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Analytical reconstruction of 3D curves from their stereo images is an important issue in computer vision. We
present an optimization framework for such a problem based on a nonuniform rational B-spline (NURBS)
curve model that converts reconstruction of a 3D curve into reconstruction of control points and weights of a
NURBS representation of the curve, accordingly bypassing the error-prone point-to-point correspondence
matching. Perspective invariance of NURBS curves and constraints deduced on stereo NURBS curves are em-
ployed to formulate the 3D curve reconstruction problem into a constrained nonlinear optimization. A parallel
rectification technique is then adopted to simplify the constraints, and the Levenberg–Marquardt algorithm is
applied to search for the optimal solution of the simplified problem. The results from our experiments show
that the proposed framework works stably in the presence of different data samplings, randomly posed noise,
and partial loss of data and is potentially suitable for real scenes. © 2005 Optical Society of America
OCIS codes: 000.3870, 100.2960, 100.3010, 100.3190, 150.5670, 150.6910.
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. INTRODUCTION
raditional stereo reconstruction relies heavily on point-
o-point correspondences. From a pair of image points
aptured in two different views, their corresponding point
n 3D space can be reconstructed by the triangulation
rinciple.1 However, finding point-to-point correspon-
ences in a stereo pair of images of a real scene has
roved very challenging, as the searching space for build-
ng such correspondences is extremely large and the
earching is usually affected by image inadequacies such
s noise, distortion, lighting variations, etc. Enormous ef-
orts have been devoted to the stereo correspondence
roblem over the past three decades. Yet the problem is
till far from being solved (see Refs. 2 and 3 for recent sur-
eys) as a result of its intrinsic ill-posed nature. Moreover
oint-based reconstruction ignores structural information
etween sampling points on object surfaces, thereby rais-
ng difficulties in the postprocessing of reconstructed
oints.
In order to avoid the problems with point-based ap-

roaches, researchers have applied high-level geometric
rimitives to reconstruct 3D scenes. Among them, 2D
rimitives such as surface patches4–6 are suitable for
cenes where object surfaces are smooth (with relatively
ewer discontinuities), while 1D primitives such as
ines7–10 and curves11–14 complement in environments
here these 1D features constitute major information

ues. This paper addresses the case of 1D primitives.
The currently used 1D primitives in stereovision are

imited to straight lines,7–10 conics,11,12 and high-degree
1084-7529/05/091746-17/$15.00 © 2
lgebraic curves. From a pair of lines (conics) matched at
wo different views, their corresponding space lines (con-
cs) can be constructed analytically by intersecting the
ay plane (surfaces) passing through these lines (conics).
he line (conic) primitives are more compact compared
ith sparse points in images and yield more robust and
fficient matching and reconstruction when applied to ar-
ificial scenes where object geometry has the simple form
hat can be well described by straight lines and conic seg-
ents. However, the line (conic) family cannot accommo-

ate free-form curves that are manifest in our natural en-
ironment (e.g., the form of some biological objects) and
ven in man-made scenes (e.g., edges of some handcrafts).
n order to reconstruct such more-complicated shapes by
tereovision, some researchers have employed high-
egree algebraic curves13,14 as primitives. However, deal-
ng with high-degree algebraic equations has proved
rror-prone, making the methods difficult to be applied
ractically, and the adopted high-degree algebraic curves
n those methods have been limited to planar representa-
ions. So the reconstruction of true 3D (space) curves in
ree-form shape remains an open question.

On the other hand researchers have studied the issues
f matching curves in stereo images,15–21 and more gener-
lly from multi-views,22–24 where the shape of image
urves is considered to be arbitrary rather than confined
o a specific known form. As an image curve contains
ore geometric and structural information than a point,

nd there are fewer curves in an image than points,
atching of curves can be more robust and efficient. A re-
005 Optical Society of America
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ent paper22 has reported an impressive rate of correct
atching of image curves of up to 98% in natural scenes.
he research work on curve matching so far has certainly
dvanced the state of the art of extracting information in
mage curves captured in a 3D scene. At the same time a
ap arises between curve matching and reconstruction.
ince curves can be matched up in stereo images, the re-
onstruction of these curves seems a natural step to follow
s is done with matched points. Nevertheless, the current
ethods based on simple primitives such as points, lines,

onics, and high-degree algebraic curves seemingly pro-
ide no satisfactory solutions to this problem.

Actually 3D reconstruction from matched curves ap-
ears nontrivial in real scenes. If we adopt image points
s the primitives for reconstruction, we still have to find
oint-to-point correspondences on the image curves at dif-
erent views. Even though the point-to-point correspon-
ence matching is simpler when carried out on image
urves (in Ref. 25 it was done over image sequences), it
emains an error-prone problem that degrades the recon-
truction quality. First, because points forming an image
urve are projections of 3D points sparsely sampled on the
orresponding 3D curve (an image curve is therefore a
rojection of a sampling on the original curve), and be-
ause two image curves that signify the same 3D curve at
wo different views are not necessarily the same sam-
ling, the task becomes rather challenging to retrieve in
wo image curves the exact corresponding points cast
rom the same physical points in 3D space, even if the im-
ge curves are extracted free of image inadequacies. Sec-
nd in practice, noise introduced in images might disturb
he extracted image curves from their proper locations.
uch noise and some other image inadequacies like self-
cclusions and lighting variations might cause miscap-
ure of some parts of a 3D curve in its corresponding 2D
mage curves, unpredictably undermining the point-to-
oint correspondence-matching process.
The line (conic) based methods suffer similarly the cor-

espondence problem in reconstructing 3D free-form
urves. To establish line (conic) segment correspondences
n a pair of image curves at two views, one must decom-
ose each image curve into a set of connected line (conic)
egments with one segment on one curve uniquely corre-
ponding to another segment on the other curve. Such de-
omposition is rather difficult because it implies that the
oint points of the line (conic) segments on one image
urve must be the correspondences of the joint points on
he other curve. The process of establishing such joint-to-
oint correspondences is the same as building point-to-
oint correspondences on image curves. Therefore, it has
een claimed that line-based methods are not suitable for
econstruction of curved objects,15 nor are conics intrinsi-
ally.

To overcome the drawbacks of reconstruction methods
ased on the simple primitives, attempts have been made
n reconstructing a 3D free-form curve as a whole from its
tereo projections (image curves) where B-spline, a para-
etric representation of shapes, was applied in the curve
odeling.26 The results demonstrated the possibility of
sing spline representation to reconstruct 3D free-form
urves in stereovision. However, the camera model in that
ork was assumed to be affine rather than perspective,
imiting its application range. Furthermore, the image
-spline curves were constructed using standard least-
quares fitting27 with natural chord parameterization, re-
ulting in difference between the two parameterizations
f a stereo pair of corresponding image curves and
hereby inducing errors in the final 3D reconstruction.
hese weaknesses theoretically degrade the applicability
f the approach to stereovision.

The aim of this paper is to apply the approach to a more
eneral case: the perspective camera. To this end, nonuni-
orm rational B-spline (NURBS) is adopted as the under-
ying curve model. As it is perspective-invariant, this

odel makes it possible to accommodate the perspective
amera model in the stereo reconstruction scheme.26 The
roblem with data parameterization of curves is tackled
y formulating the scheme of 3D curve reconstruction
rom its stereo projections (image curves) into an optimi-
ation framework where both the intrinsic parameters of
URBS curves (see Subsection 2.A) and data parameter-

zations are optimized. The iterative algorithm of the op-
imization automatically leads to the NURBS representa-
ions for image curves on the optimal sampling
arameters for data points of these image curves. The 3D
URBS curve can then be formed by reconstructing its

ontrol points and the corresponding weights from the ob-
ained control points and weights of the 2D NURBS
urves. NURBS is a superset of B-spline, therefore inher-
ting all the good properties of B-spline and yet providing

ore flexibility in representing complex shapes.
The remainder of this paper is organized as follows.

ection 2 introduces the NURBS curve model. The per-
pective invariance of NURBS curves is reinterpreted in
n algebraic manner compatible with the algebraic form
f camera geometry. The constraints on the pair of 2D pro-
ected curves of a 3D NURBS curve are deduced. Based on
he perspective invariance and the deducted constraints,
n Section 3 an optimization framework is established in
rder to obtain the optimal NURBS estimation of 2D im-
ge curves that represent projections of a 3D curve. The
implification of the optimization formalism and the
erivative-driven iterative solution to the problem are
iscussed. The formulas to compute the 3D control points
nd corresponding weights from 2D NURBS curves are
resented. Experimental results and their quantitative
nalysis are described in Section 4, followed by conclu-
ions in Section 5.

