
Planar pattern for automatic camera calibration

Beiwei Zhang
Y. F. Li
City University of Hong Kong
Department of Manufacturing Engineering

and Engineering Management
Kowloon, Hong Kong

Fu-Chao Wu
Institute of Automation
Chinese Academy of Science
National Laboratory of Pattern Recognition
Beijing, China

Abstract. We present a method for automatic camera calibration that
requires only that a planar pattern be visible by the camera from a few (at
least three) different views. A major issue is how to obtain the projection
of an absolute point using the planar pattern. In the calibration, we can
move either the camera or the planar pattern and no knowledge about
the motion is required. We consider and resolve both linear and nonlin-
ear parameters. In testing the proposed methods, satisfactory results are
achieved in the simulation and in real data experiments. © 2003 Society of
Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1574037]

Subject terms: planar pattern; automatic calibration; plane at infinity; absolute
point; vanishing point.
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1 Introduction

Camera calibration is the process of determining the int
sic and extrinsic parameters of a camera and much w
has been conducted in this area.1–7 The work has included
photogeometric calibration and self-calibration.3–10 Zeller
et al. described a calibration technique based on the Kru
equation using image sequences.3 Ma explored a method
for camera calibration using two sequences of motion, e
consisting of three orthogonal translations.4 Zhang pro-
posed a technique that requires the camera to view a pl
pattern shown at a few~at least two! different poses.7 He
made use of the relationship between a 3-D point and
image projection to calibrate the camera. However, mos
the existing methods require either special motion of
camera or measurement of the patterns on the calibra
target, which causes difficulties in practical use.

To overcome these limitations, Li and Chen9 and Chen
and Li10 investigated the use of a single view for automa
recalibration of active vision systems in their recent stu
In this paper, we study the use of a planar pattern for au
matic calibration of the intrinsic and extrinsic camera p
rameters. Our method does not require the pattern to
placed in known positions. The planar pattern contains o
an equilateral dodecagon whose position does not nee
be known. Therefore it is easy to make the planar patt
Furthermore, no knowledge is required about the motion
the calibration target. In this paper, a linear method is u
to calibrate the linear parameters. Nonlinear lens distor
is also considered. A nonlinear refinement method is u
to obtain the nonlinear parameters. Both computer sim
tion and real data experiments were conducted to verify
proposed method and satisfactory results were achie
The theoretical analysis and experimental results show
this method has high potential for applications in robot
sion.

This paper is organized as follows. Section 2 introdu
the concept of the absolute point. In Sec. 3, we give a pr
that the projection of an absolute conic is still an absol
conic. Section 4 then presents the procedure for compu
the projection of an absolute point from the image of t
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pattern. Nonlinear lens distortion is also considered in
study. Both computer simulation and real data experime
were conducted to verify the proposed methods in Sec
and good results were achieved. Section 6 provides a s
mary of the study conducted.

2 Absolute Point in 3-D Space

2.1 Notation

For a 3-D point denoted byx5(x,y,z)TPR3, its homog-
enous coordinate is denoted by adding a scale as the
element, i.e.,x̃5(tx,ty,tz,t)T ~wheretÞ0). A point at in-
finity is denoted byx̃`5(x,y,z,0)T, wherex, y, andz are
not all zeros. All such points make a plane referred to as
plane at infinity, which is denoted by

p`5$x̃`5~x,y,z,0!TuxÞ0øyÞ0øzÞ0%.

In 3-D projective spaceR̃3, a plane can be denoted byax
1by1cz1dw50 or ñTx̃50, where ñ5(a,b,c,d)T.
Whena5b5c50 anddÞ0, the plane becomes a plane
infinity. An absolute conic11 on a plane at infinity can be
denoted byṽ`5$x̃`ux̃`

T x̃`50%. This indicates that the
equation forṽ` is x̃`

T x̃`50.

2.2 Definition of Absolute Point

Assume a spatial plane denoted byp. There is an orthogo-
nal coordinate system O2xyz in the space whosex andy
axes lie on the plane while thez axis is perpendicular to
this plane. Then the equation of the planep is z50. The
line at infinity on the plane is the intersection ofp with the
plane at infinity, i.e.,

l `5$x̃`5~x,y,0,0!TuxÞ0øyÞ0%. ~1!

