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On Integral Invariants for Effective 3-D Motion
Trajectory Matching and Recognition

Zhanpeng Shao and Youfu Li, Senior Member, IEEE

Abstract—Motion trajectories tracked from the motions of
human, robots, and moving objects can provide an important
clue for motion analysis, classification, and recognition. This
paper defines some new integral invariants for a 3-D motion
trajectory. Based on two typical kernel functions, we design
two integral invariants, the distance and area integral invari-
ants. The area integral invariants are estimated based on the
blurred segment of noisy discrete curve to avoid the compu-
tation of high-order derivatives. Such integral invariants for
a motion trajectory enjoy some desirable properties, such as
computational locality, uniqueness of representation, and noise
insensitivity. Moreover, our formulation allows the analysis of
motion trajectories at a range of scales by varying the scale of
kernel function. The features of motion trajectories can thus be
perceived at multiscale levels in a coarse-to-fine manner. Finally,
we define a distance function to measure the trajectory similarity
to find similar trajectories. Through the experiments, we examine
the robustness and effectiveness of the proposed integral invari-
ants and find that they can capture the motion cues in trajectory
matching and sign recognition satisfactorily.

Index Terms—Integral invariant, maximal blurred
segment (MBS), motion trajectory, similarity measure,
trajectory matching.

I. INTRODUCTION

OBSERVING and interpreting motion trajectories,
obtained by tracking moving objects of interest [3], [26],

is an important topic in computer vision. In this paper, we
propose to characterize motion patterns, contents by motion
trajectories. Among the potential fields of applications are
such areas as activity inference, motion retrieval, and learning
motion pattern from demonstration. Despite the progress
made in the past decade in trajectory-based analysis, many
challenging problems still remain, such as 3-D trajectory
matching, clustering, retrieval, and classification. All of these
rely on an effective way to represent motion trajectories,
where invariant to group transformations, tolerant to noise,
and insensitive to occlusions in trajectories are demanded
in most of the scenarios. In this paper, integral invariants
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are proposed to represent motion trajectories. The integral
invariants are defined as line integrals of a class of kernel
functions along a motion trajectory, and estimated by the
proposed formula. The integral invariants admit invariant to
translation, rotation, reflection, and scaling. They are also
insensitive to the effects of noise and occlusions in motion
trajectories, because the integral invariants are computed
via integrating kernel functions over local neighboring
points. In addition, the integral invariants can be extended
to multiscale representation that allows us to capture vary-
ing detailed features of a motion trajectory at multiple
scales. In order to match and cluster motion trajectories,
dynamical time wrapping (DTW) distance of the integral
invariants is defined to estimate the similarity between motion
trajectories.

Motion trajectories can provide a key cue in motion analy-
sis. In past decade, motion trajectories have been extensively
studied in the domain of activity analysis [1]–[4], video
surveillance [5], learning semantic scene [29], and motion
retrieval [6]. In most of the related work, motion trajectories
were often used directly in the raw data form or processed
naively without invariance and robustness. Shape descriptor,
a set of parameters, that are produced to describe the fea-
tures of a given shape has been developed to attempt shape
matching and classification. There are some task-specific shape
descriptors [7] that are studied for shape or curve matching,
such as curvature scale space [10], [11], B-spline [12], poly-
nomial curve fitting [8], and shape context [13]. Especially,
scale space methods [10], [11] have gained much attention in
the contour description of 2-D shapes, where those descriptors
are obtained by convolving the shape with a series of Gaussian
kernels at multiple scales in a coarse-to-fine manner. However,
in those scale space methods, the shape boundary is deformed
at varying scales, thereby yielding undesirable distortions
in the shape. B-spline and polynomial curve fitting show
nonflexible when the sampling rates of motion trajectories
varies or partial occlusions exist in a trajectory, because their
approximation accuracies depend on some key control points.
Shape context as a local descriptor owns some rich invariant
properties, and is capable of handling occlusions in shape, but
it is not the best way to describe a 3-D trajectory due to its
coarse captured distributions of the shape. In addition, trans-
formation functions such as Fourier and Wavelet [14], [15],
extract global features from motion trajectories, but mean-
while the local features of motion trajectories are lost. Moment
invariants for 3-D curves under similarity transformations
were derived in [22] and [23], but they are global descriptors
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that are sensitive to the effects of occlusions, and high-order
moments of them are sensitive to noise [23].

Most shape descriptors above mentioned were proposed ini-
tially for 2-D open or closed contour shapes. These shape
descriptors cannot be directly moved to our research. We
intend to represent a motion trajectory in both 2-D and 3-D
Euclidean space with some essential properties including
uniqueness of representation, invariance to specific transfor-
mation groups, noise resistance, and insensitivity to partial
occlusions.