. NONUNIFORM RATIONAL B-SPLINE
URVE MODEL
he primary goal of the research presented in this paper

s to reconstruct 3D free-form curves from their stereo im-
ges. For modeling free-form curves, NURBS (B-spline is
ncluded in the NURBS family) methods have played an
mportant role in computer-aided design and computer
raphics because of the many properties of NURBS supe-
ior to other shape representations.28 In computer vision,
he strengths of NURBS have also been recognized in ap-
lications on shape recognition, tracking, and
atching.15,29,30 For the work on 3D curve reconstruction

n our research, NURBS offers particular advantages
ummarized as follows:
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1. A unified curve representation: NURBS can accu-
ately express both free-form and simple algebraic
urves,31 accordingly reducing the representational load
n the vision system and enlarging the application range
f NURBS-based approaches. Moreover NURBS is ca-
able of modeling curves in both 2D and 3D, which is im-
ortant in our stereo reconstruction system where both
D and 2D curves are involved.
2. Smoothness and continuity: A NURBS curve can be

reated as a single unit with actually a smooth concatena-
ion of curve segments, which offers better smoothness
nd continuity than polygonal and piecewise-conic repre-
entations. Such a property permits analytical computa-
ion of curve derivatives everywhere, providing a poten-
ial to apply derivative-based operations to curves, e.g.,
he iterative optimization for 3D reconstruction given in
ection 3 of this paper.
3. Geometric invariance: A NURBS curve remains

URBS under rigid, affine, or perspective transforma-
ion. This allows NURBS to be a universal representation
n different coordinate frames—such as world reference
rame, object frame, camera frame, and image frame—in
hich an object geometry often needs to be transformed

rom one to another in vision applications. Indeed, such
nvariance inspired us to employ NURBS as the curve
epresentation in our scheme for 3D reconstruction from
mage curves that will be reported below.

. Definition of the NURBS Curve
riginated from the rational Bezier equation, the NURBS

urve is a generalized extension of B-spline that has the
orm of vector-valued, piecewise, rational polynomial
unctions:

C�t� = �
i=0

m

WiViBi,k�t���
i=0

m

WiBi,k�t�. �1�

ere Wi is the weight of the ith control point Vi, and
Bi,k�t� , i=0,1, . . . m� are the normalized B-spline basis
unctions of degree k defined recursively as

Bi,0�t��=1 if ui � t � ui+1

=0 otherwise � ,

Bi,k�t� =
t − ui

ui+k − ui
Bi,k−1�t� +

ui+k+1 − t

ui+k+1 − ui+1
Bi+1,k−1�t�. �2�

n Eqs. (2) ui are so-called knots forming a knot vector
= �u0 ,u1 , . . . , um+k+1�, and t denotes the independent

ariable for the basis functions.
The curve defined in Eq. (1) can be rewritten in the fol-

owing equivalent form for the sake of simplicity:

C�t� = �
i=0

m

ViRi,k�t�,

Ri,k�t� = WiBi,k�t���
j=0

m

WjBj,k�t�, �3�

here �Ri,k�t� , i=0,1, . . . m� are termed rational basis
unctions.
The NURBS form in Eq. (3) is similar to that of
-spline, except that the rational basis functions Ri,k�t�

ake the place of B-spline basis functions Bi,k�t�. The ra-
ional basis functions are generalizations of nonrational
-spline basis functions, inheriting entirely the analytical
roperties of B-spline such as differentiability, locality,
artition of unity, etc. Furthermore, such generalizations
ield more flexibility in modeling shapes, which not only
rovides more options to shape designers but results in
ome further important properties of the NURBS on its
wn, e.g., the perspective invariance of NURBS curves (as
xplained in Subsection 2.B).

In this work, we choose cubic NURBS models �k=3� for
wo reasons: 1. Cubic NURBS is the one capable of repre-
enting nonplanar space curves with the least degree, 2.
ubic NURBS curves are C2 continuous, meaning that

he first-order and the second-order derivative vector for
very point on the curves can be computed analytically,
ccordingly allowing us to apply derivative-based opera-
ion on these curves.

Once the type of NURBS is fixed, a NURBS curve is de-
ermined only by its control points and weights. Therefore
e call control points and weights the intrinsic param-
ters of a NURBS curve, distinguishing them from pa-
ameter t in parametric equations (1) and (3), which is as-
igned to a point on the curve in order to calculate its
oordinate values. Hereafter we use both C�t� and
��Vi� , �Wi� , t� to denote a NURBS curve at our conve-
ience. The latter expression is used when the intrinsic
arameters are involved.

. Geometric Invariance of NURBS Curve
mong many fascinating properties of NURBS represen-

ation, geometric invariance forms the core of our recon-
truction framework. Geometric invariance allows a
URBS curve to preserve the form of NURBS under a

ertain geometric transformation, e.g., rigid, affine, or
erspective. Reference 30 has presented an algebraic
roof of affine invariance and a geometric interpretation
f perspective invariance of a NURBS curve in which the
erspective transformation is defined as a pure central
rojection. To organize these invariant properties into a
nified representational framework, we reinterpret the
erspective invariance of NURBS curve in an algebraic
anner, complying with the algebraic form of camera ge-

metry and stereo reconstruction.1

First let us review the affine invariance of NURBS
urves using the theorem presented in Ref. 30.

Theorem 1: Affine invariance
Suppose Ax+tA represents an affine transformation for
point x; the affine image of a NURBS curve C�t� is a

ew NURBS curve C��t� of the form

C��t� = �
i

Vi�Ri,k�t�,

Vi� = AVi + tA, �4�

here A denotes a linear transformation matrix and tA
epresents a translation vector. (See proof in Ref. 30.)
heorem 1 says that affine transforming a NURBS curve
an be achieved by affine transforming its control
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oints—the transformed curve C��t� is a NURBS curve
ith new control points Vi� that are affine images of the

riginal control points Vi.
Having included rigid (Euclidean) transformation, af-

ne transformation is a mapping concerning linear opera-
ions in the same dimensionality. Such transformation is
ften used to model image transformations, e.g., the
ransformation from camera retina to image plane, or to
odel object transformation in 3D between a world coor-

inate frame and an object-centered coordinate frame.
owever, in some special cases, e.g., when the camera

ens is far away from the object and the object is nearly
arallel to the camera retina, the affine transformation
an be used to approximate a 3D→2D perspective projec-
ion with acceptable accuracy.26,32 In those scenarios, the
ffine camera model often simplifies the computation in-
olved in certain tasks such as the work demonstrated in
-spline-based curve reconstruction.26

Since NURBS is invariant under affine transformation
nd central projection,30 the projection of a 3D NURBS
urve must be a 2D NURBS curve, assuming the camera
s a pinhole that consists of a central projection and sev-
ral affine transformations1 where the nonlinear distor-
ion is ignored. This fact can be interpreted in an alge-
raic manner complying with the algebraic framework of
amera geometry. Let T�·� denote such a perspective pro-
ection of a pinhole camera, X= 	X Y Z
T denote the coor-
inate vector of a 3D point, x= 	x y
T denote the coordi-
ate vector of its image, and let the projection be
xpressed as

T�X� = x ⇔ S�x

1� = T1

T2

T3
��X

1� , �5�

here T1, T2, T3 are 1�4 vectors constituting the per-
pective projection matrix of T�·�, and 	x 1
T and
X 1
T are homogenous coordinates of x and X.

Now we review the perspective invariance of NURBS
urves.