Let c be a circle in the planep with o(x0 ,y0,0,1) as its
center and letr be its radius. The equation ofc is
.00 © 2003 Society of Photo-Optical Instrumentation Engineers
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c5$x̃5~x,y,0,w!Tu~x2x0w!T1~y2y0w!T2w2r 250%,
~2!

where (x,y,z,w) is the homogenous coordinate of a po
on the circle. The intersection of the line at infinity with th
circle is called an absolute point.

From Eqs.~1! and ~2!, we can have the following solu
tions for the coordinates of the absolute points:

I5~1,i ,0,0!T, J5~1,2 i ,0,0!T.

Obviously, the absolute points are a pair of conjugate po
and are not related to the center or radius of the circle
can also be inferred that

I ,JPv` . ~3!

2.3 Constraints on the Intrinsic Parameters

In this paper, a camera is modeled as a normal pinh
camera. The relationship between a 3-D pointx
5(x,y,z,w)T and its image projectionm5(u,v,s)T is
given by

lm5K@R,t#x,

where

K5F f u s u0

0 f n n0

0 0 1
G

is the matrix of intrinsic parameters of the camera, a
~R,t! represents the transformation by the camera.

Let xPṽ` , i.e., xTx50. Then we have

mTK2TK21m5l22xT@R,t#TKTK2TK21K@R,t#x

5l22xT@R,t#T@R,t#x5l22xTx50,

wherem is the projection ofx. This proves that the imag
of an absolute conic is also an absolute conic, and its eq
tion is

mTK2TK21m50. ~4!

From Eq. ~3!, we know that the projections of absolu
points satisfy Eq.~4!, i.e.,

mI
TCmI50, mJ

TCmJ50, ~5!

whereC5K2TK21, andmI andmJ are the projections ofI
andJ.

Under projective transformation,mI and mJ remain a
pair of conjugate points. Thus Eq.~5! places only the fol-
lowing two constraints on the intrinsic parameters:

Re~mI
TCmI !50, Im~mI

TCmI !50, ~6!
-

where Re and Im denote the real and imaginary parts
spectively. Because our camera model has five differ
intrinsic parameters, we require at least five equations
solve for them.

3 Implementation Algorithm Using the Planar
Pattern

3.1 Design of the Planar Pattern

From Eq.~6!, we know that the key step for camera ca
bration is the projection of the absolute points. How
design a planar pattern and achieve the projections of
absolute points from the pattern conveniently is of critic
importance here. For this purpose, we designed a kind
planar pattern using equilateral polygons with 2n sides (n
.2). In general, the larger then, the more accurately this
polygon can approximate a circle. However, a largen in-
creases the computational load in the approximation. Fr
our experiments, we found that an acceptable comprom
is achieved whenn56. This results in a planar pattern o
an equilateral dodecagon, as shown in Fig. 1. We ext
each side of the dodecagon for the ease of subsequent

3.2 Solving the Projection of Absolute Points

3.2.1 Solving the vanishing line

A vanishing point is the projection of a point at infinity. A
vanishing line is the projection of a line at infinity. Ther
are six groups of parallel lines in the equilateral dodecag
and they intersect at six points on the line at infinity. A
cording to the principle of projection, their projections al
intersect at six points on the vanishing line. Thus we c
solve for the vanishing line with the projection of the equ
lateral dodecagon~see Fig. 3 in Sec. 3.2.2!. The procedure
is given as follows:

1. For a pair of parallel linesAB andHG, obtain their
projections:l ab50 andl hg50.

2. Solve the two equationsl ab50 and l hg50, and ob-
tain their intersection pointp1 , which is a vanishing
point.

Fig. 1 Planar pattern.
1543Optical Engineering, Vol. 42 No. 6, June 2003
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3. Repeat steps 1 and 2. We can then obtain the o
five vanishing points, givingpi , i 51,2, . . . ,6.

4. Solve the following equations~with a, b, and c as
the unknowns! usingpi5(ui ,v i ,wi)

T:
uia1nib1wic50 i51,2, . . . ,6.

We can then obtain the equation of the vanishing l
l s :au1bv1cw50.

