Planar pattern for automatic camera calibration
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1 Introduction pattern. Nonlinear lens distortion is also considered in the

study. Both computer simulation and real data experiments
were conducted to verify the proposed methods in Sec. 5
and good results were achieved. Section 6 provides a sum-
mary of the study conducted.

Camera calibration is the process of determining the intrin-
sic and extrinsic parameters of a camera and much work
has been conducted in this aredThe work has included
photogeometric calibration and self-calibratiti® Zeller
et al. described a calibration technique based on the Kruppa
equation using imf_;lge sequenéelh’la explored a method 2 Absolute Point in 3-D Space
for camera calibration using two sequences of motion, each
consisting of three orthogonal translatidhghang pro- 2.1 Notation
posed a technique that requires the camera to view a planar. . .
pattern shown at a fevat least two different poseg.He For a 3-D point dgnoted by=(x,y,z)Te R®, its homog-
made use of the relationship between a 3-D point and its enous co_ordlnate IS denotsd by adding a sca_le as _the last
image projection to calibrate the camera. However, most of €lément, i.e.X=(txty,tz,1) (WhTereH&O). A point at in-
the existing methods require either special motion of the finity is denoted byX..=(x,y,z,0)’, wherex, y, andz are
camera or measurement of the patterns on the calibrationnot all zeros. All such points make a plane referred to as the
target, which causes difficulties in practical use. plane at infinity, which is denoted by

To overcome these limitations, Li and CReand Chen ~ -
and Li° investigated the use of a single view for automatic 7»=1{X==(X,y,2,0)'[x#0Uy#0Uz#0}.
recalibration of active vision systems in their recent study. _
In this paper, we study the use of a planar pattern for auto- In 3-D projective spac&®®, a plane can be denoted by
matic calibration of the intrinsic and extrinsic camera pa- +by+cz+dw=0 or fi'x=0, where fi=(a,b,c,d)".
rameters. Our method does not require the pattern to bewhena=b=c=0 andd+0, the plane becomes a plane at
placed in known positions. The planar pattern contains only infinity. An absolute conitt on a plane at infinity can be
an equilateral dodecagon whose position does not need tojenoted by, ={X.|X/%.=0}. This indicates that the
be known. Therefore it is easy to make the planar pattern. equation fora,, is X%, =0.
Furthermore, no knowledge is required about the motion of
the calibration target. In this paper, a linear method is used
to calibrate t_he linear parameters. Nonlinear lens di§tortion 22 Definition of Absolute Point
is also considered. A nonlinear refinement method is used _ )
to obtain the nonlinear parameters. Both computer simula- ASSume a spatial plane denoted byThere is an orthogo-
tion and real data experiments were conducted to verify the Nal coordinate system -©xyzin the space whose andy
proposed method and satisfactory results were achievedaxes lie on the plane while the axis is perpendicular to
The theoretical analysis and experimental results show thatthis plane. Then the equation of the plamdés z=0. The
this method has high potential for applications in robot vi- line at infinity on the plane is the intersection @fwith the

sion. plane at infinity, i.e.,
This paper is organized as follows. Section 2 introduces
the concept of the absolute point. In Sec. 3, we give a proof |..={X..=(x,y,0,0)T|x#0Uy#0}. (1)

that the projection of an absolute conic is still an absolute _ . . .
conic. Section 4 then presents the procedure for computingLet ¢ be a circle in the planer with 0o(Xg,Y(,0,1) as its
the projection of an absolute point from the image of the center and let be its radius. The equation ofis

1542 Opt. Eng. 42(6) 1542-1549 (June 2003) 0091-3286/2003/$15.00 © 2003 Society of Photo-Optical Instrumentation Engineers



Zhang, Li, and Wu: Planar pattern for automatic . . .

c={%=(%,y,0) | (x=xoW) T+ (y —yow) = w?r?=0},

)

where &,y,z,w) is the homogenous coordinate of a point
on the circle. The intersection of the line at infinity with the
circle is called an absolute point.

From Egs.(1) and(2), we can have the following solu-
tions for the coordinates of the absolute points:

I=(1,i,0,007, J=(1,—i,0,0)".
Obviously, the absolute points are a pair of conjugate points

and are not related to the center or radius of the circle. It
can also be inferred that

©)

I, Je w, .

2.3 Constraints on the Intrinsic Parameters

-~/
-~

Fig. 1 Planar pattern.
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where Re and Im denote the real and imaginary parts re-
spectively. Because our camera model has five different

In this paper, a camera is modeled as a normal pinholeintrinsic parameters, we require at least five equations to

camera. The relationship between a 3-D poirt
=(x,y,zW)" and its image projectiorm=(u,v,s)’ is
given by

Am=K[R,t]x,
where
fu s U
K= 0 fV Vo
0O 0 1

is the matrix of intrinsic parameters of the camera, and
(R,t) represents the transformation by the camera.
Let xe @, i.e.,x'x=0. Then we have

m'K K 'm=\"X"[R,t]"KTK"TK K[ R,t]x
=\"A"[R,t]"[R,t]x=\"?x"x=0,

wherem is the projection of. This proves that the image

solve for them.

