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We present a homography-based method for calibrating an omnidirectional vision system with a parabolic mir-
ror. Assuming that the intrinsic parameters of the camera are known a priori, we focus on finding the solution
for the mirror parameter and its positions. We first estimate the homographic matrix partially using six or
more point correspondences. Then the rotation matrix and two components of the translation vector can be
estimated. Finally, the remaining parameters are computed. In this method, a closed-form solution for all the
variables is obtained using the homographic matrix. Another advantage is the enhanced robustness in imple-
mentation via the use of two over-constrained linear systems. Numerical simulations and real data experi-
ments are also performed to validate the proposed algorithm. © 2008 Optical Society of America
OCIS codes: 110.0110, 120.0120, 120.4640, 150.0150, 330.0330.

1. INTRODUCTION

A central catadioptric vision system can be built by com-
bining a parabolic mirror with an orthographic camera, or
a hyperbolic mirror with a perspective camera. It has a
large field of view (often larger than 180°) with a single
effective viewpoint, and hence features many distinct ad-
vantages compared with the traditional vision system
with narrow field of view. First, the search for correspon-
dences is easier since the corresponding points do not of-
ten disappear from the images. Second, a large field of
view stabilizes the motion estimation algorithms. Last
but not least, more information of the scene can be recon-
structed from fewer images. As a result, the central cata-
dioptric system offers great benefits to visual surveil-
lance, three-dimensional modeling of wide environments,
robot navigation, etc.

Just like traditional vision, the catadioptric vision
needs calibration before a vision task begins. Many tech-
niques have been proposed in the past several decades for
the traditional vision [1,2]. However, because of severe
distortion of the view and high nonlinearity of the imag-
ing process with the catadioptric camera, those well-
established algorithms under the perspective projection
model cannot be applied directly. Therefore, many special
efforts have been spent on the catadioptric vision system
recently. Baker and Nayar [3] and Geyer and Daniilidis
[4], respectively, studied the image formation and the pro-
jective geometry in a catadioptric vision system. They
showed that a central catadioptric projection is equivalent
to a two-step mapping via the sphere. Some researchers,
e.g., Barreto [5] and Ying and Hu [6], have proposed a uni-
fying projection model for cataoptric, dioptric, and fisheye
cameras. With these theories, some -calibration con-
straints and very practical implications can be obtained
for the system. For example, a set of linear equations was
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constructed for the focal lengths and skew factor of a
para-catadioptric-like camera with known principal point
in Wu et al. [7] using the sphere projection model.

Lines projected as conics in the image plane have inten-
sively been used for calibration in the catadioptric camera
[8,9]. Mei and Malis [10] presented an algorithm for
structure from motion using 3D line projections in a cen-
tral catadioptric camera. With the images of three lines,
Geyer and Daniilidis [11] gave a closed-form solution for
focal length, image center, and aspect ratio for skewless
cameras and a polynomial root solution in the presence of
skew. Barreto and Araujo [12] investigated the projective
invariant properties of central catadioptric projection of
lines and suggested an efficient method for recovering the
image of the absolute conic, the relative pose between the
camera and the mirror, and the shape of the reflective
surface.

However, the estimation of the conics using imaged
points in these algorithms is hard to accomplish, which
limits its use in practice. First, only a small part of the arc
of the conic is available from the image due to occlusions
and curvature, which makes the results unreliable and
inaccurate. Second, when multiple lines are projected in
the images, it is difficult to distinguish which conic is the
image of a given line. Last, the conics are not always line
images. They may be the image of lines, circles, or any
other curves. Some researchers have tried to solve these
problems. For example, Barreto and Araujo [13] and
Barreto and Daniilidis [14] have derived some constraints
that are necessary for the conic curves to be line images.
However, these are not sufficient conditions.

