
1
I
p
e
c
c
n
D
s

t
e
k
t
u

[
p
a
j
s
m

m
e
m
g
r
F
t
p
w
R
t
e
T
l

612 J. Opt. Soc. Am. A/Vol. 25, No. 3 /March 2008 B. Zhang and Y. Li
Dynamic calibration of the relative pose and error
analysis in a structured light system
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We investigate the problem of dynamic calibration for our structured light system. First, a method is presented
to estimate the rotation matrix and translation vector between the camera and the projector using plane-based
homography. Then an approach is introduced to analyze theoretically the error sensitivity in the estimated
pose parameters with respect to noise in the projection points. This algorithm is simple and easy to implement.
Finally, some numerical simulations and real data experiments are carried out to validate our method.
© 2008 Optical Society of America
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. INTRODUCTION
n the past several decades, many approaches have been
roposed to calibrate the intrinsic and extrinsic param-
ters of a vision system. These methods can be roughly
lassified into two categories: static calibration using a
alibration object with known dimensions [1,2] and dy-
amic calibration that requires no reference target [3,4].
ynamic calibration allows the system to recalibrate it-

elf without any human intervention.
For some applications, we can concentrate on the ex-

rinsic parameters, assuming that the intrinsic param-
ters are constant and calibrated offline. This is generally
nown as the relative pose problem in terms of the rota-
ion matrix and translation vector. It is generally solved
sing one of the three approaches listed below:
(1) Relative pose from the perspective-n-point problem

5,6]. Starting from three or more corresponding point
airs, these methods attempt to determine the position
nd orientation of the camera with respect to a scene ob-
ect. The major drawback is that some points from the
cene should be provided as the control points. Hence, the
ethods cannot be applied to unknown scenes.
(2) Using the fundamental matrix. The fundamental
atrix is a 3�3 matrix from which the extrinsic param-

ters can be recovered. It can be determined from eight or
ore corresponding point pairs using the eight-point al-

orithm. This is known as the classical eight-point algo-
ithm [7,8]. Using singular value decomposition (SVD),
augeras and Maybank [9] and Hartley [10] proposed a
echnique for factoring the fundamental matrix into a
roduct of an orthogonal and a skew-symmetric matrix,
hich resulted in the solutions for the pose parameters.
ecently, researchers have examined the possibility of de-

ermining the fundamental matrix using fewer than
ight-correspondences, e.g., Triggs [11] and Nister [12].
he advantage of the eight-point algorithm is that it is

inear and hence fast and easy to implement. However, it
1084-7529/08/030612-11/$15.00 © 2
ill fail or give poor performance in the planar or near-
lanar environments since it requires a pair of images
rom the general 3D scene.

(3) Using plane-based homography. Hay [13] was the
rst to report his results in this domain. Tsai [14] and
onguet-Higgins [15] studied this problem using the SVD
f plane-based homography. With eigenvalue decomposi-
ion of the homography matrix, as many as six cases were
iscussed according to different geometric situations in
16]. Using a model plane with known reference points,
eshiba [17] gave a calibration algorithm for multicam-

ra systems by factorizing the homography matrices. For
he projector–screen–camera system, Raij [18] and Oka-
ani [19] investigated the calibration methods by treating
he projectors as virtual cameras and using the principles
f planar autocalibration. Recently, Habed and Boufama
20] formulated the self-calibration problem by solving
he bivariate polynomial equations. Schweighofer and
inz [21] suggested a robust approach for the pose esti-
ation from a planar target by minimizing the object-

pace error. In [22], Mester and Muhlich presented an
quilibrated total least-squares algorithm to improve mo-
ion and orientation estimation. In the presence of noise,
ncertainty analysis of the calibration results is impor-
ant for evaluating the performance of the vision system
23–26].

