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We investigate the problem of dynamic calibration for our structured light system. First, a method is presented
to estimate the rotation matrix and translation vector between the camera and the projector using plane-based
homography. Then an approach is introduced to analyze theoretically the error sensitivity in the estimated
pose parameters with respect to noise in the projection points. This algorithm is simple and easy to implement.
Finally, some numerical simulations and real data experiments are carried out to validate our method.
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1. INTRODUCTION

In the past several decades, many approaches have been
proposed to calibrate the intrinsic and extrinsic param-
eters of a vision system. These methods can be roughly
classified into two categories: static calibration using a
calibration object with known dimensions [1,2] and dy-
namic calibration that requires no reference target [3,4].
Dynamic calibration allows the system to recalibrate it-
self without any human intervention.

For some applications, we can concentrate on the ex-
trinsic parameters, assuming that the intrinsic param-
eters are constant and calibrated offline. This is generally
known as the relative pose problem in terms of the rota-
tion matrix and translation vector. It is generally solved
using one of the three approaches listed below:

(1) Relative pose from the perspective-n-point problem
[5,6]. Starting from three or more corresponding point
pairs, these methods attempt to determine the position
and orientation of the camera with respect to a scene ob-
ject. The major drawback is that some points from the
scene should be provided as the control points. Hence, the
methods cannot be applied to unknown scenes.

(2) Using the fundamental matrix. The fundamental
matrix is a 3 X 3 matrix from which the extrinsic param-
eters can be recovered. It can be determined from eight or
more corresponding point pairs using the eight-point al-
gorithm. This is known as the classical eight-point algo-
rithm [7,8]. Using singular value decomposition (SVD),
Faugeras and Maybank [9] and Hartley [10] proposed a
technique for factoring the fundamental matrix into a
product of an orthogonal and a skew-symmetric matrix,
which resulted in the solutions for the pose parameters.
Recently, researchers have examined the possibility of de-
termining the fundamental matrix using fewer than
eight-correspondences, e.g., Triggs [11] and Nister [12].
The advantage of the eight-point algorithm is that it is
linear and hence fast and easy to implement. However, it
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will fail or give poor performance in the planar or near-
planar environments since it requires a pair of images
from the general 3D scene.

(3) Using plane-based homography. Hay [13] was the
first to report his results in this domain. Tsai [14] and
Longuet-Higgins [15] studied this problem using the SVD
of plane-based homography. With eigenvalue decomposi-
tion of the homography matrix, as many as six cases were
discussed according to different geometric situations in
[16]. Using a model plane with known reference points,
Ueshiba [17] gave a calibration algorithm for multicam-
era systems by factorizing the homography matrices. For
the projector—screen—camera system, Raij [18] and Oka-
tani [19] investigated the calibration methods by treating
the projectors as virtual cameras and using the principles
of planar autocalibration. Recently, Habed and Boufama
[20] formulated the self-calibration problem by solving
the bivariate polynomial equations. Schweighofer and
Pinz [21] suggested a robust approach for the pose esti-
mation from a planar target by minimizing the object-
space error. In [22], Mester and Muhlich presented an
equilibrated total least-squares algorithm to improve mo-
tion and orientation estimation. In the presence of noise,
uncertainty analysis of the calibration results is impor-
tant for evaluating the performance of the vision system
[23-26].

In practice, planar surfaces are encountered frequently
in the surroundings either indoors or outdoors, e.g.,
desks, walls, or ground plane. So methods in the last cat-
egory are highly desirable. However, the existing methods
require either a complex mathematical manipulation or a
nonlinear optimization process. In [27], we gave a simple
and easy-to-implement algorithm for the relative pose
problem by investigating the explicit formula of the homo-
graphic matrix. In this work, we provide an innovative
closed-form solution for the pose parameters in order to
increase the computational efficiency. Here an overcon-
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straint system of equations is used to increase the robust-
ness to noise. Finally, we determine the uncertainty in the
estimated pose parameters using first-order perturbation
theory. With this technique, we can predict the covariance
matrix of the calibration results given noise in the image
points.