3.2.2 Solution of the projection of a circle

The equilateral dodecagon has a circumcircle whose
jection is an ellipse. According to the principle of proje
tion, the projections of the vertices of the equilate
dodecagon are all on the ellipse. Thus we can solve
projection of the circle~see Figs. 2 and 3! by the following
procedure: First, let the equation of the ellipse be

E~u,v,w!5~u,v,w!F a d e

d b f

e f c
G S u

n
w
D 50,

wherea, b, c, d, e, and f are the unknowns.
Second, solve the following equations withmi

5(ui ,v i ,wi)
T:

Ax50,

where

Fig. 2 Equilateral dodecagon in the planar pattern.

Fig. 3 Vanishing line.
1544 Optical Engineering, Vol. 42 No. 6, June 2003
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A5F u1
2 n1

2 w1
2 2u1n1 2u1w1 2n1w1

u2
2 n2

2 w2
2 2u2n2 2u2w2 2n2w2

] ] ] ] ] ]

u12
2 n12

2 w12
2 2u12n12 2u12w12 2n12w12

G ,

x5~a b c d e f!T.

We can get the equation of the ellipse:Ec50.

3.2.3 Solution of the projection of an absolute point

An absolute point is the intersection of a line at infini
with a circle. According to the properties of projectio
transformation, its projection is the intersection of the va
ishing line with the ellipse. So we can solve this proble
with the equations of the vanishing line and the ellips
That is solving the group of equations:l s50 andEc50.

3.3 Solution of the Linear Parameters of the
Camera

Based on the preceding elaboration, we can have the
lowing algorithm for the automatic camera calibration:

1. Move either the planar pattern or the camera to tak
few ~at least three! images of the planar pattern i
different poses.

2. Calculate the absolute point for each image.

3. Solve the group of constraints derived from Eq.~6!
and obtain the solutionC* .

4. Derive the intrinsic parameter matrixK of the camera
from C* .

4 Solution for Nonlinear Camera Parameters

4.1 Nonlinear Camera Parameters

A real camera does not follow the pinhole model stric
because of many factors. The camera lens is always sub
to some distortions. The parameters describing the dis
tions are nonlinear and can be described by the follow
equations12,13:

Fig. 4 Comparison of two kinds of projections.
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Fig. 5 Experimental results of linear parameters.
1545Optical Engineering, Vol. 42 No. 6, June 2003
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Fig. 6 Experimental results of nonlinear parameters.
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H x̄5x1dx~x,y!

ȳ5y1dy~x,y!

where (x̄,ȳ) is the projection by the linear camera mod
and (x,y) is the projection in real camera. Here (dx ,dy)
represents the nonlinear distortion and can be given
follows11,14:

H dx5k1x~x21y2!1@p1~3x21y2!12p2xy#1s1~x21y2!,
dx5k2y~x21y2!1@p2~3x21y2!12p1xy#1s2~x21y2!,

where the first term is the radial distortion, the second r
resents the decentering effect, and the third represents
prism effect. Herek1 , k2 , p1 , p2 , s1 , ands2 are the non-
linear camera parameters.
l Engineering, Vol. 42 No. 6, June 2003
s

n

The characteristics of distortions are such that their
fects can be ignored in the center area and the degre
distortion increases toward the edge, as shown in Fig.

4.2 Solution of the Nonlinear Parameters

With the knowledge of the characteristics of the distortio
and those of the projective transformation, we can solve
the nonlinear parameters via the following steps:

1. Choose a lineL in the given planar pattern and obta
its projectionS. Select several pixels in its center are
and derive a linel by a nonlinear optimization tech
nique.

2. Select several pixels in another areaS. The projec-
tions of these pixelsPi

S5(xi
s ,yi

s)T must be onl by
the pinhole model. Thus, we can get the followin
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Fig. 7 Two pictures taken in the experiments.
in a
equation for the nonlinear parametersk1 , k2 , p1 ,
p2 , s1 , ands2 :
fi~k1,k2,p1,p2,s1,s2!5a~xi

s1dx~xi
s,yi

s!1b@yi
s1dx~xi

s,yi
s!#

1c50, i 51,2, . . . ,ns ,
where

5
dx~x,y!5k1x~x21y2!1@p1~3x21y2!12p2xy#

1s1~x21y2!

dx~x,y!5k2y~x21y2!1@p2~3x21y2!12p1xy#

1s2~x21y2!