In practice, planar surfaces are encountered frequently
n the surroundings either indoors or outdoors, e.g.,
esks, walls, or ground plane. So methods in the last cat-
gory are highly desirable. However, the existing methods
equire either a complex mathematical manipulation or a
onlinear optimization process. In [27], we gave a simple
nd easy-to-implement algorithm for the relative pose
roblem by investigating the explicit formula of the homo-
raphic matrix. In this work, we provide an innovative
losed-form solution for the pose parameters in order to
ncrease the computational efficiency. Here an overcon-
008 Optical Society of America
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traint system of equations is used to increase the robust-
ess to noise. Finally, we determine the uncertainty in the
stimated pose parameters using first-order perturbation
heory. With this technique, we can predict the covariance
atrix of the calibration results given noise in the image

oints.
The remainder of the paper is organized as follows: Sec-

ion 2 gives a brief description of the structured light vi-
ion system. The schemes for determining the translation
ector and rotation matrix and for analyzing their error
ensitivity are presented in Sections 3 and 4, respectively.
ection 5 reports some simulations and real data experi-
ental results. In this paper, scales are denoted in italic

etters, while vectors and matrices in boldface lowercase
nd uppercase letters, respectively. In addition, 0i and Ii
lways represent the zero matrix and identity matrix, re-
pectively, where the subscript “i” denotes the i� i, ma-
rix, and � denotes the Kronecker product of two matri-
es.

. SYSTEM DESCRIPTION
. System Structure
igure 1 depicts our vision system consisting of a projec-
or and a camera. Here the projector, projecting a light
attern into the scene, is deemed as a virtual camera. The
ight pattern is distorted by the surface of the scene.
hese distortions are captured by the camera and used

or calibration of the system and then reconstruction of
he scene. For the camera and the projector, we define a
ight-handed coordinate system with its origin at their
ptical centers, respectively. Let the world coordinate sys-
em coincide with the camera coordinate system. Then
he rotation matrix and translation vector from the cam-
ra to the projector, which are denoted by R and t, respec-
ively, are the relative pose parameters in the system.

We assume that the intrinsic parameters for the cam-
ra and the projector have been calibrated, while their
elative pose can be changed arbitrarily. We will focus on
he following two problems: estimate (1) the relative pose
etween the camera and the projector and (2) the rela-
ionship between noise in the projection points and errors
n the estimated pose parameters.

. Computation of Plane-Based Homography
iven a 3D planar surface � in general position, its im-
ges in the camera and the projector are related by a

Fig. 1. (Color online) Relative pose of the proposed system.
�3 homography matrix H according to the projective ge-
metry. Let M be an arbitrary point on the plane and the
orrespondent projections be mc and mp, respectively.
hen we have

mp = �Hmc, �1�

here � is a nonzero scale factor. Let

H = �
h1 h2 h3

h4 h5 h6

h7 h8 h9
�

and its vector be

h = �h1,h2,h3,h4,h5,h6,h7,h8,h9�T.

For the ith pair of projections, we denote mc
�ui vi 1�T and mv= �ui� vi� 1�T.
According to Eq. (1), each pair of corresponding points

rovides two constraints on homography. So, given n�n
4� pairs of corresponding image points of the scene, we

ave the following 2n equations:

Ah = 0, �2�

here:

A = �
u1 v1 1 0 0 0 − u1�u1 − u1�v1 − u1�

0 0 0 u1 v1 1 − v1�u1 − v1�v1 − v1�

] ] ] ] ] ] ] ]

un un 1 0 0 0 − un�un − un�vn − un�

0 0 0 un vn 1 − vn�un − vn�vn − vn�
� .

et Q=ATA. Using eigenvalue decomposition, the solu-
ion for the vector h can be determined by the eigenvector
orresponding to the smallest eigenvalue of Q.

. Constraints from Homography
e assume that the equation of the plane � is nTM=1.
or the calibrated camera and projector, the homography
atrix can be expressed as

H = ��R + tnT�, �3�

here � is a scale factor.
Let the translation vector be t= �t1 t2 t3�T and the skew

ymmetric matrix be

�t�x = �
0 − t3 t2

t3 0 − t1

− t2 t1 0
� .

ultiplying matrix �t�x to both sides of Eq. (3), we have

�t�xH = ��t�xR. �4�

s R is a rotation matrix, RRT=I. By rearranging Eq. (4),
e obtain

�t�xW�t�x = 0, �5�

here W=HHT−�2I is a 3�3 matrix.
In the matrix W, � is unknown. In [27], we have proved

hat � can be determined by the eigenvalue of matrix
HT. There are always three eigenvalues for the matrix.
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n that paper, we also gave a method to choose which one
s correct. Once matrix W is completely determined, the
ranslation vector and rotation matrix can be calculated.

