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Free form motion trajectories prove to be an informative and compact motion clue in sketching long-
term, spatiotemporal motions. Hence, motion trajectories have been used for characterizing human
behaviors/activities, robot actions and other objects' movements. However, it is observed that most of
the previous studies merely use motion trajectories straightforwardly in the raw data form, which is
inflexible as they rely largely on the absolute positions. To solve this problem, we propose to achieve
effective motion trajectory descriptions by developing a systematic trajectory description mechanism. To
this end, a flexible motion trajectory signature descriptor has been proposed in our previous work, which
can offer generalized descriptions to the raw trajectory data thanks to its rich description invariants.
Moreover, for an effective descriptor, it is sometimes desired to have mutual description functions, i.e.
describing and un-describing capability to support some applications like robot learning. Hence, opposite
to describing a motion trajectory using the signature, this paper focuses on the un-describing problem,
that is, reproducing a trajectory instance from a given signature description. The moving frame technique
is used in formulating the trajectory reproduction method. A nonlinear signature matching-based metric
is also developed to measure the quality of the reproductions. Experiments are conducted to verify the
effectiveness of the trajectory reproduction. It is shown that the trajectory signature is flexible and easy
to implement in both the description and reproduction of trajectory instances.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motion trajectories: definition and role

Dynamic features seemmore suitable than static features in char-
acterizing the motions of humans, robots or other moving objects.
For example, free form motion trajectories prove to be an effec-
tive motion feature for modeling long-term, spatiotemporal motions
[1,2]. A motion trajectory consists of a set of position vectors of
continuously sampled points for a moving object in a spatiotempo-
ral motion. Hence, motion trajectories are informative, compact, ro-
bust and meaningful in outlining the motions. In fact, not limited to
the individual trajectory tracked from a single moving part, multi-
ple concurrent motion trajectories can be extracted too for depicting
complicated motions. For example, although the full-body motions
are usually complicated due to the articulated structure, descriptive
motion trajectories are still traceable and useful by identifying the
tracked parts in concern, such as the hands, head, feet [3,4]. In this
manner, a spatiotemporal motion can be well characterized by visu-
ally observing and extracting the consequent motion trajectories of a
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motion. Note that some short-term motions, such as instant grasps,
might not be suitably characterized by motion trajectories. Such a
kind of motions will not be covered in this paper.

1.2. Motion trajectories: usage and description

Previous studies show how motion trajectories are used to char-
acterize various kinds of spatiotemporal motions. Motion trajectories
have been studied for human behavior analysis, including represent-
ing human actions [1], recognizing human gestures [5], modeling
human walking [6], and even classifying human facial expressions
[7]. Motion trajectories can also be used for learning human motion
skills [8] and for detecting abnormal motions [9]. Moreover, mul-
tiple motion trajectories extracted from several human body parts
were used for gait classification [10] and activity recognition [11].
Meanwhile, motion trajectories were also investigated for robotic
applications. Motion paths were usually represented by motion tra-
jectories in robot motion planning [12,13]. Motion trajectories were
also used for depicting and analyzing motion-based robot tasks for
supporting robot learning [2,14,15]. In addition, the motion trajec-
tories of ordinary moving objects in certain workflows also play an
important role for movement recognition and analysis [16].

Although motion trajectory is proved to be a suitable feature
for motion characterization in previous works, a motion trajectory



Author's personal copy

S.D. Wu, Y.F. Li / Pattern Recognition 43 (2010) 204 -- 221 205

was usually used directly in its raw data form. The raw data might
be sufficient for certain simple work but such a simplistic use of
raw data is quite inflexible because it relies heavily on the absolute
positions of the motion data. In particular, it should be noted that
the raw data also restrain the overall performance of some high-
level modeling approaches such as neural networks [6] and hidden
Markov models [2,10], when they are directly used based on raw
motion data. In addition, it is noticed that motion trajectories were
used in some other form of representations in certain cases. Yet, it is
only simple and plain descriptors that were usedwithout considering
their effectiveness.

The concept of shape descriptor [17,18] motivates the develop-
ment of motion trajectory descriptors. Some shape descriptors have
been built in the past [19]. Simple descriptors are nonimpressive in
performance [20,21]. Occlusion is a difficult problem for global de-
scriptors such as geometric moments [22]. Mathematical descriptors
such as Bezier curve [23], B-spline [24] and NURBS [25] suffer from
the fitting inaccuracy. Some transform functions such as wavelet
transform [26], Fourier descriptor (FD) [27], curvature scale space
(CSS) [28] and Radon transform [29] can represent shape in a coarse-
to-fine manner. Yet, only partially salient features are considered for
shape description.

We focus on the research of building systematic and effective
motion trajectory-oriented description mechanisms. The previous
work includes a flexible 3-D signature descriptor [30,31]. We use
3-D motion trajectories instead of 2-D, as 3-D data can reconstruct
and model space motions more accurately than the 2-D data by
providing the depth information, which also overcomes the image
viewpoint problem that the 2-D data suffer from [32]. More impor-
tantly, the signature is a generalized description to the raw trajectory
data. The generality lies in the rich descriptive invariants that enable
the signature to capture the essential motion. Besides, the signature
promises flexible description forms meeting adaptable description
requirements [31].

1.3. Mutual description functions: describing and un-describing

Sometimes it is desired for a descriptor to have mutual trans-
formation abilities in describing and un-describing motions.
Compared with the forward describing action by data generaliza-
tion, the un-describing process is about the backward reproduction
of the data instances. While both the forward description and
backward reproduction are important in fulfilling the missions of a
descriptor, it should be noted that the practical description require-
ments depend on the applications. For example, when recognition is
the main goal, the backward un-describing function will not be that
necessary, which makes a descriptor efficient in handling complex
motions. When both recognition and reproduction are of concern
such as in robot task understanding, human–robot interactions and
motion reconstruction/synthesis, a descriptor's mutual description
abilities will accordingly be desired.

Opposite to describing a motion trajectory, this paper deals
mainly with the signature's un-describing function, i.e. reproducing
motion trajectories from a given signature. Firstly, we introduce the
basic signature definition. Then, we focus on the formulation of the
trajectory reproduction algorithm. Invariant trajectory reproduc-
tion and reproduction measurement are also elaborated. The most
important contribution of this paper is the trajectory reproduction
method that completes the signature's mutual description abili-
ties, which can systematically enhance the signature-based motion
description mechanism.