Invariants have played an important role for various applica-
tions in computer vision ranging from shape matching [13] to
object recognition [24], gesture recognition [25], and motion
perception [9]. Consequently, plentiful features that are invari-
ant to some specific transformations have been studied
in [24] and [27]. Two types of invariant descriptors that relate
to our research are differential invariants and integral invari-
ants, which have been thoroughly investigated and put into
applications in [9], [30], and [32]. The locality is a use-
ful property for overcoming occlusions in using differential
invariants. However, differential invariants involves high-order
derivatives and hence are very sensitive to noise, though
approximated in terms of joint invariants [24]. To overcome
the limitations of differential invariants, there have been a lot
of work to attempt deriving integral invariants [21], [32], [37]
based on integrals other than derivatives. In [32], potentials
were proposed to get integral invariants for planar shapes
via integrating the potentials of contour curves of shapes,
but these integral invariants are global descriptors. Integral
invariants for closed planar shapes [21], [37] were derived
by performing integration of a local kernel along the shape
boundary represented by a planar curve, where the locality is
achieved by restricting integration on local neighborhoods at
each point of the curve. Especially, multiscale integral invari-
ants in [37] are obtained by integrating a series of isotropic
kernels over a shape at multiple scales. However, they can-
not be extended to represent 3-D temporal trajectories since
that in 3-D space the fact of open contours and varying orien-
tations of 3-D trajectories make the problems complicated.
Consequently, the ideal of defining some functions on the
domain of a motion trajectory, which can admit invariant
under group transformations in 3-D space, still remains unre-
solved. In [35], the multiscale integral invariants for a 3-D
motion trajectory have been explored primitively. Furthermore,
in this paper, we will build a complete theory, and give some
comprehensive discussions on them.

In this paper, we first propose a general definition of integral
invariant for free form 3-D motion trajectories using the line
integral of a kernel function along motion trajectories. Then,
depending on the designed kernels, we develop two typical
integral invariants of transformation groups, the distance and
area integral invariants. Especially, for the area integral invari-
ants, they are defined as the line integrals over a dynamic
domain of integration within the instant Frenet–Serret frame
at each point of the 3-D trajectory. To avoid the computation
of high-order derivatives, a novel discrete geometric approach,
maximal blurred segment (MBS) [18] of discrete curves, is
then accordingly employed to estimate the Frenet–Serret frame

along the 3-D trajectory, thereby getting the stable results of
the area integral invariants. Moreover, to tap into detailed fea-
tures of a motion trajectory at multiple scales, we evolve
the integral invariants to their multiscale representation in
a coarse-to-fine manner by varying the scale of the correspond-
ing kernel function. In order to match trajectories, we define
a DTW distance for measuring similarity between motion
trajectories. Finally, to evaluate the robustness and effective-
ness of the proposed integral invariants, we conduct three
experiments in motion trajectory matching, sign recognition,
where the integral invariants are used to measure the trajectory
similarity under different situations including transformation,
noise, and occlusion.

II. INTEGRAL INVARIANTS FOR MOTION TRAJECTORY

A 3-D motion trajectory is a set of position vectors of
a moving object in 3-D Euclidean space. Normally, it can be
represented by a set of triple parametric functions with respect
to the arc length s, γ (s) = {x(s), y(s), z(s)}, being assumed to
a regular curve in this paper. As motion trajectories related to
our research are tracked in temporal sequence, it is preferable
for a motion trajectory to be represented with respect to the
temporal parameter t

γ (t) = {x(t), y(t), z(t)|t ∈ [a, b]} (1)

where [a, b] is the time interval. Note that in practical applica-
tions motion trajectories are often sampled discretely. In this
case, t is set to [1, N] and N is the trajectory length (frames),
whereas in the definition of integral invariant we assume
a motion trajectory is a regular curve in terms of arc length
parameter or continuous temporal parameter.

A. Definition of Integral Invariant

As addressed in [21] and [24], we can deduce that two
motion trajectories are equivalent if and only if one can
be mapped to another one by a group transformation.
Furthermore, they are equivalent as their invariants up to
a group transformation are identical. Hence, a group-invariant
for a 3-D motion trajectory is defined in Definition 1.

Definition 1: Let G be a transformation group acting on R
3.

The function I : R
3 → R is a G-invariant for the trajectory γ

if it satisfies

I(γ ) = I(g • γ ),∀g ∈ G. (2)

The function I(•) at each point of the trajectory γ returns
a real number. The defined invariant includes some familiar
examples, such as curvature and torsion (differential invari-
ants) in [9] and [17]. In this paper, we define a new integral
invariant for a 3-D motion trajectory based on the line integral
of kernel function along the motion trajectory in Definition 2.

Definition 2: A function I(p) is an integral G-invariant for
the 3-D trajectory γ at point p if there exists a kernel k : R

3 ×
R

3 → R such that

I(p) =
∫

γ

k(p, γ (s))ds,∀p ∈ γ (3)
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Fig. 1. Frenet–Serret frame and ball kernel at the reference point of a 3-D
trajectory.

where k(•, •) satisfies
∫

γ

k(p, γ (s))ds =
∫

gγ

k(gp, g • γ (s))ds,∀g ∈ G. (4)

In most visual applications, the group G is typically
Euclidean, similarity, affine or projective group. At this stage,
this paper only focuses on the invariants of Euclidean and
similarity group, since that in 3-D vision system the actions
of projective and affine group in the reconstruction of stereo
image pairs can be avoided as discussed in [9].

The kernel function in Definition 2 plays a key role to
derive some meaningful integral invariants for motion trajec-
tories, which can be designed depending on the final goal.
It is expected to meet two criteria, where firstly it can pre-
serve computational locality to handle the partial occlusions
in motion trajectories, and secondly it can be integrated over
the motion trajectories to get a group invariant. Considering
these two aspects, we first define a ball kernel that can restrict
the domain of integration to the local neighborhoods at each
point. It is defined as follows.