3 Implementation Algorithm Using the Planar

Pattern

3.1 Design of the Planar Pattern

From Eq.(6), we know that the key step for camera cali-
bration is the projection of the absolute points. How to
design a planar pattern and achieve the projections of the
absolute points from the pattern conveniently is of critical
importance here. For this purpose, we designed a kind of
planar pattern using equilateral polygons with gides 6
>2). In general, the larger the, the more accurately this
polygon can approximate a circle. However, a larg@-
creases the computational load in the approximation. From
our experiments, we found that an acceptable compromise
is achieved whem==6. This results in a planar pattern of
an equilateral dodecagon, as shown in Fig. 1. We extend
each side of the dodecagon for the ease of subsequent uses.

3.2 Solving the Projection of Absolute Points

of an absolute conic is also an absolute conic, and its equa-

tion is

m'K~TK im=0. (4)
From Eq.(3), we know that the projections of absolute
points satisfy Eq(4), i.e.,

T _ T _
m,Cm;=0, m;Cm;=0, (5)
whereC=K TK™1, andm, andm; are the projections df
andJ.

Under projective transformatiorm, and m; remain a
pair of conjugate points. Thus E(p) places only the fol-
lowing two constraints on the intrinsic parameters:
Rem/Cm;)=0, Im(m/Cm,)=0,

(6)

3.2.1 Solving the vanishing line

A vanishing point is the projection of a point at infinity. A
vanishing line is the projection of a line at infinity. There
are six groups of parallel lines in the equilateral dodecagon
and they intersect at six points on the line at infinity. Ac-
cording to the principle of projection, their projections also
intersect at six points on the vanishing line. Thus we can
solve for the vanishing line with the projection of the equi-
lateral dodecagorsee Fig. 3 in Sec. 3.2.2The procedure

is given as follows:

1. For a pair of parallel line&B andHG, obtain their
projections:l,,=0 andl,=0.
2. Solve the two equationig,=0 andl,q=0, and ob-

tain their intersection poinp,, which is a vanishing
point.
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We can get the equation of the ellipgg;=0.
H G

3.2.3 Solution of the projection of an absolute point

An absolute point is the intersection of a line at infinity
with a circle. According to the properties of projection
transformation, its projection is the intersection of the van-
3. Repeat steps 1 and 2. We can then obtain the otherishing line with the ellipse. So we can solve this problem

five vanishing points, giving;, i=1,2, . .. 6. with the equations of the vanishing line and the ellipse.
That is solving the group of equatiorig=0 andE.=0.

Fig. 2 Equilateral dodecagon in the planar pattern.

4. Solve the following equationgvith a, b, andc as
the unknownsusing p;= (u; ,v; ,w;) "

n i 3.3 Solution of the Linear Parameters of the
ua+yb+we=0 i=1,2,...,6. Camera

We can then obtain the equation of the vanishing line Based on the preceding elaboration, we can have the fol-
I:au+bv+cw=0. lowing algorithm for the automatic camera calibration:

. o _ 1. Move either the planar pattern or the camera to take a
3.2.2 Solution of the projection of a circle few (at least threeimages of the planar pattern in
The equilateral dodecagon has a circumcircle whose pro- different poses.
jection is an ellipse. According to the principle of projec- 2. Calculate the absolute point for each image.

tion, the projections of the vertices of the equilateral
dodecagon are all on the ellipse. Thus we can solve the
projection of the circlésee Figs. 2 and)dy the following

3. Solve the group of constraints derived from E®).
and obtain the solutio®* .

procedure: First, let the equation of the ellipse be 4, Derive*the intrinsic parameter mattof the camera
from C*.
a d e|/y
E(uow)=(uo,w)|d b f vl =0 4 Solution for Nonlinear Camera Parameters
e f c]\W 4.1 Nonlinear Camera Parameters

A real camera does not follow the pinhole model strictly

wherea, b, ¢, d, e, andf are the unknowns. _ because of many factors. The camera lens is always subject
Second, solve the following equations witin, to some distortions. The parameters describing the distor-

= (uj,v;,w) " tions are nonlinear and can be described by the following

equation¥?
Ax=0,

where

Projection of >

line in pinhole

Projection from

real camera

Vanishing line —Y

Vanishing point

Fig. 3 Vanishing line. Fig. 4 Comparison of two kinds of projections.
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Fig. 5 Experimental results of linear parameters.
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Fig. 6 Experimental results of nonlinear parameters.