The existing descriptors have different performance in their un-
describing abilities. Normally efforts need to be paid to find the
corresponding un-describing methods for simple descriptors. For the
mathematical curves such as B-spline, NURBS, the reproduction is

difficult as the descriptions are inaccurate due to the data fitting. For
the FD, the inverse Fourier transform is actually the un-describing
process. Likewise, the inverse wavelet transform is the un-describing
operation of the wavelet transform. The Radon transform also has
a corresponding inverse transform. But the reproduction process of
the CSS suffers from the curve shrinking problem as it is not easy to
precisely reconstruct the original curve length.

1.4. Mutual signature description: applications

The mutual signature descriptions can play a key role in support-
ing some typical and important applications.

1.4.1. Robot learning
It is desired that a robot can learn essential task knowledge in-

stead of multiple redundant task instances [33,34]. Hence, building
generalized and reusable task representations is important, particu-
larly in robot learning by demonstration (LbD) [35,36]. However, the
motion trajectories have not been well described to support gen-
eralized robot task learning. In addition to using the raw trajectory
data [14,37], it is observed that previous trajectory representation
schemes include B-spline wavelet [15], NURBS [25] and linear dy-
namical system [38], which rely inherently on the absolute positions
of robot tasks and suffer from the fitting inaccuracy.

It can be found that the generalized signature can serve as a sys-
tematic and effective robot task descriptor, which can support robot
learning of the essential task knowledge. Meanwhile, the task repro-
duction, i.e. instantiating a trajectory instance from the signature-
based task descriptions, is also a necessary step to complete the pro-
cedures of robot learning as it enables robots to re-run the learned
tasks. Moreover, efficient robot learning also desires multiple tra-
jectory variants to be reproduced from an individual task signature,
which can be easily achieved by making use of the signature's rich
invariants. In general, the signature description and trajectory repro-
duction can be coupled to serve as the core components of a basic
motion trajectory-oriented robot learning system.

1.4.2. Motion recognition and reconstruction
Recognizing and reconstructing spatiotemporal motions are im-

portant for analyzing behaviors, activities and movements [39,40].
The motion trajectory signature can enrich the description-based
schemes for motion analysis [41]. In fact, using the generalized sig-
nature and taking advantage of its rich invariants, we can achieve
efficient motion recognition overcoming the inflexibility and redun-
dancy of the raw motion data.

Meanwhile, reproducing motions from the compact signature de-
scriptions is also useful for motion trajectory-based behavior re-
construction [42], motion scenes synthesis and editing [43], which
is meaningful in supporting virtual (or augmented) reality and in
making animation and cartoon plays [44,45]. In practice, for a com-
plicated motion, each of the sub-motions represented by the cor-
responding motion trajectory can be individually transformed and
freely assembled. This has some similarity to human dancing synthe-
sis [46] that uses motion primitives and styles. From the generalized
signatures, the motion reconstruction needs trajectories to be re-
produced a priori and diverse trajectory variants are expected to be
easily produced from one signature. Here, the signature's backward
reproduction function and its rich invariants can serve an important
role. Hence, the signature can be mutually capable in supporting
effective motion analysis, i.e. recognition, reconstruction, synthesis
and editing.

This paper is organized as follows. Section 2 briefs the signa-
ture description principles. The trajectory reproduction method is
presented in Section 3, followed by the analysis of invariant trajec-
tory reproduction in Section 4. A reproduction metric is designed in
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Section 5. Experiments proceed in Section 6 and this work is finally
concluded in Section 7.

2. Motion trajectory signature description

We assume that 3-D motion trajectories have been acquired from
motions. Studying the methods for trajectory tracking is out of the
focus of this paper and in fact, there are many methods well devel-
oped for trajectory tracking [47].

2.1. Generalized trajectory signature

In our previous work [30], the following signature has been pro-
posed to describe raw motion trajectories.

Definition 1. For a regular 3-D motion trajectory parameterized by
�(t)={X(t),Y(t), Z(t)|t ∈ [1,N]}, where t is the temporal stamp and N
is trajectory's length, its signature S is defined in terms of Euclidean
differential invariants: curvature (�), torsion (�) and their derivatives
with respect to the Euclidean arc-length parameter s,

S = {[�(t),�s(t), �(t), �s(t)]|t ∈ [1,N]} (1)

This signature allows a complete description for all sampled tra-
jectory points. Hence, it does not suffer from the data fitting inaccu-
racy. For the 3-D motion trajectory � shown in Fig. 1, its signature
description (the robust approximate signature implementation [30])
is shown in Fig. 2. Here, the trajectory signature defined in Eq. (1) is

Fig. 1. A piece of 3-D motion trajectory �.

Fig. 2. The approximate signature of trajectory �: (a) �; (b) �; (c) �s and (d) �s .

the basis of our systematic signature mechanism. More flexible sig-
nature descriptions were studied in Refs. [31,48]. In this paper, we
will mainly use the trajectory signature to formulate the signature's
un-describing problem.

2.2. Signature's description completeness

The signature here is defined for regular trajectories. However,
we have also provided a solution to enable the signature to describe
irregular trajectories [31]. More generally, the signature proves to
be able to describe complicated motions. Complicated motions usu-
ally give rise to multiple, concurrent, interrelated motion trajecto-
ries. While parallel trajectories entail the simultaneous motions of
multiple parts, it is the sequential trajectory that captures tempo-
rally continuous motions. On the one hand, parallel trajectories can
be described one by one and then combined, manually, as a whole.
On the other hand, there are two options for describing a temporally
continuous trajectory. While a single signature is able to describe
an arbitrary length of regular trajectory, this might have difficulty
in more detailed descriptions of a semantic rich motion. Hence, a
motion trajectory that contains multiple distinctive stages could be
segmented into multiple meaningful episodes, from which more de-
tailed motion analysis can be conducted according to the segmented
episodes and their relationships. We leave more detailed segmenta-
tion study to the future work.

2.3. Signature description for motion classes

In addition to the trajectory signature for describing a single in-
stance, the description to a motion class/pattern is also important.
Fig. 3 shows four different motion classes, each of them is character-
ized by three similar instances. A common way of description is to
manually maintain or combine the trajectory signatures of the mul-
tiple instances. However, this kind of description is too redundant.

