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Abstract—Tracking multiple moving targets in a video is a
challenge because of several factors, including noisy video data,
varying number of targets, and mutual occlusion problems. The
Gaussian mixture probability hypothesis density (GM-PHD) filter,
which aims to recursively propagate the intensity associated with
the multi-target posterior density, can overcome the difficulty
caused by the data association. This paper develops a multi-target
visual tracking system that combines theGM-PHD filter with object
detection. First, a new birth intensity estimation algorithm based on
entropy distribution and coverage rate is proposed to automatically
and accurately track the newborn targets in a noisy video. Then, a
robust game-theoretical mutual occlusion handling algorithm with
an improved spatial color appearance model is proposed to effec-
tively track the targets in mutual occlusion. The spatial color
appearance model is improved by incorporating interferences of
other targets within the occlusion region. Finally, the experiments
conducted on publicly available videos demonstrate the good per-
formance of the proposed visual tracking system.

Index Terms—Birth intensity estimation, Gaussian mixture
probability hypothesis density (GM-PHD) filter, multi-target
visual tracking (MTVT), mutual occlusion handling.

I. INTRODUCTION

M ULTI-TARGETVISUALTRACKING (MTVT) is used
to locate and identify multiple moving targets at each

image frame in a video sequence. An MTVT is crucial in
intelligent video surveillance systems and in activity analysis
or high-level event understanding inmany industrial applications
[1]–[5]. The problem of MTVT extends the single-target visual
tracking to a situation where the number of moving targets is
unknown and varies with time. Recently, many researchers have
successfully explored the Gaussian mixture probability hypoth-
esis density (GM-PHD) filter [6]–[8] in a multi-target tracking in

video. Compared with traditional association-based techniques,
the GM-PHD filter effectively overcomes the difficulty caused
by the data association. In this paper, we develop a system that
combines the GM-PHD filter with object detection to track
multiple moving targets in a video. However, noisy video data,
varying number of targets, and mutual occlusion problems make
this development a challenge.

To track the varying number of targets in a noisy video, the
proposed system must track the newborn targets accurately as
they enter the scene. In other words, an important issue in the
GM-PHD filter is automatically and accurately determining the
birth intensity of the newborn targets. Conventionally, the birth
intensity must cover the whole state space [9] when no prior
localization informationon the newborn targets is available. Such
requirement entails high computational cost and can easily be
interfered by clutters. To narrow the search space,Wang et al. [6]
manually preset the means of Gaussian in the birth intensity
according to the scene information, such as edges or shop
entrances. However, presetting the birth intensity initially re-
quires knowledge of the scene information, which involves
human interactions. To automatically estimate the birth intensity,
Maggio et al. [10] assume that the birth of a target occurs in a
limited volume around the measurements. They draw the new-
born particles from a mixture of Gaussians centered at the
components of the measurements set. However, the proposed
method could easily be interfered by clutters and the measure-
ments originating from the survival targets. To eliminate the
negative effect of the survival targets,Wang et al. [11] classify the
measurements into two parts, namely, the measurements origi-
nating from the newborn targets and those originating from the
survival targets.However, themeasurementsoriginating fromthe
newborn targetsmay contain some noises. In such a case, directly
determining the birth intensity by the measurements originating
from the newborn targets will result in many false positives.

In addition, mutual occlusion may occur in the interacting
targets as they move close together. Once occlusion occurs, the
measurements originating from these targets within the occlu-
sion region will be merged into one measurement. Without an
occlusion handling algorithm, the system may fail to track the
targets in mutual occlusion. Currently, extensive methods, such
as multiple camera fusing methods [12], [13], Monte Carlo-
based probabilistic methods [14], [15], and appearance model-
based deterministic methods [16]–[19], have been presented to
solve the mutual occlusion problems. The problem of tracking
multiple interacting targets in mutual occlusion is still far from
being completely solved, thereby remaining an open issue.
Compared with the two other classes of occlusion handling
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methods, tracking with the appearance model-based determin-
istic methods offers several advantages, including generality,
flexibility, computational efficiency, and large amount of infor-
mation [16]. For example, Vezzani et al. [16] use an appearance-
driven tracking model to overcome large- and long-lasting
occlusions. They generate two different images to represent the
target model: the appearance image and a probability mask. The
appearance image contains the red, green, and blue (RGB) colors
of each point of the target, and the corresponding probability
mask reports the reliability of these colors. Based on this target
model, the authors classify the invisible regions into dynamic
occlusions, scene occlusions, and apparent occlusions. Xing
et al. [17] build a dedicated observation model that maintains
three discriminative cues, namely, appearance, size, and motion.
The target appearance is modeled as the color histogram in hue,
saturation, and value color space in discriminative region of the
target. The mutual occlusion problem is then handled by a two-
way Bayesian inference method. However, the aforementioned
appearance models cannot deal with interacting targets having
similar color distributions and are thus expected to fail in
tracking. To remedy this problem, Papadourakis and Argyros
[18] model the target by using an ellipse and a Gaussian mixture
model (GMM). The ellipse accounts for the position and spatial
distribution of an object, and a GMM represents the color
distribution of the object. The occlusion-handling method pro-
posed is based on both the spatial and appearance components of
a target’s model. Similarly, Hu et al. [19] model the human body
as a vertical ellipse and use the spatial color mixture of the
Gaussian appearance model [20] to model the spatial layout of
the colors of a person. The occlusion is deduced using the current
states of the interacting targets and handled using the proposed
appearance model. However, the aforementioned appearance
models do not consider mutual interferences among the inter-
acting targets. Hence, the tracking precision may be greatly
affected as mutual occlusion occurs.