A ball kernel function is defined with Br : R
3 × R

3 → {0, 1}
to indicate whether the point ε is located on the interior of
the sphere with radius r centered at point p of the motion
trajectory γ

Br(p, ε) =
{

1 · · · ‖p − ε‖ ≤ r
0 · · · otherwise

∀p ∈ γ , ε ∈ R
3. (5)

The ball kernel is illustrated in Fig. 1, where we associate
a ball with each point of the motion trajectory to restrict the
domain of integration to the local neighborhoods with a spec-
ified radius. Given the defined ball kernel, we will derive two
integral invariants for a 3-D motion trajectory by designing
two typical kernel functions to be integrated as addressed in
the next sections.

Fig. 2. Distance integral invariant defined in (6), computed by averaging the
distances (represented by gray line) of the neighboring points with respect to
the reference points denoted with the stars.

B. Distance Integral Invariant

Let G ∈ E(3) be a Euclidean group, a symmetry group of
3-D Euclidean space. Given a distance kernel d(p, γ (t)) and
a ball Br with radius r at point p ∈ γ , we have

Ir(p) =
∫

γ

k(p, γ (s))ds =
∫ b

a
Br(p, γ (t))d(p, γ (t))ds(t) (6)

where d(p, γ (t)) = ‖p − γ (t)‖ is the Euclidean distance
in R

3. This distance integral invariant is similar with shape
context [13] which captures the local histogram bins of the
neighboring points restricted by a log-polar weight kernel at
the reference point, whereas in our case we store only the
mean distance of the neighboring points restricted by the ball
kernel. The distance integral invariant is a continuous local
invariant provided by the distance kernel restricted on a ball
neighborhood, as illustrated in Fig. 2. It is also insensitive to
noise as shown in Fig. 8. Thus, the distance integral invariant
shows insensitive to noise and occlusions in trajectory that can
be demonstrated by experiments in Section VI. The distance
integral invariant can be normalized to admit equivalent when
scaling is performed on a trajectory. We normalize it by

Ir(p)∗ = Ir(p)

max(Br(p, γ (t))d(p, γ (t))) − min(Br(p, γ (t))d(p, γ (t)))
(7)

As suggested in [21], distance invariants are not discrimina-
tive enough in that a unique distance invariant can correspond
to different geometric features. This ambiguity for distance
invariant can be amplified in 3-D space especially for the com-
plicated trajectories, which can be demonstrated in Section VI.

C. Area Integral Invariants

Regarding area integral invariants, we first introduce a spe-
cial moving frame in 3-D Euclidean space, Frenet–Serret
frame which the area integral invariants are defined based on.

In n-dimensional space, moving frame plays an important
role in studying the extrinsic properties of smooth manifolds
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Fig. 3. Visualization of the t, n, and b vectors of Frenet–Serret frames of
a 3-D motion trajectory.

in differential geometry. Joint invariants and differential invari-
ants up to group transformations are developed in object recog-
nitions in terms of moving frames [33], [34]. Frenet–Serret
frame is a special moving frame which describes the kinematic
properties of a particle along a regular curve in 3-D Euclidean
space. We define our area integral invariants based on the
Frenet–Serret frame, a real-valued frame F(t) of reference that
moves temporally with the observer along a trajectory γ (t)
by the change of motion direction of the frame vectors, and
exists locally. In Frenet–Serret frame, each point of a para-
metric trajectory is associated with a set of triple orthogonal
unit vectors to describe its dynamic properties: 1) the tangent
vector t; 2) principle normal vector n; and 3) binormal vector
b. These triple vectors (t, n, b) at the reference point p(t) ∈ γ

together form an orthonormal basis spanning R
3 locally with

three projection planes: 1) the osculating plane Pt
O; 2) nor-

mal plane Pt
N ; 3) and rectifying plane Pt

R as shown in Fig. 1.
The three vectors of the Frenet–Serret frame F(t) at point p(t)
are an orthonormal basis constructed from the Gram–Schmidt
process to the vectors and their derivatives, defined as follows:

F(t) = {t(t), n(t), b(t)} (8)

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t(t) = γ ′(t)
‖γ ′(t)‖

n(t) = t′(t)
‖t′(t)‖ = γ ′(t) × (

γ ′′(t) × γ ′(t)
)

‖γ ′(t)‖‖γ ′′(t) × γ ′(t)‖
b(t) = t(t) × n(t).

(9)

In this manner, all the points in a 3-D motion trajectory
can be represented by their unit vectors, (t, n, b). Fig. 3 shows
a sequence of Frenet–Serret frames along a motion trajectory.
Basing on the Frenet–Serret frame, we hence intuitively define
the area integral invariants at point p as line integrals of a scalar
field (kernel function) along two projected trajectories at point p,
γ̄

p
O, and γ̄

p
R. They are orthogonally projected by the 3-D motion

trajectory γ onto the osculating and rectifying planes of the
Frenet–Serret frame at point p shown in Fig. 4. Geometrically,

Fig. 4. Domain of integration on (a) osculating plane and (b) rectifying
projection plane restricted by a ball kernel shown in Fig. 1. A 3-D trajectory
is projected onto the osculating and rectifying plane of the Frenet–Serret frame
at the reference point.

we want to define the area, fell into the interior of the circle
intersected by the projected trajectory on either osculating or
rectifying plane, as area integral invariants indicated as shaded
area in Fig. 4. Following this fact, for any given ball kernel
of radius r, the corresponding area integral invariants at point
p can be defined as the line integrals of a scalar field f on
both the osculating and rectifying plane, respectively:
{

Ir
O(p) = ∫

γ̄
p
O

fO(p, γ (s))ds = ∫ b
a fO(p, γ (t))

∥∥γ̄
p
O(t)′

∥∥dt

Ir
R(p) = ∫

γ̄
p
R

fR(p, γ (s))ds = ∫ b
a fR(p, γ (t))