. SOLVING THE RELATIVE POSE
. Solution for the Translation Vector
s the translation vector is determined up to a nonzero
cale factor, for simplicity, we assume that its third com-
onent is unity, i.e., t3=1. There are six constraints on the
ranslation vector in Eq. (5). By polynomial elimination of
he quadratic items, we obtain the following three linear
quations:

�
a1t1 + b1t2 + c1 = 0

a2t1 + b2t2 + c2 = 0

a3t1 + b3t2 + c3 = 0
� , �6�

here
a1 = w13w23 − w12w33, b1 = w11w33 − w13

2 ,

c1 = w12w13 − w11w23,

a2 = w22w33 − w23
2 , b2 = w13w23 − w12w33,

c2 = w12w23 − w13w22,

a3 = w22w13 − w12w23, b3 = w11w23 − w12w13,

c3 = w12
2 − w11w22.

Proposition 1: The three linear equations in Eq. (6)
re equivalent to one another.
Proof. From Eq. (3), we have

HHT = �2I + �2�RntT + tnTRT + nTnttT�

= �2I + �2�stT + tsT�, �7�

here

s = Rn +
nTn

2
t.

onsidering the definition of W in Eq. (5), we obtain W
�2�stT+tsT�.
In our system, we assume that the scene plane is

paque. Thus, in practice, the camera and the projector
hould lie on the same side of the plane and locate at dif-
erent positions. Therefore, the two vectors t and s in Eq.
7) are nonzero and different from each other. Conse-
uently, the rank of W is 2 and the determinant of W is
ero, i.e.,

det�W� = 2w12w13w23 − w23
2 w11 − w12

2 w33 − w13
2 w22

+ w11w22w33 = 0.

rom the first two equations in Eq. (6), we have

a1b2 − a2b1 = w33 det�W� = 0,

c1b2 − c2b1 = w13 det�W� = 0.

herefore, they are equivalent to each other.
Similarly, the first and the third equations in Eq. (6)
an be proved to be equivalent to each other. In summary,
he three linear equations are equivalent to one an-
ther. �

According to this proposition, we can use the first equa-
ion in Eq. (6) and another one in Eq. (5) to solve the
ranslation vector. The solution can be described as fol-
ows:

�t1 =
w13 ± 	w13

2 − w11w33

w33

t2 =
�w13w23 − w12w33�t1 + �w12w13 − w11w23�

w11w33 − w13
2

t3 = 1
� . �8�

rom Eq. (8), there are at most two solutions for the
ranslation vector. In order to determine which one corre-
ponds to the true configuration, the chirality constraint
28] can be employed.

. Solution for the Rotation Matrix
y rearranging Eq. (4), we have

RTC − D = 0, �9�

here C=��t�x and D=HT�t�x.
We find that the above equation has the same form as

hat of Eq. (2.16) derived in [29]. Therefore, similar steps
an be taken to solve the rotation matrix.

Assuming C= �C1 C2 C3� and D= �D1 D2 D3�, we define
4�4 matrix as

B = 

i=1

3

Bi
TBi, �10�

here

Bi = � 0 �Ci − Di�T

Di − Ci �Ci + Di�x
� .

Let q1= �q0 q1 q2 q3�T be the eigenvector of B asso-
iated with the smallest eigenvalue. Then the solution for
he rotation matrix R is given as

R = �
q0

2 + q1
2 − q2

2 − q3
2 2�q1q2 − q0q3� 2�q1q3 + q0q2�

2�q1q2 + q0q3� q0
2 − q1

2 + q2
2 − q3

2 2�q2q3 − q0q1�

2�q1q3 − q0q2� 2�q2q3 + q0q1� q0
2 − q1

2 − q2
2 + q3

2� .

�11�

. ERROR ANALYSES
p to now, we have arrived at the solutions for the rota-

ion matrix and translation vector. These solutions should
e accurate in the absence of noise. However, noise is in-
vitable in the extracted feature points for a real applica-
ion. It will affect the estimation of the homography ma-
rix and consequently result in errors in the rotation
atrix and translation vector. In the next three subsec-

ions, we will give a theoretical analysis on the corre-
ponding error propagations.
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. Errors in the Homography Matrix
e first derive the error relationship between the homog-

aphy matrix and the feature points according to Eq. (2).
In the structured light system, the projection point mp

an be deemed as accurate since it is directly obtained
rom the predefined light pattern. Let the error vector in
he ith image point mc be �mc