In this paper, we attempt to solve the aforementioned pro-
blems. We propose an entropy distribution-based algorithm [21]
to automatically and accurately estimate the birth intensity. We
also propose a game theory-based algorithm to robustly handle
the mutual occlusion problem. Entropy, the term that usually
refers to the Shannon entropy [22], is ameasure of the uncertainty
in a random variable. Game theory, which was first proposed by
Nash [23], is the study of multi-person decision making. Nash
stated that in noncooperative games, sets of optimal strategies
[called Nash equilibrium (NE)] are used by the players in a game
such that no player can benefit by unilaterally changing his or her
strategy if the strategies of the other players remain unchanged.
Game theory has been successfully explored in visual tracking
[24]–[27]. For example, Yang et al. [24] formulate the game-
theoretical multi-target tracking for kernel-based tracker. They
propose a kernel-based interference model and construct a
game to bridge the joint motion estimation with the NE of the
game. Inspired by the work of [24], a robust game-theoretical
occlusion-handling algorithm based on the improved appearance
model is proposed. The main contributions of this paper are
as follows.

1) A new birth intensity estimation algorithm is proposed.
The birth intensity is first initialized using the previously

obtained target states and measurements, and then updated
based on the entropy distribution and coverage rate using
the currently obtained measurements. By doing so, the
noises within the initialized birth intensity will be greatly
eliminated.

2) An improved spatial color appearance with interferences
by other targets within the occlusion region is modeled.
Compared with the conventional color histogram-based
appearancemodel, the proposedmodel ismore robust even
when targets in occlusion have similar color distributions.

3) A robust game-theoretical mutual occlusion-handling
algorithm is proposed. Unlike in other conventional
occlusion-handling algorithms, a noncooperative game is
constructed to bridge the joint measurements estimation
and the NE of the game.

The rest of this paper is organized as follows. Section II
presents the backgrounds on the probability hypothesis density
(PHD) filter and the GM-PHD filter. Section III first introduces
the measurements classification and birth intensity initialization
simply, and then describes the entropy distribution-based and
coverage rate-based birth intensity update in detail. Section IV
first introduces a simple two-step occlusion reasoning algorithm,
and then presents a game-theoretical algorithm to solve the
mutual occlusion problem. Some experimental results on pub-
licly available videos are discussed in SectionV, and followed by
concluding remarks in Section VI.

II. PROBLEM FORMULATION

For an input image frame of a video sequence at time , a target
region is approximated with a rectangle. The kinematic state of a
target at time is denoted by . ,

, and are the location, velocity,

and size of the target, respectively. , where is the
number of targets at time . Similarly, the model of a measure-

ment at time is denoted by . ,
where is the number of measurements at time . The target
states set and measurements set at time are denoted by

and , respectively. In
this paper, an MTVT problem is formulated as the multi-target
GM-PHD filtering.

A. PHD Filter

By definition [28], the PHD is the density whose
integral on any region of the state space is the expected number
of target contained in . is the element of . In general,
one cycle of the PHD filter has two steps: prediction and update.

1) Prediction: Suppose that the PHD at time
is known, the predicted PHD is given by

where denotes the single-target Markov transition
density. , , and denote the probabilities
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of newborn targets, survival targets, and spawned targets,
respectively.