Theorem 2: Perspective invariance
Let c�t� denote the projected curve of a space NURBS

urve C��Vi� , �Wi� , t� under perspective projection T�·�;
hen c�t� can be expressed in the form

c�t� = �
i=0

m

wiviBi,k�t���
i=0

m

wiBi,k�t�, �6�

here vi=T�Vi� and

wi = WiT3�Vi

1 � �7�

he proof of Theorem 2 is given in the Appendix.
Theorem 2 reveals that the original NURBS curve and

he projected curve are related to each other by their con-
rol points and the corresponding weights; perspectively
ransforming a NURBS curve is equivalent to perspec-
ively transforming its control points and operating the
elevant weights, which are intrinsic parameters of the
URBS curve. Therefore we can treat the projection of a
URBS curve as a mapping in its intrinsic parameter
pace without calculating each point on the NURBS curve
ndividually.

. Constraints on Stereo Projections of a NURBS Curve
t is well known that stereo projections of a point in 3D
atisfy the “epipolar constraint.” Now that a NURBS
urve can be treated as a vector in its intrinsic parameter
pace, when a 3D NURBS curve is captured by two cam-
ras at different views, the parameter vectors of two pro-
ected curves will similarly follow some constraints. Let

�L��·� and T�R��·� denote the perspective projections of the
eft and right camera, respectively; the following con-
traints can be deduced:

1. Epipolar constraint on control points of projected
URBS curves: Since control points of projected NURBS

urves are the projections of control points of the 3D
URBS curve, i.e., vi

�L�=T�L��Vi� and vi
�R�=T�R��Vi�, where

i denote 3D control points and vi
�L� and vi

�R� denote con-
rol points of the projected curve on the left and right
etina, respectively, then by use of the similar method of
educing epipolar constraint on image points at binocular
iew,1 the epipolar constraint on the control points vi

�L�

nd vi
�R� can be derived, e.g., in the form

�vi
�R�

1 �T

F�RL��Vi
�L�

1 � = 0, �8�

here F�RL� is the fundamental matrix of the stereo cam-
ra geometry determined by T�L��·� and T�R��·�.1

2. Weight constraint. Using Eq. (7), the following con-
traint on the weights of the two projected curves can also
e derived:

wi
�L�/wi

�R� = T3
�L��Vi

1 �� T3
�R��Vi

1 � . �9�

. STEREO RECONSTRUCTION OF
ONUNIFORM RATIONAL B-SPLINE
URVES
. Problem Statement and Simplification

n Section 2, we presented a brief overview of the NURBS
urve model. We also discussed the geometric invariance
f NURBS representation and derived constraints on the
rojected curves when a 3D NURBS curve is perspec-
ively observed at two views. Geometric invariance, espe-
ially perspective invariance, exists in all primitives used
reviously in stereo reconstruction, e.g., straight lines,
onics, algebraic curves. The geometric invariance of
URBS naturally inspired us to consider NURBS as a
rimitive in stereovision. As the perspective transforma-
ion of a NURBS curve can be treated as a mapping of its
ntrinsic parameter vector, the idea is to reconstruct the
ntrinsic parameters of a 3D NURBS curve from those of
ts stereo-projected curves using a similar method of re-
onstructing a 3D point from its stereo images. This idea
s illustrated in Fig. 1, where a 3D curve framed by con-
rol points �Vi� has two perspective images on left (L) and
ight (R) retinas that are basically 2D NURBS curves (de-
ote v�L� as control points of the left curve and v�R� as con-
i i
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rol points of the right curve). In a nondegenerate case,
.e., any pair of control points of a space NURBS curve
oes not share any ray starting from an optical center of
he camera, we can reconstruct the control points of the
D NURBS curve by triangulation from the correspond-
ng control points of the projected 2D NURBS curves, as
hey satisfy epipolar constraints. Afterwards the weights
f the 3D NURBS curve can be calculated by

Wi = wi
�L�/T3

�L��Vi

1 � , �10a�

r

Wi = wi
�R�/T3

�R��Vi

1 � , �10b�

here wi
�L� and wi

�R� denote corresponding weights of vi
�L�

nd vi
�R�.

To realize such a scheme in real applications where im-
ge curves are initially chains of pixels (digital curves),
e need to obtain appropriate NURBS representations

or those digital image curves, which must satisfy the fol-
owing constraints: i. the types of the left and the right
URBS curve are the same (as they represent projections

f the same space curve), ii. each control point of the left
urve shares an epipolar plane with its corresponding
ontrol point of the right curve, iii. the corresponding
eights of the left and the right curve satisfy Eq. (6). The

easons for these constraints and the formulation of the
roblem under the constraints are explained below.
Given a digital image curve on the left retina consisting

f n1 data points �pj1

�L�= 	�p�xj1

�L� , �p�yj1

�L�
T : j1=1,2, . . . ,n1�
nd a corresponding image curve on the right retina con-
isting of n2 data points �pj2

�R�= 	�p�xj2

�R� , �p�yj2

�R�
T : j2

1,2, . . . ,n2�, our task is to estimate a 3D NURBS curve
hose stereo projections best fit the two (left and right)

mage curves. In the least-squares measure, such a task
an be formulated as the following minimization:

min��
j1=1

n1

�pj1
�L� − T�L��C��Vi�,�Wi�,tj1

���2

+ �
j2=1

n2

�pj2
�R� − T�R��C��Vi�,�Wi�,sj2

���2�
ith respect to

tj1
:j1 = 1,2, . . . ,n1;

Fig. 1. Space curve and its binocular perspective projections.
sj2
:j2 = 1,2, . . . ,n2;�Vi�;�Wi�:

i = 0,1, . . . ,m, �11�

here C��Vi� , �Wi� , t �s� is the 3D NURBS curve, T�L��·�
nd T�R��·� denote the left and right perspective transfor-
ations, and tj1

: j1=1,2, . . . ,n1 and sj2
: j2=1,2, . . . ,n2 are

wo samplings in the NURBS curve parameter domain
ssociated with data points in the left and right image
urves. The two samplings are not necessarily related.
he term inside min(·) is the so-called energy function.
Formalism (11) optimizes two kinds of parameters: one

s the intrinsic parameters of the 3D NURBS curve, i.e.,
vi� and �Wi�; the other is the two parameter samplings
ach associated with data points in an image curve. The
eason for optimizing parameter samplings is that we
ant to achieve the locations for data points of image

urves on the 3D NURBS curve that result in minimum
roximity between the reconstructed curves and the data
oints, thereby avoiding explicitly matching the data
oints in pairs, which is neither accurate nor robust. Such
ormalism proves to be the particular strength over the
-spline-based work, achieving more accurate and reli-
ble results, as demonstrated in Section 4.
Formalism (11) is apparently a large-scale nonlinear

ptimization. Such a problem would be computationally
rohibitive without analyzing its specificity and choosing
ethods suitable for the specificity, although general pur-

ose optimization techniques (such as simulated anneal-
ng, genetic programming, etc.) might be applied. The fol-
owing describes our study of the problem’s “specificity”
nd the corresponding method for tackling the problem.
First of all, we observed that perspective invariance of

URBS can be utilized to reduce the nonlinearity of the
roblem. Assuming that the projections of the 3D NURBS
urve C��Vi� , �Wi� , t �s� are c��vi

�L�� , �wi
�L�� , t� and

��vi
�R�� , �wi

�R�� ,s� on the left and right retinas, respec-
ively, formalism (11) can be rewritten in the form

in��
j1=1

n1

�pj1
�L� − c��vi

�L��,�wi
�L��,tj1

��2 + �
j2=1

n2 ��pj2
�R�

�

�1

2
�− c��vi

�R��,�wi
�R��,sj2

��2�
ith respect to

tj1
:j1 = 1,2, . . . ,n1; sj2

:j2 = 1,2, . . . ,n2;

�vi
�L��;�vi

�R��;�wi
�L��;�wi

�R��:i = 0,1, . . . ,m; �12�

ubject to
i. epipolar constraints on vi

�L� and vi
�R�, i.e.,

�vi
�R�

1
�T

F�RL��vi
�L�

1 � = 0, i = 0,1, . . . ,m;

ii. weight constraints on w�L� and w�R�, i.e.,
i i
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wi
�L�/wi

�R� = T3
�L��Vi

1 �� T3
�R��Vi

1 �, i = 0,1, . . . ,m.

ompared with formalism (11), formalism (12) has a sim-
ler form in which the nonlinear transformations T�L��·�
nd T�R��·� vanish. Although the induced constraints i.
nd ii. are actually the price of removing T�L��·� and T�R�

�·�, the structure of the problem emerges more clearly,
nd the constraints can be further simplified.
The major difficulty in solving formalism (12) lies in the

eight constraints. The relation of corresponding weights

i
�L� and wi

�R� depends not only on a known fundamental
atrix, but also the unknown 3D control points Vi, which

re actually the parameters we are going to estimate.
herefore the “chicken–egg” puzzle is that if we want to
btain Vi we need to solve formalism (12); if we want to
olve formalism (12) we have to know Vi.

