then [w1,N1] and [w2,N2] will be
merged, and the method-of-moments (MoM) algorithm is used to
update the component parameters as follows,

w = w1 + w2 (21)

� = w1
w

�1 + w2
w

�2 (22)

� = w1
w

�1 + w2
w

�2 + w1w2
w2

(�1 − �2)(�1 − �2)
T (23)

As stated above, applying the EM together with the IPRA algo-
rithms, we can get all the optimalmodel parameters, {
i}Ci=1 describ-
ing the C motion classes, respectively. We define the GMM model



200 S.D. Wu, Y.F. Li / Pattern Recognition 42 (2009) 194 -- 214


i ={wk,�k,�k}Kk=1 as the cluster signature. The cluster signature is
a probabilistic model and in essence it admits an abstract represen-
tation for a motion class.

3. Visual motion perception

As mentioned before, the visual motion perception correlates the
visualization and perception with the concerned features for poten-
tial high-level motion analysis. We distinguish our perception con-
cept with the traditional visual perception theory of machine vision
(Gestalt theory or computational vision model). The perception here
targets the motion properties of interest that are meaningful for mo-
tion analysis. Perceiving motions by a human or robot is important.
For example, salient motion features always attract human's atten-
tion at the first peek. This explains why it is useful to extract salient
features for motion perception. Another example is that sometimes
it is desired to have an intuitive interface to `know' and `feel' the
difference and consistency between two motions. Basically, motion
perception cares about a motion instance in terms of distinctive and
discriminative features. In this sense, we explore the visual motion
perception using the three signature descriptions from the follow-
ing perspectives: perception from a single signature, inter-signature
matching and the cluster signature.

3.1. Properties for motion perception

The above mentioned motion perception is achieved in terms of
some properties related with a motion trajectory. In the following
we enumerate several properties of interest in our work. Other prop-
erties can be added if necessary. In particular, we assume that the
motion trajectory sampling rate is fixed in the vision system.

(1) Motion length. Motion trajectories normally have different
lengths. Trajectory length can characterize the duration and
spatial range of a motion, which can be measured in terms of
either the number of sampled points or the entire trajectory arc-
length. The two measurements are different since the motion
speed affects trajectory sampling.

(2) Occlusion. Occlusion is common in trajectory acquisition (out of
field of view or discontinuous tracking). Attributed to the signa-
ture's computational locality, occlusion only makes the signature
shorter than the original, in length.

(3) Shape of motion. Shape is one of the most important factors for
motion pattern discrimination. It can be perceived easily from
the curvature and torsion profiles of the trajectory signatures.
Intuitively, curvature measures how far a trajectory is from being
on a straight line and torsion measures how far it is from being
in a plane.

(4) Motion speed. Speed is a key motion feature. A user may perform
the same motion with different speed profiles. A lower speed
results in denser data sampled and a higher speed results in
sparser data. Thus the speed feature can be perceived based on
the sampled points' distribution along the trajectories. In fact, the
motion trajectory speed profile is characterized by the signature
components �s and �s via measuring the traversing arc-length
by s(t).

(5) Group based transformations. The same motion can be performed
independent of absolute positions and sizes. For example, we
usually need to deal with various motion instances which admit
rigid (translation, rotation, or both) or metric transformations.
Because of the signature's rigid and metric invariants, it is easy
to perceive the correspondences among different trajectory in-
stances according to an invariant signature description.

(6) Salient feature points/moments. Among the profiles of the motion
features captured by a trajectory signature, those salient and dis-

tinctive feature points/moments play important roles for motion
analysis. Hence, it is meaningful to locate and extract them for
motion perception (see Section 3.2.1 for details).

(7) Motion symmetry. Motion symmetry is a special motion feature
in certain motions such as martial arts, dancing or other tasks.
Since the full signature can capture both the shape and arc-length
features of a motion trajectory, it provides a simple way to detect
and perceive motion symmetry (see Section 3.2.2 for details).

3.2. Motion perception from a single signature

As mentioned before, because the optimized signature may ruin
the motion properties, only the full signature with complete signa-
ture data is reliable for precise motion feature perception. In this
section, we demonstrate the perception according to the salient fea-
tures and motion symmetry from a single full signature.

3.2.1. Salient feature based perception
Generally it is not necessary to take all details into account for

motion perception. The salient features are particularly informative
to attract human's attention. Also, extracting salient features can
benefit motion segmentation and primitive basedmotion perception.
This can usually be conducted by examining the feature of speed,
acceleration or shape (curvature and torsion), etc. For example, the
extremes (maximums or minimums) of these features usually admit
salient information, and the corresponding points/moments can be
located easily by measuring the full signature data.

Here we show a special case of salient feature based perception:
zero speed perception. According to the signature description for
the irregular trajectories in Section 2.2, the stationary point is actu-
ally the moment with zero speed. With the stationary points we can
highlight the special points of zero speed along a trajectory, indicat-
ing meaningful pause/stop actions during a motion. Fig. 6 displays a
piece of motion trajectory extracted from a dance fragment with two
stationary points highlighted by circles, from which we can perceive
the dance fragment more meaningfully and clearly. Since a pause
usually consists of multiple continuous stationary points due to con-
tinuous trajectory tracking, measuring the positions and lengths of
the stationary points is also useful for perceiving the characteristics
of the pause.