Model-based motion class description was investigated in our
study. A so-called cluster signature is built using Gaussian mixture
model (GMM) to serve as an abstract and efficient motion class
description [31]. Note that our modeling approach can outperform
the traditional work as the GMM is coupled with the generalized
trajectory signature instead of raw data. It is also indicated that the
signature can be jointly used with more generic model-based meth-
ods. This explicitly shows how the introduction of the generalized
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Fig. 3. Four different motion classes.

signature description to high-level modeling methods can overcome
the inflexibility caused by direct coupling of raw data.

2.4. Signature's invariants

As the signature is based on local features, it admits computa-
tional locality, from which substantial descriptive invariants can be
deduced [30]. The signature is invariant with respect to Euclidean
transformations and relatively invariant with respect to scaling ac-
tions. These two invariants subsequently lead to the signature's in-
sensitivity to spatial 3-D viewpoint changes. Here, a 3-D viewpoint
is represented by a viewing angle and viewing distance. In addi-
tion, partial invariant can be achieved with respect to speed profile
change or occlusion. Note that the abovementioned invariants can
be further transmitted to subsequent processing. For instance, the
GMM-based motion class description inherits all of these invariants.

The substantial invariants make the signature a generalized de-
scription, which can benefit more effective motion recognition since
the signature is insensitive to motion positions, sizes, viewpoints,
speed profiles and occlusions. Likewise, the reproduction can also
enjoy this advantage (see Section 4).

2.5. Signature description ability extension

Although the signature is defined for 3-D data, it can be easily
simplified to a 2-D signature for describing 2-D or 1-D data [31]. In
particular, 1-D data will be parameterized in a 2-D form by incorpo-
rating the time stamp information.

In addition, in this paper, the signature is used to describe posi-
tion information related motion trajectories. In essence, it is actually
able to describe diverse natures of data such as motion orientation
or velocity information, provided that the described data are 3-D
spatiotemporally continuous.

3. Trajectory reproduction methods

Via the signature description, a motion trajectory is transformed
into the signature space. In this section, we will formulate the
`inverse' problem: given a signature description, to instantiate a
trajectory instance from the signature profiles. The trajectory repro-
duction is exactly about the un-describing function of the signature
descriptor. As stated in Section 1.4, studying this problem is mean-
ingful as it is not only demanded for robot learning, but also is
useful in supporting motion reconstruction, synthesis and editing.

3.1. Reproduction from a trajectory signature

In this subsection, we report a novel method to reproduce a
trajectory from a given trajectory signature. Assume a signature
S = {[�(t),�s(t), �(t), �s(t)]|t ∈ [1,N]} is given a priori or calculated
from a trajectory. Here, the objective is to formulate the algorithm
to produce a trajectory instance �(t) = {X(t),Y(t), Z(t)|t ∈ [1,N]} that
has the signature of S, with a predefined initial starting point �(1)

and an initial motion direction �(1). To solve this problem, we use
the moving frame technique and the Frenet–Serret formula [49].

Frenet frame is a special moving frame that is associated with
a space 3-D curve. For a 3-D curve �(s) parameterized by the arc-
length parameter s, the Frenet frame F(s) is defined by three Frenet
vectors T, N and B,

F(s) = {T(s),N(s),B(s)} (2)

where
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T(s) = d�(s)/ds

N(s) = dT(s)/ds∥∥dT(s)/ds∥∥
B(s) = T(s) × N(s)

(3)

Furthermore, there is a Frenet–Serret formula that describes the
derivatives of the three Frenet vectors,

⎧⎪⎨
⎪⎩

dT(s)/ds = �(s) · N(s)
dN(s)/ds = −�(s) · T(s) + �(s) · B(s)
dB(s)/ds = −�(s) · N(s)

(4)

From the above equation, we can find that the derivatives of
a Frenet frame is expressed in terms of the frame itself and the
curvature �(s) and torsion �(s). This relation provides a possibility to
derive the next Frenet frame from a given Frenet frame.

Note that the Frenet frame F(s) assumes that trajectory �(s) is
parameterized by the arc-length parameter s. This means that the
tangent vector of �(s) is a unit vector, i.e. ‖d�(s)/ds‖ = 1, which im-
plies that the arc-length between two consecutive trajectory points
is equal to 1. In other words, the underlying motion speed v(s) = 1.
Thus, Eq. (4) is actually based on a trajectory with a constant speed
profile, i.e., for all s, v(s)= 1. However, the form of trajectory �(t) is
parameterized by the temporal parameter t, and �(t) could possibly
have an arbitrary speed profile. This explains why Eq. (4) cannot be
applied directly. In fact, for an arbitrary trajectory defined by �(t),
an equivalent expression of the Frenet–Serret formula picks up an
additional factor of motion speed v(t), in the following form:

⎧⎪⎨
⎪⎩

dT(t)/dt = v(t) · �(t) · N(t)
dN(t)/dt = v(t) · (−�(t) · T(t) + �(t) · B(t))
dB(t)/dt = v(t) · (−�(t) · N(t))

(5)

Eq. (5) is more generic than Eq. (4) as it can deal with more
flexible trajectory parameterization by �(t) and an arbitrary speed
profile v(t).

The three Frenet vectors are perpendicular to each other, as illus-
trated in Fig. 4(a), where T is the tangent vector, N is the principal
normal vector and B is the binormal vector. Fig. 4(b) illustrates the
Frenet frames along a motion trajectory. Note that for clarity, the
plotting of the frames is spaced at every 18 points. It is found that
the Frenet frame can inherently characterize the shape of a trajec-
tory point.
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Fig. 4. The illustration of Frenet frame: (a) Frenet frame definition and (b) the Frenet vectors plotted along a motion trajectory.

So far, it can be inferred that if we could determine the Frenet
vectors of all the sampled trajectory points and the arc-lengths be-
tween two consecutive points, we will be able to reproduce a corre-
sponding motion trajectory accordingly. The key to this problem lies
in finding out the varying relation of the Frenet frame between two
consecutive points. The Frenet–Serret formula defined in Eq. (5) can
exactly account for this. That is to say, given a starting point and an
initial motion direction, a motion trajectory can be reproduced by
iteratively reproducing all the trajectory points according to Eq. (5)
in the temporal sequence.