2) Update: The predicted PHD is updated with the
measurements obtained at time . The number of clutters is
assumed to be Poisson distributedwith the average rate of , and
the probability density of the spatial distribution of clutters is

. is the element of . Let the detection probability be
. Then, the updated PHD is given by

where denotes the single-target likelihood.

B. GM-PHD Filter

The GM-PHD filter is a closed solution to the PHD filter. To
implement it, certain assumptions are needed: 1) each target
follows a linear dynamical model where the process and observa-
tion noises are Gaussian:
and denotes aGaussian
component with the mean and the covariance . and
are the transition and the measurement matrices, respectively.

and are the covariance matrices of the process noise
and the measurement noise, respectively; 2) the survival and
detection probabilities are independent of the target state:

and ; and 3) the birth intensity

can be represented by ,

where , , , and are the Gaussian mixture
parameters [29].

According to [29], the GM-PHD filter is implemented as
follows.

Prediction: Suppose that the prior intensity has the form

, the predicted
intensity is then given by

Update:The can be expressed as aGaussianmixture

of the form .

Then, the posterior intensity is given by

where , ,

, ,

, , and

.

The spawned targets in the prediction step of the PHD filter (1)
usually come from the requirements of military applications for
radar tracking, e.g., an airplane sends a missile [11]. For sim-
plicity, we assume that all targets in our tracking scenario consist
of survival targets and newborn targets. The prediction and
update steps discussed above indicate that the number of com-
ponents of the predicted and posterior intensities increases with
time. To solve this problem, we use the pruning and merging
algorithms proposed byVo andMa [29] to prune the components
that are irrelevant to the target intensity and to merge the
components that share the same intensity peak into one compo-
nent. The peaks of the intensity are the points of the highest local
concentration of the expected number of the targets. The
estimate of the multi-target states is the set of ordered of the
mean with the largest weights.

As shown in (3), the birth intensity needs to be
accurately estimated before the prediction step. As shown in
(4), the predicted PHD is updated by themeasurements. Once the
mutual occlusion occurs, the measurements originating from the
targets within the occlusion region will be merged into one
measurement. The merging will affect the update results of the
filter and ultimately the tracking performance. This paper focuses
on solving the aforementioned problems.

III. BIRTH INTENSITY ESTIMATION

A new birth intensity estimation algorithm based on the
entropy distribution and coverage rate is proposed. Fig. 1 shows
an illustration of the proposed birth intensity estimation process
in one cycle of the GM-PHD filter. The measurements are
obtained by object detection and are classified into two parts:
the birth measurements and the survival measurements .
The birth intensity is first initialized using the previously
obtained target states and measurements . The initial-
ized birth intensity is then updated using the birth
measurements .

A. Object Detection

The measurements are obtained by object detection. Any
object detection method can be incorporated into our tracking
system. To show the robustness of the proposed algorithm for
tracking targets in a noisy video, a simple background subtrac-
tion algorithm for object detection is utilized. The static back-
ground image is assumed to be already known. First, each pixel
in the background image is modeled as red, green, and blue
channels. Then, the difference between the current image and
the background image for each channel is calculated; the pixel
is labeled as a foreground if the difference of one channel is
larger than the threshold . Finally, the morphological operator
is employed to eliminate the isolated noises, and the eight-
connected component labeling algorithm is used to connect the
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detected foreground pixels to a set of regions. Each connected
region is enclosed by a rectangle. The state (location and size) of
one rectangle represents one measurement.

Although the morphological operator can remove some isolat-
ed noises of small sizes, noises of big sizes caused by an unstable
environmentmaystillexist in themeasurements.Furthermore, the
measurements can be affected by choosing different values of
( ). The smaller the is, the larger the number of

noises is while the more the foreground pixels of true targets are.
In experiments, we choose to ensure all true targets are
detected regardless of the number of noises.

B. Measurements Classification

The measurements obtained may be generated by the survival
targets, newborn targets, and noises. To eliminate interferences
by those measurements generated by the survival targets, we
classify themeasurements into two parts: the birthmeasurements

originating from the newborn targets and the survival
measurements originating from the survival targets. The
th measurement is regarded as the survival measurement ,
if it satisfies

where and , is the

predicted state of , is the
maximum velocity of a target up to time ( , is an
integer), , , frame is the
interval between two consecutive time steps, and is the
Euclidean norm (hereinafter the same). The residual measure-
ments are the birth measurements

C. Birth Intensity Initialization

Based on the target states,

and the measurements

, the measurements originating from the

candidate newborn targets are obtained by

<

where is the measurement originating

from the tracked targets at time . is the number of

measurements in . At the initial time step ( ), all
measurements obtained are regarded as , because no
target is tracked at first. The birth intensity for the next time step is
then initialized by a Gaussian mixture