∥∥γ̄
p
R(t)′

∥∥dt
(10)

where the kernel function fO or fR, also called the integrand,
is defined as the circle on either osculating or rectifying plane
projected by the continuous sphere of the ball kernel Br as
shown in Fig. 5. Here, we first derive the area integral invariant
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Fig. 5. Definition of the kernel functions for the area integral invariant on
the osculating plane at the reference point. In the same way, the definition is
same on rectifying plane.

on osculating plane at point p

fO(p, γ (t)) = Br(p, γ (t))

(√
r2 − {(γ (t) − p) • t}2

− (γ (t) − p) • n
)

⇒

Ir
O(p) =

∫ b

a
Br(p, γ (t))

(√
r2 − {(γ (t) − p) • t}2

− (γ (t) − p) • n
)∥∥γ̄

p
O(t)′

∥∥dt.

(11)

As ds/dt = ‖γ̄ p
O(t)′‖, it here stands for the arc length deriva-

tive with respect to t in the projected trajectory γ̄
p
O. We derive

‖γ̄ p
O(t)′‖ to be represented in terms of the expression γ ′(t) by

transforming the original coordinate of the motion trajectory
γ (t) to be orthonormal basis of the Frenet-Serret frame at p

ds

dt
= ∥∥γ̄

p
O(t)′

∥∥ =
√

(γ ′(t) • t)2 + (γ ′(t) • n)2

= ∥∥γ ′(t) • [
t n 0

]∥∥. (12)

And therefore, by (11) and (12), we have

Ir
O(p) =

∫ b

a
Br(p, γ (t))

(√
r2 − {(γ (t) − p) • t}2

− (γ (t) − p) • n
)∥∥γ ′(t) • [

t n 0
]∥∥dt.

(13)

The area integral invariant on rectifying plane can be derived
in the manner similar to the case of derivation of Ir

O(p). Then,
we have

Ir
R(p) =

∫ b

a
Br(p, γ (t))

(√
r2 − {(γ (t) − p) • t}2

− (γ (t) − p) • b
)∥∥γ ′(t) • [

t 0 b
]∥∥dt.

(14)

The complete area integral invariants for a 3-D trajectory at
point p then can be concatenated to the vector

Ir(p) = {
Ir
O(p), Ir

R(p)
}

(15)

where they can be further normalized by the area of the
projected circle with radius r

Ir(t)∗ = Ir(p(t))∗ = Ir(p(t))

π ∗ r2
. (16)

The normalized area integral invariants are then bounded
between 0 and 1.

We can observe from (10) to (14) that the area integral
invariants are derived based on local distances and areas within
the local Frenet–Serret frame which is independent of coor-
dinate system. The dot and cross products of derivatives are
purely local quantities of the trajectory features. Therefore,
the area integral invariants are invariant up to Euclidean group
transformations. Furthermore, by normalizing the area integral
invariants, they can also admit invariant under similarity group.

III. ESTIMATION OF AREA INTEGRAL INVARIANTS

As we claimed, integral invariants do not involve high-order
derivatives. The distance integral invariant can be computed
directly according to (6), whereas the area integral invariants
cannot be computed directly by the definition which requires
the second-order derivatives at least. In practical applications,
motion trajectories are discrete temporal sequences sampled
from visual sensors in the presence of noise. This fact makes
the computation of the area integral invariants sensitive to
noise. It is observed from (8) to (14) that obtaining the
instance Frenet–Serret frame F(t) at each point is the key
problem to compute the area integral invariants. Therefore, we
here propose a formula to estimate F(t) which the numerical
integrations for the area integral invariants are based on.

3-D MBS of noise curve [18], [20] here is employed to
decompose a discrete noise trajectory into some consecutive
overlapped minimally thin blurred segments via eliminating,
bypassing those noise points. Next, we further get the cor-
responding left and right key points of the blurred segments
nearby each reference point so that F(t) can be constructed by
those noncollinear triple points. The detail of MBS is briefly
recalled as follows.

We segment a known 3-D discrete curve into a number
of 3-D discrete lines D3-D(a, b, c, μ, μ′, ω, ω′) [19] (blurred
segment) of the width v that is to control the segmentation
level of a sequence of points γ (i, j) in the 3-D discrete curve
such that ω′ − 1/ max(|a|, |b|) ≤ v on the plane OXY and
ω − 1/ max(|a|, |c|) ≤ v on the plane OXZ. An example of
segmentation of a discrete curve on the plane OXZ is shown
in Fig. 6, where there are two consecutive blurred segments
and the width is determined by the dynamical thickness esti-
mation of convex hull [38] that consists of a set of successive
discrete points as shown in Fig. 6.

Nguyen and Debled-Rennesson [18] and Faure et al. [20]
further proposed the concept of MBS of width v, which
means each segmented 3-D discrete line for a discrete curve
cannot be extend neither at right side nor at left side for given
width v. Basing on this concept, we can decompose a 3-D



516 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 2, FEBRUARY 2016

Fig. 6. Optimal bounding line D of two successive blurred segments of
a discrete curve in OXZ plane.

discrete trajectory γ into a sequence of intercrossed MBSs
of width v with m length

MBSv(γ ) = {MBS(B1, E1, v), . . . , MBS(Bm, Em, v)} (17)

with B1 < B2 < · · · < Bm and E1 < E2 < · · · < Em.
{Bi, Ei}|i ∈ [1, m] here denote the beginning and ending
positions of a MBS of the discrete trajectory.