3.2.2. Perception based on motion symmetry
We define the motion symmetry as two adjacent trajectory

fragments symmetrical with respect to a central symmetrical point
which connects these two fragments. The signature can depict the
motion symmetries existing in a trajectory. To analyze the symme-
try, at least three points are needed. Fig. 7 shows a piece of sym-
metrical trajectory in 3D space, in which Pi is a central symmetrical
point. Away from a central symmetrical point in opposite directions,
if a pair of neighbor points (e.g., Pi−1 and Pi+1) are symmetrical with
respect to the central symmetrical point (e.g., Pi), these two points
are called neighbor symmetrical points. For the motion symmetry
description, we have the following motion symmetry theorem.

Theorem 1. For a symmetrical 3D motion trajectory, a central sym-
metrical point, e.g., Pi, is the point whose curvature and torsion are
equal to zero, say, �i =0 and �i =0. For a pair of neighbor symmetrical
points, e.g., Pi−1 and Pi+1, the following relations hold, �i−1 = −�i+1,
�i−1
s = −�i+1

s , �i−1 = −�i+1 and �i−1
s = −�i+1

s .

Proof. Obviously, the central symmetrical point Pi must be an in-
flection point, therefore, �i = 0 and �i = 0, and it means that �i−1

(�i−1) has an opposite sign with �i+1(�i+1). For the neighbor sym-
metrical points, they must have the same shape, which is fully de-
scribed by the curvature and torsion. Hence, we have �i−1 = −�i+1
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Fig. 6. A trajectory from a dance fragment along which the zero speed moments are highlighted by circles for motion perception.

Fig. 7. A piece of symmetrical trajectory (note that it is symmetrical in 3D space although it is not intuitively observed).

and �i−1 = −�i+1. Furthermore, the symmetrical points must also
have the same arc-length with respect to Pi, say, si−1,i = si+1,i. Con-
sequently, it can be inferred that �i−1

s =−�i+1
s and �i−1

s =−�i+1
s . �

According to Theorem 1, the motion symmetry in a motion tra-
jectory can be detected by examining the relevant conditions from
the full signature. The central symmetrical points should be located
first. Then we need to examine whether the neighbor point pairs
are symmetrical or not. As it is hard to find absolute symmetry in
practical motion trajectories, it would be reasonable to replace the
equalization relations in Theorem 1 by approximate equalization.

For better perception to the motion symmetry from the signature
profiles, we can coordinate the full signature in terms of a curva-
ture sub-signature (� vs. �s) and a torsion sub-signature (� vs. �s). In
this manner, Fig. 8 shows the two sub-signatures of the symmetrical
trajectory shown in Fig. 7. It can be observed that a part of symmet-
rical trajectory is described in the sub-signatures by a symmetrical
polygon. Each central symmetrical point (e.g., Pi) leads to a polygon
formed. As there are possibly multiple central symmetrical points
along a trajectory, the same number of symmetrical polygons will
be formed accordingly. With respect to a central symmetrical point,
the number of the neighbor symmetrical points (e.g., Pi−1 and Pi+1)
is interrelated with the number of the vertices of the correspond-
ing polygon. The symmetry of two neighbor symmetrical points is
embodied by two vertices and two symmetrical sides formed in the

symmetrical polygon. In addition, the length of a polygon side indi-
cates the distinctiveness degree of the symmetrical points. For ex-
ample, a longer side implies that the related points are more dis-
tinctive. This is useful for extracting distinctive symmetrical points
for salient feature based motion perception.

3.3. Perception by matching two full signatures

In the following, we present amethod formatching two full signa-
tures in a nonlinear manner, through which the similarity of the two
signatures can be measured. More importantly, the trajectory prop-
erties can be highlighted according to the inter-signature matching
map for intuitive motion perception.

Inter-signature matching has specific advantage for motion per-
ception. Based on the analysis in Section 3.1, we know that two
full signatures may be different in signature length and sampled
points' distribution, which may result from the variations in motion
speed, sampling rate, occlusion or users' inconsistency in motion re-
peats. On one hand, this explains why two full signatures cannot
be matched in direct point-wise manner. On the other hand, a rea-
sonable matching of two signatures can help to perceive the differ-
ence and consistency of the motion properties involved. Therefore,
the inter-signature matching is meaningful for intuitive perception
of motion characteristics. This can further benefit two typical cases.
One, in view of the motion inconsistency existing among multiple
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Fig. 8. The curvature sub-signature (� vs. �s) (a) and torsion sub-signature (� vs. �s) (b) for motion symmetry perception.

instances of a user or robot (in fact human cannot perform a motion
in exactly the same way each time), the matching of two instances
can help to identify the personal motion characteristics of a user. The
other case is that when a signature is the reference and the other is a
trial, the matching between them can help to find out the problems
of the trial more clearly for the improvement in the next trial.

To match two full signatures, the metric must be able to account
for the inconsistency in trajectory length and points' distribution.
This is actually analogous to the elastic time series/sequences com-
parison [32]. In our view, an appropriate matching and the similar-
ity measurement lie in finding the best alignment of the element
pairs along two signatures. Following this, the nonlinear matching
method of dynamic time warping (DTW) is employed to match two
arbitrary full signatures.