� �

'

where � � ' is a parameter set of the th Gaussian
component that contains the mean � and the

covariance ' . � � �
is a parameter set of components. is the
number ofmeasurements in . is the weight of the th
Gaussian component and satisfies the following condition

D. Entropy Distribution-Based Birth Intensity Update

After initializing the birth intensity, the next step is to update
the parameter set � according to . Due to the noisy video data,
the initialized birth intensity may contain some noises. To
eliminate such noises, the Shannon entropy [22] is used to model
the prior distribution of the parameter set �. For a random
variable with outcomes , the Shannon
entropy is defined as

where is the probability mass function of . We select the
negative exponent with the Shannon entropy dependent only on
the mixture weight as the prior distribution of �

�

where is the entropy measure.

Then, we use the birth measurements to update

�, where is the number of birth measurements. By doing
so, the weights of the components within the initialized birth
intensity those are irrelevant to the birth measurements will
rapidly become small. The corresponding components should
be removed once their weights become negative.

Given the , its log-likelihood can be given by

� �

where � represents the single-target likelihood in the
th Gaussian component. The parameter set � can be estimated

by the criterion of the maximum a posterior (MAP)

�
�

� �

To estimate , we set the derivative of the log-posterior with
respect to to zero under the constraint from (12)

� �

Fig. 1. Birth intensity estimation process in one cycle of the GM-PHD filter.
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where is a Lagrange multiplier. Substituting (14) and (15) into
(17) yields

�

�

where reflects how much the belongs to the th
Gaussian component. Multiplying both sides of (18) by and
summing over using the constraint from (12), the following is
obtained

Given , is calculated by (20). Substituting it into (18)
and multiplying both sides by yields

where .
Given , the goal is to calculate from (21). As ,

we use the Taylor expansion to expand at and
select the first order to approximate

Substituting (22) into (21), is obtained

Similarly, the MAP estimations of � and ' are obtained

�

' �

�

After each iteration step, the components within the birth
intensity whose weights are negative are removed from the
mixing components set. The weights of the remaining compo-
nents are then normalized for the next iteration step. The iteration
terminates when the difference rate of the log-posterior is smaller
than the preset threshold ( , in our experi-
ments); the updated parameter set � of the birth intensity is then
obtained.

E. Coverage Rate-Based Birth Intensity Update

Fig. 2 is a pictorial example that shows the probable over-
lapping between the birth intensity component � and the birth
measurement ( and in this figure), where � and
� are the components for the newborn targets and � � are
the components for the noises.

After the entropy distribution-based birth intensity update
step, the Gaussian components within the initialized birth

intensity that are irrelevant to the birth measurements are
removed (shown as � and � in Fig. 2). However, some noises
may still exist in the birth intensity (shown as � and � in
Fig. 2). To further eliminate these noises, a coverage rate-based
method is proposed according to the fact that newborn targets
enter the scene gradually (shown as� and� in Fig. 2), whereas
noises appear irregularly. The coverage rate consists of two
parts: the intersection rate and the area rate. For each survival
Gaussian component � within the birth intensity, we define
the intersection rate and the area rate as

� �

�

where is a function to compute the area. � is the
intersection part of the th Gaussian component and the th
birth measurement. Here, the th birth measurement closest to
the thGaussian component is selected. As shown in Fig. 2, the
component is probably a newborn target when approxi-
mates to 1 and, at the same time, is larger than 1. Otherwise,
the weight of this component should be greatly reduced. To
distinguish the newborn targets from the noises, the weight
is updated by

where is the standard deviation that is preset as to
control the width of the distribution. Once the weight is below
the given threshold ( , in the experiments),
the corresponding component is removed. Once all the com-
ponents are updated, the weights are normalized and the birth
intensity is finally obtained.

IV. MUTUAL OCCLUSION HANDLING

To track the targets in mutual occlusion, a robust occlusion-
handling algorithm based on the game theory is proposed. First,
the mutual occlusion region is determined by a two-step
occlusion reasoning algorithm. Then, the spatial color appear-
ance model is improved by incorporating the interferences
of other targets within the occlusion region. Finally, a nonco-
operative game is constructed to obtain the optimal locations

Fig. 2. Pictorial example of probable overlapping between the birth intensity
components and the birth measurements.
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of the measurements originating from the targets within the
occlusion region.

A. Occlusion Reasoning

Fig. 3 shows an illustration of occlusion reasoning that
includes occlusion prediction and occlusion determination.