.

3. Repeating the preceding two steps, we can obta
group of equations as follows:
Fij~k1,k2,p1,p2,s1,s2!50, j 51,2, . . . ,1, 2,

i 51,2, . . . ,nj ,

wherej denotes the sequence of a line, andi denotes
sequence of a point.

4. Solving the preceding equations, we can obtaink1 ,
k2 , p1 , p2 , s1 , ands2 .
Fig. 8 Twenty points for reconstruction.
1547Optical Engineering, Vol. 42 No. 6, June 2003
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5 Implementation Results

5.1 Computer Simulations

5.1.1 Linear parameters

The simulated camera has the following parameters:f u

5990, f v5990,s52, u0510, andv0510. The image size
used is 12803960. Different levels of random noise wit
zero mean, i.e.,N(0,s2) are added to the projected imag
points. We vary the noise levels from 0.0 to 1.2 pixels. F
each noise level, we performed 100 independent trials,
the results of the average errors are shown in Fig. 5.

5.1.2 Nonlinear parameters

The simulated camera has the following nonlinear para
eters: k15k25p15p25s15s251.0310210. The results
of the average errors are shown in Fig. 6. From these
sults, we can see that when the noise level is very low,
less than 0.3, and the average errors are within a reason
range. The errors of the linear parameters tend to incre
along with the noise levels, whereas those of the nonlin
parameters remain more or less stabilized as the noise
is further increased.

5.2 Experiments with Real Data

5.2.1 Solution of the linear parameters

Calibration of the linear parameters. In the experi-
ment, we first took five pictures~two of which are shown in
Fig. 7! of the planar pattern with our camera from differe
views. Applying the algorithm from Sec. 3.3, we obtain
the following results:

K5F 1369.7 23.3 238.6

0 1376.8 216.9

0 0 1
G .

Verification of the results. We used the technique of 3-D
reconstruction to verify the linear parameters in matrixK,
which we obtained by the preceding calibration meth
We selected 20 points in the real scene shown in Fig. 8
reconstructed these points in 3-D space with the res
shown in Fig. 9.

Fig. 9 Result of 3-D reconstruction.
1548 Optical Engineering, Vol. 42 No. 6, June 2003
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From the preceding experimental results, we obse
that the reconstructed 3-D points match the real 3-D po
of the building well, with such small matching errors th
the differences are nearly invisible. This proves that o
algorithm for the linear parameter calibration is valid
practice.

5.2.2 Solution of the nonlinear parameters

Calibration of the nonlinear parameters. At this stage,
we selected one of the five pictures of the planar patt
and implemented the algorithm from Sec. 4.2. The follo
ing results were then obtained:

k152.632981829076673102008,

k2527.541193426169643102010,

p1527.467236724080623102006,

p2528.110269157202163102007,

s1527.374284327557323102006,

s257.049703770980873102006.

Verification of the results. Next we conducted some
other experiments to verify the results we had just obtain
Figure 10 is a picture taken from the wall of a buildin
Figure 11 is the rectified result using the obtained nonlin
parameters. Comparing these two figures, we can see
the nonlinear distortions, which are easily observable in
original image in Fig. 10~especially the lines close to th
boundaries!, were corrected using the parameters obtain
by our calibration method. The result in the removal of t
distortions, as seen in Fig. 11, proves that our algorithm
the nonlinear parameters is a valid solution.

6 Conclusions

We presented a new planar pattern for automatic cam
calibration. The method requires only that the camera v
the pattern from a few~at least three! different poses. We
can move either the camera or the target during the cali
tion. The motion does not need to be known for the ca

Fig. 10 Picture of the wall of a building.
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bration. In addition to the normal parameters in a pinh
model, nonlinear lens distortion can also be taken into
count by our calibration method. Both computer simulati
and experiments on real data were conducted to verify
validity of the proposed method. The satisfactory resu
obtained demonstrated that our method provides a cor
and practical solution for automatic camera calibratio
Without the necessity of precise placement of the calib
tion target, this method offers the advantage of ease of
in practical applications. In a robotic application, this r
moved the required knowledge of the relative motions
tween the camera and the target, significantly facilitat
on-line calibration of a robot vision system during the e
ecution of a task.
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