Dynamic programming is used in the DTW to calculate the min-
imum cost of the best alignment between two signatures. For two
signatures S∗i and S∗j with respective length P and Q , let S∗i =
{[�∗i,�∗i

s , �∗i, �∗i
s ]p|p ∈ [1, P]} and S∗j = {[�∗j,�∗j

s , �∗j, �∗j
s ]q|q ∈ [1,Q]}

represent the sequences of the signature quaternion. The cost func-
tion d(p, q) reflecting the similarity between S∗ip and S∗jq is defined
using the Euclidean distance, formulated as follows:

d(p, q) = �S∗ip,jq = ��∗ip,jq · ��∗ip,jq√
(S∗ip)2 ·

√
(S∗jq)2

(24)

where

��∗ip,jq = ‖(�∗ip,�∗ip
s ) − (�∗jq,�∗jq

s )‖ (25)

��∗ip,jq = ‖(�∗ip, �∗ip
s ) − (�∗jq, �∗jq

s )‖ (26)

(S∗ip)2 = (�∗ip)2 + (�∗ip
s )2 + (�∗ip)2 + (�∗ip

s )2 (27)

(S∗jq)2 = (�∗jq)2 + (�∗jq
s )2 + (�∗jq)2 + (�∗jq

s )2 (28)

The accumulative minimum cost of aligning up to S∗ip and S∗jq
is represented by u(p, q), which is determined by the minimum cost
among its three neighbors' plus the cost of itself, as expressed by

u(p, q) = min(u(p − 1, q − 1),u(p, q − 1),u(p − 1, q)) + d(p, q) (29)

Following the above and working from u(1, 1) to u(P,Q), the best
alignment of the two signatures is found while the DTW distance
between S∗i and S∗j is recorded at u(P,Q). In the DTW nonlinear
matching, the difference in trajectory length is no longer a problem,
and in particular, the one-to-many point correspondence makes the
trajectories with different points' distributions aligned well. Bene-
fiting from the DTW matching result, retrieving the indexes of the
points from the best inter-signature matching map, the correspond-
ing points between the two trajectories can be aligned by the non-
linear warping paths. Subsequently, the inter-trajectory matching
and the warping paths can be visualized to provide an intuitive in-
terface to do motion perception, say, to observe the difference and
consistency of the motion properties between two trajectories.

Moreover, it should be noted that the DTW distance at u(P,Q) can
serve as a quantitative similarity measure between the signatures
S∗i and S∗j. This also means that DTW distance is a similarity percep-
tion for two trajectories. In general, through the DTW inter-signature
matching, we can not only get an overall similarity measurement,
but also can perceive two trajectories intuitively by visualizing the
dynamic warping paths. In this sense, the DTW based method gener-
ally behaves better than the proposed matching method in Ref. [33]
which is applicable for still curve matching.

3.4. Perception based on cluster signature

An abstract cluster signature is developed in Section 2.4 using
the GMM to describe a motion class. Through visualizing the GMM
modeling result, say, all the mixing Gaussian components, we can
also get an interface to perceive the possible varying range of a
cluster signature. According to Eq. (14), a Gaussian model can be
characterized by the parameters of the mean and covariance, where
the former indicates the center of the modeled data and the latter
implies the data's variance. The two parameters can be visualized to
perceive a Gaussianmodel intuitively. Since each individual Gaussian
model can cover a part of signature data, the visualization of a GMM
model (all mixing Gaussian models) can give an intuition about the
possible variance of an entire cluster signature.

Not limited to the perception based on the GMM visualization,
we also extend the perception by instantiating a cluster signature
from an abstract GMM model. This is equivalent to producing a gen-
eralized signature from the signature cluster for a motion class. The
generalized signature can be viewed as a canonical signature in-
stance of a motion class. By comparing the generalized signature
with all the instances in the original signature cluster, we can per-
ceive the generalization extent, goodness and some specific motion
properties of the generalized signature. In practice, the comparison
can be carried out using the DTWmatching in which the generalized
signature serves as the reference. This means that the DTW process
can also benefit from the signature generalization when a canonical
signature is required to do DTW matching.

To instantiate a generalized signature instance from an abstract
cluster signature, we use the Gaussian mixture regression (GMR)
method [31]. The regression problem is to reconstruct a general sig-
nal form from a set of observations. Arrange the variables in an ob-
servation with two sub-sets in the form of O = {X,Y}, where the
p-dimensional X represents the predictor variable set and the q-
dimensional Y represents the response variable set. If the joint den-
sity of the observation O falls in the GMM, then when partitioning
the joint density by fX,Y = fY|XfX , both fY|X and fX also have the GMM
distribution. This is the basis to derive the GMR aiming at estimat-
ing the conditional expectation of Y given X. For the signature based
regression, the observations are a cluster of signature instances of
a motion class, and we know that the signature cluster does fall in
the GMM from Section 2.4. For an augmented signature Oa = {T, S}
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where S denotes the signature data and T denotes the temporal in-
dex, we follow the GMR to get a generalized signature by estimating
the conditional expectation value of S given T.