Given a sequence of MBSv(γ ), to estimate the Frenet–Serret
frame at a point, we first denote the estimated key points of the
discrete trajectory with γ (Bi), γ (Ei)|i ∈ [1, m] from the MBSs
of the discrete trajectory. Then, let R(k) ∈ {Bi, Ei}, L(k) ∈
{Bi, Ei}|k = 1 · · · N record a sequence of positions of the esti-
mated right nearest key points and left nearest key points at
the reference point γ (k) such that: L(k) < k < R(k), where
we assume these triple points {γ (R(k)), γ (k), γ (L(k))|k =
1 · · · N} to be always not collinear. We, then, approximate
the osculating circle at γ (k) using the circumcircle of the tri-
angle bounded by these triple points. Let C(k) be the center
of the circumcircle.

Then, we define the norm vector at γ (k) as n(k) =
γ (k)C(k)/|γ (k)C(k)|. The unit tangent vector t(k) is the unit
vector that is tangent with the osculating circle at point γ (k).
Then, the binormal vector b(k) is obtained straightforwardly
by cross product: b(k) = t(k) × n(k). Now, the Frenet–Serret
frame associated with each point can be formed and the triple
projection planes are spanned by the triple norm vectors. We
describe this estimation algorithm in Table I with MATLAB
pseudocodes, in which the recognition of blurred segment
refers to that in [18].

Given the estimated projection planes at the reference point,
we first project the 3-D discrete trajectory onto the oscu-
lating and rectifying plane respectively, forming a projected
trajectory intersected with the projected circle of sphere on
either osculating or rectifying plane. Moreover, we further dis-
cretize the intersected trajectory by sampling it at small-scale
grid resolution on the corresponding projection plane and thus
approximate the intersected area using numerical integration.
It should be noted that for our estimation, the trajectory is
normalized first to keep the same scale with standard radius
range (0–1) of ball kernel.

As addressed in our approach, the main burden of comput-
ing integral invariants falls on the recognitions of MBSs of
a general discrete trajectory. In our formula, the recognition

TABLE I
ESTIMATION ALGORITHM FOR AREA INTEGRAL INVARIANTS

is sped up via the dynamical determination of the convex hull
of a set of successive points as shown in Fig. 6. For blurred
segment recognition [19], Melkman’s algorithm is a classical
method in discrete geometry to determine the thickness of
convex hull that leads to linear complexity. However, to deter-
mine MBSs of a discrete trajectory, it is not efficient with the
complexity O(n2) (n is the number of points of the studied
trajectory) in that convex hull has to be recalculated at each
point when a new point is inserted or removed from a blurred
segment. In order to achieve online determination of the set
of MBS, we use the dynamical estimation of convex hull [38]
to maintain a set of points online when inserting or removing
a new point into the convex hull. This enhancement results
in the computational cost in O(n log2 n) complexity, making
the real-time computation of the integral invariants possible.
Refer to [18] and [38] for details and complexity proofs.

IV. MULTISCALE INTEGRAL INVARIANTS

In multiscale space theory [11], [37], a shape is analyzed at
multiple scale spaces by convoluting the shape with a range of
scales of kernels. Inspired by this theory, to more tap into the
detailed features of a motion trajectory at different scales, we
get the multiscale integral invariants by decreasing the radius
of ball kernel from an initial value step-by-step. In this paper,
we let the radius of ball kernel be decreased by half at each
step, and then obtain the multiscale integral invariants at all
the scales defined as

I(t)∗ = {
Ir(t)∗|r = r̄/2n, n = 0, . . . , K

}
(18)
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Fig. 7. Multiscale area integral invariants for (a) an example noisy motion trajectory. (b) and (d) plot the multiscale area integral invariants for the original
trajectory on the osculating and rectifying planes respectively, whereas (c) and (e) plot their noise versions computed from the noisy trajectory (a). The
multiscale area integral invariants are computed at 5 scales as the radius varied from initial value r̄ = 0.1, where we decompose the (c) into 5 individual one
(f)–(j) at each scale.

where r̄ denotes the initial radius, K stands for the num-
ber of scale that determines how deep a motion trajectory
can be taped into and perceived with the multiscale inte-
gral invariants. As multiresolution analysis implied in signal
processing, multiscale space theory can obtain abundant infor-
mation about a contour at different scales. The features at more
global scale can be interpreted from larger scale, while the
features at more local scale can be interpreted from smaller
scale. Benefiting from the redundancy of multiscale represen-
tation, trajectory alignment, and matching would show higher
robustness to noise and a great coherence with human per-
ception. We can generate a figure of the multiscale area and
distance integral invariants for a motion trajectory as shown
in Figs. 7 and 8 to show their multiscale features in a noisy
example trajectory. As indicated in Fig. 7, the multiscale area
integral invariants are able to capture not only the compara-
tive global features but also the detailed features on the shape
especially when the motion trajectory involves both the subtle
changes and coarse changes. More importantly, the multiscale
integral invariants show more competitive advantages in per-
ception of noisy motion trajectory at its larger scale, especially
for the distance integral invariant as demonstrated in Fig. 8.