On the other hand, points as important features for the
calibration completely overcome the above listed limita-
tions and have been widely used in the catadioptric cam-
era [15,16]. Wu and Hu [17] investigated the projective
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geometric invariants of scene points and their image
points where the invariant equations for 1D, 2D, and 3D
space points were established via cross ratios of space
points and the optical axis. The epipolar geometry in
terms of a fundamental matrix has been studied for cali-
brating the central catadioptric camera by several re-
searchers [18-21]. In 2002, Svoboda et al. [20] presented
the explicit expression and characterization of epipolar
geometry within a pair of central catadioptric cameras.
Recently, by lifting the 2D image plane to 5D projective
space, Barreto and Daniilidis [21] constructed different
formulas for the lifted fundamental matrices in a system-
atic manner and discussed their structures. Micusik and
Pajdla [22—24] showed that the epipolar geometry can be
estimated from a small number of correspondences by
solving a polynomial eigenvalue problem. Their work al-
lowed the wuse of robust random-sample-consensus
(RANSAC) estimation to find the image projection model
and the epipolar geometry from tentative correspon-
dences contaminated by mismatches or noise.

Based on the above discussions, we will employ image
points rather than lines as features in this work. In prac-
tice, the intrinsic parameters, e.g., the focal lengths and
principal point of the camera, are not changed as fre-
quently as the extrinsic parameters. Hence, we focus on
the motion parameters as well as the mirror parameter of
a parabolic camera system, assuming that the intrinsic
parameters are known a priori. To solve this problem, we
make use of the plane-based homographic matrix, given a
few point correspondences between the image and a pla-
nar pattern. A closed-form solution for all the variables is
provided using the homographic matrix, and the optimi-
zation process is very fast. Another advantage is the en-
hanced robustness in implementation through the use of
two over-constrained linear systems. We have carried out
some numerical simulations and real data experiments to
validate the proposed algorithm, and the results are
acceptable.

The remainder of this paper is structured as follows.
Section 2 presents the projection model for the parabolic
camera. We give the calibration algorithm using plane-
based homography in Section 3. Some experimental
results are shown in Section 4. Finally, we conclude this
paper in Section 5.

2. PROJECTION MODEL

We consider a central parabolic camera system that con-
sists of a parabolic mirror and an orthographic camera.
Figure 1 shows a sketch of the system, in which the cam-
era is assembled with the mirror so that the rays of the
camera are parallel to the mirror symmetry axis. We con-
struct a right-handed coordinate frame for the system
whose origin coincides with the focal point of the mirror.
The transformation between the mirror frame and the
world frame, which is identified as the extrinsic param-
eters of the system, is described by rotation matrix R,,
and translation vector ¢,,.

In such system, the image formation can be divided
into two steps: (1) The world points are projected onto the
mirror surface by a central projection from the focal point,
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Fig. 1. Parabolic camera system.

(2) the mirror points are orthographically projected into
the image plane of the camera.
Let the surface equation of the parabolic mirror be

x%+y%—a?
e .

where ¢ is called the mirror parameter. A point P in the
world frame is projected on the mirror surface by a
central projection as

P=\NR,P+t,), (2)

where \ is a scale factor. Let [x y z]=R,,P+¢,,. Substitut-
ing Eq. (2) into Eq. (1), we can obtain the solution for the
scale X as A=a(z+\x2+y2+2%) /x%+y2.

Once \ is determined, the projection from point p to the
image point u can be written as

(1 0 O)
u=ao\0 1 0P 3)

where « is a nonzero scale factor.

On the other hand, if an image point u is known, the
corresponding point on the mirror surface can be directly
computed as

p= 2 2 2 | (4)

where u and v denote the two components of u.

3. CALIBRATING THE CATADIOPTRIC
CAMERA

In this work, we assume that the parabolic camera under-
goes an arbitrary rigid motion in the scene; so the calibra-
tion task then involves determining the mirror parameter
and the motion parameters of the system. We will solve
these problems by using a homographic matrix in what
follows.
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A. Homographic Matrix
Assume that P lies on a planar surface and p is its corre-
sponding point on the mirror surface. According to projec-
tive geometry, there is a 3X3 homographic matrix H
between them satisfying

p=0HP, (5)
where
hi hy  hy
H: h4 h5 h6
hy  hg  hy

and o is a nonzero scale factor.