Using the method stated in Section 2.4, a cluster signature is
firstly obtained by modeling a cluster of signature samples Oa={T, S}
by the GMM distribution,

fT,S(t, s) =
K∑

k=1

wkN(t, s;�k,�k) (30)

For each learned Gaussian component N(T, S;�k,�k), rearrange
the parameter items �k and �k in terms of the predictor T and
response S as follows:

�k =
[
�kT
�kS

]
, �k =

[
�kTT �kTS
�kST �kSS

]
(31)

Then each Gaussian component is partitioned and the GMM den-
sity function can be transformed into the following form:

fT,S(t, s) =
K∑

k=1

wkN(s|t; �̂k(t), �̂k)N(t;�kT ,�kTT ) (32)

where

�̂k(t) = �kS + �kST�
−1
kTT (t − �kT ) (33)

�̂k = �kSS − �kST�
−1
kTT�kTS (34)

The conditional PDF of S|T can be formulated by

fS|T (s|t) =
K∑

k=1

Vk(t)N(s; �̂k(t), �̂k) (35)

where the mixing weight Vk is calculated as follows based on the
marginal density of T:

Vk(t) = wkN(t;�kT ,�kTT )∑K
k=1wkN(t;�kT ,�kTT )

(36)

Thus given T, we can estimate the conditional expectation and
covariance of S as follows:

�̂(t) = E(S|T = t) =
K∑

k=1

Vk(t)�̂k(t) (37)

�̂(t) = Cov(S|T = t) =
K∑

k=1

Vk(t)
2�̂k (38)

That is, given a predictor vector T̂ (a set of temporal indexes), via
evaluating �̂(t) at each temporal index t ∈ T̂, a generalized signature
Ŝ = {�̂(t)|t ∈ T̂} can be produced. At the same time, the covariance
matrix �̂(t) indicates the generalization extent around �̂(t) at each
point t. It is worthy to point out that in the GMR, T̂ can differ from
T in length and the temporal interval, and the resulting signature
Ŝ will have the same length with T̂. This offers the feasibility to
produce diverse generalized signatures with different lengths and
points' distribution by setting different predictors.

Note that since the cluster signature can be developed from both
the full signature and optimized signature, the GMR is consequently
applicable for both these two kinds of signatures. In particular, if the
GMR is conducted using the optimized signature, the generalized
signature can still be projected back to the original full signature
space making use of the linear transformation property of GMM:
if an optimized signature S̃ ∼ N(�,�), we have the corresponding
full signature UTS̃ ∼ N(UT�,UT�U), where UT is the PCA transform
matrix in Eq. (11).

4. Signature recognition

Effective trajectory recognition relies on both efficient recogni-
tion engine and flexible signature descriptions. In this section, we
study adaptive signature recognition in terms of the three signature
descriptions by developing three corresponding recognition engines.

4.1. DTW matching of full signatures

As mentioned in Section 3.3, the DTW matching of two full sig-
natures gives rise to a DTW distance that can serve as a signature
similarity measure, which therefore can be adopted to develop a tra-
jectory classifier. However, note that the DTW based classifier may
suffer from two problems. One is the lower efficiency. As the DTW
based nonlinear paths warping is time-consuming for longer mo-
tion trajectories, the DTW based trajectory classification from larger
trajectory databases will become slower accordingly. Therefore, the
DTW recognition engine plus the full signature may have difficulty
in satisfying the objective of fast trajectory recognition.

The other problem is the recognition rate. As the DTW algorithm
always matches all of the points in signatures, the recognition may
become ambiguous when occlusion is severe. A modified match-
ing method called minimal variance matching (MVM) [34] can offer
higher recognition rate specifically for occluded trajectories. But the
MVM method imposes a length constraint to the query and refer-
ence. Hence, its application scope is narrower than the DTWmethod.

Accordingly, it is observed that the DTW based method is par-
ticularly effective and suitable for small-scale applications that con-
cern both trajectory recognition and motion perception. For larger
databases, the DTW based motion perception is more advantageous
than performing DTW recognition.

4.2. Fast classification using optimized signatures

As mentioned in Section 2.3, the optimized signature is more
compact as the dimension reduction is applied to the full signature.
Since all the optimized signatures have the same length after the PCA
transform, the nonlinear inter-signature matching is no longer nec-
essary. Instead, two optimized signatures can be matched straight-
forwardly in point-wise manner. Based on that, we develop a faster
trajectory classifier using the optimized signature.

For two optimized signatures S∗i and S∗j with the same length N,
we use the Mahalanobis distance defined as follows to measure the
similarity of S∗i and S∗j,

D(S∗i, S∗j) = 1
N

N∑
n=1

√
(S∗in − S∗jn)�−1(S∗in − S∗jn)T (39)

The optimized signature is much shorter than the full signature in
length. In addition, the time-consuming DTW matching is replaced
by the direct point-wise comparison. Hence, the above formulated
signature recognition is more efficient than the DTW based classifier.
However, we should note that because the pre-normalization oper-
ation to the full signatures may affect certain motion properties, the
optimized signature based recognition actually ignores partial orig-
inal motion features in the trajectories. This is allowable for some
applications, but in some cases it may be undesirable.

4.3. Bayesian signature recognition

The previous two subsections deal with direct signature matching
for trajectory recognition. Although the recognition may not perform
as well as expected in efficiency or in the ability in preserving the
original motion features, they have obvious advantage in recogni-
tion mode. That is, the recognition can start from an empty database
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without the need for a prior training process. However, that could
also become disadvantageous as it is not able to make use of the
available knowledge, which can be derived provided that a trajec-
tory database exists already. Basically, direct signature comparison
is a kind of hard recognition. Thus it has difficulty to be further de-
veloped for some high-level functions such as uncertainties handling
or predictive recognition. On the contrary, the probabilistic learning
and recognition methods can make use of the prior knowledge and
boost high-level functions.

Using the GMM based cluster signature, we here build a proba-
bilistic signature recognition engine based on the Bayesian Theory.
The probabilistic engine can have both higher recognition efficiency
and higher accuracy. Only the cluster signatures need to be learned
a priori from training samples. The Bayesian signature recognition
is able to preserve original motion features if the cluster signature
is based on the full signature. Therefore, it can satisfy the require-
ments better, with fast and accurate trajectory recognition even for
larger scale databases.