V. SIMILARITY MEASURE

In this section, we define a similarity measure between
a pair of motion trajectories. By defining a distance func-
tion, we can measure how similar between them to match,
cluster, and classify motion trajectories. We want the simi-
larity to be insensitive to some variations such as unequal
length, different sampling, and partial occlusions in trajectory.
Therefore, we employ the DTW algorithm to deal with all of
these variations, where the local distance in DTW alignment
algorithm has to be defined firstly. In [35], we have defined
a local distance function between groups of multiple motion
trajectories, whereas in this paper, we only focus on the sin-
gle trajectory matching. We can inherit the definition in [35]
to define the local distance function between a pair of single
trajectory by keeping only the distance of integral invariants of

Fig. 8. Multiscale distance integral invariants for the trajectory are shown
in Fig. 7(a). (a) Multiscale distance integral invariants for the original trajec-
tory. (b) Corresponding noisy version computed from the noisy trajectory in
Fig. 7(b), as the radius varies from initial value r̄ = 0.4.

root trajectory as follows:

d(m, n) = �F = �Im,n

Sm,n
I

(19)

where d(m, n) ∈ R
M×N denotes the local distance between

samples m, n from the integral invariants of two motion
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trajectories respectively, and the specific terms in (19) are
defined to be the L

1 norm difference as follows:

�I∗m,n = ∥∥Ir
A(m)∗ − Ir

B(n)∗
∥∥

1 S
∗m,n

I = ∥∥{
Ir
A(m)∗, Ir

B(n)∗
}∥∥

1.

(20)

Consequently, given a pair of motion trajectories, their inte-
gral invariants are represented by IA and IB with M and N
length, respectively defined in (3). We define the total DTW
distance between their integral invariants to measure their
similarity. To ultimately get the optimized distance, the DTW
algorithm is performed to look for an optimal time warping
path that minimizes the total distance D(M, N) between two
integral invariants. The alignment in every step of matching
relies on the minimum sum distance in different routes up
to previous step, which based on the dynamic programming,
formulated as follows:

D(m, n) = min{D(m − 1, n), D(m, n − 1), D(m − 1, n − 1)}
+ d(m, n). (21)

Following the above definition, to improve computational
efficiency and distance discrimination in (21), we can obtain
the final total distance D(M, N) computed recursively from
D(1, 1) to D(M, N) by dynamically searching for the best
alignment path using an optimized algorithm with slope
constraint [31]. The total distance D(M, N) relatively reflects
how similar between a pair of trajectories.

VI. EXPERIMENTS

In this section, we evaluate the effectiveness and robustness
of the integral invariants via conducting three experiments on
several datasets which contain a larger variety of motion types
and variations.

1) Motion Trajectory Matching: We first evaluate the local-
ity, invariance, and noise robustness of the integral
invariants by matching a number of pairs of motion tra-
jectories extracted from the HDM05 [28] and Berkeley
Multimodal Human Action Dataset (MHAD) [16]
motion capture datasets, when compared to other sim-
ilar descriptors. Motion capture datasets use a skeleton
model of several joints of body to represent human
motion dynamics, where a temporal sequence of joint
positions is recorded for each joint. We simulate a series
of group transformations, noise, and occlusions on the
trajectories to match with each other to examine the
noise robustness, invariance to transformation groups,
and occlusion handling.

2) Sign Language Recognition: As a sign can be abstracted
as two hand trajectories, we demonstrate the effec-
tiveness of the integral invariants applied to the sign
recognitions via some large benchmarks. Australian Sign
Language (ASL) dataset [36] is employed here.

For comparison, these experimental results via two clas-
sic descriptors, Fourier descriptor (FD) [14] and differential
invariants (DI) [9], are added to compare with the results via
our integral invariants that include the distance integral invari-
ant (DII), area integral invariants (AII), and their multiscale
representation (MDII and MAII). Note that DTW distance

defined in (21) is used here to measure the trajectory similar-
ity in matching, recognition based on the k-nearest neighbor
algorithm for all the descriptors except the FD that uses the
Euclidean distance. Here, let k = 1 in this paper.

To estimate the AII, we implement the MBS algorithm for
motion trajectories with width v = 8 on all the datasets.
The radius r of ball kernel at γ (k) is determined by the
average of interdistances between γ (k) and its nth nearest
points, r = (‖γ (k) − γ (k − n)‖ + ‖γ (k) − γ (k + n)‖)/2. In
other words, the radius of ball kernel at each point depends
on the distributions of the neighboring points instead of setting
it empirically. In the experiments, we set n = 3. For the DII,
we get the average distance of the nearest ten points at γ (k).
For both the multiscale integral invariants, we start the mul-
tiscale process at the initial radius of ball kernel r = 0.3 and
decrease it by half at each level with K = 5 steps.

For FD, the following Fourier transformation for 1-D data is
used to describe a trajectory by applying it to each dimensional
data:

Xl =
N∑

t=1

x(t) e−j2π(t−1)(l−1)/N, 1 ≤ l ≤ N. (22)

As a result, we get a sequence of coefficients associated
with each dimension: Fl = {Xl, Yl, Zl}. The FD is further
normalized [14] for keeping invariant to translation, starting
point, and scaling, provided that the first coefficient is ignored,
and the rest of the coefficients are scaled by the second coef-
ficient. It should be noted that as suggested in [14] FD is not
able to keep complete rotation invariance that is achieved by
simply taking the magnitude of each Fourier coefficient.

