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We present a homography-based method for calibrating an omnidirectional vision system with a parabolic mir-
ror. Assuming that the intrinsic parameters of the camera are known a priori, we focus on finding the solution
for the mirror parameter and its positions. We first estimate the homographic matrix partially using six or
more point correspondences. Then the rotation matrix and two components of the translation vector can be
estimated. Finally, the remaining parameters are computed. In this method, a closed-form solution for all the
variables is obtained using the homographic matrix. Another advantage is the enhanced robustness in imple-
mentation via the use of two over-constrained linear systems. Numerical simulations and real data experi-
ments are also performed to validate the proposed algorithm. © 2008 Optical Society of America
OCIS codes: 110.0110, 120.0120, 120.4640, 150.0150, 330.0330.
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. INTRODUCTION
central catadioptric vision system can be built by com-

ining a parabolic mirror with an orthographic camera, or
hyperbolic mirror with a perspective camera. It has a

arge field of view (often larger than 180°) with a single
ffective viewpoint, and hence features many distinct ad-
antages compared with the traditional vision system
ith narrow field of view. First, the search for correspon-
ences is easier since the corresponding points do not of-
en disappear from the images. Second, a large field of
iew stabilizes the motion estimation algorithms. Last
ut not least, more information of the scene can be recon-
tructed from fewer images. As a result, the central cata-
ioptric system offers great benefits to visual surveil-
ance, three-dimensional modeling of wide environments,
obot navigation, etc.

Just like traditional vision, the catadioptric vision
eeds calibration before a vision task begins. Many tech-
iques have been proposed in the past several decades for
he traditional vision [1,2]. However, because of severe
istortion of the view and high nonlinearity of the imag-
ng process with the catadioptric camera, those well-
stablished algorithms under the perspective projection
odel cannot be applied directly. Therefore, many special

fforts have been spent on the catadioptric vision system
ecently. Baker and Nayar [3] and Geyer and Daniilidis
4], respectively, studied the image formation and the pro-
ective geometry in a catadioptric vision system. They
howed that a central catadioptric projection is equivalent
o a two-step mapping via the sphere. Some researchers,
.g., Barreto [5] and Ying and Hu [6], have proposed a uni-
ying projection model for cataoptric, dioptric, and fisheye
ameras. With these theories, some calibration con-
traints and very practical implications can be obtained
or the system. For example, a set of linear equations was
1084-7529/08/061389-6/$15.00 © 2
onstructed for the focal lengths and skew factor of a
ara-catadioptric-like camera with known principal point
n Wu et al. [7] using the sphere projection model.

Lines projected as conics in the image plane have inten-
ively been used for calibration in the catadioptric camera
8,9]. Mei and Malis [10] presented an algorithm for
tructure from motion using 3D line projections in a cen-
ral catadioptric camera. With the images of three lines,
eyer and Daniilidis [11] gave a closed-form solution for

ocal length, image center, and aspect ratio for skewless
ameras and a polynomial root solution in the presence of
kew. Barreto and Araujo [12] investigated the projective
nvariant properties of central catadioptric projection of
ines and suggested an efficient method for recovering the
mage of the absolute conic, the relative pose between the
amera and the mirror, and the shape of the reflective
urface.

However, the estimation of the conics using imaged
oints in these algorithms is hard to accomplish, which
imits its use in practice. First, only a small part of the arc
f the conic is available from the image due to occlusions
nd curvature, which makes the results unreliable and
naccurate. Second, when multiple lines are projected in
he images, it is difficult to distinguish which conic is the
mage of a given line. Last, the conics are not always line
mages. They may be the image of lines, circles, or any
ther curves. Some researchers have tried to solve these
roblems. For example, Barreto and Araujo [13] and
arreto and Daniilidis [14] have derived some constraints

hat are necessary for the conic curves to be line images.
owever, these are not sufficient conditions.
On the other hand, points as important features for the