Assume that the cluster signatures of all the motion classes have
been learned via the signatures density estimation by GMM (Section
2.4), the query signature will be recognized by the Bayes' decision
rule. Based on the C GMM models {
i}Ci=1, for a query trajectory
signature Xq, the logarithmic form of the Bayes' Theorem is adopted
(it is more efficient in computation than the original form),

log P(
i|Xq) = log P(Xq|
i) + log P(
i) − log P(Xq) (40)

The posterior probability log P(
i|Xq) is measured for signature
recognition based on the maximum a posterior (MAP) criterion. This
means that Xq is classified into the class 
MAP by examining Xq as
an observation sequence to each GMM model in {
i}Ci=1


MAP = arg max



[log P(
i|Xq)] (41)

P(Xq|
i) is calculated based on Eq. (13). The prior probability
P(
i) can be derived from the initial knowledge about the occurrence
frequency of the samples. For example, it can be set to 1/C when all
the motion classes are equi-probable. The marginal probability P(Xq)
can be calculated by P(Xq) = ∑C

i=1P(Xq|
i)P(
i).

5. Experiments

The objective of the experiments is to conduct descriptive mo-
tion trajectory perception and recognition using the proposed signa-
ture descriptions. Motion perception is mainly demonstrated by the
DTW based nonlinear matching of full signatures and the GMR based
cluster signatures. The trajectory recognition performance is tested
based on a large trajectory database by developing three signature
recognition solutions.

5.1. Sign motion trajectory acquisition

Sign language is a special communication modal for human
interaction. While human perform a sign by hand, the underlying
spatiotemporal motion trajectory is extracted discretely as the rep-
resentation of the sign word. A binocular vision system with two
TM-765 cameras is employed for trajectory tracking. The raw 3D
trajectory is calculated by stereo algorithm and smoothed using the
moving average filter. The object of interest is tracked using the
CAMShift (continuously adaptable mean-shift) algorithm [35]. Note
that the tracking is simplified by tracking a distinctive rigid object
held by hand instead of direct tracking to the hand. This makes
the tracking easier and more stable. The issue of pursuing robust
human hand or body parts tracking is out of the scope of this paper.
Fig. 9 shows the system setup and several stereo trajectory tracking
snapshots of a sign demonstration.

At this stage, only the sign performed by a single hand is used
and each sign admits a regular trajectory. Ten sign classes (words)
are defined in the experiment, which are roughly close in trajectory
shape to the characters of `0' to `9', respectively. Different users are
asked to perform the sign words in 3D space and repeat multiple
times to get diverse instances. Fig. 10 shows the extracted 3Dmotion
trajectories from a set of sign instances.

5.2. DTW based sign trajectory perception

The first experiment demonstrates the free form sign language
perception from the full signature by applying the DTW based sig-
nature matching. Figs. 11–18 visualize 8 representative cases of the
nonlinear inter-trajectory paths warping resulting from the DTW
inter-signature matching maps, from which we can get an intuitive
perception to some of the trajectory properties listed in Section 3.1.

First, it is observed that the inter-trajectory alignments are quite
reasonable, which verified that the calculated DTW distances are re-
liable quantities to characterize the inter-trajectory similarities. Sec-
ond, the DTW warping paths reflect the motion specifics between
trajectories. For example, we can get an immediate intuition to the
motion length in terms of arc-length without counting the sampled
points. In fact, only the number of sampled points may not be ad-
equate to characterize the arc-length due to the possible difference
in motion speeds.

The instance of I-1/I-2 is an occlusion example compared with
R-1/R-2. Occlusion is embodied typically by a one-to-many paths
emission where `one' means an end point of the occluded trajectory
and `many' corresponds to the occluded part of the full trajectory.

From the matching of I-3 and R-3, the speed variability of I-3 can
be easily perceived. Although the motion arc-length is close, the data
sampling of I-3 is much denser than R-3, which shows that the speed
profile of I-3 is much slower than R-3. Furthermore, comparing the
respective density of the warping paths of the two trajectories, we
can even estimate an approximate scaling relation between the two
speed profiles. The pair of I-4 and R-4 is another example of speed
perception.

The matching between I-5/I-6/I-7 and R-5/R-6/R-7 illustrates the
perception to the correspondences between different trajectory in-
stances due to the signature's invariants. We can find that I-5 is
a variation of R-5 after a translation action, and the perfect point-
wise matching between them verified the signature's translation in-
variant. Likewise, I-6 is a rotated variation of R-6 and the matching
demonstrates rotation invariant. The overall shapes of I-7 and R-7
are quite similar but the sizes are obviously different, from which
we can see that I-7 is either a smaller-size variation or an equal-
size variation produced with a longer viewing distance between the
demonstrator and visual sensor. Using a normalized cost function
for the DTW algorithm by replacing �s and �s with (|�s|/�s)

√|�s|
and (|�s|/�s)

√|�s|, respectively, in Eqs. (25)–(28), we can get a metric
signature invariant, as verified in the point-wise matching between
I-7 and R-7. However, we should notice that for real data of prac-
tical instances, it is rather hard to get absolute translation, rotation
or metric transformations between two sign instances. For exam-
ple, the matching between I-5′/I-6′/I-7′ and R-5/R-6/R-7 shows the
invariants for approximate transformation relations.