A. Trajectory Matching

For trajectory matching, the test is performed on two pop-
ular motion capture datasets, the HDM05 [28] and Berkeley
MHAD [16]. HDM05 dataset consists of around 100 action
classes performed by five different actors. Most of these
actions contain 10–50 different realizations for each action
being amounted to 1457 smaller motion clips, and covering
a broad spectrum of semantically meaningful variations. The
duration of action sequences ranges from 56 to 901 frames.
Berkeley MHAD dataset [16] contains 11 actions performed
by seven male and five female subjects. Each action is per-
formed five repetitions, yielding about 656 actions sequences
(several erroneous actions are eliminated). In MHAD dataset,
11 action classes are recorded by camera, Kinect, motion cap-
ture, and accelerometer systems, which are: 1) jump; 2) jump-
ing jacks; 3) bend; 4) punch; 5) wave one hand; 6) wave
two hands; 7) clap; 8) throw; 9) sit down; 10) stand up; and
11) sit down/standup. We will use the optical data obtained by
motion capture system in this paper, and segment the action
sequences with multiple repetitions of the same action into
individual sequences with one repetition using labels given by
Ofli et al. [16].

Firstly, for the test on HDM05 dataset, 16 original
motion trajectories of right hand are randomly extracted from
16 action classes respectively to implement trajectory match-
ing including deposit floor, elbow to knee, gab high, hop
both leg, jog left, jump down, jumping jack, kick forward, lie
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Fig. 9. Examples for a group of extracted 16 motion trajectories of the right hand from HDM05 motion dataset with their two versions, (a) original version
and (b) transformation version, without simulated occlusions.

down floor, rotate arm backward, sit down chair, sneak, squat,
stand up, throw basketball, and throw. The original motion
trajectories are to match their transformation versions, each
of which is obtained by a series of actions including first
downsampling or upsampling randomly the trajectory to a new
one with 0%–50% more or less length than original frames,
adding Gaussian noise (normalized standard deviation δ), then
rotating 30 and 45 degrees by x- and z-axis respectively, then
translating 200 and 500 mm along x- and y-direction respec-
tively, and finally scaling by 0.5 factor. Example for a group of
original and transformation versions of motion trajectories are
shown in Fig. 9. This extracting and matching procedure is run
50 times getting the average matching accuracies as shown in
Fig. 10 compared with other descriptors. Secondly, we carry
out the same matching test on MHAD dataset. In similar man-
ner with the first matching test on HDM05 dataset, 11 pairs of
motion trajectories of the right hand are randomly extracted to
match each other, which correspond to the respective 11 action
classes.

The matching performance is evaluated by matching accu-
racy that is the percentage of correct matching between
pairs of trajectories. First, the average matching accuracies
between original and transformed trajectories with the addi-
tive noise specified by δ are obtained by running the matching
test 50 times between trajectories extracted from both the

datasets compared to other descriptors. Fig. 10 shows a plot
of the matching accuracies on HDM05 and MHAD datasets
respectively as noise varies with δ = (0 − 0.2 or 0.3). Not sur-
prisingly, it can be shown that the matching accuracies via all
of the descriptors decrease as added noise δ increases. The
matching accuracies via the DI and FD decrease more dras-
tically as δ increases. The matching even fails via the FD
without noise added as shown in Fig. 10 due to its limited rota-
tion invariance. Using the integral invariants (AII and DII), we
can get some large improvements in matching performance,
but on MHAD dataset the matching accuracy decreases sud-
denly via AII as δ is beyond 0.2. The decreases of matching
accuracies via MAII and MDII are most insignificant, insen-
sitive than other descriptor-based matching as noise increases,
especially for the trajectory matching on MHAD dataset where
it decreases only slightly. The matching results prove that both
the MAII and MDII are most insensitive to noise and group
transformations than other descriptors.

To quantitatively evaluate the similarity distance in the
presence of the added noise, we compare the average dis-
tance matrixes between the original and noisy transformed
trajectories in HDM05 dataset, computed via AII, DII, MAII,
MDII, and DI as shown in Fig. 12. The distance matrixes
computed using MAII and MDII own the most discrimi-
native lower distances on the diagonal as expected in the
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Fig. 10. Average matching accuracy as the additive noise in trajectories
varies. Average matching accuracy on (a) HDM05 dataset and (b) Berkeley
MHAD dataset.

dataset. The distance matrixes computed using AII and DII
have relative more discriminative lower distances on the diag-
onal than the matrix using DI which completely lacks the
expected lower distances on the diagonal. These matrix dis-
tances show the robustness of integral invariants to noise
compared to DI.

One of the advantages using the integral invariants is its
insensitive to the effects of partial occlusions. Occlusion is
simulated here by randomly breaking each transformed tra-
jectory into two separated parts without additive noise when
the trajectory matching is carried out. We can observe the
matching results in Fig. 11 as the ratio of occlusion in motion
trajectories increases from 0% to 40% compared to other
descriptors. The results show that the matching performance
drop, based on both the AII and DI, are relatively smaller
thanks to their locality. The matching performance based on
the DII and MDII turn out to be worse, even not better

Fig. 11. Average matching accuracy as the ratio of occlusions in trajectories
varies. Experimental results on (a) HDM05 dataset and (b) Berkeley MHAD
dataset.

than FD-based matching results. This is probably because
the DII is not sufficient to represent a trajectory especially
under occlusions due to its nonuniqueness as suggested in
Section II-B. As the computation of FD depends on the whole
trajectory, not surprisingly the matching accuracies via FD
decrease drastically as the simulated occlusion increases. It
should be noted that to test how the matching performance
is influenced only by occlusions using the FD, the trans-
formed trajectories here are only translated without rotation.
The matching via MAII is not expected to perform the best
among all the descriptors, even worse than the FD-based
matching on MHAD dataset. This is because multiscale rep-
resentation involves multiple levels of descriptions computed
from a smaller scale to a larger scale, where the computa-
tional locality of the multiscale representation is compromised
at the larger scale. Therefore, in occlusion handling, the AII
are proved to be the best in matching occluded trajectories.
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Fig. 12. Distance matrixes between noisy transformed trajectories with δ = 0.08 (across bottom) and original trajectories (across left side) via (a) DI, (b) AII,
(c) MAII, (d) DII, and (e) MDII. Lighter shades indicates smaller distances.