The remainder of the paper is organized as follows: Sec-
tion 2 gives a brief description of the structured light vi-
sion system. The schemes for determining the translation
vector and rotation matrix and for analyzing their error
sensitivity are presented in Sections 3 and 4, respectively.
Section 5 reports some simulations and real data experi-
mental results. In this paper, scales are denoted in italic
letters, while vectors and matrices in boldface lowercase
and uppercase letters, respectively. In addition, 0; and I;
always represent the zero matrix and identity matrix, re-
spectively, where the subscript “/” denotes the i Xi, ma-
trix, and ® denotes the Kronecker product of two matri-
ces.

2. SYSTEM DESCRIPTION

A. System Structure
Figure 1 depicts our vision system consisting of a projec-
tor and a camera. Here the projector, projecting a light
pattern into the scene, is deemed as a virtual camera. The
light pattern is distorted by the surface of the scene.
These distortions are captured by the camera and used
for calibration of the system and then reconstruction of
the scene. For the camera and the projector, we define a
right-handed coordinate system with its origin at their
optical centers, respectively. Let the world coordinate sys-
tem coincide with the camera coordinate system. Then
the rotation matrix and translation vector from the cam-
era to the projector, which are denoted by R and ¢, respec-
tively, are the relative pose parameters in the system.
We assume that the intrinsic parameters for the cam-
era and the projector have been calibrated, while their
relative pose can be changed arbitrarily. We will focus on
the following two problems: estimate (1) the relative pose
between the camera and the projector and (2) the rela-
tionship between noise in the projection points and errors
in the estimated pose parameters.

B. Computation of Plane-Based Homography
Given a 3D planar surface 7 in general position, its im-
ages in the camera and the projector are related by a
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Fig. 1. (Color online) Relative pose of the proposed system.
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3 X 3 homography matrix H according to the projective ge-
ometry. Let M be an arbitrary point on the plane and the
correspondent projections be m, and m,, respectively.
Then we have

m

,=cHm,, (1)

where o is a nonzero scale factor. Let
hy hy hs
H=|hy hs hg
hi hs hg
and its vector be
h = (hy,ho,hs ha,his,he,hor b, ho)"

For the ith pair of projections, we denote m,
=[u; v; 1]* and m,=[u] v} 1]".

According to Eq. (1), each pair of corresponding points
provides two constraints on homography. So, given n(n
=4) pairs of corresponding image points of the scene, we
have the following 2n equations:

Ah=0, 2
where:
-ul vy 1 0 0 0 -wju; —ujv, —ui-
0 0 0 uy vy 1 -viu; -vw, -vg
Al oo . .

u, u, 1 0 0 0 -uw'u, -uv, —-u
n n n“*n n-n

’ ’

’
0 0 0 u, v, 1 -v,u, -v,v, -0

Let @ =ATA. Using eigenvalue decomposition, the solu-
tion for the vector h can be determined by the eigenvector
corresponding to the smallest eigenvalue of @.

C. Constraints from Homography

We assume that the equation of the plane 7 is nTM=1.
For the calibrated camera and projector, the homography
matrix can be expressed as

H=\R+tn"), (3)

where \ is a scale factor.
Let the translation vector be #=[t; 5 ¢5]T and the skew
symmetric matrix be

0 —t3
[t]x = t3 0 - tl .
—ty t; O

Multiplying matrix [#], to both sides of Eq. (3), we have
[¢].H=\?]LR. (4)

As R is a rotation matrix, RRT=I. By rearranging Eq. (4),
we obtain

[£]:W[] =0, (5)

where W=HHT-\?I is a 3 X 3 matrix.

In the matrix W, \ is unknown. In [27], we have proved
that A can be determined by the eigenvalue of matrix
HHT. There are always three eigenvalues for the matrix.
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In that paper, we also gave a method to choose which one
is correct. Once matrix W is completely determined, the
translation vector and rotation matrix can be calculated.