1) Occlusion Prediction: In Fig. 3(a), (or ) is a circle

at center (or ) with radius (or ).

(or ) and (or ) are the location and size of

the predicted state (or ) of the target (or ),

respectively. The candidate occlusion region is predicted only
when ( ), i.e.,

Otherwise, no occlusion occurs.
2) Occlusion Determination: Two possible situations are

possible in the candidate occlusion region: no occlusion and
occlusion [shown in Fig. 3(b) and (c)]. As the overlap between
the targets in occlusion always increases gradually, the size of the
first detected merged measurement is always larger than the size
of the corresponding single target. To further determine the
occlusion region, the measurements (detections) obtained at
current time is incorporated. If a measurement

( ) within the candidate
occlusion region satisfies (30), this measurement is regarded
as an occlusion region

where is a scale factor. The size of the detected target may
slightly be changed between the consecutive frames because of
the changes in the target’s pose or because of the depth of view.
Comparedwith the size of the target before mutual occlusion, the
size of the target after mutual occlusion is largely changed
because it is merged with other targets. Consequently, we set

to determine the occlusion region correctly.

B. Occlusion Analysis

As mutual occlusion occurs, the occlusion region that
contains the merged foreground can be determined by
occlusion reasoning. Then, the identities (IDs) and number

of the targets involved in this occlusion region can be
determined. Fig. 4 shows a pictorial example of the mutual
occlusion analysis. At time , three targets are isolated with
the states , , and , respectively. At time , mutual
occlusion occurs and themeasurements , , and originating
from these three targets are merged into one measurement . In
this figure, represents the support region within the bounding
box of the target ( ).

To track the targets in the occlusion region, the measurement
should be correctly segmented. In other words, the goal is to

obtain the optimal individual measurements .

Given , the optimal solution is to maximize

the similarity probability between and

where .

To obtain the optimal solution of (31), an improved spatial
color appearance with interferences of other targets within the
occlusion region is modeled to measure the similarity proba-
bility. In addition, a robust game-theoretical algorithm is
proposed to bridge the optimal solution of (31) and the con-
structed game.

C. Improved Appearance Model With Target Interferences

The appearance of a target is modeled as a GMM
, representing the color distribution of the

target pixels, where represents the weight, mean,
and covariance matrix of the th Gaussian component of
the mixture, respectively, , and is the number
of Gaussian components. The measure of the similarity

between the candidate (for a target after occlu-
sion) and the model (for a target before occlusion) is
defined as the probability that ’s colors are drawn from

Fig. 3. Illustration of occlusion reasoning. (a) Occlusion prediction. (b) No
occlusion occurs. (c) Occlusion occurs and occlusion region is determined.

Fig. 4. Pictorial example of mutual occlusion analysis.
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with a spatial constraint [30]. Equation (32) is shown at

the bottom of the page, where

, ,

is the color of the pixel located in within
the target region of , ,

, , is the
number of foreground pixels in , and is the spatial
constraint of the foreground pixels.

As occlusion occurs, the interferences of other targets within
the occlusion region also need to be considered. The measure of
the similarity is then improved as shown in equation (33) at the
bottom of the page, where is the appearance of the other targets
within the occlusion region. , ,

, , and

. Note that if no occlusion or overlap occurs
between the targets, (33) degenerates to (32).

D. Game-Theoretical Mutual Occlusion Handling

To obtain the optimal solution of (31), an algorithm based on
game theory is proposed. In game theory, a noncooperative game
is one inwhich playersmake decisions independently. Asmutual
occlusion occurs, the individual measurements involved in the
occlusion region compete to independently maximize the simi-
larity probability between the measurements and the foreground.
Therefore, constructing a noncooperative game to bridge the
joint measurements estimation with NE of the game is reason-
able. We construct an -person, nonzero-sum, noncooperative
game and assume that the size of the target remains constant
during the occlusion. With this assumption, the estimation of the

measurements is simplified to the estimation of the

locations of the measurements.

Normally, a game consists of three components: the player,
the strategy of the player, and the corresponding utility. In the
constructed game, these components are defined as follows:

Player: The individual measurement originating from the
target within the occlusion region.

Strategy: Motion of the player, i.e., the location of the
player R .

Utility: , where
.

To find an NE of the game, the best response should be
defined first.

Definition 1 [31]: The best response of a player to the profile
of strategies is the strategy of that player such that

R

Hence, an NE of the game is a strategy profile for which the
strategy of every player is a best response to the strategies of
other players.

