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many sampling processes especially when longer panels are available. A fixed-effects dy-
namic partially linear additive model with a finite autoregressive lag order is considered.
Based on this setup, semiparametric Generalized Method of Moments (GMM) estimators of
the unknown coefficients and functions using the B(asis)-spline approximation are devel-

gz’:l/fnrgs' oped. The asymptotic properties of these estimators are established. A procedure to iden-
GMM tify the dynamic lag order and significant exogenous variables by employing the smoothly
Instrument matrix clipped absolute deviation (SCAD) penalty is developed. It is proven that the SCAD-based
SCAD penalty GMM estimators achieve the oracle property and are selection consistent. The usefulness
Variable selection of proposed procedure is further illustrated in Monte Carlo studies and a real data example.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Longitudinal or panel data models have been a key development in econometrics and statistics. These models have
found widespread applications in economics, finance, biomedicine and other fields of research. One typical feature of panel
data is that the sample of individuals is large but the number of time periods is short. It is well-known that due to the
correlation between the lagged dependent variable and individual effect in the errors, when one estimates parameters of
a dynamic panel data model, traditional techniques such as ordinary least squares (OLS) yield estimators that are biased
and inconsistent. On the other hand, the generalized method of moments (Hansen, 1982) allows consistent estimation of
parameters. Popular GMM estimators in dynamic panel data models include the first-differenced (DIF) GMM estimator of
Arellano and Bond (1991), which transforms the model into first difference to remove the individual effect, and the system
(SYS) GMM estimator of Arellano and Bover (1995) and Blundell and Bond (1998), which uses extra moment conditions that
assume certain stationarity conditions of the initial observations. Of these two estimators, the SYS estimator has superior
finite sample properties when stationarity of data is assumed. Other important contributions in this burgeoning literature
on dynamic panel data models include but are not limited to the work of Blundell et al. (2001), Bun and Windmeijer (2010),
Gouriéroux et al. (2010), Han and Phillips (2010), Everaert (2013), and Lee and Yu (2014).
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It is noteworthy that studies on dynamic panels almost invariably assume an AR(1) dynamic order. This assumption,
which is mainly for convenience, is not consistent with many sampling processes by which the data are generated, especially
when a longer panel is available. Indeed, first-order models are most likely misspecified when the lag order is unknown.
Lee (2012) showed that fitting a high order AR panel process by a lower order model can bias the fixed effect estimate
substantially, and the established methods for correcting the bias under first-order dynamics can worsen the bias when the
dynamics are of higher order. The question remains as to how the lag order in a dynamic panel data model can be selected
accurately. One key objective of this paper is to address this question.

Recent years have also witnessed a stream of studies on the semiparametric partially linear models (e.g., Newey, 1994;
Linton and Nielsen, 1995; Fan and Li, 1996; Li, 2000; Fan and Li, 2003; and Carroll et al., 2009), which can alleviate the familiar
curse of dimensionality inherent to many nonparametric and semiparametric approaches. This is one major advantage of
the partially linear models over conventional methods, in addition to their flexibility, ease of interpretation, and ease of use.
Extensions of these models for static panel data have been considered by Fan et al. (2005), Su and Ullah (2006), Henderson
et al. (2008), You et al. (2011) and Ai et al. (2014). There have been few extensions into the area of dynamic panels in the
partially linear model literature with the most well-cited work of this nature being Baltagi and Li (2002), who developed
consistent estimators of the unknowns in an AR(1) partially linear panel data model using the series method. Recently,
Baglan (2010) proposed a GMM estimator of the linear component for the same model. To our knowledge, there has been
no extension of the partially linear model to cases of higher order panel dynamics, and this paper attempts to make some
progress in this direction.

The objective of this paper is twofold. First, we develop semiparametric GMM estimators for the parametric and
nonparametric components of model (2.1) to be described ahead based on an approach that uses the B(asis)-spline
(abbreviated as B-spline hereafter) series approximation. Spline approximation and kernel-based methods resulting in
weighted least squares procedure are widely used in the nonparametric literature. Relative to kernel methods, spline
approximation has an advantage in regard to the ease with which one can impose structure on the resulting estimate. In
particular, B-spline approximation has the advantage of a stable numerical property provided that the knots sequence can
be appropriately specified. We prove that the resultant estimator of the parametric component is /n-consistent and that
of the unknown function achieves the optimal nonparametric convergence rate. In the same context, we also construct
an estimator of the error variance. Second, we develop a procedure to select the lag order in the dynamic component
and identify significant exogenous variables in the parametric and nonparametric components of the model using the
smoothly clipped absolute deviation (SCAD) penalty. The SCAD penalty is a non-concave penalty proposed by Fan and Li
(2001) in a general parametric framework for variable selection and efficient estimation, and has the advantages of being
computationally feasible even for high dimensional data and more stable than subset selection. We also demonstrate that
the SCAD-based estimators have an oracle property, the best possible theoretical performance of any variable selection
procedure.