From the matching between I-8 and R-8 as well as I-8′ and R-
8, we can perceive the characteristics of two sign instances which
belong to the same sign class. I-8 and I-8′ are performed by two
different users, but we get reasonable matching results with R-8. We
can compare the difference on the shape feature, spatiotemporal shift
and speed profile from the matching results. Similarly, the matching
between I-9 with R-9 as well as I-9′ and R-9 is another example
illustrating the perception of various instances produced by different
users.
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Fig. 9. Vision system setup and snapshots of the stereo trajectory tracking.

Fig. 10. Motion trajectories extracted from a set of sign instances.

Fig. 11. Perception of occlusion.

Fig. 12. Perception of speed variability.

The results of the DTW based motion perception may be useful
to reveal some specific characteristics of a motion, even to identify
a specific demonstrator. This is based on the fact that each different

demonstrator may have specifically its own characteristics embod-
ied in the conducted motion trajectories. For example, given more
matching samples like those in Fig. 16, we may feel that the user of
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Fig. 13. Perception of translation invariant.

Fig. 14. Perception of rotation invariant.

Fig. 15. Perception of metric (relative) invariant.

I-8 and I-9 probably is different from that of I-8′ and I-9′. Of course
it should be noted that, not all the personal motion characteristics
can be visualized or observed. The DTW matching does offer a way
to enhance the perception for user identification. For example, this is
feasible to distinguish the demonstrators in case of limited number
of users.

The perception to the matching between I-10/I-11 and R-10/R-
11 can help people to easily discern the two instances that are from
two completely different sign classes.

As mentioned before, the DTW method can be used to match
a reference and a trial. This actually can help to perceive how
two trajectories differ in certain properties and then provide ad-
vices to the supervised trajectory repeats/learning. For example,

assume that I-12/I-13 is a trial supposed to follow the reference
of R-12/R-13, the matching results indicate that the user needs
to improve the trial in the next try by paying more attention
(say, to move faster) to the part of P-12 and P-13, where the
denser data indicate that the speed is lower than that of the
reference.

5.3. GMR based sign trajectory perception

The second experiment shows the GMM based cluster sig-
nature and then the GMR based sign signature perception. As
shown in Fig. 19, three signature instances of the sign word `5' are
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Fig. 16. Perception of various instances performed by different users.

Fig. 17. Perception of completely different sign classes (words).

Fig. 18. From perception to advise the sign repeating/learning.
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Fig. 19. The four signature profiles of the three signature instances plotted in red (length 191), green (length 127) and blue (length 153), respectively. (a) �, (b) �, (c) �s

and (d) �s .

clustered using the full signature with different lengths. They have
191, 127 and 153 sampling points, respectively. As described in
Section 2.4, their temporal indexes are firstly pre-normalized to the
range of [1,191]. Then apply the EM and IPRA algorithms to the
three signature instances with initial parameters of mixing Gaus-
sian number K = 30. The stopping threshold of the EM algorithm
is set to Cstop = 1e–9 and the IPRA merging similarity threshold
is set to Hmerge = 0.001. After the EM and IPRA procedures stop,
an optimal GMM model is finally learned that actually consists of
20 mixing Gaussian components. This GMM model is the cluster
signature obtained from the three signature instances for the sign
class `5'.

As shown in Fig. 20, the 20-component GMM is displayed in terms
of the four individual signature profiles. Each mixing Gaussian model
is represented by an ellipse in which the star symbol indicates the
data center and the covered field of the ellipse indicates the varying
range of the corresponding partial signature data being modeled.
From the visualized GMM model, we get an intuitive perception to
the entire cluster signature's varying range that is characterized by
a sequence of ellipses (Gaussian models).

Next, we illustrate instantiating generalized cluster signatures
from the GMMmodel by configuring different predictors to the GMR
procedure. In Figs. 21 and 22, the two generalized instances of the
cluster signature shown in Fig. 20 are produced by the GMR algo-
rithm with respective predictor setting T = [1, 191] and [1, 63]. The
generalized signatures are overlaid (in black) in the three signature

instances to compare its generalization degree. We can observe that
the regressed signatures are good to serve as representative signa-
tures for the sign word `5'. In fact, this kind of generalized signatures
can be produced with free configurations of the temporal length and
points' distribution for diverse descriptions and perceptions of a mo-
tion class.

As mentioned before, in the course of the GMR procedure, the
variability of the mean of each point along the generalized sig-
nature is restricted to a generalization range that is controlled by
the covariance matrix in Eq. (38). Based on that, the variability of
the entire generalized signature can be perceived by visualizing the
varying range around each point. As demonstrated in Fig. 23, the
gray fields indicate the generalization range of the generalized sig-
nature in Fig. 22. This gives a clearer perception to the possible
variability of each signature point, and then the entire generalized
signature.

In addition, since the signature profiles of �, �, �s and �s can be
visualized individually, the motion perception can actually be con-
ducted based on an individual signature profile. For example, we can
perceive a motion according to the entire curvature or torsion pro-
file. For example, taking X axis as a reference direction, the curvature
and torsion profiles describes the variations of motion direction
towards Y and Z axis, respectively. This is useful for perceiving
the shape features of a trajectory. In addition, it is also mean-
ingful for the motion analysis based on the 2D projections of a
3D motion.



S.D. Wu, Y.F. Li / Pattern Recognition 42 (2009) 194 -- 214 209

Fig. 20. The GMM based cluster signature obtained from the three signature instances shown in Fig. 19. (a) �, (b) �, (c) �s and (d) �s .