Now let us focus on Eq. (5). Firstly, the forward finite difference
is used to calculate the derivatives on its left side,
⎧⎪⎨
⎪⎩

dT(t)/dt = T(t) − T(t − 1)

dN(t)/dt = N(t) − N(t − 1)

dB(t)/dt = B(t) − B(t − 1)

(6)

Then, denote the Frenet frame at two consecutive trajec-
tory points t1 and t2 by F(t1) = {T(t1),N(t1),B(t1)} and F(t2) =
{T(t2),N(t2),B(t2)}, respectively, we can derive the following equa-
tion to calculate F(t2) from F(t1):
⎧⎪⎨
⎪⎩

T(t2) = T(t1) + v(t1) · �(t1) · N(t1)
N(t2) = N(t1) − v(t1) · �(t1) · T(t1) + v(t1) · �(t1) · B(t1)
B(t2) = B(t1) − v(t1) · �(t1) · N(t1)

(7)

The values of curvature �(t) and torsion �(t) can be obtained
directly from the given signature data. Nowwe derive the calculation
of the motion speed v(t). For a trajectory parameterized by temporal
parameter t, its motion speed profile is the first order derivative of
the trajectory equation, i.e. v(t) = ‖�̇(t)‖. In fact, v(t) can be derived
from the signature components �s(t) and �s(t). Based on the given
signature data, we can use the central finite difference to calculate
d�(t)/dt and d�(t)/dt. For example, we can use �s(t) to derive the
following speed formula to be used in Eq. (7):

v(t) = d�(t)/dt
�s(t)

= �(t + 1) − �(t − 1)
2�s(t)

(8)

As the Frenet–Serret formula in Eq. (5) supposes that {T(t),N(t),
B(t)} are unit Frenet vectors, the Frenet frame {T(t2),N(t2),B(t2)} ob-
tained by Eq. (7) needs to be further normalized to unit vectors by
the following formulae:
⎧⎪⎨
⎪⎩

T̂(t2) = T(t2)/‖T(t2)‖
N̂(t2) = N(t2)/‖N(t2)‖
B̂(t2) = B(t2)/‖B(t2)‖

(9)

Therefore, a successive Frenet frame F(ti+1) can be calculated by
Eqs. (7)–(9) from a previous Frenet frame F(ti). In this manner, start-
ing from an initial Frenet frame {T̂(1), N̂(1), B̂(1)} with a given sig-
nature S, iterating Eqs. (7)–(9), we can obtain an entire sequence of
Frenet frame F�(t) for a trajectory �(t),

F�(t) = {{T̂(t), N̂(t), B̂(t)}|t ∈ [1,N]} (10)

According to the definition of Frenet frame, F�(t) describes the
motion direction varying between consecutive trajectory points.
Therefore, each Frenet frame in F�(t) can actually play the role
of controlling the motion direction at each trajectory point in the
course of trajectory reproduction. In other words, the overall shape
feature of a trajectory is determined by the obtained Frenet frame
sequence F�(t). In particular, the three vectors of the initial Frenet
frame {T̂(1), N̂(1), B̂(1)} represent the initial motion direction �(1).
For the determination of �(1), we can firstly predefine an arbi-
trary tangent vector T̂(1), and then N̂(1) and B̂(1) can be calculated
according to their definitions.

Once the motion directions of all the trajectory points are de-
termined, we can subsequently produce the position vectors of
these trajectory points. Recall the definition of the tangent vector in
Eq. (3), T(s)= d�(s)/ds. By applying the finite difference method, we
can derive the following relation:

�(s2) = �(s1) + T(s2) (11)

where s1 and s2 are two consecutive points in a trajectory param-
eterized by the arc-length parameter s. Eq. (11) is for the constant
motion speed profile (v(s) = 1). Based on this, for a motion trajec-
tory which has an arbitrary speed profile v(t), we further formulate
the following equation to reproduce trajectory �(t) that is parame-
terized by t,

�(t2) = �(t1) + T̂(t2) · v(t2)
‖T(t2)‖

(12)

Here, the roles of the three factors in Eq. (12) are specifically ex-
plained. As mentioned before, while the unit vector T̂(t2) controls
the motion direction from point t1 to t2, it is v(t2) that controls the
actual arc-length traversing between t1 and t2. Referring to the sig-
nature's relative invariant with respect to scaling actions, the reason
for including the factor of ‖T(t2)‖ in Eq. (12) lies in the normalization
operation in Eq. (9).

Now, given an initial motion point �(1) = {X(1),Y(1), Z(1)},
Eq. (12) can be iterated so that a sequence of trajectory points will
be reproduced for reproducing trajectory �(t) that has the signature
of S. Here, �(1) could be an arbitrary 3-D point. In a nutshell, the
above trajectory reproduction algorithm is elaborated in terms of
two steps, that is, firstly to determine the motion directions of each
trajectory point, and then to determine the position vectors of the
points.

Here, a length related problem in the trajectory reproduction is
particularly pointed out. The initial three and final three points in a
trajectory cannot be reproduced since the approximate signature cal-
culation involves multiple neighbor points instead of a single point.
In addition, the last fourth point cannot be reproduced, either, due
to the finite difference calculation in the reproduction algorithm.
Therefore, if it is expected to reproduce a trajectory with the original
length, the initial three and last four points should be saved when
the signature is calculated.
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3.2. Reproduction from a motion class description

The previous subsection deals with the trajectory reproduction
from a trajectory signature. It is also necessary to study how to
produce trajectories from a given motion class description, i.e. the
GMM-based cluster signature. This problem can be tackled by the
following two steps.

First, the Gaussian mixture regression (GMR) method is used to
instantiate a trajectory signature instance from a GMM-based de-
scription [31]. GMR aims at estimating the conditional expectation of
the response given a predictor. Here, the predictor is defined as the
temporal stamps of a motion and the response will be the profiles
of a trajectory signature. Second, after obtaining the GMR-generated
trajectory signature, it can then be used to follow the reproduction
algorithm in Section 3.1 to produce a trajectory.

3.3. Reproduction of multiple trajectories

The above methods deal directly with the reproduction of an in-
dividual trajectory. A complicated motion with multiple trajectories
can also be reproduced. As each trajectory is described by a corre-
sponding signature, we can reproduce all of the constitutive trajec-
tories of a motion from the corresponding signatures, respectively.
Then the reproduced trajectories can be manually put together to
reproduce the entire motion. This means that the current method
can also be used for reproducing such kind of complicated motion
of multiple trajectories.