Without loss of generality, the xy axis of the world
frame is assumed to lie on the plane. Hence, the third
components of points on that plane are zeros. According to
Egs. (4) and (5), we then have

X
v
u?+v%-a? =oH| Y. ©)
1
2a

In Eq. (6), the unknowns include the mirror parameter
a, the scale factor o, and the homographic matrix H.
Since it has a special form, we can partially recover the
matrix H using some point pairs. From the first two rows,
we obtain

(hix + hoy + hg)v — (hyx + hsy + hg)u =0. (7)

We can see that each point pair provides one constraint
on the six components of the homographic matrix. Given
n pairs of points (n=6), we have

Ah=0, (8)
where
U1X1 U1Y1 U1 —Uixy — U1 —Ux
A —
UnXp UnYn Upn —UpXp —UpYn —U,

and h=[hy hs hs hy hs hgl'. Using eigenvalue de-
composition, the solution for the vector A can be deter-
mined up to a scale factor by the eigenvector correspond-
ing to the smallest eigenvalue of ATA.

B. Calibration of the Parabolic Camera

Considering Egs. (2) and (3), the relationship between the
homographic matrix and the extrinsic parameters can be
described as

sH=|ra1 reg Iz, 9)

where s is the scale factor and r;; represents the ijth ele-
ment of rotation matrix R,, and #; the ith element of
translation vector #,,.

Vol. 25, No. 6/June 2008/J. Opt. Soc. Am. A 1391

Since R,, is an orthogonal matrix, the norm of its
2 X 2 submatrix should be exactly one. From Eq. (9), the
scale factor can be estimated as

1

hy  hy |\
norm h4 h5

Then the first 2 X 2 submatrix of R,, can be determined as

Riy=sh;, Riy=shy, Rgj=shy, Rgy=shs. (11)

s= (10)

According to the properties of rotation matrices, the re-
maining parameters of R,,, i.e., Ri3, Ra3, R3;, R39, and
hence R33, can be estimated.

For the translation vector, its first two components are
computed as

t1=Sh3, t2=8h6. (12)

Up to now, we have partially recovered the rotation
matrix and the translation vector using the homographic
matrix. In the next subsection, the remaining motion
parameters and the mirror parameters are estimated
using the constraints of Eq. (6).

C. Calibrating the Remaining Parameters
From the first and third rows in Eq. (6), we have

u?+v2-a?
(h1x + hoy + hsg) —(hx+hgy + hg)u=0.
(13)
Rearranging Eq. (13), we obtain
kla® + 2uahg + k2a + k3 =0, (14)

where

El=hix+hoy +hs, k2=2u(hx +hgy),

k3= — (U2 + v?)(hyx + hoy + hy).

In Eq. (14), the unknowns include hg and a, since Ay
and hg are already determined as Rj3;/s and R3s/s in the
previous subsection. Therefore, they can be computed by
analytic solution using two pairs of points. Given n>2
pairs, we can have the linear system

Bb=0, (15)
B2, KR

2u, k2 k3
and
b=[a® ahy a 1]V

The solution for the vector b can be obtained up to a
scale factor by singular value decomposition. Then we
have

a=b1/b3 and h9=b2/b3, (16)

where b; denotes the ith element of b.
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From the above analysis, the third component of the
translation vector, i.e., 3, is equivalent to shg. Therefore,
all the variables in the parabolic camera system are
recovered analytically.

D. Implementation Procedure
We give a brief procedure for calibrating the parabolic
camera system:

(1) Place a planar pattern in the scene. The position is
not critical since the system has a very large field of view.

(2) Establish six or more point correspondences
between the camera image and the planar pattern.

(3) Construct the coefficient matrix A in (8) and solve it
by SVD for the vector h.

(4) Recover the motion parameters partially according
to (10)—(12).

(5) Construct the coefficient matrix B in (15) and solve
it for the mirror parameters and the last component of the
translation vector.

(6) Optionally, the solutions are optimized by bundle
adjustment using all the point correspondences.

4. EXPERIMENTAL RESULTS

A. Numerical Simulations
We first evaluate the robustness of our algorithm against
noise by numerical simulations. We assume that the in-
trinsic parameters of the camera are known a priori. Two
cases are considered; calibrating the system when differ-
ent levels of Gaussian noise are injected, and calibrating
the system when it is moving arbitrarily. In both simula-
tions, we use a virtual 5X5 planar pattern and the
parameter of the parabolic mirror is set to be ¢=0.03. To
evaluate the accuracy quantitatively, the relative errors
for the mirror parameter a, the translation vector £, and
the three rotation angles ¢=[a,fB,y] are respectively
defined as |a-a|/a, |t-Z|/|¢t|, and ||&-&||/||&], where a, £,
and £ are the estimated values.