Definition 2 [31]: is an NE for the game with
utility if the strategy of every player is a
best response to the strategies of other players.

Given the , the goal is to determine the best response of the
player , i.e.,

where is the similarity probability between
and with interferences of other fixed measurements .
Maximizing the is equal to maximizing the
measure of similarity , where , , and are the
color appearances of the measurement originating from
the target , of the corresponding target model before
occlusion, and of the other measurement ( ) within the
occlusion region, respectively. To obtain the best response ,
the derivative of with respect to is set to zero

where is the number of foreground pixels in the support
region . is calculated by (37) and is regarded as the best
response of the player

The location of the player is initialized by the
corresponding predicted target’s location ,

. Given the initialized , the best response
of the player can be calculated by (38). can be iteratively

updated until the process reaches an equilibrium. The
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equilibrium is obtained when the maximum component of the
difference vector satisfies (39). is the difference of the best
response sets between the consecutive iteration cycles

where

is the initialized

locations’ set. is the given threshold. The smaller the
is, the more is the iteration time needed and the more

precise the results are. In the experiments, we set
pixel to achieve a tradeoff between the efficiency and
precision. When the iteration terminates at iteration cycle ,

the best response set is determined as the

NE of the game. This NE is regarded as the optimal
segmentations of the measurement. The measurements

with the are then

incorporated into the filter to update the states of the targets
within the occlusion region.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

The proposed visual tracking system is tested on the publicly
available videos. In particular, the contributions of the proposed
birth intensity estimation algorithm and the game-theoretical
occlusion-handling algorithm are assessed.

The state transition model is a constant velocity model [8]
with and

, where
and are the zero and identity matrices, respec-

tively. frame is the interval between two consecutive
time steps. is the standard deviation of the state noise.
The measurements follow the measurement likelihood with

and , where is the
standard deviation of the measurement noise. We set
the values of the parameters used in the GM-PHD filter as
follows: detection probability , survival probability

, average distributed rate of clutters , and

spatial distribution of clutters .

A. Experimental Results

We evaluated the proposed tracking system on the follow-
ing video datasets: 700 frames from “PETS 2000,”1 630
frames from “BEHAVE,”2 200 frames from “ViSOR#1,”3

415 frames from “ViSOR#2,” 951 frames from
“PETS2006,”4 922 frames from “CAVIAR,”5 and 795 frames
from “PETS2009.”6 All videos are captured from a single static
camera. The challenging issues involved are listed in Table I.

1) Qualitative Analysis: To demonstrate the performance of
the improved tracking system (ITS) in handling the listed
challenging issues, it is compared with the standard GM-
PHD filter-based tracking system (STS) whose birth intensity
is estimated using the state-of-the-art algorithm proposed by
Wang et al. [11].

a) Noises Elimination: Fig. 5 shows the detection results and
the tracking results of the STS and the ITS for the first three video
sequences (no occlusion involved) listed in Table I. The numbers
involved are the target IDs, which are managed using the
algorithm proposed by Vo and Ma [29]. Due to the
environmental uncertainty, such as illumination changes or
waving of trees in the wind, some noises exist in the
detection results (shown in the first row in Fig. 5). Tracking
with the STS is easily interfered by the noises, thereby resulting in
many false positives (shown in the second row in Fig. 5). In
contrast, the proposed birth intensity estimation algorithm
greatly eliminates the noises. Tracking with the ITS achieves
less false positives compared with the STS (shown in the third
row in Fig. 5).

b) Occlusion Handling: Figs. 6–9 show the detection results
and the tracking results of the STS and the ITS for the last four
video sequences (occlusion involved) listed in Table I.

In Fig. 6 (“ViSOR#2”), two targets with similar color dis-
tributions are involved without interferences of noises. Both the
STS and the ITS can track the targets accurately as they enter the
scene. However, as targetsmove close together, they are detected
as one merged measurement (shown as in Fig. 6).
Without occlusion handling, the STS fails to track target 1 but
tracks the merged measurement as target 2 from . As the
two targets split, target 1 is retracked as newborn target 3 from

. In contrast, the ITS incorporates the game-theoretical
occlusion-handling algorithm based on the proposed appearance
model. Although the targets have similar color distributions, the
ITS can successfully track them for the entire occlusion period
even when under total occlusion (shown as in Fig. 6).