B. Sign Language Recognition

In sign language recognition, we examine the effective-
ness of the integral invariants in classifying motion labels on
ASL [36] dataset. ASL dataset consists of 2565 samples of
Auslan signs, where 27 examples of each of 95 sign classes
are captured from a native signer with high-quality data and
each sample of Auslan signs is performed by moving the right-
hand and left-hand simultaneously in 3-D space. In this test,
as addressed in [17] and [35], we only employ the root trajec-
tory, the average of right and left hand trajectories, to represent
a sign. There is an instance of the sign word “make” as shown
in Fig. 13. For test, we use the 1-NN classifier based on the
DTW interdescriptor distance as defined in (21). Each time
16 classes of samples are randomly picked up in ASL dataset
to run recognition test where half the samples of each class
are for training and the other half are for testing. We repeat
this test 50 times. In the same way, the other descriptor-based
recognitions are also carried out to compare with our integral
invariants.

The average recognition results are summarized in Table II.
The best recognition accuracy with 96.82% is obtained using
the MAII and the accuracies reduce to 94.17% and 93.85%
if using the AII and DI, respectively. While the recognition

Fig. 13. Sign sample of the word make from ASL dataset. (a) Right and
left hand trajectories and (b) root trajectory that is the average of the right
and left hand trajectories.

performance using MAII is promising, the recognition
accuracies via AII and DI are relatively lower. This is
because multiscale representation can perceive more detailed
information than those representations at one fixed scale
(AII and DI). This fact can be demonstrated again by com-
paring the results based on both the DII and its multiscale
representation (MDII). Nevertheless, for both the DII and
MDII, the obtained accuracies are the worst. Compared
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TABLE II
RECOGNITION ACCURACY VIA THE INTEGRAL INVARIANTS

COMPARED WITH OTHER REPRESENTATIONS

ON ASL DATASET

to hand motions in matching experiment, sign languages
are more complicated so that the lack of uniqueness of
representation makes DII and MDII ambiguous in recognizing
sign languages.

VII. CONCLUSION

In this paper, we propose some integral invariants for motion
trajectories to achieve effective and robust motion matching
and recognition. Integral invariants are defined as line inte-
grals of a kernel function along a motion trajectory, which
have a smoothing effect and thus can achieve stability and
robustness in the presence of noise without preprocessing the
motion trajectory. We have two typical integral invariants that
depend on the designed kernels to be integrated along the
motion trajectory. The definition of integral invariants allows
us to analyze the motion features at multiple resolutions by
varying the scale of the kernel function, by which we extend
the integral invariants to multiscale representation to more tap
into detailed features at multiple scales in a coarse-to-fine
manner. The integral invariants enjoy some useful properties
including computational locality, invariance to transformation
groups, and noise insensitivity. These properties make the inte-
gral invariants capable of dealing with viewpoint variations,
occlusions and noise in motion trajectories.

On experimental level, we demonstrate the advantages
including invariance, robustness to noise and effectiveness of
the integral invariants in trajectory matching and recognition
compared with other descriptors. As indicated in experiments,
we have four typical integral invariants (DII, MDII, AII,
and MAII) proposed in this paper, and their superiority are
achieved in different situations. The insensitivity to the effects
of occlusions requires the computation of invariants more
locally, while the tolerance to noise requires the computa-
tion of invariants more globally. Therefore, multiscale integral
invariants are not always the best representation in all sit-
uations. There are some trade-offs when choosing integral
invariants or their multiscale versions to represent motion
trajectories. Multiscale integral invariants are advisable for
representing complex motion trajectories with minor occlu-
sions. Integral invariants at a fixed scale are more preferable
when there are relative severer occlusions in the motion trajec-
tory. Nevertheless, in most cases, the performance via integral
invariants is superior to previous invariant descriptors.

As the main computation burden for integral invariants
results from the determination of MBSs, the computational

cost is accordingly higher than those of the traditional descrip-
tors such as Fourier and DI. This limits the applicability of
our method in real-time scenarios. However, we can use the
dynamical maintaining of convex hull to speed up the esti-
mation of MBSs and reduce the complexity at O(n log2 n).
Moreover, Faure et al. [20] claimed they can reduce the com-
plexity in the determination of convex hull to linear time
O(n log n) that can be used to further improve the real-time
performance using integral invariants, which is this paper.
On the other hand, as motion tracking algorithms need to
cope with noise and occlusions from the sensor, robustness is
always a particular important issue in practical applications.
The robustness to noise and occlusions using our method is
much better than the previous methods although at a cost
of higher computational complexity. Therefore, considering
a tradeoff, the computation simplicity of Fourier and DI make
them applicable when real-time performance is emphasized
for specific applications or systems when only small noise and
occlusions are present. Integral invariants will be a competi-
tive choice when noise and occlusions are involved in motion
tracking.

The integral invariants defined and investigated in this
paper will also benefit the 3-D contour shape representa-
tion for object recognition, further providing rich experi-
ence and knowledge to invariant representation in computer
vision areas.
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