3. SOLVING THE RELATIVE POSE

A. Solution for the Translation Vector

As the translation vector is determined up to a nonzero
scale factor, for simplicity, we assume that its third com-
ponent is unity, i.e., £3=1. There are six constraints on the
translation vector in Eq. (5). By polynomial elimination of
the quadratic items, we obtain the following three linear
equations:

altl + bth +C1= 0
aztl + b2t2 + Cog = 0 , (6)
a3t1 + bgtz +C3= 0

where

_ _ 2
a1 =W13Wa3 — W12W33, bi=wwss—wis,

C1=WiW13 — W11W23,

_ 2 _
Qg =WoolW33 — Wag, by =wi3Wweg — W33,

Co=W1aWo3 — W13W2g,

A3 =WoW13 — W1aW23, b3 =wq1Woe3 — W1ol13,

2
C3=Wig— W11W2a2.

Proposition 1: The three linear equations in Eq. (6)
are equivalent to one another.
Proof. From Eq. (3), we have

HH" = NI + \2(Rnt" + tn"R™ + n"n#t")

=NT + \2(st™ + ¢sT), (7)
where
nTn
s=Rn+—t.
2

Considering the definition of W in Eq. (5), we obtain W
=\%(stT+¢sT).

In our system, we assume that the scene plane is
opaque. Thus, in practice, the camera and the projector
should lie on the same side of the plane and locate at dif-
ferent positions. Therefore, the two vectors ¢ and s in Eq.
(7) are nonzero and different from each other. Conse-
quently, the rank of W is 2 and the determinant of W is
Zero, i.e.,

2 2 2
det(W) = 2w 5w 13we3 — Wos 11 — WipWs3 — WisWas
+ W1 Wooll gz = 0.
From the first two equations in Eq. (6), we have

aiby —azb; =wszz det(W) =0,

Clb2 - Czbl =Wi3 det(W) =0.

Therefore, they are equivalent to each other.
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Similarly, the first and the third equations in Eq. (6)
can be proved to be equivalent to each other. In summary,
the three linear equations are equivalent to one an-
other. O

According to this proposition, we can use the first equa-
tion in Eq. (6) and another one in Eq. (5) to solve the
translation vector. The solution can be described as fol-
lows:

,
2
Wiz + Wiz~ W11Ws33
t1=
W33

. (W1sWag = W1aW33)t1 + (W1aW13 — W11 Wa3) . (8)

t2= 9

W11W33— Wig

t3=1

\

From Eq. (8), there are at most two solutions for the
translation vector. In order to determine which one corre-
sponds to the true configuration, the chirality constraint
[28] can be employed.

B. Solution for the Rotation Matrix
By rearranging Eq. (4), we have

R'C-D-=0, 9

where C=\[t], and D=H"[¢],.

We find that the above equation has the same form as
that of Eq. (2.16) derived in [29]. Therefore, similar steps
can be taken to solve the rotation matrix.

Assuming C=[C; Cy C3] and D=[D; D4y D3], we define
a 4 X4 matrix as

3
B=> B'B, (10)
i=1
where

0 (C;-D)T
Bi= D;-C; [C;+Dj], |

Let g1=(qo0 q1 g2 ¢q3)" be the eigenvector of B asso-
ciated with the smallest eigenvalue. Then the solution for
the rotation matrix R is given as

90+91-95-q5 2(q192-q093)  2(q193+q0q2)
R=| 2(q192+9093) 46-q1+a5-q5 2(q293-q0q1)
2(q195-q092)  2(q293+q0q1) 95-9i-5+q5

(11

4. ERROR ANALYSES

Up to now, we have arrived at the solutions for the rota-
tion matrix and translation vector. These solutions should
be accurate in the absence of noise. However, noise is in-
evitable in the extracted feature points for a real applica-
tion. It will affect the estimation of the homography ma-
trix and consequently result in errors in the rotation
matrix and translation vector. In the next three subsec-
tions, we will give a theoretical analysis on the corre-
sponding error propagations.
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A. Errors in the Homography Matrix
We first derive the error relationship between the homog-
raphy matrix and the feature points according to Eq. (2).
In the structured light system, the projection point m,
can be deemed as accurate since it is directly obtained
from the predefined light pattern. Let the error vector in
the ith image point m. be &, =[8,. 5, 0]". From Eq. (2),
we can have the error matrix A, in matrix A. Let 41 be
the corresponding error vector of A, in the column first
order. By first-order approximation, the error matrix Ag
of matrix @ can be computed by

Ag=(A+A)TA+A,)-ATA=ATA, +AJA. (12)

Rewriting the error matrix in column first order, we ob-
tain

5Q = (FQ + GQ)(SAT, (13)
where
AL af Ay

F,-A2I, G Ar 4 - A
=4 &l R=|... ... ... ... |

A} a3 - aY

and AJZ: denotes the matrix whose ith column is the jth row
of A, while other columns are all zero vectors.