In the first simulation, we assumed that the rotation

angles and the translation vector of the system were
(7/36,7/15,7/4) and [3 0.5 0.05], respectively.

498 =
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Fig. 2. (Color online) One of the simulated parabolic camera
images.
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Fig. 3. (Color online) Relative errors versus different levels of
noise.

Figure 2 gives one of the simulated parabolic camera
images that consisted of 25 image points. Gaussian noise
with mean 0 and standard deviation ranging from 0 to 2
pixels was added to those points. Then the proposed cali-
bration algorithm was implemented. At each level of
noise, 100 independent runs were performed.

The averaged results are given in Fig. 3, where red
circles, green diamonds, and blue squares, respectively,
represent the relative errors for the mirror parameter, the
rotation angles, and the translation vector. We can see
that the error percentages are almost linear with increas-
ing noise and within a reasonable range. Hence, the
proposed algorithm is valid and robust to noise.

In another simulation, we changed the rotation angles
and the translation vector randomly to simulate arbitrary
motion of the system. Obviously, the calibration results
were accurate if no noise was added. In order to test the
stability of our method, a fixed noise level of 1 pixel was
applied to the image points. Table 1 gives the calibration
results of five different positions of the system. From
these simulations, we can see that the algorithm performs
stably when the system undergoes arbitrary motion.

B. Real Data Experiments
The system involved in the real data experiments was
built using off-the-shelf components, as illustrated in
Fig. 4. The CCD camera was EC1380 with image reso-
lution of 1360 X 1024 pixels. The parabolic mirror was
provided by ACCOWLE Vision Company.

When working, the parabolic camera system can be
held by hand since the proposed algorithm has no specific

Table 1. Relative Error Percentage in Cases of
Arbitrary Motions

Trial Mirror Parameter Rotation Angle Translation Vector

1 8.0334 1.6067 4.7357
2 6.3702 1.6798 4.4499
3 9.8229 2.4970 6.7023
4 7.6939 1.9456 4.2882
5 7.8479 2.8412 5.2104
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Fig. 4. (Color online) System setup in real data experiments.

Fig. 5. (Color online) Pattern in six different positions: they are
labeled 1-6 from left to right and from top down in this
experiment.

requirement of movement. In this experiment, we arbi-
trarily moved the planar pattern around the system, then
calibrated the system and tracked the motion using our
algorithm. The pattern was printed on A4 paper. Figure 5
shows images of the pattern in six different positions. The
intrinsic parameters of the camera were estimated using
the Camera Calibration Toolbox for Matlab [25] before
setting up the system. Then the mirror parameter and
motions of the pattern were computed using our
algorithm. Figure 6 illustrates the reconstructed positions
of the pattern in the six positions with the calibration
results.

We also reprojected those points of the pattern into the
images and calculated the distances between the re-
projected points and the corresponding image points in
the 2D image space. Table 2 gives the mean and standard

300
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Fig. 6. (Color online) Reconstructed positions of the pattern.

0
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Table 2. Reprojection Errors in the Image Space
(Pixels)

u Component v Component

Item Mean Std. Dev. Mean Std. Dev.
1 0.5364 0.4113 0.8448 0.5701
2 0.5446 0.4038 1.0718 0.9099
3 0.5783 0.3651 0.6022 0.8175
4 0.6690 0.4956 0.7050 0.5234
5 0.7529 0.6596 0.9836 0.7769
6 1.1602 0.7797 0.5384 0.4908

deviations of the distances. We can see that the calibra-
tion accuracy is acceptable. These experiments further
demonstrate the validity of the proposed algorithms
quantitatively and qualitatively.

5. CONCLUSIONS

We have reported a calibration method for a central para-
bolic camera system based on the homographic matrix. In
this method, the mirror parameter and the motion pa-
rameters of the system can be estimated from a closed-
form solution assuming that the intrinsic parameters are
known. The robustness of the algorithm is enhanced via
the use of two over-constrained systems. Hence this algo-
rithm is simple and easy to implement. Both numerical
simulations and real data experiments show that the
method is accurate and stable for different motions. In
many applications, e.g., robot navigation and motion
tracking, the motion parameters need to be calibrated fre-
quently and a larger field of view is preferred. In these
cases, the proposed method provides a good solution.
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