= ��ui
�vi

0�T. From Eq. (2),
e can have the error matrix �A in matrix A. Let �AT be

he corresponding error vector of �A in the column first
rder. By first-order approximation, the error matrix �Q
f matrix Q can be computed by

�Q = �A + �A�T�A + �A� − ATA 
 AT�A + �A
TA. �12�

ewriting the error matrix in column first order, we ob-
ain

�Q = �FQ + GQ��AT, �13�

here

FQ = AT
� I9, GQ = �

A1
1 A1

2
¯ A1

2n

A2
1 A2

2
¯ A2

2n

¯ ¯ ¯ ¯

A9
1 A9

2
¯ A9

2n
� ,

nd Ai
j denotes the matrix whose ith column is the jth row

f A, while other columns are all zero vectors.
Let vi and di be the ith eigenvector and eigenvalue of
atrix Q, respectively, and V= �v1 v2 ¯ v9�. Applying the

erturbation theory in [29] to Eq. (2), we have the first-
rder perturbation on the vector h

�h = V�QVT�Qv1 = V�QVT�v11I9 v21I9 ¯ v91I9��Q

= Dh�AT, �14�

here �Q=diag�0, �d1−d2�−1, . . . , �d1−d9�−1� and Dh
V�QVT�v11I9 v21I9 ¯ v91I9��FQ+GQ�. Equation (14) de-
cribes the error relationship between the image points
nd the homography matrix. With this relationship, the
rror ��2 on �2 in Eq. (5) can be computed as follows.

Let S=HHT. Similar to Eqs. (12) and (13), we obtain
he error vector for matrix S as

�S = �FS + GS��h = DS�h, �15�
here w
FS = HT
� I3, GS = �

H1
1 H1

2 H1
3

H2
1 H2

2 H2
3

H3
1 H3

2 H3
3� .

Let u2 be the eigenvector corresponding to the second
igenvalue of matrix S. Using the perturbation theorem,
he first-order perturbation on �2 is

��2 = u2
T�Su2 = u2

T�u12I3 u22I3 u32I3��S.

hen we have the relationship between ��2 and �AT,

��2 = D�2�AT, �16�

here D�2=u2
T�u12I3 u22I3 u32I3�DSDh. Assuming ���2 /�2�

�1, the perturbation on � is ��=	�2+��2−�
��2 /2�.

. Errors in the Translation Vector
ith Eqs. (15) and (16), we can obtain the error vector �W

or matrix W in Eq. (5) as

�W = �S − �e1
T e2

T e3
T�T��2 = DW�AT, �17�

here DW=DSDh− �e1
T e2

T e3
T �TD�2 and ei represents ith

olumn of the identity matrix. Once we obtain the error
or the matrix W, the errors �t1

and �t2
for the translation

ector can be computed as follows.
Expanding t1 in Eq. (8) using a Taylor series for mul-

iple variables, we have

t1�w11,w13,w33� 
 t1 −
1

2	w13
2 − w11w33

�w11

+ � 1

w33
+

w13

w33	w13
2 − w11w33

��w13

+ � w13

2w33
2 	w13

2 − w11w33

−
w13

w33
2 ��w33.

imilarly, we have the first-order approximation for t2.
xpressing it in matrix form, we obtain

��t1

�t2
� = �DtL

DtR
��W, �18�
here
DtL
=

1

b1
2� −

	− b1
3

2
0

b1
2 + w13	− b1

3

w33

w23b1 + w33b1t2 −
a1	− b1

2
�w33t1 − w13�b1

w13a1	− b1 − a1b1

w33
− 2w13b1t2 − �w23t1 + w12�b1

� ,

nd,
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DtR
=

1

b1
2�0 0 0 0 0

w11	− b1
3 − 2w13b1

2

2w33
2

0 0 �w11 − w13t1�b1 0 0 w12t1b1 + w11t2b1 +
w11a1	− b1 + 2w13a1b1

2w33
2

� ,
w
m

a
t
E
c
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p
t
p
i
p
t
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here a1 and b1 are defined as in Eq. (6). Then the error
elationship between the translation vector and the fea-
ure points can be described as

�t = Dt�AT, �19�

here Dt= �DtL
DtR

�DW.

. Errors in the Rotation Matrix
o compute the errors in the rotation matrix, we first ob-
ain the errors for matrix B in Eq. (10).