The key to this puzzle lies in a rectification of image
urve pairs. We discovered that in a particular stereo con-
guration, namely, parallel configuration, in which the
ameras share a common image plane, the constraints in
ormalism (12) can be greatly simplified so that the prob-
em becomes tractable [no “chicken–egg” puzzles (ex-
lained below)]. Moreover it has been proved that an ar-
itrary nondegenerate stereo pair can be transformed to a
arallel stereo pair linearly in homogeneous
oordinates.33 Therefore we can rectify image curves to a
arallel configuration first and study the curves after-
ards, where the following relation can be obtained33:
a
u
r
t
t
n
p

B
A
b
f
t
t
s

T3
�L��Vi

1 � = T3
�R��Vi

1 � .

onsequently the weight constraint in Eq. (9) can be sim-
lified to

wi
�L� = wi

�R� �13�

oreover in a parallel stereo configuration, the epipolar
onstraint also becomes simple33:

�v�yi
�L� = �v�yi

�R� �14�

here �v�yi
�L� and �v�yi

�R� are the y coordinates of vi
�L� and

i
�R� (similarly, the x coordinates of vi

�L� and vi
�R� are ex-

ressed by �v�xi
�L� and �v�xi

�R�).
We can then rewrite formalism (12) to the following un-

onstrained least-squares relation:

min� �
j=1

2�n1+n2�

fi
2� ,

ith respect to

�v�xi
�L�, �v�xi

�R�, �v�yi, i = 0,1, . . . m,

ti1
:i1 = 1,2, . . . ,n1, si2

:i2 = 1,2, . . . ,n2, �15�

here
fj =�
�p�xj

�L� − �
i=0

m
�v�xi

�L�Ri,3�tj�, j = 1,2, . . . n1

�p�yj−n1

�L� − �
i=0

m
�v�yiRi,3�tj−n1

�, j = n1 + 1,2, . . . 2n1

�p�xj−2n1

�R� − �
i=0

m
�v�xi

�R�Ri,3�sj−2n1
�, j = 2n1 + 1,2, . . . 2n2

�p�yj−2n1−n2

�R� �
i=0

m
�v�yiRi,3�sj−2n1−n2

�, j = 2n1 + n2 + 1,2, . . . 2�n1 + n2�;

�

v�yi=

�v�yi
�L�= �v�yi

�R� and Ri,3�·� are the rational basis func-
ions containing weights �wi� that satisfy wi=wi

�L�=wi
�R�.

The weights in NURBS, while providing great flexibil-
ty in modeling curves, cause redundancy in the represen-
ation. Theoretically there are an infinite number of con-
gurations of control points and weights that would
esult in the same curve, as a NURBS curve can be con-
idered a projection of a 4D nonrational B-spline curve
onstructed in a homogeneous space of control points and
eights, which is a many-to-one mapping. Therefore, to
e able to obtain a unique representation, currently in
ost existing CAD systems, the setting of weights is de-

endent on the preference of end users, although some re-
earchers have proposed constraints to compute weights
or specific purposes.34 Following the same rule, we allow
n arbitrary configuration of weights (e.g., we applied a
niform weight setting in our experiments) in the algo-
ithm by leaving weight-setting a choice of the user. Once
he weights are set, our algorithm will automatically es-
imate the remaining parameters in formalism (15),
amely, the coordinates of the control points and the sam-
lings of image curves.

. Algorithm
lthough formalism (15) remains nonlinear, its form has
een greatly simplified. Each component in the fitness
unction is a rational polynomial of a few variables, and
he partial derivatives of the components with respect to
hese variables can be computed analytically. In such a
cenario, derivative-based optimization techniques can be
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sed to solve the problem. Among the derivative-based
ethods for nonlinear least-squares problems, the
evenberg–Marquardt method35 has proved its popular-

ty in various fields through its simplicity and efficiency.
he Levenberg–Marquardt method requires only one-
rder partial derivatives and is therefore well suited for
ur scenario where the one-order derivatives are analyti-
ally available.

To solve the problem efficiently, we follow the
evenberg–Marquardt scheme introduced in Ref. 36 as it

s more computationally attainable than the other vari-
nts of the method. Such a scheme iteratively searches for
etter solutions of the optimization problem by solving a
inear equation constructed from a Jacobian matrix in
ach iteration step. For formalism (15) the Jacobian ma-
rix can not only be computed analytically but has a
parse and simple form that allows efficient solution of
he linear equation in the Levenberg–Marquardt itera-
ion step. Figure 2 illustrates the pattern of the Jacobian
atrix. Obviously most of the elements in the matrix are

mpty (filled with zeros). We label the submatrices that
ave nonzero elements 1, 2, 3, 4, 5, 6, 7, and 8 in the fig-
re.
Matrices 1, 2, 3, and 4 are diagonal matrices and their

iagonal elements are derivatives with respect to param-
ters �tj1

� and �sj2
�. Denote

��t� = �
i=0

m

�iRi,k�t� �16�

1D rational B-spline function. The derivative ���t� /�t
an be obtained by directly differentiating Eq. (16). If we
ubstitute �v�xi

�L�, �v�yi,
�v�xi

�R� for �i and �t1 , t2 , . . . tn1
�,

s1 ,s2 , . . .sn2
� for t in ���t� /�t, the diagonal elements of

atrices 1, 2, 3, and 4 can be obtained as
a. Matrix 1: Substitute �v�xi

�L� for �i and �t1 , t2 , . . . tn1
�

or t,
b. Matrix 2: Substitute �v�yi for �i and �t1 , t2 , . . . tn1

� for t,

Fig. 2. Jacobian matrix of formalism (15).
c. Matrix 3: Substitute �v�xi
�R� for �i and �s1 ,s2 , . . .sn2

�
or t,

d. Matrix 4: Substitute �v�yi for �i and �s1 ,s2 , . . .sn2
�

or t.
Matrices 5,6,7, and 8 are upper-triangular matrices

hose nonzero elements are derivatives with respect to
he coordinate variables of the control points �v�xi

�L�, �v�yi,
�v�xi

�R�. From Eq. (16), we have

���t�

��i
= Ri,k�t�. �17�

or matrix 5, 6, 7, and 8, merely by substituting �v�xi
�L�,

�v�yi, and �v�xi
�R� for �i and �t1 , t2 , . . . tn1

�, �s1 ,s2 , . . .sn2
� for t

n Eq. (17), we can obtain the values of all the nonzero el-
ments as

e. Matrix 5: Substitute �v�xi
�L� for �i and �t1 , t2 , . . . tn1

�
or t,

f. Matrix 6: Substitute �v�yi for �i and �t1 , t2 , . . . tn1
� for t,

g. Matrix 7: Substitute �v�xi
�R� for �i and �s1 ,s2 , . . .sn2

�
or t,

h. Matrix 8: Substitute ���yi for �i and �S1 ,S2 , . . .Sn2
�

or t.
Following the version of the Levenberg–Marquardt al-

orithm introduced in Ref. 36, the searching of the opti-
al parameters is an iterative procedure. In each itera-

ion step the increment of parameters optimized is the
olution of the following linear equations

	J�d�TJ�d� + �I
�d = g�d�, �18�

here d is the vector containing parameters
���xi

�L� , ���yi ,
���xi

�R��, �tj1
�, and �Sj2

�, �d is its increment, g�d�
s its gradient vector, J�d� is the Jacobian matrix illus-
rated in Fig. 2, and � is a coefficient adjusted in each
tep.