alibration completely overcome the above listed limita-
ions and have been widely used in the catadioptric cam-
ra [15,16]. Wu and Hu [17] investigated the projective
008 Optical Society of America
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eometric invariants of scene points and their image
oints where the invariant equations for 1D, 2D, and 3D
pace points were established via cross ratios of space
oints and the optical axis. The epipolar geometry in
erms of a fundamental matrix has been studied for cali-
rating the central catadioptric camera by several re-
earchers [18–21]. In 2002, Svoboda et al. [20] presented
he explicit expression and characterization of epipolar
eometry within a pair of central catadioptric cameras.
ecently, by lifting the 2D image plane to 5D projective
pace, Barreto and Daniilidis [21] constructed different
ormulas for the lifted fundamental matrices in a system-
tic manner and discussed their structures. Micusik and
ajdla [22–24] showed that the epipolar geometry can be
stimated from a small number of correspondences by
olving a polynomial eigenvalue problem. Their work al-
owed the use of robust random-sample-consensus
RANSAC) estimation to find the image projection model
nd the epipolar geometry from tentative correspon-
ences contaminated by mismatches or noise.
Based on the above discussions, we will employ image

oints rather than lines as features in this work. In prac-
ice, the intrinsic parameters, e.g., the focal lengths and
rincipal point of the camera, are not changed as fre-
uently as the extrinsic parameters. Hence, we focus on
he motion parameters as well as the mirror parameter of

parabolic camera system, assuming that the intrinsic
arameters are known a priori. To solve this problem, we
ake use of the plane-based homographic matrix, given a

ew point correspondences between the image and a pla-
ar pattern. A closed-form solution for all the variables is
rovided using the homographic matrix, and the optimi-
ation process is very fast. Another advantage is the en-
anced robustness in implementation through the use of
wo over-constrained linear systems. We have carried out
ome numerical simulations and real data experiments to
alidate the proposed algorithm, and the results are
cceptable.
The remainder of this paper is structured as follows.

ection 2 presents the projection model for the parabolic
amera. We give the calibration algorithm using plane-
ased homography in Section 3. Some experimental
esults are shown in Section 4. Finally, we conclude this
aper in Section 5.

. PROJECTION MODEL
e consider a central parabolic camera system that con-

ists of a parabolic mirror and an orthographic camera.
igure 1 shows a sketch of the system, in which the cam-
ra is assembled with the mirror so that the rays of the
amera are parallel to the mirror symmetry axis. We con-
truct a right-handed coordinate frame for the system
hose origin coincides with the focal point of the mirror.
he transformation between the mirror frame and the
orld frame, which is identified as the extrinsic param-
ters of the system, is described by rotation matrix Rm
nd translation vector tm.
In such system, the image formation can be divided

nto two steps: (1) The world points are projected onto the
irror surface by a central projection from the focal point,
2) the mirror points are orthographically projected into
he image plane of the camera.

Let the surface equation of the parabolic mirror be

z =
x2 + y2 − a2

2a
, �1�

here a is called the mirror parameter. A point P in the
orld frame is projected on the mirror surface by a

entral projection as

p = ��RmP + tm�, �2�

here � is a scale factor. Let �x y z�=RmP+tm. Substitut-
ng Eq. (2) into Eq. (1), we can obtain the solution for the
cale � as �= a�z+�x2+y2+z2� / x2+y2 .

Once � is determined, the projection from point p to the
mage point u can be written as

u = ���
1 0 0

0 1 0�p

1
	 , �3�

here � is a nonzero scale factor.
On the other hand, if an image point u is known, the

orresponding point on the mirror surface can be directly
omputed as

p = �
u

v

u2 + v2 − a2

2a
	 , �4�

here u and v denote the two components of u.

. CALIBRATING THE CATADIOPTRIC
AMERA

n this work, we assume that the parabolic camera under-
oes an arbitrary rigid motion in the scene; so the calibra-
ion task then involves determining the mirror parameter
nd the motion parameters of the system. We will solve
hese problems by using a homographic matrix in what
ollows.

Fig. 1. Parabolic camera system.
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. Homographic Matrix
ssume that P lies on a planar surface and p is its corre-
ponding point on the mirror surface. According to projec-
ive geometry, there is a 3�3 homographic matrix H
etween them satisfying

p = �HP, �5�

here

H = �
h1 h2 h3

h4 h5 h6

h7 h8 h9
	

nd � is a nonzero scale factor.
Without loss of generality, the xy axis of the world

rame is assumed to lie on the plane. Hence, the third
omponents of points on that plane are zeros. According to
qs. (4) and (5), we then have

�
u

v

u2 + v2 − a2

2a
	 = �H�

x

y

1
	 . �6�

In Eq. (6), the unknowns include the mirror parameter
, the scale factor �, and the homographic matrix H.
ince it has a special form, we can partially recover the
atrix H using some point pairs. From the first two rows,
e obtain