4. Invariant trajectory reproduction

Based on the signature's invariants, the reproduction algorithm
can be further extended with high adaptability in reproducing tra-
jectory instances. According to Section 1.4, the ability of producing
diverse trajectory variants from an individual signature description
is specifically advantageous for robot learning and motion synthe-
sis. For the former, a user no longer needs to demonstrate all of
the possible instances of the same task in LbD. That is, the trajec-
tory instances of a translated, or rotated, or size-scaled, or length-
shortened (occluded), or speed-profile-varied variant can be easily
reproduced from the same one signature. This can reduce a lot of
laborious work for the task demonstrator. For the latter, various tra-
jectory instances can be easily reproduced to provide elements for
flexible motion synthesis. For example, by making use of the sig-
nature's Euclidean invariant, a translated or a rotated trajectory in-
stance can be produced for the intended positioning of this instance
towards synthesizing a specific motion. Likewise, the different sizes
of, length-shortened and speed-profile-changed trajectory variants
can also be reproduced according to the corresponding signature in-
variants. In the following subsections, invariant trajectory reproduc-
tion problems are discussed.

4.1. Euclidean invariant reproduction

Consider a subsequent problem to the trajectory reproduction
results in Section 3.1. Assume that the signature S is calculated from
trajectory �̄(t), the question is: what is the relation between the
instantiated trajectory �(t) and the original trajectory �̄(t)? This
problem involves the signature's Euclidean invariant. In fact, �(t)
and �̄(t) have the same signature, but they are not always identical
in space position. If the initial starting point �(1) and the initial
motion direction �(1) are chosen as those of trajectory �̄(t), then in
principle the produced trajectory �(t) must be completely identical
with �̄(t).

In practice, we can choose �(1) and �(1) arbitrarily and tra-
jectory �(t) will still have the same signature as �̄(t). While the

different choice of �(1) corresponds to a translation transformation,
the different choice of �(1) admits a rotation transformation. That
is, �(1) and �(1) correspond to a Euclidean transformation. There-
fore, the signature's Euclidean invariant can ensure that �(t) has the
same signature as �̄(t). In case �(1) and �(1) are chosen that are
different from those of �̄(t), the relation between �(t) and �̄(t) is
called a congruence, which means that �(t) is a variant of �̄(t) after
a Euclidean transformation.

In general, the formulated trajectory reproduction algorithm in
Section 3.1 can produce arbitrary congruent variants of a motion tra-
jectory. It is the signature's Euclidean invariant that enables the tra-
jectory reproduction independent of the absolute positions. Hence,
we will be able to choose arbitrary initial parameters for �(1) and
�(1) to produce a trajectory instance which always has the same
signature as S.

A specific problem is how to determine the initial parameters of
�(1) and �(1). As �(1) is a 3-D point, it can be directly determined
by a position vector. �(1) defines the initial motion direction in
terms of the Frenet vectors T(1), N(1) and B(1). Hence, �(1) can
be determined according to the definition of the Frenet frame. For
example, we can simply set T(1) = [1 0 0], N(1) = [0 1 0] and then
B(1) = [0 0 1]. But if we intend to define �(1) exactly as �̄(1) of
the original trajectory �̄(t), we need to calculate �̄(1) a priori from
the initial points of trajectory �̄(t). This can be done using Eq. (3).
Because the initial three points are lost in the approximate signature
calculation, the actual �(1) corresponds to the motion direction of
the fourth point ([T(4),N(4),B(4)]) of trajectory �̄(t). Moreover, since
different motion direction indicates a 3-D rotation action, we can
apply a rotation action (characterized by a 3-D rotation matrix) to
�̄(1) to obtain a parameter for �(1).

According to the above analysis, the Euclidean invariant enables
a trajectory instance to be reproduced easily transparent to the ab-
solute positions. In addition, as �(1) and �(1) can characterize the
viewing angle of visual motions, the Euclidean invariant can simul-
taneously make the motion trajectory reproduction independent of
viewing angle changes (assuming a fixed viewing distance).

4.2. Scaling relatively invariant reproduction

According to the signature's scaling relative invariant defined in
Ref. [30], if we intend to reproduce a trajectory which is a scal-
ing transformation of the original trajectory, we can just scale the
given signature data to be used then in the trajectory reproduc-
tion algorithm. Hence, via controlling the scaling factor, various
sizes of trajectory instances can be readily instantiated from a given
individual signature. These instances may correspond to the tra-
jectory variants with respect to the changes of viewing distances
between the motion demonstrator and visual sensors (assuming a
fixed viewing angle). Accordingly, the Euclidean invariant plus the
scaling relative invariant can nicely account for the reproduction of
the motions with different viewpoints (viewing angles plus viewing
distances).

4.3. Length adjustable reproduction (occlusion handling)

The length of a trajectory can be represented in terms of points'
number or arc-length. We can show that the reproduction length is
adjustable for the both representations. This subsection deals with
the former and Section 4.4 for the latter. As the trajectory signature
is locally calculated, the number of a trajectory's points is control-
lable in the reproduction algorithm. This means that we can produce
a partial trajectory from a complete signature. In particular, when
occlusions occur, only a partial trajectory can be obtained. But the
signature of the partial trajectory remains unaffected compared with
the corresponding part of a complete signature. Hence, the length
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adjustable trajectory reproduction can naturally handle the repro-
duction of occluded trajectories.

Assume that the original trajectory length is to, apply a predefined
length tnewo < to in the reproduction algorithm, then only a trajectory
portion will be produced. In addition, as the signature is insensitive
to trajectory's direction, we can obtain direction invariant trajectory
reproduction. That is, the same motion trajectory can be produced
starting from either end of a trajectory signature.

4.4. Speed profile controllable reproduction

Speed is a key motion feature. The signature's speed invariant at
a point enables the reproduction algorithm to reproduce an instance
with an unchanged speed profile. Moreover, motion speed is actu-
ally a flexibly controllable factor in the reproduction process. As the
arc-length between two consecutive points essentially indicates the
traversing speed, it is feasible to control the speed profile in repro-
ducing a trajectory by adjusting the arc-length reproduction. Here,
we discuss this problem from two points.

First, in view of the role the motion speed played in the repro-
duction algorithm in Eq. (12), we can define a speed control function
�(t) with respect to the temporal stamp t, and then apply it to the
original speed profile v(t), to achieve the objective of speed control-
lability in reproducing a trajectory. The new speed profile vnew(t)
can be calculated by,

vnew(t) = �(t) · v(t) (13)

Then vnew(t) will be used in Eq. (12), which changes the trajec-
tory arc-lengths via the speed change. Here, it should be noted that
the speed change expressed by Eq. (13) is applied to Eq. (12) instead
of Eq. (7). This is because the role of speed in Eq. (7) is for calculat-
ing Frenet vectors to determine the motion direction of a reproduc-
tion. In essence, it is exactly in Eq. (12) where the speed quantity is
controlling the arc-length between two consecutive points. In other
words, if the new speed profile in Eq. (13) is applied to Eq. (8), both
motion direction and arc-length of the reproduced trajectory will
be affected. This is beyond the aim of controlling merely the speed
feature.