TABLE I
CHALLENGING ISSUES INVOLVED IN THE VIDEOS

1Available: ftp://ftp.pets.rdg.ac.uk/pub/PETS2000.
2Available: http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/.
3Available: http://imagelab.ing.unimore.it/visor/video_categories.asp.
4Available: http://www.cvg.rdg.ac.uk/PETS2006/data.html.
5Available: http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/.
6Available: http://www.cvg.rdg.ac.uk/PETS2009/a.html.
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In Fig. 7 (“PETS2006”), the targets frequentlymerge and split.
The STS loses the targets (shown as and in
Fig. 7) as mutual occlusion occurs (targets merge) and then
retracks the merged measurement as a newborn target (shown as

in Fig. 7).As the two targets split, they are also tracked as
the newborn targets. In contrast, the ITS performs robustly
regardless of the merging or splitting of the targets. In particular,
the ITS can handle three targets with similar color distributions
merging together from to (shown as ,

, and in Fig. 8). However, as the targets enter the
scene as a group, the ITS tracks the merged measurement as one
newborn target (shown as in Fig. 7) because no prior
information about these individual targets is available. In such a
case, the merged measurement cannot be determined as the
occlusion region by the proposed occlusion reasoning algorithm.
Instead, the merged measurement is tracked as one single target.

In Figs. 8 (“CAVIAR”) and 9 (“PETS2009”), the STS fails to
track the targets as the mutual occlusion occurs, whereas the ITS
can successfully track the targets in occlusion. Particularly, as
several occlusions simultaneously occur in different target
groups (shown as and in Fig. 9), the ITS still
can robustly track the targets in each occlusion region.

2) Quantitative Analysis: The CLEAR MOT metrics [32] are
used to evaluate the tracking performance. The metrics return a
multi-object tracking precision (MOTP) score and amulti-object
tracking accuracy (MOTA) score. TheMOTA score is composed
of the miss rate (MR), the false positive rate (FPR), and the
mismatch rate (MMR)

where is a function to compute the area, and are the
ground truth box and the associated tracked box of the target ,
respectively, for time , is the number ofmatched targets found
for time , and , , , and are the number of misses,
false positives, mismatches, and ground truth, respectively, for
time .

We compare the ITS with the STS and other state-of-the-art
tracking systems according to the CLEAR MOT metrics.

a) Comparison With the STS: Without robust birth intensity
estimation and occlusion-handling algorithms, the STS produces
either a large FPR, particularly when a large number of noises
are involved, or a large MR when mutual occlusion frequently
occurs (shown in Table II). Take, e.g., the dataset “BEHAVE”
that contains a small number of targets (e.g., two targets at

in Fig. 5) with a relatively large number of noises (e.g.,
five noises at in Fig. 5) at some time steps. Consequently,
the number of false positives is larger than the number of
ground truth when tracking by the STS. According to (41), the
FPR is larger than 1 and ultimately makes the
MOTA score negative (shown in Table II). As mutual occlusion
occurs, the STS may lose the targets or track the merged
measurement as one target. This scenario results in a large MR
(shown in the last four datasets in Table II). In contrast, the ITS can
accurately estimate the birth intensity and robustly handle the
mutual occlusionproblem.The results inTable II show that the ITS
outperforms the STS both in terms of MOTP and MOTA scores.

b) Comparison With the State-of-the-Art Tracking
Systems: We also compare the ITS with the state-of-the-art
systems reported by Joo and Chellappa [33], Torabi and
Bilodeau [34], and Zulkifley and Moran [35] for the dataset
“PETS2006” (shown in Table III) and by Andriyenko et al. [36],
Breitenstein et al. [37], and Yang et al. [38] for the dataset
“PETS2009” (shown in Table IV). The results in Table III show
that the ITS achieves a good MOTP score and a low MOTA
score. The results in Table IV show that the results of the ITS
outperforms the previously published results by Breitenstein
et al. [37] and Yang et al. [38] in terms of both precision and
accuracy. Compared with the previously published results by
Andriyenko et al. [36], the ITS achieves a better MOTP score but
gets a lowerMOTA score. The reason for the lowMOTA score is
the use of a simple background subtraction method for object
detection. This approach tends to generate a large number of
noises in variable environment. Although our system can
eliminate a large number of noises, some noises may still be
tracked as the targets. For example, target 17 at in Fig. 8
is a false positive. This can be improved by using a highly robust
object detection method.

Fig. 5. Tracking results of the datasets “PETS2000,” “ViSOR#1,” and “BEHAVE.”
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Fig. 6. Tracking results of the dataset “ViSOR#2.” First row: detection results. Second row: tracking results with STS. Third row: tracking results with ITS.

Fig. 7. Tracking results of the dataset “PETS2006.” First row: detection results. Second row: tracking results with STS. Third row: tracking results with ITS.