Let v; and d; be the ith eigenvector and eigenvalue of
matrix @, respectively, and V=[v vy ‘- vg]. Applying the
perturbation theory in [29] to Eq. (2), we have the first-
order perturbation on the vector A

5}1 = VAQVTAQv1 = VAQVT[U 1119 1)2119 09119] 5Q
= DhéAT, (14)

where Ag=diag{0,(d;-dy)7!,...,(d1-dy)™'} and D,
=VAQVT|:U1119 U2119 09119](FQ+GQ). Equation (14) de-
scribes the error relationship between the image points
and the homography matrix. With this relationship, the
error 8,2 on A2 in Eq. (5) can be computed as follows.

Let S=HHT. Similar to Eqs. (12) and (13), we obtain
the error vector for matrix S as

95 = (Fg+ Gg) 6, =Dgdy, (15)
where
V- b7 0
1 2
D, =— _
K2 b% aly"— bl

Wby + wasbity —

and,

(wgsty — w13)bq

Vol. 25, No. 3/March 2008/J. Opt. Soc. Am. A 615

H; H} Hj
Gs=|H; H; H;|
H; H; H;

Fs=H"®1,,

Let uy be the eigenvector corresponding to the second
eigenvalue of matrix S. Using the perturbation theorem,
the first-order perturbation on A2 is

Se=ujAguy =ugluiply ugsls uspl;]ds.
Then we have the relationship between 6,2 and 1,
S2=D,28,T, (16)

where D)\zzug[u 1213 LL2213 u3213]Dth. Assuming ‘(S}\2/)\2|
< <1, the perturbation on \ is 8= \A2+ 82—\~ 5,2/2\.

B. Errors in the Translation Vector
With Egs. (15) and (16), we can obtain the error vector Sy
for matrix W in Eq. (5) as

Sw=3s-[e] e5 e5]"82=Dydyr, (17)

where DW=DSDh—[e'f er2F eg I™D,2 and e; represents ith
column of the identity matrix. Once we obtain the error
for the matrix W, the errors &, and &, for the translation
vector can be computed as follows.

Expanding ¢; in Eq. (8) using a Taylor series for mul-
tiple variables, we have

1
tl(wn,wl3,w33) = tl - /2=5w11
2\wi3 - winwss

1 w13
+ _w + > 5w13
33 Wg3z\Wiz— W11W33

( W13 w13> s
+ -5 33

2 [o 2 wee
2wiz\wiz—wiwss  Wis
Similarly, we have the first-order approximation for ¢,.
Expressing it in matrix form, we obtain

6t1
[ 5 ] =[D,, D, ]y, (18)
2
where
b% + LU13\, - b?
W33

N
/
wiza1\=- b1 —a1b;

—2wq3b1ty — (Wasty + W19)by
W33
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00 0 00
1

D, = b2

00 (wn—w13t1)b1 00 w12t1b1+wl1t2b1+

where a; and b; are defined as in Eq. (6). Then the error
relationship between the translation vector and the fea-
ture points can be described as

5,=D,,, (19)
where D;=[D; D, Dy.

C. Errors in the Rotation Matrix
To compute the errors in the rotation matrix, we first ob-
tain the errors for matrix B in Eq. (10).

For conciseness, we define a new vector p that com-
bines \, #;, and ¢y with the vector A such that p
=[)\ tl tz hT]T.

Considering Eqgs. (14), (16), and (19), we have the error
vector for p as

5}7 =Dp5AT7 (20)

where D,=[D,2/(2\) D, D,]".
Then the error vector for matrix B can be expressed as

85 = 2Dpgs,, (21)

where Dpg is given in Appendix A.