Because of the sparsity of the above-mentioned Jaco-
ian matrix, the complexity of the Levenberg–Marquardt
lgorithm for our problem is much less than that with a
ense Jacobian matrix. It is not difficult to prove that
J�d�TJ�d�+�I
 is a symmetric matrix with O�n1+n2
m� nonzero elements. To be more exact the number of
onzero elements is 9�n1+n2�+12m if each B-spline curve
egment contains an identical number of data points.
ractically the numbers might be slightly different, but it
ill not affect the result that 	J�d�TJ�d�+�I
 has O�n1
n2+m� nonzero elements. Through O�n1+n2+m� Jaco-
ian transformations, we can convert 	J�d�TJ�d�+�I
 to a
iagonal matrix. Therefore the running time of the solu-
ion of Eqs. (18) will be as O�n1+n2+m�. The Levenberg–
arquardt algorithm usually requires limited iterations.
hus we can conclude that the complexity of the search-

ng algorithm is O�n1+n2+m� linear. The linear complex-
ty arises from the well-defined formalism in relation (15).

An iterative process needs an initialization that sets up
starting state for iteration. In our case, assuming that

he end points of image curves have been matched (this
an be simply done using epipolar constraints and dispar-
ty order constraints when image curves are matched), we
pply the following normalized chordal parameterization
o initialize parameters t and s in formalism (15):
j1 j2
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tj1
=�

t1 = t0

�
r=2

j1

�pr
�L� − pr−1

�L� �

�
r=2

n1

�pr
�L� − pr−1

�L� �

, j1 = 2,3, . . . ,n1,� �19a�

sj2
=�

s1 = s0

�
r=2

j2

�pr
�R� − pr

�R��

�
r=2

n2

�pr
�R� − pr

�R��

, j2 = 2,3, . . . ,n2,� �19b�

here t0, s0 are small positive values to avoid computa-
ional singularity. This parameterization allocates initial
arameters to data points in the left and right image
urves in the same parameter region while keeping the
ontinuity of image curves.

Having tj1
and sj2

, we can decompose formalism (15)
nto the following three linear least-squares relations and
stimate the other parameters ����xi

�L� , ���yi ,
���xi

�R�� by stan-
ard linear least-squares techniques.27

min
yi,i=0,1,. . ., m�

��
j1=1

n1 ��p�yj1
�L� − �

i=0

m
�v�yiRi,3�tj1

��2

+ �
j2=1

n2 ��p�yj2
�R� − �

i=0

m
�v�yiRi,3�sj2

��2� , �20a�

min
�xi

�L�,i=0,1,. . ., m�
�
j1=1

n1 ��p�xj1
�L� − �

i=0

m
�v�xi

�L�Ri,3�tj1
��2

, �20b�

min
�xi

�R�,i=0,1,. . ., m�
�
j2=1

n2 ��p�xj2
�R� − �

i=0

m
�v�xi

�R�Ri,3�sj2
��2

. �20c�

The above initialization techniques provide a rough so-
ution for the optimization, and the iterative searching
ill refine the solution step by step until a reasonable
recision is achieved judged by the difference between re-
ults in consecutive steps (in our case, less than 1%).

The outcome of the iteration is an estimate of the con-
rol points of the 2D NURBS curves representing the im-
ge curves on binocular retinas and the sampling param-
ters assigned to data points in the image curves. From

Fig. 4. Simulated stereo p
he 2D control points obtained and known weights, we
an reconstruct the NURBS representation for the space
urve using the method illustrated in Fig. 1. The sam-
ling parameters in the optimization are locations in the
pline parameter domain that correspond to data points
roviding information about reconstruction regions. The
econstruction regions for the left and right image curve
re 	min��tj1

�� ,max��tj1
��
 and 	min��sj2

�� ,max��sj2��
, re-
pectively. Inside the reconstruction regions recon-
tructed curves are interpolated, while outside the recon-
truction regions reconstructed curves are extrapolated.

. ALGORITHM VALIDATION
e have implemented our algorithm in MATLAB 5.3 and

alidated it using both synthetic and real stereo data sets.
he purpose of experimenting with synthetic data is to
emonstrate specifically the strengths of our algorithm by
imulating imperfectly posed conditions such as different
amplings at the two views, noise in the image curve ex-
raction, and discontinuities in the image curves. On the
ther hand, experiments with real stereo images, de-
igned with different object geometry and using different
urve extraction methods and different image capturing
evices, help us to investigate the suitability and adapt-
bility of our approach in real-world scenes. All objects ex-
mined in the experiments (both synthetic and real) ex-
ibit true 3D properties. The results have been compared
ith those of previous methods when appropriate.

. Experiments with Synthetic Data

. Different Samplings
ecause of the discrete nature of image pixels, an image
urve can be treated as a projection of a set of points (a

Fig. 3. Simulated space curve.

ions of the curve in Fig. 3.
roject
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ampling) in 3D on a continuous curve. For a stereo pair
f image curves, unless specifically designed, the left and
ight image curves are usually cast from different sam-
lings on the 3D curve. Therefore precise point-to-point
orrespondence matching can hardly be achieved in its
ature, even without noise in images. In our first experi-
ent, we evaluated our algorithm with simulated image

urves whose data points correspond to different sam-
lings on a 3D free-form curve. To this end, we first gen-
rated a ground-truth curve in 3D using parametric equa-
ions:

��t� � � X = 2 cos t

Y = 2 sin t t � 	0,5/4�


Z = 2�t + 1�
� .

Such a curve is truly spatial (nonplanar) as illustrated
n Fig. 3. We sampled this curve uniformly in the param-
ter region by an interval of tint=� /24, giving 31 sampling
oints on the curve. We denoted these parameters by t
	t1 , . . . t31
 and the corresponding sampling points by

Table 1. Errors of Reconstruction

Approach �t=0.1tint

NURBS-based

e3d= �0.0072
0.0151
0.00027510
0.0038

�b

e2dl= �0.1361
0.7078
0.0042
0.1192

�
e2dr= �0.0966

0.4435
0.0052
0.0759

�
Point-based

e3d= �0.0280
0.1018
0.0032
0.0260

�
e2dl= �0.1626

0.5508
0.0133
0.1459

�
e2dr= �0.1285

0.4368
0.0132
0.0953

�
ae3d, e2dl, e2dr denote errors in 3D, left retina, and right
bEach column vector contains the values of mean, max
�t�. We then added Gaussian white noise to t and ob-
ained another parameter set t�= 	t1� , . . . t31� 
 such that ti�
ti+n�0,�t�, i=1,2, . . . ,31, where n�0,�t� denotes Gauss-

an noise with zero mean and standard deviation �t. We
rojected the sampling points ��t� onto the left retina
nd the sampling points ��t�� onto the right retina in a
irtual parallel stereo configuration, where the projection
atrices of left and right cameras were designed as fol-

ows:

h Sampling Differences, in Pixels

oise Levels

�t=0.2tint �t=0.3tint

0.0075
0.0146
0.00015031
0.0037

� e3d= � 0.0079
0.0160

0.00030896
0.0036

�
2dl= �0.1402

0.5967
0.0017
0.1214

� e2dl= �0.1454
0.5976
0.0032
0.1188

�
2dr= �0.0990

0.3654
0.0022
0.0733

� e2dr= �0.1044
0.3637
0.0037
0.0717

�
e3d= �0.0573

0.1644
0.0064
0.0437

� e3d= �0.0878
0.3347
0.0080
0.0823

�
2dl= �0.2257

1.0227
0.0355
0.2009

� e2dl= �0.2861
1.2363
0.0389
0.2674

�
2dr= �0.1764

0.6986
0.0322
0.1278

� e2dr= �0.2407
0.8416
0.0084
0.1998

�
espectively.

inimum, and SD in descending order.

ig. 5. 3D reconstruction from projections in Fig. 4. (a) Point-
ased, (b) NURBS-based.
a wit

N

e3d= �
e

e

e

e

retina, r

imum, m



T
d
�
a
t
T
i
s
T

T
b
o
s
t
p
e
w
a
a
c

r
S
p
s
g
c
w
r
g
1
m
s
0
p
l

w
l
m
s
b

t
r
c
f
c
s
p
i
n
v
t
N
w
s
c
s

2
I
i
o
s
1
c
b
a
o
r
m
c
p
t
b

Y. J. Xiao and Y. F. Li Vol. 22, No. 9 /September 2005 /J. Opt. Soc. Am. A 1755
T�L� = 100 0 0 1

0 100 0 0

0 0 1 1
�, T�R� = 100 0 0 − 1

0 100 0 0

0 0 1 1
� .