5.4. Sign recognition test

In the third experiment, a larger trajectory dataset of UCI KDD
high quality ASL [36] is used to test the trajectory recognition perfor-
mance in terms of two important measurements: accuracy and effi-
ciency. The ASL trajectory dataset consists of 95 sign classes (words),
and 27 samples were captured for each sign. The position fields x,
y and z are extracted from the sign's feature sets to calculate tra-
jectory signature. The length of the samples is unfixed (approxi-
mate length: 57 points). Two instances of the sign word `hurry' and
`exit' are illustrated in Fig. 24. To reduce noise and vibration, the
wavelet smoother is applied using wavelet DB5 and the third level
coefficients.

According to the analysis in Section 4, we design three differ-
ent signature recognition solutions: (1) full signature and DTW
matching (Solution 1), (2) optimized signature and Mahalanobis
distance (Solution 2), (3) cluster signature (full signature based
GMM) and Bayesian recognition (Solution 3). In addition, we also
compare the performances of the three solutions with an FD based
solution. As reviewed in Section 1, the comparison results will be
representative for a set of descriptors that use only partial features.
The following Fourier transform is used to describe a 1D trajectory
vector X(t),

Xf =
M∑
t=1

X(t) e−i2
(t−1)(f−1)/M , 1� f �M (42)

Applying the above transform to each dimension of a 3D motion
trajectory, and setting f̂ = [0, 1, 2, 3, 4] as usual, we can get a Fourier
feature vector Fl={X

f̂
,Y

f̂
, Z

f̂
} that describes the motion trajectory us-

ing partial coefficients. As Fl has fixed length, two Fourier represen-

tations Fil and Fjl are compared directly using a metric based on the

Euclidean distance DF = 1/l
∑l

n=1‖Fil − Fjl‖. The FD and DF constitute
Solution 4 for the ASL trajectory recognition.

For Solution 1, of all the samples of 95 classes, half are used as
training samples to learn 95 GMM models. A reference full signa-
ture is then generalized using the GMR (predictor length 50) for
each class. The other half samples are input to do recognition using
the DTW matching. For Solution 2, the optimized signature is con-
densed with 95% of the original data variance, and all samples are
pre-normalized to fixed length 50 for PCA transform. Similar GMM
and GMR steps are also applied to the optimized signatures to obtain
the references. Solution 3 uses the 95 cluster signatures developed
from the full signatures. For Solution 4, half samples of a class are
used to average out a reference description, and then the other half
are input to do recognition using the metric DF .

The recognition experiment is repeated more than 50 times on
a common PC (Pentium 4 CPU 3.00GHz, 512M RAM) by randomly
picking up a number of different classes and samples, which gives
rise to an average recognition performance as recorded in Tables 1
and 2. In particular, the average confusion matrices of the four so-
lutions are generated to show the overall recognition effects of the
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Fig. 21. Signature generalization (in black) from the cluster signature with temporal index T = [1, 191]. (a) �, (b) �, (c) �s and (d) �s .

four-class and eight-class recognition in Figs. 25 and 26, respectively.
Note that the quantities of the recognition rates are scaled to inten-
sity images, in which the scaling is with a smaller bound of [0, 0.2]
for clearer display. We can find that Solutions 1 and 3 have higher
recognition rate. Solutions 2 and 3 have higher efficiency (in terms of
query time) suitable for potential real time trajectory retrieval. The
query efficiency of Solution 1 decreases quickly as the class number
increases. Solution 3 behaves generally better on both accuracy and
efficiency. But it necessitates a prior training process. In contrast,
Solutions 1 and 2 could start with an empty database. Meanwhile,
it is observed that while the recognition efficiency of Solution 4 is
comparable with Solutions 2 and 3, it has, obviously, lower recogni-
tion rates than all of the other three signature solutions. The above
comparisons manifest that the proposed signature recognition solu-
tions can have high adaptability satisfying different recognition re-
quirements in accuracy, efficiency and necessity of training process.

6. Discussion and conclusion

In this section, we firstly discuss the potential application scenar-
ios of the signature descriptor to robot learning and then conclude
our work.

6.1. Application: enhancement to robot learning

A signature descriptor is designed for free form 3D motion tra-
jectory characterization with wide potential applications where a

motion trajectory is concerned for representation, perception and
recognition, for example, in human behavior recognition, robot
learning, human–robot interaction and various motion analyses.
Here we specifically emphasize the advantages of the proposed
signature descriptions for enhancing robot learning by demonstra-
tion (LbD) [37,38]. Firstly, many kinds of human demonstrations
can be described by the underlying motion trajectories such as the
reported work in Refs. [1,2,21]. Because LbD demands systematic
description to the demonstrations [39,40], the three flexible signa-
ture descriptions provide the possibility to meet different trajectory
description requirements for diverse robot tasks. More importantly,
the signature has an advantage in rich descriptive invariants. Note
that the mentioned invariants hold in all the three signature de-
scriptions, as the optimized signature and cluster signature are
based on the full signature. The invariant signature representa-
tions actually admit generalized task representation to be learned
by a robot. Hence, the signature outperforms the raw trajectory
data.

Secondly, robot learning is not only supposed to acquire phys-
ical task description, but also expected to learn more about
the characteristics and knowledge of the demonstrated tasks.
The presented motion perception in this paper shows sev-
eral aspects of the enhancements to LbD as analyzed in the
following.