�h1x + h2y + h3�v − �h4x + h5y + h6�u = 0. �7�

We can see that each point pair provides one constraint
n the six components of the homographic matrix. Given
pairs of points �n�6�, we have

Ah = 0, �8�

here

A = �
v1x1 v1y1 v1 − u1x1 − u1y1 − u1

¯ ¯ ¯ ¯ ¯ ¯

vnxn vnyn vn − unxn − unyn − un
	

nd h= �h1 h2 h3 h4 h5 h6�T. Using eigenvalue de-
omposition, the solution for the vector h can be deter-
ined up to a scale factor by the eigenvector correspond-

ng to the smallest eigenvalue of ATA.

. Calibration of the Parabolic Camera
onsidering Eqs. (2) and (3), the relationship between the
omographic matrix and the extrinsic parameters can be
escribed as

SH = �
r11 r12 t1

r21 r22 t2

r31 r32 t3
	 , �9�

here S is the scale factor and rij represents the ijth ele-
ent of rotation matrix Rm and ti the ith element of

ranslation vector t .
m
Since Rm is an orthogonal matrix, the norm of its
�2 submatrix should be exactly one. From Eq. (9), the
cale factor can be estimated as

s =
1

norm�
h1 h2

h4 h5
�� . �10�

hen the first 2�2 submatrix of Rm can be determined as

R11 = sh1, R12 = sh2, R21 = sh4, R22 = sh5. �11�

ccording to the properties of rotation matrices, the re-
aining parameters of Rm, i.e., R13, R23, R31, R32, and

ence R33, can be estimated.
For the translation vector, its first two components are

omputed as

t1 = sh3, t2 = sh6. �12�

p to now, we have partially recovered the rotation
atrix and the translation vector using the homographic
atrix. In the next subsection, the remaining motion

arameters and the mirror parameters are estimated
sing the constraints of Eq. (6).

. Calibrating the Remaining Parameters
rom the first and third rows in Eq. (6), we have

�h1x + h2y + h3�
u2 + v2 − a2

2a
− �h7x + h8y + h9�u = 0.

�13�

earranging Eq. (13), we obtain

k1a2 + 2uah9 + k2a + k3 = 0, �14�

here

k1 = h1x + h2y + h3, k2 = 2u�h7x + h8y�,

k3 = − �u2 + v2��h1x + h2y + h3�.

In Eq. (14), the unknowns include h9 and a, since h7
nd h8 are already determined as R31/s and R32/s in the
revious subsection. Therefore, they can be computed by
nalytic solution using two pairs of points. Given n�2
airs, we can have the linear system

Bb = 0, �15�

B = �
k1

1 2u1 k1
2 k1

3

¯ ¯ ¯ ¯

kn
1 2un kn

2 kn
3	

nd

b = �a2 ah9 a 1�T.

The solution for the vector b can be obtained up to a
cale factor by singular value decomposition. Then we
ave

a = b1/b3 and h9 = b2/b3, �16�

here b denotes the ith element of b.
i



t
a
r

D
W
c

n

b

b

t

i
t

a

4
A
W
n
t
c
e
t
t
p
e
f
t
d
a

a
�

F
i
w
p
b
n

c
r
r
t
i
p

a
m
w
s
a
r
t
s

B
T
b
F
l
p

h

F
i

F
n

T

1
2
3
4
5

1392 J. Opt. Soc. Am. A/Vol. 25, No. 6 /June 2008 B. Zhang and Y. Li
From the above analysis, the third component of the
ranslation vector, i.e., t3, is equivalent to sh9. Therefore,
ll the variables in the parabolic camera system are
ecovered analytically.

. Implementation Procedure
e give a brief procedure for calibrating the parabolic

amera system:

(1) Place a planar pattern in the scene. The position is
ot critical since the system has a very large field of view.
(2) Establish six or more point correspondences

etween the camera image and the planar pattern.
(3) Construct the coefficient matrix A in (8) and solve it

y SVD for the vector h.
(4) Recover the motion parameters partially according

o (10)–(12).
(5) Construct the coefficient matrix B in (15) and solve

t for the mirror parameters and the last component of the
ranslation vector.

(6) Optionally, the solutions are optimized by bundle
djustment using all the point correspondences.