Let q; and v; be the ith eigenvector and eigenvalue of
matrix B, respectively, and n=[q; q2 ¢3 q4]. Using
the perturbation theorem, the first-order perturbation on
q;is

8, = nApn'Apq, =D, 6,, (22)
where ¢; is the ith element of gq;, D,
=29Agn'(qols q:ls qols qsI,1Dg, and Ap
=diag{0,(y1- o) (m—vs) L (m— )7}

In the column first order, the error on the rotation ma-
trix can be computed as

| | —E— Our Algorithm |
AS T T T T T T T T 7| —E—2zhang [16] N
g 4 = 2 = —f— Schweighofer [21] I
-%3.5 L ___bL_ 1V T |
|
g 3 - - A
g
c 25 _ _JI
g’ SN N N i e S e e i
g 1.5 = =
g
b YNy T e
0.5
| | b I I i T v ‘?

0]
10 20 30 40 50 60 70 80 90 100
Different Number of Points
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Wiy— b? - zwlsb%

2
2w3s

wnal\y— bl + 2w13a1b1

2
2w3s

5R =Jq5q=DR5AT’ (23)

where oJ, represents the Jacobian matrix of the rotation
matrix and DRquDqle.

In summary, the error vectors for the translation vector
and rotation matrix can be expressed in terms of linear
transformation of the errors of the coefficient matrix A in
Eq. (2). With Egs. (19) and (23), their covariance matrices
can be calculated as

I,=E(5,6])=D,I'ytD!, (24)

Iy =E(538%) = DI’ yrDY, (25)

where E(-) denotes the expectation.

We have analyzed the error relationships between the
pose parameters and the image points. With these rela-
tionships, the accuracy of the calibration results can be
predicted given the uncertainty of the image point local-
izations. Another potential use of the relationship is to
provide a guideline for setting the system’s configuration
that can be expected to produce reasonable results.

5. EXPERIMENTAL RESULTS

A. Numerical Simulations

We have implemented a number of computer simulations
on the proposed algorithms in MATLAB. The uncertainty
in the pose estimates is determined for the following
cases: varying number of correspondences for a fixed pose;
varying amounts of noise for a fixed pose; and, finally,
various poses. In each case, the relative errors for the
translation vector # and the three rotation angles &
=[a,B,y] are respectively defined as [[t-#|/|[t| and ||&

—4|/||€|, where # and & were the estimated values. We as-
sumed that a virtual planar target was projected to the
projector plane and camera image. The image resolution

—E— Our Algorithm
~—E— Zhang [16]
—=A— Schweighofer [21]

Error percentage in translation (%)

0]
10 20 30 40 50 60 70 80 90 100
Different Number of Points

Fig. 2. (Color online) Relative errors for the rotation and translation versus number of points for the pose estimation.
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Table 1. Comparison of the Computational
Efficiency

Time Elapsed in the Simulations (s)

No. of Our Algorithm Algorithm Algorithm

Points Algorithm of [16] of [30] of [21]
10 0.0045 0.0016 0.2686 0.2612
30 0.0041 0.0020 0.2659 0.2961
50 0.0053 0.0031 0.3544 0.3604
70 0.0053 0.0027 0.4352 0.4242
90 0.0044 0.0036 0.5250 0.4774
100 0.0056 0.0027 0.5623 0.5080

is 740 X 480. The projection points were corrupted by ran-
dom Gaussion noise with various deviations and zero
mean, and the average results over 100 trials were re-
ported. In these simulations, we made comparisons to the
following three algorithms:

e An algorithm very similar to ours in Zhang [16],
which solves the relative pose problem by decomposition
of the planar homography. In all the graphs, we used red
circle (O) and green square ([J) to indicate our algorithm
and Zhang’s, respectively.

e Robust pose estimation algorithms with iterative op-
timization in [21,30]. (Here the algorithms are randomly
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initialized since they are globally convergent.). We signi-
fied them by a blue star (3) and black cross (X).