For conciseness, we define a new vector p that com-
ines �, t1, and t2 with the vector h such that p
�� t1 t2 hT�T.
Considering Eqs. (14), (16), and (19), we have the error

ector for p as

�p = Dp�AT, �20�

here Dp= �D�2 / �2�� Dt Dh�T.
Then the error vector for matrix B can be expressed as

�B = 2DB�p, �21�

here DB is given in Appendix A.
Let qi and �i be the ith eigenvector and eigenvalue of
atrix B, respectively, and �= �q1 q2 q3 q4�. Using

he perturbation theorem, the first-order perturbation on
1 is

�q = ��B�T�Bq1 = Dq1
�p, �22�

here qi is the ith element of q1, Dq1
2��B�T�q0I4 q1I4 q2I4 q3I4�DB, and �B
diag�0, ��1−�2�−1, ��1−�3�−1, ��1−�4�−1�.
In the column first order, the error on the rotation ma-

rix can be computed as
Fig. 2. (Color online) Relative errors for the rotation and tran
�R = Jq�q = DR�AT, �23�

here Jq represents the Jacobian matrix of the rotation
atrix and DR=JqDq1

Dp.
In summary, the error vectors for the translation vector

nd rotation matrix can be expressed in terms of linear
ransformation of the errors of the coefficient matrix A in
q. (2). With Eqs. (19) and (23), their covariance matrices
an be calculated as

�t = E��t�t
T� = Dt�ATDt

T, �24�

�R = E��R�R
T� = DR�ATDR

T , �25�

here E�·� denotes the expectation.
We have analyzed the error relationships between the

ose parameters and the image points. With these rela-
ionships, the accuracy of the calibration results can be
redicted given the uncertainty of the image point local-
zations. Another potential use of the relationship is to
rovide a guideline for setting the system’s configuration
hat can be expected to produce reasonable results.

. EXPERIMENTAL RESULTS
. Numerical Simulations
e have implemented a number of computer simulations

n the proposed algorithms in MATLAB. The uncertainty
n the pose estimates is determined for the following
ases: varying number of correspondences for a fixed pose;
arying amounts of noise for a fixed pose; and, finally,
arious poses. In each case, the relative errors for the
ranslation vector t and the three rotation angles �

�	 ,
 ,�� are respectively defined as �t− t̄� / �t� and ��
�̄� / ���, where t̄ and �̄ were the estimated values. We as-
umed that a virtual planar target was projected to the
rojector plane and camera image. The image resolution
slation versus number of points for the pose estimation.
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s 740�480. The projection points were corrupted by ran-
om Gaussion noise with various deviations and zero
ean, and the average results over 100 trials were re-

orted. In these simulations, we made comparisons to the
ollowing three algorithms:

• An algorithm very similar to ours in Zhang [16],
hich solves the relative pose problem by decomposition
f the planar homography. In all the graphs, we used red
ircle (�) and green square (�) to indicate our algorithm
nd Zhang’s, respectively.
• Robust pose estimation algorithms with iterative op-

Table 1. Comparison of the Computational
Efficiency

No. of
oints

Time Elapsed in the Simulations (s)

Our
Algorithm

Algorithm
of [16]

Algorithm
of [30]

Algorithm
of [21]

10 0.0045 0.0016 0.2686 0.2612
30 0.0041 0.0020 0.2659 0.2961
50 0.0053 0.0031 0.3544 0.3604
70 0.0053 0.0027 0.4352 0.4242
90 0.0044 0.0036 0.5250 0.4774

100 0.0056 0.0027 0.5623 0.5080
imization in [21,30]. (Here the algorithms are randomly t

Fig. 3. (Color online) Relative errors for the rotation

Fig. 4. (Color online) Relative errors for the rotation and
nitialized since they are globally convergent.). We signi-
ed them by a blue star (�) and black cross (�).
Dependence on the number of points: In the first simu-

ation, we studied the dependence of these algorithms on
ifferent numbers of point correspondences. Here the
umber of points ranged from 10 to 100, and random
oise with 0.5 pixel variance was added to the image
oints. Figure 2 shows that improved performance was
btained when more points were used. However, when the
umber is larger than 50, the improvement is trivial. In
his simulation, the elapsed time was recorded as in Table
. From this table, we can see that the time roughly in-
reased, since more computations are required with more
oints. As our algorithm and Zhang’s provide closed-form
olutions, they are computationally more efficient than
he other two algorithms.