If the standard deviation of noise �t=0, then the point
�L����ti�� on the left retina must be the exact correspon-
ence of the point T�R����ti��� on the right retina, because
�ti� and ��ti�� are the same samplings in 3D. When we

ssign a positive value to �t, the sampling difference be-
ween two image curves appears. If we still treat
�L����ti�� and T�R����ti��� as a stereo pair of correspond-

ng points, an error will occur in the location of the corre-
pondences. Figure 4 illustrates the stereo projections
�L����ti�� and T�R����ti��� when �t=0.3tint.
Using the corresponding pairs T�L����ti�� and

�R����ti���, i=1,2, . . . ,31, we can reconstruct 31 3D points
y triangulation. Figure 5(a) shows a linear interpolation
f these reconstructed points, which makes it easy to vi-
ualize the recovered shape of the curve. It is shown that
he reconstruction result is strongly affected by the sam-
ling difference between the two image curves. The recov-
red 3D curve is neither smooth nor accurate. In contrast,
ith our algorithm a much better result has been
chieved as illustrated in Fig. 5(b). The recovered curve is
lmost the same as the original one in Fig. 3, with seven
ontrol points in its NURBS representation.

The quantitative measurements of reconstruction er-
ors, conducted in both 3D and 2D, are listed in Table 1.
ince we know the ground-truth curve in 3D, we can com-
ute closest point distances (CPDs)37 from the recon-
tructed curve (in the reconstruction region) to the
round-truth curve, which reflect proximity of the two
urves. The 2D measurement is conducted in a similar
ay, i.e., by computing CPDs from the projections of the

econstructed curve (in left and right reconstruction re-
ions) to the projections of the ground-truth curve. Table
lists four significant statistics of these CPDs, i.e., the
ean values, maximum values, minimum values, and

tandard deviations (SD) under noise levels �t=0.1tint,
.2tint, and 0.3tint. Applying the same measurements to
oint-based reconstruction results, we obtained the data
isted in the second row of Table 1.

Obviously the NURBS-based reconstruction is over-
helmingly better than point-based reconstruction in at

east two respects. First, in precision, the maxima,
eans, and standard deviations of NURBS-based recon-

truction errors are much smaller than those of point-
ased results in both 3D and 2D. Second, in consistency,

Fig. 6. Corrupted stereo projections ��= 	0.6�0.6
T� of the c
he NURBS-based method achieves a similar quality of
econstruction results when the samplings of image
urves vary, showing its insensitivity to the sampling dif-
erence, whereas the point-based approach produces re-
onstruction errors clearly associated with the levels of
ampling differences. Actually in the NURBS-based ap-
roach, optimal positions are assigned to all data points
n terms of sampling parameters on the spline, which are
ot necessarily required to be the same at left and right
iews, while the point-based approach relies crucially on
he location precision of point correspondences. Therefore
URBS-based reconstruction is truly “curve-based,”
hich means it needs no correspondence and permits

ampling differences between data points in image
urves, while the point-based method is particularly con-
trained to the matching accuracy of data points.

. Noisy Data
n the second experiment, we validated our algorithm us-
ng image curves corrupted by random noise. Without loss
f generality, we used Gaussian white noise again to
imulate the random noise in curve extraction. Sampling
00 points uniformly along each projected curve of the 3D
urve in Fig. 3 (this means that the interval on the curve
etween any pair of adjacent points is identical), we
dded 2D Gaussian noise n�0,�� to the coordinate vectors
f these points. In Fig. 6 the jagged curves are the cor-
upted image curves ��= 	0.6 0.6
T�. We can observe
any sharp glitches along the image curves that strongly

hange the local properties of the curves. If we apply a
oint-based approach to this kind of data, accurate point-
o-point correspondences will be extremely hard to find
ecause of the noise. However, using the NURBS-based

Fig. 3 and the back projections of the reconstructed curve.

Fig. 7. Reconstructed curve from corrupted stereo projections.
urve in
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lgorithm, we can obtain an acceptable reconstruction re-
ult as shown in Fig. 7, where the reconstructed curve is
ery close to the original 3D curve. The projections of our
econstructed curve are shown in Fig. 6 as smooth curves,
hich obviously fit well to the image curves.
The quantitative analysis of the reconstruction errors

s given in Table 2 using the same measuring method as
hat in the first experiment. On the whole the reconstruc-
ion errors are relatively small compared with the noise
evels, as noise is suppressed by the introduction of the
urve model. At the highest noise level ��= 	1.0 1.0
T�,
he mean of reconstruction errors in 2D is about
.2 pixels, while the induced noise reaches about 1.0 pixel
n each image axis on average. The quantitative data also

Table 2. Errors of Reconstructiona with Corrupted
Data, in Pixels

Noise Level e3d e2dl e2dr

�= 	0.2 0.2
T

�0.0119
0.0286
0.0020
0.0043

�b �0.1952
0.7812
0.0083
0.1558

� �0.1354
0.5549
0.0041
0.0995

�
�= 	0.4 0.4
T

�0.0162
0.0721
0.0028
0.0198

� �0.1968
0.7687
0.0049
0.1486

� �0.1361
0.5596
0.0130
0.1042

�
�= 	0.6 0.6
T

�0.0260
0.0892
0.0028
0.0198

� �0.1924
0.8090
0.0164
0.1272

� �0.1777
0.5555
0.1009
0.0260

�
�= 	0.8 0.8
T

�0.0483
0.1575
0.0029
0.0398

� �0.1901
0.8186
0.0105
0.1498

� �0.1839
0.5280
0.0179
0.0987

�
�= 	1.0 1.0
T

�0.0674
0.4081
0.0091
0.0639

� �0.2069
0.7834
0.0255
0.1704

� �0.2086
0.5885
0.0267
0.1470

�
ae3d, e2dl, e2dr denote errors in 3D, left retina, and right retina, respectively.
bEach column vector contains the values of mean, maximum, minimum, and SD

n descending order.

Fig. 8. Broken stereo pr
how that the reconstruction errors in 2D exhibit no sign
f an apparent increase when stronger noise is induced,
ndicating the stability of our algorithm in randomly-
osed noisy conditions according to our reconstruction as-
umption: finding the 3D curve which best fits the 2D im-
ge data. The 3D reconstruction errors appear to increase
s noise increases. The reason is that the stronger noise
ill cause larger stereo ambiguity around curve parts
arallel to epipolar lines. We will explain the stereo am-
iguity further in the experiments with real stereo im-
ges below.