The perception from a single signature is helpful to enable a robot
to know more task details, which could be the basis to perform
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Fig. 22. Signature generalization (in black) from the cluster signature with temporal index T = [1, 63]. (a) �. (b) �. (c) �s and (d) �s .

simple task reasoning and symbolic interpretation to drive robot be-
having more intelligently. The DTW matching gives an intuitive in-
terface to indicate the aspects that a robot needs to improve in the
course of LbD learning. In particular, the DTW method can serve as
an appropriate metric to measure the quality quantitatively (DTW
distance) and qualitatively (warping paths, refer to the example in
Fig. 18) of a reproduced motion by robot. The GMR signature regres-
sion can output a generalized signature from a GMM model or a set
of signature instances. In LbD, different demonstrators may produce
diverse samples and then diverse signatures for the same task. The
generalized signature obtained by the GMR can serve as a represen-
tative signature to be referred in motion reproduction by a robot.
As shown in Section 5.3, it is flexible to generate various general-
ized signatures by customizing the predictors. This explains why the
GMR can make a robot learn abstract task knowledge via the gener-
alization of a cluster signature.

Thirdly, motion trajectory recognition is also helpful to enable a
robot to `understand' the meanings of the learned tasks. LbD should
not be restricted to simple task reproduction. The recognition of
learned demonstrations can give a robot higher ability and intelli-
gence to enhance human–robot interactions during the LbD learning
process.

Finally, the sign language oriented experiments show the charac-
terization of sign motion trajectories. Sign language could be a kind
of robot task to be learned via LbD. If a robot can recognize and
perceive the sign language from human demonstrations, it will be

able to interact with human (or other robots) via the sign language
friendlily.

Here, we also point out that, the present work cannot serve as
a full LbD framework yet at this stage. This is because in basic LbD
procedures, a robot has to be able to reproduce the learned task. So
far we have not reported the relevant work in reproducing trajec-
tories from a learned signature. Developing trajectory instantiation
algorithm from a given signature would be a key step to complete
the LbD close-loop workflow. This is our ongoing study and we will
report in the next step work.

6.2. Concluding remarks

To achieve adaptive motion characterization, motion trajectory
is studied in this paper by building a flexible signature descriptor
with its applications to motion perception and recognition. The pro-
posed signature admits three different descriptions. The novelty of
the work lies in the functional adaptability to meet diverse applica-
tion requirements.

Each signature description has specific capability for trajectory
representation. The full signature data are relatively redundant, but
they provide an opportunity to perceive motion details. The op-
timized signature is more compact and its length is dynamically
adjustable, only it cannot completely preserve the original motion
features. The cluster signature is a model based description for a
motion class, which is quite effective in describing a set of similar
trajectory instances.
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Fig. 23. Varying range (gray fields) perception to the generalized signature shown in Fig. 22. (a) �, (b) �, (c) �s and (d) �s .

Fig. 24. Sign samples of the words `hurry' (a) and `exit' (b).

Table 1
Recognition accuracy comparison

Solutions Number of classes

2 (%) 4 (%) 8 (%)

Solution 1 92.03 87.52 81.19
Solution 2 89.12 84.39 77.27
Solution 3 92.73 88.58 83.02
Solution 4 87.98 75.74 63.85

These three flexible signature descriptions lead to adaptive ap-
plications in characterizing various motions which is verified in the
three experiments conducted. The full signature is particularly good

Table 2
Recognition efficiency comparison (units of milliseconds per query)

Solutions Number of classes

2 4 8

Solution 1 730 1245 2286
Solution 2 121 127 138
Solution 3 163 187 191
Solution 4 145 162 179

at motion perception because it preserves complete motion features.
In particular, the DTW based full signature matching provides an in-
tuitive interface for motion perception. If high trajectory recognition
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Fig. 25. The average confusion matrices of the four-class recognition (classes are indexed by from c1 to c4). (a) Solution 1, (b) Solution 2, (c) Solution 3 and (d) Solution 4.

Fig. 26. The average confusion matrices of the eight-class recognition (classes are
indexed by from c1 to c8). (a) Solution 1, (b) Solution 2, (c) Solution 3 and (d)
Solution 4.

efficiency is specifically needed, the optimized signature can behave
better than the full signature. The cluster signature has good per-
formance at motion perception and recognition. The GMM signature
visualization and GMR based generalization give an explicit inter-
face to perceive motion patterns. The three signature recognition
solutions show that adaptive trajectory recognition can be achieved
by a compromise among accuracy, efficiency and the availability of
training samples. In particular, note that the motion perception is
an advantageous function, that many other descriptors (reviewed in
Section 1) are not comparable. Hence, it can be concluded that the
novel signature descriptions are flexible that can be adopted in dif-
ferent applications.

It is worthy to note that the signature has three descriptions,
which essentially differs from the multi-resolution descriptors (FD,
wavelet or CSS) in structure. The relation among the three signature
descriptions is different from the hierarchy of the multi-resolution
descriptors. Therefore, the signature does not suffer from the corre-
spondence problems caused by multiple representation resolutions.
One may have doubt on the optimized signature's correspondence
problem due to different choices of the optimization degree in pre-
serving data variance (� in Eq. (12)). We clarify that this will not be
problematic because in normal cases, � is always set to a quantity
close to 100% to preserve most of the signature data's variance.

The present work has established a foundation for the joint de-
scription to multiple different trajectories. Next, we will extend the
signature descriptor to characterize complicated motions via analyz-
ing multiple spatially parallel and (or) temporally continuous trajec-
tories.
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