This remainder is organized as follows. We develop the semiparametric GMM estimators in Section 2 and study the
asymptotic properties of these estimators in Section 3. In Section 4, we use the SCAD penalty to determine the lag order
of dynamics and select variables. Section 5 reports results of a Monte Carlo study and a real data application of proposed
method. Proofs of results are relegated to Appendix.

2. Semiparametric GMM estimation

Our framework of analysis is a fixed-effects dynamic panel partially linear model with a finite lag order. This framework
extends that of Ai et al. (2014) to a dynamic set-up, and also includes several other models as special cases. Specifically, we
consider the following panel process:

d P q
Yie = 1i + Z VsYit—s) + intkﬂk + Z &r (Zier) + i, (2.1)
s=1 k=1 r=1

fori =1,...,n, t =d+1,..., T, where y; is an observation of the response Y on individual i at time ¢ (with y;;—_s
being its lag value at time t — s, s > 1), Xy = (Xi¢1, - - - » x,-tp)T e RPand z;; = (zieq, ..., zitq)T € R are realizations of the
covariate vectors X = (Xq,... ,XP)T andZ = (Zy, ..., ZE,)T respectively, and are assumed to be strictly exogenous. u;'s
are unobserved individual fixed effects, possibly correlated with x;; and/or z;; with an unknown correlation structure, and
satisfy >0, i = 0,7 = (y1,...,va) and B = (B1,..., By) " are unknown parameter vectors, {¢(z:)};_, are smooth
functions satisfying E¢, (z;) = 0 for identification purpose, and ¢;; is an independent and identically distributed error term
with mean 0 and variance o2, and satisfies E(y;;6i) = 0fori=1,...,n,s=1,...,d,t =d+1, ..., T (see, for example,

Ahn and Schmidt, 1995).

The panel process of (2.1) includes a number of other models as special cases. Whend = 0 and p = 0, i.e., both the lagged
dependent variables and parametric components are absent, (2.1) reduces to the conventional additive model (Hastie and
Tibshirani, 1990). When d = 1and q = 1, (2.1) becomes the AR(1) panel data partially linear model considered by Baltagi
and Li (2002) and Baglan (2010). When d = 0 and g = 1, model (2.1) reduces to the fixed effects panel data partially linear
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model that has been widely studied in the literature. See You et al. (2011), Ai et al. (2014) and the references therein. When
d = 1and g = 0, model (2.1) reduces to the fixed effects dynamic panel data linear model (Nickell, 1981).

Considering a knot sequence § < & < --- < &; < &p4q that satisfies max(§j;1 — &)/ min(§j;1 — §) < c for
j = 0,...,m, with m = m, being a monotonic increasing function of n, the sample size. For simplicity, we assume
that all knots are equally spaced. Let Jf’,? be the space of polynomial splines with dimension J, = m, + ¢ such that
each function h(-) in ,}’{’,? satisfies the following conditions: (i) h(-) is a polynomial of degree o > 1 on each subinterval
I =1§,841),j=0,...,my — 1, with In, = [&m,, Em,+11; (ii) for ¢ > 2, h(-) is ¢ — 1 times continuously differentiable on
[£0, Em,+1]. A group of splines spanning the whole space J(’,? is called a spline basis function. A commonly used basis function
for fitting smoothing curves is the B-spline, which has the advantage of permitting every spline function of a given degree,
smoothness and domain partition to be uniquely represented as a linear combination of B-splines of that same degree and
smoothness and over that same partition. Denote the B-spline basis function as {Nj(z)}fll. The B-spline representation of
h(-)ish(-) = Zf”ﬁ N;(-)6;, with {Hj}f":] being the unknown coefficients. Similarly, the spline basis N;;(-) and 6,; used in (2.2)
are defined for the rth function ¢, (-) forr =1, ..., q.