Dependence on the noise level: In this simulation, we
aried the level of Gaussian noise from 0 to 1.0 pixel and
eported the relative errors of the four algorithms in Fig.
. It is observed that the relative errors increase with in-
reased noise level. The iterative algorithms are more ro-
ust in the estimation of the rotation matrix than in that
f the translation vector, while the opposite is true for
hang’s. On the whole, our algorithm outperforms the
thers in the presence of noise.

Dependence on the random pose: Figure 4 illustrates

he performance of these algorithms in ten randomly se-
and translation as a function of injected noise.
translation as a function of different random poses.
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ected relative poses. Gaussian noise with a 0.5 pixel vari-
nce was added to the projection points, and 100 trials
ere run for each pose. It is observed that Zhang’s algo-

ithm is very sensitive to the estimation of the rotation
atrix, while the iterative algorithms are sensitive to

hat of the translation vector. Our algorithm gives consid-
rably stable performance for all the poses.

Test on the error prediction algorithm: To evaluate the
ccuracy of our error prediction method, we compared the
redicted errors and the computed errors in the simula-
ions. The differences between the rotation matrix and
he translation vector are given in Fig. 5. From these fig-

ig. 5. (Color online) Test on the accuracy of the error predictio
redicted errors.

ig. 6. (Color online) Test on different pose parameters, where d
espectively.

ig. 7. (Color online) Configuration of our structured light syste
attern.
res, we can see that the differences are very small, espe-
ially when the level of noise is low, say, below 0.5 pixels.
s a result, the predicted errors are very close to the real
nes. This demonstrates that the error analysis is valid.

In the last simulation, we carried out some experi-
ents on the computed errors and the predicted errors for

ifferent pose parameters. Since the rotation parameters
id not significantly affect the solutions, we just tested for
ifferent translation vectors. Here the direction of the
ranslation vector was changed from [3,0,1] to [0,8,1] with
0 evenly distributed directions. Random noise with a
.5 pixel variance was added to the projection points. For

od, where data1 denotes the difference between real errors and

d data2 represent the computed errors and the predicted errors,

experimental setup and (b) screen shot of the color-encoded light
n meth
ata1 an
m: (a)
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ach direction, ten trials were performed, and the average
esults for the rotation matrix and translation vector are
hown in Fig. 6. As can be seen from this figure, the pre-
icted errors are strongly correlated with the computed
rrors. The first several trials are more sensitive to noise
nd hence more unreliable; e.g., the errors for both the ro-
ation matrix and the translation vector in the second
rial are larger than the rest.

In these simulations, we find that the translation is
ore sensitive to noise compared to rotation. Theoreti-

ally, these results are due to the different weight matri-
es in Eqs. (24) and (25), i.e., Dt and DR. In these experi-
ents, we find that the matrix Dt has a larger effect on

he translation vector than DR has on the rotation matrix.

. Real Data Experiments
igure 7(a) shows the system setup for real data experi-
ents, which consists of a PULNIX TMC-9700 CCD cam-

ra and a PLUS V131 DLP projector. Figure 7(b) gives the
olor-encoded light pattern for the projector used to
niquely identify the correspondences between the projec-
or plane and the image plane [31].

The intrinsic parameters of the camera and the projec-
or were first calibrated by a planar pattern using Zhang’s
ethod [32]. In the experiments, we placed the pattern at

Table 2. Relative Pose of the Vision System

Rotation angles �−2.1691,2.1397,0.3903�
Translation vector �50.1919,−28.8095,1�

ig. 8. (Color online) Experiment on the man’s head model: (a)
he points clouds in two different viewpoints; (d, e, f) original fea
eature points while red “�” represents reprojected points fr
heoretically.
ore than two different positions to increase the calibra-
ion accuracy. When calibrating the extrinsic parameters,
ore than four point correspondences from a planar sur-

ace in the scene were chosen between the projector plane
nd the camera image. The computed homography matrix
as h= �−0.4047,1.0547,−0.3501,1.2877,0.0416,0.0373,
.2386,−0.1385,1.0356�. Then, using our method, the re-
ults for the three rotation angles and translation vector
ere obtained and are given in Table 2.
After the system had been calibrated, 3D object recon-

truction was performed to test the calibration results.
igure 8(a) gives an image of a man’s head model. In to-

al, 226 points from the model were reconstructed. Here
he polygonized results of the reconstructed point clouds
ere shown from two different viewpoints as in Figs. 8(b)
nd 8(c). Since no ground truth was available, we did not
now the real values of the pose parameters of the system
nd the 3D point clouds. To test the accuracy of the ex-
erimental results, we measured the absolute errors be-
ween backprojected images of the reconstructed 3D