Dependence on the number of points: In the first simu-
lation, we studied the dependence of these algorithms on
different numbers of point correspondences. Here the
number of points ranged from 10 to 100, and random
noise with 0.5 pixel variance was added to the image
points. Figure 2 shows that improved performance was
obtained when more points were used. However, when the
number is larger than 50, the improvement is trivial. In
this simulation, the elapsed time was recorded as in Table
1. From this table, we can see that the time roughly in-
creased, since more computations are required with more
points. As our algorithm and Zhang’s provide closed-form
solutions, they are computationally more efficient than
the other two algorithms.

Dependence on the noise level: In this simulation, we
varied the level of Gaussian noise from 0 to 1.0 pixel and
reported the relative errors of the four algorithms in Fig.
3. It is observed that the relative errors increase with in-
creased noise level. The iterative algorithms are more ro-
bust in the estimation of the rotation matrix than in that
of the translation vector, while the opposite is true for
Zhang’s. On the whole, our algorithm outperforms the
others in the presence of noise.

Dependence on the random pose: Figure 4 illustrates
the performance of these algorithms in ten randomly se-

7y s S g S D
—©— Our Algorithm
~&— Zhang [16]
—#— Schweighofer [21]

20

15

10

Error percentage in translation (%)

b
0.5
Gauss white noise: pixel

Fig. 3. (Color online) Relative errors for the rotation and translation as a function of injected noise.
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Fig. 4. (Color online) Relative errors for the rotation and translation as a function of different random poses.
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Fig. 5. (Color online) Test on the accuracy of the error prediction method, where datal denotes the difference between real errors and

predicted errors.
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Fig. 6. (Color online) Test on different pose parameters, where datal and data2 represent the computed errors and the predicted errors,

respectively.

Fig. 7. (Color online) Configuration of our structured light system: (a) experimental setup and (b) screen shot of the color-encoded light

pattern.

lected relative poses. Gaussian noise with a 0.5 pixel vari-
ance was added to the projection points, and 100 trials
were run for each pose. It is observed that Zhang’s algo-
rithm is very sensitive to the estimation of the rotation
matrix, while the iterative algorithms are sensitive to
that of the translation vector. Our algorithm gives consid-
erably stable performance for all the poses.

Test on the error prediction algorithm: To evaluate the
accuracy of our error prediction method, we compared the
predicted errors and the computed errors in the simula-
tions. The differences between the rotation matrix and
the translation vector are given in Fig. 5. From these fig-

ures, we can see that the differences are very small, espe-
cially when the level of noise is low, say, below 0.5 pixels.
As a result, the predicted errors are very close to the real
ones. This demonstrates that the error analysis is valid.
In the last simulation, we carried out some experi-
ments on the computed errors and the predicted errors for
different pose parameters. Since the rotation parameters
did not significantly affect the solutions, we just tested for
different translation vectors. Here the direction of the
translation vector was changed from [3,0,1] to [0,8,1] with
20 evenly distributed directions. Random noise with a
0.5 pixel variance was added to the projection points. For
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Fig. 8. (Color online) Experiment on the man’s head model: (a) man’s head model used for the experiment; (b, ¢) polygonized results of
the points clouds in two different viewpoints; (d, e, f) original feature points and reprojected points, where blue “+” represents original
feature points while red “O” represents reprojected points from reconstructed 3D points. They should coincide with each other

theoretically.

each direction, ten trials were performed, and the average
results for the rotation matrix and translation vector are
shown in Fig. 6. As can be seen from this figure, the pre-
dicted errors are strongly correlated with the computed
errors. The first several trials are more sensitive to noise
and hence more unreliable; e.g., the errors for both the ro-
tation matrix and the translation vector in the second
trial are larger than the rest.

In these simulations, we find that the translation is
more sensitive to noise compared to rotation. Theoreti-
cally, these results are due to the different weight matri-
ces in Egs. (24) and (25), i.e., D; and Dp. In these experi-
ments, we find that the matrix D, has a larger effect on
the translation vector than Dy has on the rotation matrix.

B. Real Data Experiments
Figure 7(a) shows the system setup for real data experi-
ments, which consists of a PULNIX TMC-9700 CCD cam-
era and a PLUS V131 DLP projector. Figure 7(b) gives the
color-encoded light pattern for the projector used to
uniquely identify the correspondences between the projec-
tor plane and the image plane [31].