In particular, in case the speed control function �(t) is a constant,
e.g. �(t) = � (� is a real number), the new speed profile will be
scaled as vnew(t)=� ·v(t). Now to review the effect on the trajectory
reproduction caused by vnew(t), comparison is made with a scaling
action with the same parameter �. According to the scaling relative
invariant [30] and Eq. (8), here, we can derive the speed profile
v̂new(t) as follows for the trajectory to which the scaling action � is
applied,

v̂new(t) = �̂(t+1)−�̂(t−1)
2�̂ŝ(t)

=
1
��(t+1)− 1

��(t−1)

2 1
�2 �s(t)

= � · v(t) (14)

We find that vnew(t)= v̂new(t). This implies that a constant quan-
tity scaled new speed profile actually has the same effect on the
trajectory reproduction as a corresponding scaling action (both with
the same parameter �). Note that the derivation of Eq. (14) is target-
ing Eq. (8) and the used signature data is actually scaled according
to the scaling relative invariant. While the curvature � and torsion
� are scaled by 1/�, the speed profile is simultaneously scaled by �.
Hence, these two scaling effects can be eliminated in Eq. (7). This en-
sures that only trajectory arc-length is scaled while trajectory shape
(motion direction) is preserved.

By Eq. (13), although the speed profile can be controlled, the
whole trajectory arc-length is also affected, simultaneously. This can
be easily understood from the perspective of scaling transforma-
tion as it has the same effect as a constant function �(t). Referring

to Section 4.3, this is actually the other kind of reproduction with
controllable trajectory length. Here, the length is about trajectory
arc-length.

In addition, we also present a second kind of speed control ap-
proach that keeps the whole trajectory arc-length unchanged. The
principle of this approach is to apply a follow-up linear interpola-
tion to a normally reproduced trajectory. Via customizing the inter-
polation step, the speed profile can be controlled while the whole
arc-length can also remain unchanged.

5. Metric for measuring reproductions

Following the trajectory instantiation results, we need a metric
to measure the quality of the reproductions. Errors are unavoidable
in the reproduction algorithm as the discrete derivative is approxi-
mated by finite difference. We plan to generate the new signature
of a reproduction and then compare it with the reference signature
to measure the degree of reproduction error.

In case a reproduced trajectory has the same length as the origi-
nal trajectory (ignoring the lost points at two ends), two signatures
can be linearly matched in a pointwise manner. Yet, as analyzed in
Section 4, a reproduction may have an arbitrary length (in terms of
points' numbers or arc-length) and distribution of trajectory points.
In particular, when the reproduced trajectories are input to robots to
replay, noise and motion inconsistency normally exist. This means
that the new signature of a re-tracked trajectory might differ from
the reference signature in quantity, length or points' distribution. In
such a case, direct linear signature comparison is no longer applica-
ble. The reproduction metric should be able to account for nonlinear
matching of two arbitrary signatures.

We use and extend a nonlinear inter-signature matching algo-
rithm to serve as the reproduction metric, in which the dynamic
time warping (DTW) [31] method is employed that is able to find a
reasonable matching between two arbitrary trajectory signatures by
nonlinear path warping.

For two signatures S∗1 = {[�∗1,�∗1
s , �∗1, �∗1

s ]p|p ∈ [1, P]} and S∗2 =
{[�∗2,�∗2

s , �∗2, �∗2
s ]q|q ∈ [1,Q]} with respective length P and Q, apply-

ing the DTW algorithm in Ref. [31], the best alignment of the two
signatures can be found giving rise to the DTW distance at u(P,Q),
which can serve as a measurement of the reproduction error. But
note that the DTW distance relies on the signature length P and Q.
Hence, here we further formulate an average DTW distance ū for the
use of measuring the average reproduction error,

ū = 2u(P,Q)/(P + Q) (15)

The distance (u(P,Q) and/or ū) can provide quantitative measure-
ment of the quality of the reproductions. Furthermore, according to
the DTW-based inter-signature matching result, we can obtain the
corresponding inter-trajectory alignment referring to the temporal
stamps of the signature data. The alignment is depicted by the warp-
ing paths, which can be visualized to give an intuitive perception to
the difference and consistency of two motions. This means that the
DTW method can also offer a qualitative measurement of the repro-
ductions.

Normally, the following two steps can be carried out to evaluate
a trajectory reproduction:

• Step one. Examine the (average) DTW distance to see how close a
reproduction is to the reference motion trajectory. The reproduc-
tion would be acceptable if this distance falls below a predefined
error threshold.

• Step two. A human (or a robot) can observe and perceive certain
motion features of a reproduction (or the re-tracked counterpart
of a reproduction) according to the inter-trajectory warping paths.
For example, in robot task re-running, the speed profile can be
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checked via the DTW visualization to see if it is consistent with that
of the reference. In the event that a certain trajectory portion is
not replayed as expected, the visualization can supervise the robot
to pay more attention when repeating the trajectory. In this way,
a robot can self-improve the performance of task reproductions in
multiple trials.

6. Experiments

The objective of the experiments is to illustrate the effects of
the signature and the reproduction algorithm. Experiments are con-
ducted for a simple LbD where the robot's task is to learn some
signed language. The sign language is a special interaction modal-
ity between humans. The purpose of the LbD learning is to let a
robot learn the sign language so that the robot can interact with
humans (or other robots) using the signs. The sign language is per-
formed by continuous movements of human hands. A binocular
vision system is used to observe human demonstrations and the un-
derlying 3-D sign motion trajectories are extracted to characterize
the demonstrations. Based on this, the signature description and the
reproduction algorithm are tested. It should be noted that at this
stage, the sign reproductions have not yet been input to a real robot
to follow. However, based on these results, it should be easy to do
that in the future, according to the configurations of a specific robot
system.

Fig. 5. The vision system setup and snaps of the stereo trajectory tracking.

Fig. 6. Noise reduction to smooth (a) noisy trajectories using; (b) the moving average filter (span = 3, 7, 11 and 15) and (c) the wavelet smoother (wavelet DB4 and the
coefficients at level 2–5).