Table 3. Comparison of the Mean Absolute Errors

ifferent Methods Camera (pixel) Projector (pixel)

ofi’s results
Linear algorithm 18.428 32.751
Iterative algorithm 0.204 0.169

ur results
Linear algorithm 0.0217 0.2906

head model used for the experiment; (b, c) polygonized results of
oints and reprojected points, where blue “�” represents original
onstructed 3D points. They should coincide with each other
man’s
ture p

om rec
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oints and the real image features. In general, the more
ccurate the calibrated pose parameters, the smaller the
rrors. Figures 8(d) and 8(e) show the feature points and
ackprojected points for the projector plane and the cam-
ra image, respectively. Figure 8(f) shows a zoomed part
f the image. It is seen that the original feature points
nd the backprojected points are very close to each other.
ere we also give a numerical evaluation on the absolute

rrors in pixel dimensions in Table 3. For comparison, we
isted the mean results together with those of the first
eal data experiment from Fofi et al. [33]. In that work, a
ompletely different algorithm was proposed using the
undamental matrix on a similar vision system. Consider-
ng that only a linear algorithm is involved in our method,
ur results show a nontrivial improvement over Fofi’s. So
his experiment validates our algorithm both qualita-
ively and quantitatively.

. CONCLUSIONS
e have presented our work on the relative pose problem

n a structured light system. The contributions can be
ummarized into the following three aspects:

First, a closed-form solution for the pose parameters is
rovided by using plane-based homography. Our method
s computationally efficient, since time-consuming nonlin-
ar optimization is avoided. Furthermore, overdeter-
ined constraints are established to enhance the robust-
13 4 23 5 13 4 23 23 5 33 6 12 7 23
ess; e.g., six equations are constructed to solve two
ariables in the translation vector. Second, based on ma-
rix perturbation theory, error analysis and propagation
or the estimated pose parameters are derived. These er-
ors provide a possible means for studying the robustness
f the solutions and a guideline for setting the system’s
onfiguration in practical applications. Last, numerical
imulations and real data experiments are performed on
he proposed system. The results are evaluated qualita-
ively and quantitatively and compared with existing al-
orithms. There are also some limitations with this
ethod. The proposed normalization for estimating the

ranslation vector is not suited for dominant sideways
otion.
Our assumption of a planar surface can be satisfied in
any practical situations. In fact, planar or near-planar

cenes are encountered frequently, e.g., roadways or
round planes in mobile robot navigation and walls or
eilings for a climbing robot. In many practical applica-
ions where the traditional methods may fail or give a
oor performance, since they require a pair of images
rom the 3D scene, our method provides a good solution.

PPENDIX A
e assume that cij and dij are the �i , j� elements of matrix
and D in Eq. (9), respectively.
Let DB= �D� Dt1

Dt2
DhL

DhR
�. From Eq. (21), the five

lements in D can be expressed as follows:
B
� = �
d31t2 − d32t1 + 2c13t2 + d23t1 − 2c12 − d21 − 2c23t1 + d12 − d13t2

d22t1 − d31 − d21t2 + d33t1

− d12t1 + d11t2 + d33t2 − d32

− d13t1 − d23t2 + d11 + d22

− d31t2 + d32t1 + 2c13t2 − d23t1 − 2c12 + d21 − 2c23t1 + d12 − d13t2

d13t1 − d23t2 − d11 + d22

− d12t1 + d11t2 − d33t2 + d32

− d31t2 + d32t1 + 2c13t2 + d23t1 − 2c12 − d21 − 2c23t1 − d12 + d13t2

− d22t1 − d31 + d21t2 + d33t1

d31t2 − d32t1 + 2c13t2 − d23t1 − 2c12 + d21 − 2c23t1 − d12 + d13t2

� ,

t1
= �

c13h4 + c23h5 − d13h4 − 2c23� − d23h5 − d33h6 − c12h7 + c23h9 + d22h8 + d12h7 + d32h9 + d23� − d32�

− c23h8 + d22� + c23h6 + d33�

− c13h6 − d12� + c12h9 + c23h7

− c23h4 + c13h5 − d13� − c12h8

c13h4 − c23h5 − d13h4 − 2c23� − d23h5 − d33h6 − c12h7 − c23h9 + d22h8 + d12h7 + d32h9 − d23� + d32�

c23h4 + c13h5 + d13� − c12h8

c13h6 − d12� − c12h9 + c23h7

− c13h4 + c23h5 − d13h4 − 2c23� − d23h5 − d33h6 + c12h7 − c23h9 + d22h8 + d12h7 + d32h9 + d23� + d32�

c23h8 − d22� + c23h6 + d33�

− c h − c h − d h − 2c � − d h − d h + c h + c h + d h + d h + d h − d � − d �

� ,
9 22 8 12 7 32 9 23 32



D

D

D
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t2
= �

− c13h1 + d33h3 + d23h2 + 2c13� − d11h7 − c13h9 − d21h8 + d13h1 − c12h8 − c23h2 − d31h9 − d13� + d31�

c13h8 − c23h3 − c12h9 − d21�

d33� + c13h3 + c11� − c13h7

− c13h2 + c12h7 − d23� + c23h1

− c13h1 + d33h3 + d23h2 + 2c13� − d11h7 + c13h9 − d21h8 + d13h1 + c12h8 + c23h2 − d31h9 − d13� − d31�

− c13h2 − c12h7 − d23� − c23h1

− d33� − c13h3 + c11� − c13h7

c13h1 + d33h3 + d23h2 + 2c13� − d11h7 + c13h9 − d21h8 + d13h1 − c12h8 − c23h2 − d31h9 + d13� − d31�

− c13h8 − c23h3 − c12h9 + d21�

c13h1 + d33h3 + d23h2 + 2c13� − d11h7 − c13h9 − d21h8 + d13h1 + c12h8 + c23h2 − d31h9 + d13� + d31�

� ,

hL
= �

�d13 − c13�t2 − d12 + c12 �d23 − c23�t2 − d22 d33t2 − d32 − c23 �c13 − d13�t1 + d11 �− d23 + c23�t1 + d21 + c12

0 c23 − c23t2 0 − c13

− c23 0 c13t2 − c12 c13 0

c23t2 c12 − c13t2 0 − c23t1 − c12 c13t1

�d13 − c13�t2 − d12 + c12 �d23 + c23�t2 − d22 d33t2 − d32 + c23 �c13 − d13�t1 + d11 �− d23 − c23�t1 + d21 − c12

− c23t2 c12 − c13t2 0 c23t1 + c12 c13t1

− c23 0 − c13t2 + c12 c13 0

�d13 + c13�t2 − d12 − c12 �d23 − c23�t2 − d22 d33t2 − d32 + c23 �− c13 − d13�t1 + d11 �− d23 + c23�t1 + d21 + c12

0 − c23 − c23t2 0 c13

�d13 + c13�t2 − d12 − c12 �d23 + c23�t2 − d22 d33t2 − d32 − c23 �− c13 − d13�t1 + d11 �− d23 − c23�t1 + d21 − c12

� ,

hR
= �

− d33t1 + d31 + c13 d12t1 − d11t2 − c12t1 d22t1 − d21t2 − c12t2 �d32 + c23�t1 − �d31 + c13�t2

c23t1 + c12 0 − c23t1 + c13t2 − c12t2

− c13t1 c23t1 − c13t2 0 c12t1

0 c12t2 − c12t1 0

− d33t1 + d31 − c13 d12t1 − d11t2 − c12t1 d22t1 − d21t2 + c12t2 �d32 − c23�t1 − �d31 − c13�t2

0 − c12t2 − c12t1 0

c13t1 c23t1 − c13t2 0 − c12t1

− d33t1 + d31 − c13 d12t1 − d11t2 + c12t1 d22t1 − d21t2 − c12t2 �d32 − c23�t1 − �d31 − c13�t2

c23t1 + c12 0 c23t1 − c13t2 − c12t2

− d33t1 + d31 + c13 d12t1 − d11t2 + c12t1 d22t1 − d21t2 + c12t2 �d32 + c23�t1 − �d31 + c13�t2

� .
1
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