. Fragmented Curves
ragmented curves commonly occur at the early-vision
rocessing stage of real images as a result of deficiencies
f both image data and curve extraction methods, which
ndeed brings considerable difficulty to the reconstruc-
ion. As it is based on the NURBS curve model, our algo-
ithm can potentially deal with this problem to a certain
xtent. Figure 8 illustrates a pair of stereo images of the
D curve in Fig. 3 that consist of data points uniformly
ampled on the exact projections of the curve with some
arts missing. Each missing part is randomly selected
rom an original projection with its length being 1/10 of
he whole length of the projected curve. We assume that
e still know the order of curve segments in the frag-
ented curves. For instance, we know fragments 1, 2, and
in Fig. 8(a) are successive segments of an image curve.
eeding our algorithm with such fragmented image
urves, the result is a continuous and smooth curve as
hown in Fig. 9, which resembles rather accurately the
riginal 3D curve in Fig. 3. As our algorithm reconstructs

curve as a whole and retains the continuity of data
oints, missing parts in one image curve can be compen-
ated for by the corresponding parts in the other image
urve. Table 3 lists the quantitative reconstruction errors,
hich clearly remain quite low in both 3D and 2D cases.
We compared the result with that of the B-spline-based

pproach26 (in second row, Table 3), which also recon-
tructs a curve as a whole. It is clearly seen that the re-
onstruction error level of the NURBS-based method is
ignificantly lower than that of the B-spline-based ap-
roach, indicating that the NURBS model represents (in-
erpolates and extrapolates) data points more accurately
han the B-spline approach in the fragmented case.

The above three experiments with synthetic data re-
ealed certain strengths of our method: It is not sensitive

ns of the curve in Fig. 3.
ojectio
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Fig. 9. Reconstructed curve from data in Fig. 8.
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o different samplings in stereo images, it works reason-
bly well in noisy conditions, and it has the potential for
ecovering missing parts of measured curves.

. Experiments with Real Images
he purpose of experiments with real data is to examine

he suitability and adaptability of the approach in real-
orld scenes. In the experiments we have used two
roups of real stereo images acquired from different sub-
ects in different scenes at different times using different
tereo capturing devices. In the first experiment, the im-
ging device used was a narrow-baseline stereo head con-
isting of two B/W cameras calibrated with the projection
atrices identified as follows:

T�L� =  16.2 0.3 4.5 − 1455.9

1 − 16.6 2.5 773.7

− 0.3 − 0.2 − 1 538.1
� ,

T�R� =  16.1 0.3 4.4 − 2042.6

− 0.4 − 16.5 2.6 980.8

0.3 − 0.2 − 1 510.3
� .

The objects of interest are the boundaries of the three
anes of a fan model (Fig. 10), which exhibit true 3D free-
orm properties suitable for our tests. Each of these three
urves was modeled by a NURBS curve with 23 control
oints from image curves extracted using the Canny op-
rator. Figure 11 displays the reconstructed curves at
hree orthogonal views. Curves 1, 2, and 3 are the 3D con-
ours of the three vanes that appear from the bottom
ounter clockwise in the stereo images. The back projec-
ions of the reconstructed curves to the binocular retinas
re displayed as curves marked by white x’s in Fig. 10,
here we can clearly see that the reconstructed 3D

hapes of the fan-vanes produce projections that fit well to
he image contours of the fan. In sharp contrast, when we
pplied straight line primitives for 3D reconstruction, we
btained the much cluttered result shown in Figure 12 at
he same orthogonal views, indicating again the appropri-

ack projections of the reconstruction result.
Table 3. Errors of Reconstructiona with
Fragmented Data, in Pixels

pproach e3d e2dl e2dr

URBS-based

� 0.0077
0.0148

4.9422�10−0.005

0.0039
�b �0.1999

0.5455
0.0014
0.1805

� �0.1330
0.5226
0.0012
0.1070

�
-Spline-based

�0.5812
1.1926
0.0087
0.4052

� �2.3153
6.3277
0.0450
1.7830

� �1.2288
2.4278
0.0199
0.6562

�
ae3d, e2dl, e2dr denote errors in 3D, left retina, and right retina, respectively.
bEach column vector contains the values of mean, maximum, minimum, and SD

n descending order.
Fig. 10. Real stereo images of a fan model and b
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teness of choosing NURBS as shape representation and
omputing a curve as a whole for reconstructing 3D, free-
orm curved objects.

As there is no ground-truth curve in this experiment,
e measure only quantitative reconstruction errors of the
ack projections in 2D, listed in Table 4. The measure-
ents are distances between data points in image curves

nd their corresponding points on the projected NURBS
urves (the spline parameter for each data point is known
fter reconstruction). We use the same four statistics
mean, maximum, minimum, and standard deviation) to
epresent the distances. In order to prove our hypothesis
hat the NURBS-based approach is superior to the
-spline-based approach,26 we conducted the same ex-
eriment with the latter approach using the same quan-
itative measurements and compared the results of the
wo approaches.

The statistical data in Table 4 reveal the difference be-
ween the reconstruction results obtained from the two
pproaches. While the NURBS-based method yield sub-
ixel level reconstruction errors with the largest error in
ll six projected curves of less than 1.1 pixels and the av-
rage CPD less than 0.22 pixels, the B-spline-based ap-
roach produces pixel level reconstruction errors with the
argest error as much as 9.5 pixels. The relatively large
econstruction errors in the B-spline-based approach are
ue mainly to the nonotimized sampling parameters and
he affine approximation of perspective transformation.
n the NURBS-based approach, on the other hand, the
ampling parameters are optimized and a fully perspec-
ive camera model is adopted, which dramatically reduces
he reconstruction errors.

Careful readers might notice the small distortion occur-
ing in the reconstructed curve 1 shown in Figs. 11(b) and
1(c). The distortion is caused by stereo ambiguity, which
rises when part of an image curve overlaps an epipolar
ine [see the horizontal white line just above the bottom of

Fig. 11. Reconstruct

Fig. 12. Reconstructed line
ig. 10(a)]. In such a condition, the variation of a recon-
tructed 3D curve on an epiolar plane will yield no change
n its projections on the binocular retinas. Such an ambi-
uity is due to the nature of triangulation itself, and it
an be dealt with by introducing more constraints in the
ptimization framework.

In the second experiment, the stereo images in Fig. 13
ere taken by a B/W camera mounted on a manipulator’s
nd effector at two different positions at different times.
he projection matrices in such a stereo configuration
ere calibrated as

T�L� = − 2.5465 1.6975 − 14.6749 90.1389

2.8606 21.9431 0.5021 − 6414.6

− 0.0176 0.0065 − 0.0022 1
� ,

T�R� =  8.3536 − 1.3601 8.5493 − 4096.7

− 2.1115 − 17.6109 0.9637 4891.9

0.0127 − 0.0052 − 0.0065 1
� .

The objects of interest were two wires bent in complex
hapes in 3D space. Our purpose was to reconstruct the
urves representing the skeletons of the wires. We applied
NURBS curve model with 13 control points for the short

urve and 23 control points for the long curve. The image
urves were extracted using region segmentation and
keleton extraction techniques.38 The reconstructed
urves using our approach are shown in Fig. 14, and their
ack projections to two binocular retinas are displayed as
urves marked by white x’s in Fig. 13. It is evident that
he result visually exhibits a quality similar to that in the
xperiment with the fan model.