The intrinsic parameters of the camera and the projec-
tor were first calibrated by a planar pattern using Zhang’s
method [32]. In the experiments, we placed the pattern at

Table 2. Relative Pose of the Vision System

[-2.1691,2.1397,0.3903]
[50.1919,-28.8095,1]

Rotation angles
Translation vector

more than two different positions to increase the calibra-
tion accuracy. When calibrating the extrinsic parameters,
more than four point correspondences from a planar sur-
face in the scene were chosen between the projector plane
and the camera image. The computed homography matrix
was h=[-0.4047,1.0547,-0.3501,1.2877,0.0416,0.0373,
0.2386,-0.1385,1.0356]. Then, using our method, the re-
sults for the three rotation angles and translation vector
were obtained and are given in Table 2.

After the system had been calibrated, 3D object recon-
struction was performed to test the calibration results.
Figure 8(a) gives an image of a man’s head model. In to-
tal, 226 points from the model were reconstructed. Here
the polygonized results of the reconstructed point clouds
were shown from two different viewpoints as in Figs. 8(b)
and 8(c). Since no ground truth was available, we did not
know the real values of the pose parameters of the system
and the 3D point clouds. To test the accuracy of the ex-
perimental results, we measured the absolute errors be-
tween backprojected images of the reconstructed 3D

Table 3. Comparison of the Mean Absolute Errors

Different Methods Camera (pixel) Projector (pixel)

Fofi’s results
Linear algorithm 18.428 32.751
Iterative algorithm 0.204 0.169
Our results
Linear algorithm 0.0217 0.2906
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points and the real image features. In general, the more
accurate the calibrated pose parameters, the smaller the
errors. Figures 8(d) and 8(e) show the feature points and
backprojected points for the projector plane and the cam-
era image, respectively. Figure 8(f) shows a zoomed part
of the image. It is seen that the original feature points
and the backprojected points are very close to each other.
Here we also give a numerical evaluation on the absolute
errors in pixel dimensions in Table 3. For comparison, we
listed the mean results together with those of the first
real data experiment from Fofi et al. [33]. In that work, a
completely different algorithm was proposed using the
fundamental matrix on a similar vision system. Consider-
ing that only a linear algorithm is involved in our method,
our results show a nontrivial improvement over Fofi’s. So
this experiment validates our algorithm both qualita-
tively and quantitatively.

6. CONCLUSIONS

We have presented our work on the relative pose problem
in a structured light system. The contributions can be
summarized into the following three aspects:

First, a closed-form solution for the pose parameters is
provided by using plane-based homography. Our method
is computationally efficient, since time-consuming nonlin-
ear optimization is avoided. Furthermore, overdeter-
mined constraints are established to enhance the robust-

doot = dgy — dosts + dssty
—dqgt1 +dqitg +dgsto—dgo
—dqgt; — dagto +di1 +doo

dgity — dgoty + 2c13t + dagty — 2c19 — doy — 293t1 + d 19— dy3ts

—dgite + dgoty + 2c13ts — dogty — 2¢19 + dog — 2¢9gt1 + d 19— dysts
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ness; e.g., six equations are constructed to solve two
variables in the translation vector. Second, based on ma-
trix perturbation theory, error analysis and propagation
for the estimated pose parameters are derived. These er-
rors provide a possible means for studying the robustness
of the solutions and a guideline for setting the system’s
configuration in practical applications. Last, numerical
simulations and real data experiments are performed on
the proposed system. The results are evaluated qualita-
tively and quantitatively and compared with existing al-
gorithms. There are also some limitations with this
method. The proposed normalization for estimating the
translation vector is not suited for dominant sideways
motion.

Our assumption of a planar surface can be satisfied in
many practical situations. In fact, planar or near-planar
scenes are encountered frequently, e.g., roadways or
ground planes in mobile robot navigation and walls or
ceilings for a climbing robot. In many practical applica-
tions where the traditional methods may fail or give a
poor performance, since they require a pair of images
from the 3D scene, our method provides a good solution.