Fig. 8. Tracking results of the dataset “CAVIAR.” First row: detection results. Second row: tracking results with STS. Third row: tracking results with ITS.
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B. Discussions

Although all the aforementioned experiments validate the
capacity of our tracking system to handle the challenging issues
listed in Table I, other issues need to be discussed further.

1) Tracking Newborn Group Targets: To invoke the proposed
occlusion-handling algorithm, the prior information about the
targets beforemerging is necessary. However, as targets enter the
scene as a group (shown as target 23 at in Fig. 7 and as
target 29 at in Fig. 9), the occlusion-handling algorithm
cannot be invoked. In such a case, the targets are only tracked as
one group of newborn targets. The effective object detection
methods should thus be incorporated to accurately detect the
targets as they first appear in the scene.

2) Processing Speed: The proposed system is implemented in
MATLABusing a computer with Inter Core 2Duo 2.20GHz and
2 GB of memory. Without any code optimization, the average

runtimes for the first three datasets (no occlusion involved) listed
in Table I are about 2–10 frames per second (fps), whereas those
for the last four datasets (occlusion involved) are about 0.4–1.2
fps. More than 95% of the runtimes are consumed in two parts.
One part is for determining the NE of the proposed mutual
occlusion-handling algorithm because it is a pixel-wise iteration
process. The other part is for target ID management. The target
ID is managed according to the algorithm proposed by Vo and
Ma [29], in which each tracked target is labeled with an
independent ID. The result is a large computational cost
once a large number of noises are tracked as targets. To
remedy the aforementioned drawbacks, employing highly
efficient appearance model and ID management method will
be helpful and will be explored in our future works.

VI. CONCLUSION

In this paper, an MTVT system that combined the GM-PHD
filter with object detection was developed to track multiple 2-D
moving targets in a video. Specifically, two key issues involving
the GM-PHD filter were investigated and remedied.

Fig. 9. Tracking results of the dataset “PETS2009.” First row: detection results. Second row: tracking results with STS. Third row: tracking results with ITS.

TABLE II
TRACKING PERFORMANCE COMPARISON BETWEEN THE ITS AND THE STS

TABLE III
TRACKING PERFORMANCE COMPARISON BETWEEN THE ITS AND THE STATE-OF-THE-ART

TRACKING SYSTEMS ON THE DATASET “PETS2006”

TABLE IV
TRACKING PERFORMANCE COMPARISON BETWEEN THE ITS AND THE STATE-OF-THE-ART

TRACKING SYSTEMS ON THE DATASET “PETS2009”
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Due to the environmental uncertainty, the video data may
contain some noises. To eliminate the interferences by noises, an
improved measurement dependent birth intensity estimation
algorithm was proposed. Unlike in existing measurement depen-
dent birth intensity estimation algorithms, the entropy distribu-
tion and coverage rate were incorporated in the proposed
algorithm. By incorporating the entropy distribution, the noises
within the birth intensity that were irrelevant to the birth mea-
surements were removed. To further eliminate the noises within
the birth intensity, the coverage rate between each survival birth
intensity component and the corresponding birth measurement
was computed and used to update the weights of the component.
By doing so, the components could be removed once their
weights were less than the given threshold.

As mutual occlusion occurs, the measurements originating
from the targets within the occlusion region will be merged into
one measurement. The GM-PHD filter may associate this mea-
surement with one of the targets in occlusion region while losing
the other targets or it may lose all the targets in occlusion region.
To solve this challenging problem, a game-theoretical mutual
occlusion-handling algorithm was proposed. To improve the
robustness of mutual occlusion handling, an improved spatial
color appearance with interferences by other targets within the
occlusion region was modeled. Compared with the conventional
color histogram-based appearance model, the improved model
was more robust even when the targets involved in the occlusion
region had similar color distributions. Based on this improved
appearance model, an -person, nonzero-sum, and noncoopera-
tive game was constructed. The individual measurements origi-
nating from the individual targets within the occlusion region
were regarded as the players in the constructed game competing
for maximum utilities using certain strategies. The NE of the
game was selected as the optimal estimations of the locations of
the players. By doing so, the targets in mutual occlusion could be
successfully tracked.

The experiments on publicly available video sequences
were conducted to evaluate the proposed tracking system. Com-
pared with the STS andwith the state-of-the-art tracking systems,
our system showed great improvements in precision and
accuracy.

In the future, we will investigate the algorithms for
tracking newborn group targets and for improving tracking
efficiency.
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