6.1. Sign trajectory observation and acquisition

In this experiment, we only focus on the regular sign trajectories
resulting from the movements of a single hand. The binocular vi-
sion system has two TM-765 cameras and the Continuously Adaptive
Mean Shift (CAMShift) algorithm is employed to track spatiotempo-
rally discrete 3-D trajectories [31]. Fig. 5 shows the vision system
setup and several stereo trajectory tracking snaps of a sign word
being demonstrated.

To reduce the noise associated with the extracted trajectories,
trajectory smoothing was conducted and proved to be an effective
way to enhance the signature's computational reliability. In addi-
tion, if a trajectory contains some sharp turns that might cause com-
putational instability, the smoothing can also appropriately smooth
these turns to reduce the unexpected influence. In our study two
smoothers [30] are designed, one is an adaptive moving average fil-
ter and the other is a wavelet smoother. Normally the former is more
useful than the latter in dealing with irregular and uneven noise.
But, the latter is easier to operate with fewer parameters. In practice,
they can be used individually or jointly. As sometimes it is difficult
or impossible to estimate the noise strength or types a priori, users
can try the two filters respectively, or combined them, to compare
and then choose to achieve a relatively satisfactory smoothing effect.
Hence, these two smoothers can provide options to account for vari-
ous situations of noise. Note that although the trajectory shape may
also be affected by the smoothing, both the two smoothers are able
to balance the noise reduction and shape preservation by interac-
tively setting tunable smoothing parameters. Fig. 6 illustrates some
smoothed noisy trajectories using the two filters. It is observed that
the smoothing effect is acceptable, with only minor shape deviation.

6.2. Trajectory reproduction examples

In the reproduction experiments, we demonstrate both basic
trajectory reproduction and the invariant reproduction. Fig. 7 shows
a 3-D trajectory � that characterizes a kind of human signed word.
Its signature can serve as a general description to this word. Fig. 8 il-
lustrates the approximate signature of trajectory �. In the following
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Fig. 7. Motion trajectory � that characterizes a kind of human signed word.

Fig. 8. The signature profiles (�, �, �s and �s) of trajectory �.

Fig. 9. A reproduction example of trajectory �.

we will mainly use this example to test the trajectory reproduction
algorithm.

First, we predefine the initial motion direction and starting point
as those of trajectory �, then a trajectory is instantiated as shown in
Fig. 9 where it is compared with the original trajectory. It is observed

that the reproduction is quite close to the original. Calculating the
signature of the reproduced trajectory and comparing it with the
original signature, we can find that they are also close, as illustrated
in Fig. 10. Both Figs. 9 and 10 can verify that the developed trajectory
reproduction algorithm works well.
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In fact, we tested basic trajectory reproduction using more than
50 different motions. More examples of the basic trajectory repro-
duction are given in Figs. 11–13, where three reproductions of length

Fig. 10. Signature comparison between the reproduced trajectory and the original
trajectory.

Fig. 11. Trajectory reproduction example 1 (length: 27 points).

of 27, 55 and 99 trajectory points are shown. The initial motion
direction and starting point of each of the three reproductions are
chosen as those of the original trajectory. It is observed that the
reproduction effects are good too.

6.3. Invariant trajectory reproduction examples

In addition to basic trajectory reproduction, we also test the
reproduction algorithm by more reproduction examples to verify the
invariant reproduction. Various parameters are adopted for the re-
production referring to the analysis in Section 4.

With the initial motion point at [10 20 30] and the same ini-
tial motion direction as �, Fig. 14 shows a reproduced trajectory
example that illustrates the Euclidean (translation) invariant re-
production. Likewise, Fig. 15 also demonstrates the Euclidean in-
variant reproduction with respect to a rotation transformation, in
which the reproduced trajectory has the same initial motion point
as �, and its initial motion direction is defined by a Frenet frame
of T(1) = [1 00], N(1) = [0 10] and B(1) = [0 01]. Fig. 16 is one more
rotation invariant reproduction example with the initial motion di-
rection at T(1) = [−0.119 0.588 0.8], N(1) = [−0.98 − 0.199 0] and
B(1)= [0.159 − 0.784 0.6]. In Fig. 17, a reproduction example illus-
trates both the translation and rotation invariant reproduction. Its
initial motion point is at [102030] and the initial motion direction
is at T(1)= [1 00], N(1)= [0 10] and B(1)= [0 01]. Here, note that the
observations of the figures are affected by the display viewpoints.

The following two examples (Figs. 18 and 19) show the scaling
relatively invariant trajectory reproduction. The initial motion point
of both the reproduced trajectories is at [−5030−160], and the ini-
tial motion direction is the same as �. But the scaling factor is 0.58
(Fig. 18) and 1.7 (Fig. 19), respectively, in reproducing the two
trajectories.

In Fig. 20, a speed controllable reproduction example is illus-
trated.While the parameters of the initial motion direction and start-
ing point are the same as the example in Fig. 16, the speed control
function here is defined by a constant function �(t) = 3.2. We can
find that the reproduced trajectory has the same effect as the scaling
transformation. This verifies the discussion in Section 4.4.

As observed, the trajectory arc-length of the example in Fig. 20
is stretched simultaneously along with controlling the speed. In the
following two figures Figs. 21 and 22, we illustrate the arc-length
preserved speed control in two reproduction instances. Apply-
ing the linear interpolation with a respective step of 0.5 (Fig. 21)
and 2 (Fig. 22), the speed profiles of the reproduced trajectories,
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Fig. 12. Trajectory reproduction example 2 (length: 55 points).

Fig. 13. Trajectory reproduction example 3 (length: 99 points).

Fig. 14. Translation invariant trajectory reproduction.
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Fig. 15. Rotation invariant trajectory reproduction.

Fig. 16. Another example of rotation invariant trajectory reproduction.

Fig. 17. Euclidean (both translation and rotation) invariant trajectory reproduction.

as observed, are halved and magnified accordingly. We can find
that the arc-lengths of the two reproduced trajectories remain un-
changed. As the interpolation step can be set arbitrarily, this kind

of speed control shows the effectiveness of the trajectory reproduc-
tion in making a robot re-run a task with a flexibly configured speed
profile.
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Fig. 18. Scaling relatively invariant trajectory reproduction with scaling factor 0.58.

Fig. 19. Scaling relatively invariant trajectory reproduction with scaling factor 1.7.