APPENDIX A

We assume that c¢;; and d;; are the (i,j) elements of matrix
C and D in Eq. (9), respectively.

Let Dg=[D\ D, D;, D;,, D, ]. From Eq. (21), the five
elements in Dg can be expressed as follows:

D= digty —dasty —dyg +dgy ’
—dygti +digty —dssty +dsg
—daty +dggty + 2c13ty + dasty — 2¢19 — dgy — 20931 — dyg + disty
—dogty —dg1 +dats +dssty
I dgity — dagt1 + 2¢13tp — dast1 — 2¢19 + dgy — 2c93ty — dig + dy3ts i
ci3hy + coshs — dishy — 2c93\ — doshs — d3shg — c1ohy + Coshg + daghg + dighy + d3ghg + dgsh — dgo\
—Coghg + dooh + Coghg + d3sh
—c13he — d 1o\ + C19hg + Co3hy
—Cgshy + c13hs — digh —c19hg
Dtl _ cizhy — coshs — dighy — 2c93\ — dgshis — dgshg — c19hq — Coghg + daghg + dighy + d3ghg — dagh + d3oh ,
Coshg +c1shs +dis\ — c1ohg

c13he — d1g\ — c19hg + coghy

—cighy + coshs — dghy — 2c93\ — doghs — d3shg + c1oh7 — Caghg + daghg + d1ohy + dgohg + dogh + d 3o\
023h8 - d22)\ + C23h6 + d33)\

—C13h4 — Coshs — dighy — 2c93\ — doghs — dgshe + c1ohy + coghg + doohg + d1ohy + d3ohg — dog\ — dgo\




B. Zhang and Y. Li Vol. 25, No. 3/March 2008/J. Opt. Soc. Am. A 621
—ci3hy +dgshg + daghs + 2¢13\ — d1yhy = c13hg — darhg + dishy — c1shg — ca3hy — dgihg — d s\ + d3iN
c1shg — cashg — c1hg — dgh
d3s\ +ci3hg +ciN —ci3hy
—cizho + c1ohg — dogh + co3hy
D, - —c13hy +dgshg +daghg + 2¢13\ — dyihy + c13hg — dorhg + dishy + c1ghg + cashy — d3ihg — d g\ —dg\
2 —ci3hy — c1oh7 — dagh —co3hy ’
—d33\ —c13hg + cph — c3hy
ci3hy +dgshs + dashs + 2c13N = d11hy + c13hg — dorhg + d13hy — c19hg — coshy — d3rhg + digh — dg1h
—c13hg — Cazhg — c1ohg + dogi\
i ci3hy +dsshs + daghy + 2c13N — dy1hg — c13hg — dorhg + dyghy + c1ohg + coshg — d3ihg + digh + d3h i
(di3—cia)ta—dig+ciy (dog—cos)ty —day dssty—dsa—cog (c13—dig)ti+di  (—dag+cas)ti +dar+cip
0 Co3 —Cosly 0 —C13
—Co3 0 Cista = C12 C13 0
Casla C12 —Cisty 0 —Cogty = C12 i3ty
D, - (diz=ci)ta—dig+ciy (dog+eo)ty—dyy dsgly—dag+cay (cr3—diglti+diy  (—daog—cos)ti +dar— o
L — Cagty Ci2 = Cigta 0 Casti+C1a Cisty ’
—Ca3 0 —Cigta +C12 C13 0
(diz+ciglta—dig—cip (dog—coa)ta—doy dasty—dga+cag (—ci3—dia)ti+dyy (—dag+cegs)ty +da+epp
0 —Ca3 = Cosly 0 Ci3
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—Ci3ty Casl1 —Cista 0 Ciaty
0 C1ots — 1oty 0
D, - —dsgty +dg—c13 digti —dita—cigty dooty —dorta +cioty (dsg—co3)ts — (ds1 - 1)ty
R 0 —C1oty — 1oty 0
i3ty Cogly — Cisla 0 = Cigty
—dggty+dz —c13 digti —dita+cigty dogty —dogta —Cioty (dsp—co3)ts = (dsg — 1)ty
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