. EXPERIMENTAL RESULTS
. Numerical Simulations
e first evaluate the robustness of our algorithm against

oise by numerical simulations. We assume that the in-
rinsic parameters of the camera are known a priori. Two
ases are considered; calibrating the system when differ-
nt levels of Gaussian noise are injected, and calibrating
he system when it is moving arbitrarily. In both simula-
ions, we use a virtual 5�5 planar pattern and the
arameter of the parabolic mirror is set to be a=0.03. To
valuate the accuracy quantitatively, the relative errors
or the mirror parameter a, the translation vector t, and
he three rotation angles �= �� ,� ,	� are respectively
efined as �a− ā � / ā, �t− t̄ � / �t�, and ��− �̄ � / ���, where ā, t̄,
nd �̄ are the estimated values.
In the first simulation, we assumed that the rotation

ngles and the translation vector of the system were

 /36,
 /15,
 /4� and �3 0.5 0.05�, respectively.

ig. 2. (Color online) One of the simulated parabolic camera
mages.
igure 2 gives one of the simulated parabolic camera
mages that consisted of 25 image points. Gaussian noise
ith mean 0 and standard deviation ranging from 0 to 2
ixels was added to those points. Then the proposed cali-
ration algorithm was implemented. At each level of
oise, 100 independent runs were performed.
The averaged results are given in Fig. 3, where red

ircles, green diamonds, and blue squares, respectively,
epresent the relative errors for the mirror parameter, the
otation angles, and the translation vector. We can see
hat the error percentages are almost linear with increas-
ng noise and within a reasonable range. Hence, the
roposed algorithm is valid and robust to noise.
In another simulation, we changed the rotation angles

nd the translation vector randomly to simulate arbitrary
otion of the system. Obviously, the calibration results
ere accurate if no noise was added. In order to test the

tability of our method, a fixed noise level of 1 pixel was
pplied to the image points. Table 1 gives the calibration
esults of five different positions of the system. From
hese simulations, we can see that the algorithm performs
tably when the system undergoes arbitrary motion.

. Real Data Experiments
he system involved in the real data experiments was
uilt using off-the-shelf components, as illustrated in
ig. 4. The CCD camera was EC1380 with image reso-

ution of 1360�1024 pixels. The parabolic mirror was
rovided by ACCOWLE Vision Company.
When working, the parabolic camera system can be

eld by hand since the proposed algorithm has no specific

ig. 3. (Color online) Relative errors versus different levels of
oise.

Table 1. Relative Error Percentage in Cases of
Arbitrary Motions

rial Mirror Parameter Rotation Angle Translation Vector

8.0334 1.6067 4.7357
6.3702 1.6798 4.4499
9.8229 2.4970 6.7023
7.6939 1.9456 4.2882
7.8479 2.8412 5.2104
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equirement of movement. In this experiment, we arbi-
rarily moved the planar pattern around the system, then
alibrated the system and tracked the motion using our
lgorithm. The pattern was printed on A4 paper. Figure 5
hows images of the pattern in six different positions. The
ntrinsic parameters of the camera were estimated using
he Camera Calibration Toolbox for Matlab [25] before
etting up the system. Then the mirror parameter and
otions of the pattern were computed using our

lgorithm. Figure 6 illustrates the reconstructed positions
f the pattern in the six positions with the calibration
esults.

We also reprojected those points of the pattern into the
mages and calculated the distances between the re-
rojected points and the corresponding image points in
he 2D image space. Table 2 gives the mean and standard

ig. 5. (Color online) Pattern in six different positions: they are
abeled 1–6 from left to right and from top down in this
xperiment.

Fig. 6. (Color online) Reconstructed positions of the pattern.

Fig. 4. (Color online) System setup in real data experiments.
eviations of the distances. We can see that the calibra-
ion accuracy is acceptable. These experiments further
emonstrate the validity of the proposed algorithms
uantitatively and qualitatively.

. CONCLUSIONS
e have reported a calibration method for a central para-

olic camera system based on the homographic matrix. In
his method, the mirror parameter and the motion pa-
ameters of the system can be estimated from a closed-
orm solution assuming that the intrinsic parameters are
nown. The robustness of the algorithm is enhanced via
he use of two over-constrained systems. Hence this algo-
ithm is simple and easy to implement. Both numerical
imulations and real data experiments show that the
ethod is accurate and stable for different motions. In
any applications, e.g., robot navigation and motion

racking, the motion parameters need to be calibrated fre-
uently and a larger field of view is preferred. In these
ases, the proposed method provides a good solution.
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