Fig. 20. Speed controllable trajectory reproduction with speed control function �(t) = 3.2.

Figs. 23 and 24 demonstrate the length adjustable trajectory re-
production (or the reproduction under occlusion). While the last
twelve trajectory points are not reproduced in the example in Fig. 23,
the first nine points are skipped in reproducing the example given

in Fig. 24. Thanks to the computational locality, the reproduction is
independent of the skipped points. This also verifies that the sig-
nature can well account for occlusion in trajectory description and
reproduction.
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Fig. 21. Speed controllable trajectory reproduction (arc-length preserved) with interpolation step 0.5.

Fig. 22. Speed controllable trajectory reproduction (arc-length preserved) with interpolation step 2.

Fig. 23. Length controllable trajectory reproduction (the last twelve points are skipped).

6.4. DTW-based reproduction measurement

In this subsection, we demonstrate the quality measurement of
the reproductions using the DTW-based nonlinear signature match-
ing. Here, we select some representatives from the above examples

to show and observe their DTW matching results in terms of both
the qualitative and quantitative measurements.

First, the inter-trajectory warping paths are given to illustrate
the qualitative perception and measurement. In the following four
figures, Fig. 25 shows the DTW matching of the example in Fig. 17.
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Fig. 24. Length controllable trajectory reproduction (the first nine points are skipped).

Fig. 25. Inter-trajectory warping paths based on the DTW-based signature matching (for the example in Fig. 17).

Fig. 26. Inter-trajectory warping paths based on the DTW-based signature matching (for the example in Fig. 19).

Similarly, Figs. 26, 27 and 28 correspond to the examples in Figs. 19,
22 and 24, respectively. We observe that the matching results are
quite reasonable. In particular, note that the matching in Figs. 27 and
28 actually admits the one-to-many nonlinear alignment. Perceiv-

ing these matching examples can intuitively validate the developed
trajectory reproduction algorithm.

In addition, the signature's DTWdistances are also recorded as the
quantitative measurement of the reproductions. The average DTW
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Fig. 27. Inter-trajectory warping paths based on the DTW-based signature matching (for the example in Fig. 22).

Fig. 28. Inter-trajectory warping paths based on the DTW-based signature matching (for the example in Fig. 24).

distances of Figs. 25–28 are 0.01062, 0.01637, 0.031049 and 0.136,
respectively. This means that the similarity between the original and
reproduced trajectories is high. Furthermore, it will be meaningful
to give a possible statistical measurement of the matching error be-
tween references and reproductions. As some matching cases de-
pend on the degree of speed control (Fig. 27) or occlusion (Fig. 28),
here, we do not give them a generic measurement of the aver-
age DTW distance. But for the cases of the matching examples in
Figs. 25 and 26, a series of different classes of motion trajectory in-
stances are prepared to repeat the DTW matching and then to calcu-
late the average DTW distances (Eq. (15)). As a result, an average dis-
tance data 0.0149 is obtained for 50 reproduction examples, whose
lengths range from 23-point to 187-point. This explains why the re-
production algorithm is reliable with minor and acceptable errors.

The above examples and data show that both the two DTW-based
measurements are helpful for analyzing the quality of the trajectory
reproductions. In general, the reproduction algorithm is an important
basis for replaying a robot task in the sign language-based LbD, and
the DTW-based matching can offer a useful reproduction/learning
metric.

6.5. Comments

In the above experiments, the generalized signature description
is tested and different reproduction examples are presented and

compared. The reproduction algorithm can be actually run online
and it is shown that real time reproduction is achieved for the exper-
imental trajectory examples. Yet, it should be noted that the actual
reproduction time of a trajectory depends inherently on the trajec-
tory's length.

This paper focuses on the backward reproduction ability of the
signature description. Meanwhile, note that the signature's forward
description-based sign language recognition has been explored in
our previous study [31], where flexible signature recognition solu-
tions are designed and better recognition performance is achieved
compared with other descriptors.

Referring to the review and discussion in Section 1 and in Ref.
[31], the signature's description mechanism and mutual description
functions show more merits than the existing work. Also, based on
the above experiment results plus some previous experiments data
[30,31], the signature's overall advantages over other descriptors are
revealed more clearly.

7. Conclusions

Free form 3-D motion trajectory is an appropriate motion feature
for characterizing long-term, spatiotemporal motions. In this paper
we introduce a trajectory signature and then formulate the trajec-
tory reproduction problem to complete the signature's mutual de-
scription functions. On the one hand, the signature is advantageous
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by serving as a systematic and generalized method for motion de-
scription; on the other hand, the trajectory reproduction is the ba-
sis to support motion reproduction, re-running, reconstruction and
synthesis. The rich invariants make the signature flexible in both
the mutual descriptions. The DTW-based signature matching proves
to be an intuitive metric for measuring the reproductions. The ex-
periments verify the validity and effectiveness of the reproduction
algorithm.

This research reveals the feasibility and extensibility to poten-
tially support wider applications. Robot learning will be a represen-
tative application of the mutual signature. The motion trajectories
resulting from LbD demonstrations can be sequentially extracted,
described, learned and then reproduced. While a single trajectory
of the end-effector can be described by a single trajectory signa-
ture, the whole body locomotion can be described by the multiple
signatures of the trajectories tracked from the multi-dimensional
motions. The GMM-based class description can provide essential
knowledge extracted from multiple different demonstrations of the
same task class. In addition, this study can also benefit motion
trajectory-based analysis of human behaviors and object motions,
such as scene analysis in surveillance [50], behavior-based human
communications like the interactions among the dummies and the
visual interactions in virtual reality, visual teaching and evaluation
of specific human behaviors like sportsmen's performance and danc-
ing movements, motion-based content retrieval from image/video
databases [51].

The futureworkwill include two directions. One is the description
and reproduction of semantic rich motion trajectories. This relates to
the discussion in Section 2.2 about the detailed analysis and segmen-
tation of a meaningful motion. The other will target the complicated
motions that yield multiple interrelated trajectories. Basically this
paper aims at a motion that is characterized by a single trajectory,
or a motion class represented by multiple similar single trajectory-
based instances. According to Sections 2.2 and 3.3, the current meth-
ods in describing and reproducing multiple interrelated trajectories
still need user's manual interference, which is not that effective. In
the future, we plan to improve this by investigating more efficient
description and reproduction strategies, in which the spatiotempo-
ral relations among the trajectories might need to be properly and
naturally accommodated in certain way.
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