X=X+ 8,(X,Y) The characteristics of distortions are such that their ef-
Y=Y+ 8,(x,y) fects can be ignored in the center area and the degree of
o distortion increases toward the edge, as shown in Fig. 4.

where &,y) is the projection by the linear camera model, _ _
and (x,y) is the projection in real camera. Heré,( 5y) 4.2 Solution of the Nonlinear Parameters

represents the nonlinear distortion and can be given aswith the knowledge of the characteristics of the distortions

follows and those of the projective transformation, we can solve for
the nonlinear parameters via the following steps:
S8y =KiX(X?+Y?) +[p1(3XP+Yy?) +2p,xy] + 5, (X +y?), 1. Choose a ling in the given planar pattern and obtain
8, =Koy (X?+y2) +[pa(3x2+y?) + 2pXy]+ Sp( X2+ y?), its projectionS. Select several pixels in its center area
and derive a lind by a nonlinear optimization tech-
where the first term is the radial distortion, the second rep- nique. o _
resents the decentering effect, and the third represents thin 2. Select several pixels in another af®aThe projec-
prism effect. Herek,, K,, p1, pP», S1, ands, are the non- tions of these pixel®P=(x°,y?)T must be onl by
linear camera parameters. the pinhole model. Thus, we can get the following
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Fig. 7 Two pictures taken in the experiments.

equation for the nonlinear parameteks, k,, pq,
P2, S1, ands,:
fi(ky ko,P1,P2,S1,8) =a0¢+ 8,6 )+ bly;+ 806y
+c=0, i=12,...ng,
where
8,(%,Y) =k x(x*+y?) +[p1(3x*+y?) + 2p,xy]
+5,(X2+y?)
8(X,Y) =Koy (X*+Y?) +[pa(3x°+y?) +2pyxy]’
+5,(x2+y?)

3. Repeating the preceding two steps, we can obtain a

group of equations as follows:

Fij(ky K2,p1,P2,81,8)=0, j=1,2,....,1, 2,
i=12,...n,

wherej denotes the sequence of a line, artknotes
sequence of a point.

. Solving the preceding equations, we can obtain

k21 P1, P2, S1, andSZ.

Fig. 8 Twenty points for reconstruction.
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Fig. 9 Result of 3-D reconstruction.
Fig. 10 Picture of the wall of a building.

5 Implementation Results . .
From the preceding experimental results, we observe

5.1 Computer Simulations that the reconstructed 3-D points match the real 3-D points
. of the building well, with such small matching errors that
5.1.1 Linear parameters the differences are nearly invisible. This proves that our

The simulated camera has the following parametérs:  algorithm for the linear parameter calibration is valid in
=990, f,=990,5=2, uy=10, andv,=10. The image size  Practice.

used is 1288 960. Different levels of random noise with
zero mean, i.eN(0,02) are added to the projected image
points. We vary the noise levels from 0.0 to 1.2 pixels. For cajipration of the nonlinear parameters. At this stage,
each noise level, we performed 100 independent trials, and\ye selected one of the five pictures of the planar pattern
the results of the average errors are shown in Fig. 5. and implemented the algorithm from Sec. 4.2. The follow-
ing results were then obtained:

5.2.2 Solution of the nonlinear parameters

5.1.2 Nonlinear parameters

The simulated camera has the following nonlinear param- k;=2.6329818290766710 %%
eters: ki=k,=p;=p,=5;=5,=1.0x10 % The results

of the average errors are shown in Fig. 6. From these re-k,= —7.5411934261696410 °1°
sults, we can see that when the noise level is very low, say

less than 0.3, and the average errors are within a reasonable, = — 7.4672367240806210 %%
range. The errors of the linear parameters tend to increase

along with the noise levels, whereas those of the nonlinearp,= —8.1102691572021:610 °*7,
parameters remain more or less stabilized as the noise IeveF

is further increased. s,= —7.3742843275573210 %%

5.2 Experiments with Real Data s,=7.04970377098087 10206

5.2.1  Solution of the linear parameters Verification of the results. Next we conducted some

Calibration of the linear parameters. In the experi- other experiments to verify the results we had just obtained.
ment, we first took five picture@wo of which are shown in ~ Figure 10 is a picture taken from the wall of a building.
Fig. 7) of the planar pattern with our camera from different Figure 11 is the rectified result using the obtained nonlinear
views. Applying the algorithm from Sec. 3.3, we obtained Parameters. Comparing these two figures, we can see that

the following results: the nonlinear distortions, which are easily observable in the
original image in Fig. 1Qespecially the lines close to the
1369.7 —3.3 —38.6 boundaries were corrected using the parameters obtained
by our calibration method. The result in the removal of the
K=| 0 1376.8 —16.9/. distortions, as seen in Fig. 11, proves that our algorithm for
0 0 1 the nonlinear parameters is a valid solution.

Verification of the results. We used the technique of 3-D & €onclusions

reconstruction to verify the linear parameters in makix We presented a new planar pattern for automatic camera
which we obtained by the preceding calibration method. calibration. The method requires only that the camera view
We selected 20 points in the real scene shown in Fig. 8 andthe pattern from a fewat least thregdifferent poses. We
reconstructed these points in 3-D space with the resultscan move either the camera or the target during the calibra-
shown in Fig. 9. tion. The motion does not need to be known for the cali-
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Fig. 11 Rectified picture.

12,
bration. In addition to the normal parameters in a pinhole ;3

model, nonlinear lens distortion can also be taken into ac-

count by our calibration method. Both computer simulation 14

and experiments on real data were conducted to verify the
validity of the proposed method. The satisfactory results
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