The quantitative reconstruction errors of the back pro-
ections of the bentwire objects using our approach and
he B-spline-based approach are listed in Table 5 (the
hort and long curves are labeled as curve 1 and curve 2,

ves of the fan model.

nts of fan model in Fig. 10.
ed cur



r
a
l
p
p

p
c
t
o
s
T
a

e
d
h
e
u
o
s
M
fi

o
d
t
t
t
p
o

N

B

i

Y. J. Xiao and Y. F. Li Vol. 22, No. 9 /September 2005 /J. Opt. Soc. Am. A 1759
espectively), where the NURBS-based approach still
chieves subpixel accuracy compared with the rather
arge reconstruction errors in the B-spline-based ap-
roach, basically reproducing the results of our first ex-
eriment.
It is also worth mentioning that in the above two ex-

eriments with real data, the imaging devices, the stereo
onfigurations, the image curve extraction methods, and
he shapes and sizes of objects are all different from each
ther. Nevertheless, the NURBS-based method does not
how significant difference in the quality of the results.
his fact points up the potential suitability and adapt-
bility of the approach in real applications.
Figures 15 and 16 illustrate residual errors in the it-

rative processes of the above two experiments with real
ata. Obviously the iterative processes converged at very
igh rates. In a few iteration steps, the resulting residual
rrors dropped to a very low level and remain virtually
nchanged thereafter. This observation reveals that the
bjective function formulated in our optimization has a
harp slope around the optimal solution. The Levenberg–
arquardt approach can then quickly follow the slope to

nd the solution zones.
Figure 17 illustrates the change of control points in the

ptimization for one curve (curve 2 in Fig. 10(a)). The
ashed curve is the image curve, and the circles are con-
rol points of the NURBS curve that represent it. The
races of control points are depicted as the short curves in
he upper left-hand corner of Fig. 17(b), with the initial
ositions represented by crosses. From the enlarged part
f the curve in Fig. 17(a), we can clearly see that the

s of the reconstructed curves. (a) Left image, (b) right image.

s of bent wire objects.
Table 4. Reconstruction Errorsa of the Fan Model,
in Pixels

Approach Curve 1 Curve 2 Curve 3

URBS-based

e2dl= �0.2095
0.8384
0.0016
0.1872

�b e2dl= �0.2129
1.0026
0.0054
0.1700

� e2dl= � 0.0592
0.4045

0.00070460
0.0677

�
e2dr= �0.1957

0.6801
0.0023
0.1541

� e2dr= �0.2304
0.8392
0.0028
0.1813

� e2dr= � 0.0696
0.3640

0.00030307
0.0744

�
-Spline based

e2dl= �2.2089
4.9437
0.0095
1.7267

� e2dl= �1.8797
4.3470
0.0130
1.9866

� e2dl= �1.8849
9.5069
0.0268
2.2086

�
e2dr= �1.9709

4.5874
0.0158
1.5445

� e2dr= �1.7997
4.5549
0.0037
2.0025

� e2dr= �1.7864
9.5556
0.0140
2.2680

�
ae2dl, e2dr denote errors in left retina and right retina, respectively.
bEach column vector contains the values of mean, maximum, minimum, and SD

n descending order.
Fig. 13. Stereo images of bent wire objects and the back projection
Fig. 14. Reconstructed curve
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hange of control points is large in the first few steps—
specially in the first step—and afterwards the control
oints remain stable. This result agrees with the observa-
ion drawn from Fig. 15. Moreover, the overall domain of
hange of control points is relatively small compared with
he size of the whole image, implying that the normalized
arameterization for data points can provide roughly ac-
eptable results (with pixel level reconstruction errors
hat are only as large as those of the B-spline-based
ethod as given in Tables 4 and 5) and serve as good ini-

ialization of sampling parameters in the optimization. It
hould also be noted that in the above real-world experi-

Table 5. Reconstruction Errorsa of the Bent Wire
Objects, in Pixels

Approach Curve 1 Curve 2

URBS-based

e2dl= �0.3079
0.8992
0.0007
0.1993

�b e2dl= �0.3663
1.4299
0.0014
0.2815

�
e2dr= �0.2657

0.8835
0.0019
0.2013

� e2dr= �0.3467
1.9214
0.0004
0.2849

�
-spline based

e2dl= � 4.8211
44.9963
0.0447
8.9624

� e2dl= �2.5231
8.8661
0.0040
1.6836

�
e2dr= � 3.4315

34.3148
0.0409
4.8338

� e2dr= � 2.4030
11.8237
0.0139
1.9952

�
ae2dl, e2dr denote errors in left retina and right retina, respectively.
bEach column vector contains the values of mean, maximum, minimum, and SD

n descending order.

Fig. 15. Residual errors with iterat
ents, all objects chosen are of a true 3D nature, showing
he capability of our algorithm of reconstructing 3D free-
rom curves from images, while our method can certainly
lso be applied to planar objects, as NURBS is a unified
epresentation of curves.

. CONCLUDING REMARKS
n this paper, we have presented a scheme to reconstruct
NURBS representation of a 3D, free-form curve directly

rom its stereo images. Previously, curve-based stereo re-
onstruction methods were either restricted to planar al-
ebraic curves or constrained to an affine camera model.
ur approach advances such technique by allowing both
ntirely 3D free-form curves and a perspective camera
odel while requiring no point-to-point correspondences.
Based on the perspective invariance of the NURBS rep-

esentation, we have deduced constraints on a stereo pair
f projections of a space NURBS curve and formulated the
econstruction into an optimization framework. Through
ts smooth representation of curves, NURBS leads to the
hape parameters of the NURBS model and sampling pa-
ameters for the data points being globally differentiable
n the energy function, thereby permitting the use of
erivative-based optimization techniques in the recon-
truction. While the algorithm needs no explicit point cor-
espondence, the data points themselves are actually
atched to optimal positions on the NURBS curves.
Our experiments revealed that the approach is able to

econstruct 3D curves from their images on digital retinas
rbitrarily sampled and permits randomly-posed noise
nd partial missing data while yielding much better re-
ults than the B-spline-based method. With the same
umber of control points, the NURBS-based approach
chieved subpixel accuracy of reconstruction, whereas the
-spline-based method achieved only pixel-level preci-
ion.

The NURBS-based reconstruction framework can be
pplied to various vision applications where curve pat-
erns construct the major information cue to understand
he 3D scene, e.g., surface reconstruction from structured
ights. NURBS representation imposes no constraint on
urve shapes, therefore suiting a large range of curve-
ased applications, particularly in natural environments.

reconstructing curves of fan model.
ions in
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ddressing the full implications of NURBS in shape mod-
ling is beyond the scope of the research here; the inter-
sted readers can refer to the latest literature39,40 to
tudy other issues such as the selection of the number of
ontrol points.

Finally, noting that the current scheme constructed in
he sheer least-squares measure does not resolve stereo
mbiguity (as illustrated in Fig. 10), we are considering
ccommodating more constraints, e.g., structural con-
traints, in our NURBS-based optimization framework to
mprove further the reconstruction quality.

PPENDIX A: PROOF OF THEOREM 2
et C�t�= 	X�t� ,Y�t� ,Z�t�
T denote a 3D NURBS curve. Its
D projection c�t�= 	x�t� ,y�t�
T can be expressed by func-
ions of the 3D control points Vi and weights Wi as fol-
ows, using Eqs. (1), (3), and (5):

�x�t� = �
i=0

m

T1�Vi

1 �Ri,k�t���
i=0

m

T3�Vi

1 �Ri,k�t�

y�t� = �
i=0

m

T2�Vi

1 �Ri,k�t���
i=0

m

T3�Vi

1 �Ri,k�t�� ,

here T1, T2, T3 are row vectors in the perspective pro-
ection matrix and R �t� are rational basis functions.

Fig. 16. Residual errors with iterations

Fig. 17. Trace of control points in
i,k
Simultaneously multiplying the numerator and de-
ominator of the right side of the first equation of the
bove equation array by a factor of �j=0

m WjBj,k�t�, the fol-
owing equation results:

x�t� = �
i=0

m

T1�Vi

1 �WiBi,k�t���
i=0

m

T3�Vi

1 �WiBi,k�t�.

Thus

x�t� = �
i=0

m T1�Vi

1 �
T3�Vi

1 �
T3�Vi

1 �WiBi,k�t���
i=0

m

T3�Vi

1 �WiBi,k�t�.

imilarly, we can deduce the following equation for y�t�
rom the second equation of the equation array:

y�t� = �
i=0

m T2�Vi

1 �
T3�Vi

1 �
T3�Vi

1 �WiBi,k�t���
i=0

m

T3�Vi

1 �WiBi,k�t�.

et vi=T�Vi� and wi=T3	
Vi

1

Wi. The above two equations

an then be rewritten in a vector form:

onstructing curves of bent wire objects.

timization of curve 2 in Fig. 10(a).
in rec
the op
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c�t� = �
i=0

m

wiviBi,k�t���
i=0

m

wiBi,k�t�

wi = WiT3�Vi

1 � .

bviously, the projected curve c�t� is a NURBS curve with
ontrol points of vi and weights of wi.

Theorem 2 is thus proved.
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