The following approximation is legitimate when ¢, (z) is sufficiently smooth:

Jn
¢ @ir) % hy(zir) = Y Nyj(zir)05 = 0] N: (zir), (2.2)
j=1

where N, (z) = (N;1(2), ..., Ny, @)" and 0, = (61, ..., QrJ,I)T. Using (2.2), model (2.1) can be re-expressed as

d p q  Jn
Yie = Wi + Z VsYie—s + inrkﬁk + Z ZNrj(zitr)erj + e, (2.3)
s=1 k=1

r=1 j=1

withej; = gir + Zf:] {h:(zitr) — ¢r (zitr) }. Let yio = 0. Taking first difference on t to remove the nuisance parameter u; yields

d P
Yie = Yie—1 = Z YsWice—s) = Yie—s-1) + Z(xitk — Xit—1k) Bk

s=1 k=1

4 n
+ )0 N(zur) — Nyj(ziae-nr)}0 + &5 — &l ). (24)

r=1 j=1
Now, write Ay = (Ay;r, ey Ay;ll')T with Ay; = Vid+3) — Yid+2)> - Vit — yi(T,l))T, and AY! =
(Ay‘}(dH), ey Ay‘{T, ey AyflT)T with Ayi. = (y,'(t_1) — Yit=2)s - - - » Yi(t—d) — y,'([_d_1))T. In the same manner, write
AX = (AX](d+3), o, AXqT, L, AXnT)T with AX; = (Xl'“ — X1(t=1)15 - - - » Xitp — Xi([_])p)T and Ae* = (8T(d+3) —
e;‘(d+2), o, 8 — ST(T_D, oy Epp — e,’;(r_l))T. As well, denote N, = (Nr(z1(d+3),), e, Nr(z17,), e Nr(z,m))T with

N; @) = (Nr1(Zir) = Neaig—1yr)s - - - N, @) — Ny, Zie—1yr)) T, and write N = (Ny,....Ng) and 6 = (6].....6,)".
These notations permit the following matrix representation of (2.4):

Ay = AY%y + AXB + NO + Ae*. (2.5)

Any estimator that ignores the endogeneity due to the correlation between AY? and Ae* is biased and inefficient. Here,
we estimate the unknowns in (2.5) by GMM. Now, by integrating E(y;;_sA¢g;) = 0for2 <s <t—1,t =d+3,...,T,

assuming exogeneity of X;; and z;, one can construct an instrument matrix W = (WlT, W;, R WnT)T, where
Ay; 0 0 0 0 AX, Az}
Yi(d+1) e e Xi(d+3) Zi(413)
0 Ayi(d+1) Ayi(d+2) tee 0 s 0 Ax,‘(d+4) Azi(d+4)
W; = . . . ) . .
0 0 0 Ay Ay; AxT Azl
s AYid+y o AYir2 Xir Zir /) pexi

with Ayie = Yie — Yie-1), AZir = Zier — 21115 - - - Zig — Zig—1g) T =T —d—2andL = T*(T* + 1)/2+p +q.
Other studies on system GMM, including Blundell and Bond (1998) and Bun and Windmeijer (2010), used both differenced
and level instruments. We only use differenced instruments here as they are practically equivalent to level instruments
when the number of time periods is large. The use of differenced instruments also poses no additional technical challenge
compared to level instruments although differenced instruments do require more time periods than in the case of levels.

LT T
WritingM = N(N N)"'N " and premultiplying (2.5) by W*T = W (I,;» — M) yields
W T Ay = W TAYYy + W TAXB + W*T Ag*.
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The semiparametric GMM estimator of (y, B) can be constructed by minimizing
Q(y. B) = — (W TAe") QT (W Ag"), (2.6)

where W*" = (W*T, . W:hand @ =Y, Wi TBBW;/(nT*) with

_] ] 0 ()
e
0 0 | 1

T*x (T*+1)

Applying the weighted least squares procedure, we obtain

(;) {(AY, AX)T (L — MYWRT'WT (L — M)(AYY, AX)} ™

A(AYY, AX) T (I — MWSR™'W (I« — M)Ay, (2.7)
which in turn yields 8, = @y, ..., 0,,)7 = (N N)"'N' (Ay — AY'p, — AXB,) and
~ ~T
Grn i) = 0r_nNr(Zifr)7 r=1,...,q. (2.8)

In addition, an estimator of the error variance o = var(e2) is

~ _ Ay - AY'P, — AXB, — N6, |2
" 21T* —d — p — qJ) '

(2.9)

Remark 1. Several approaches exist for choosing the optimal number of B-spline basis. A popular approach is the
cross-validation approach considered by Huang and Shen (2004) and Huang et al. (2004). The approach we use, which
follows from Wang and Yang (2007), does not require any iteration, and is thus more straightforward. See Section 5 for a
description of the method.

3. Theoretical results

This section focuses on the asymptotic properties of the estimators constructed in Section 2. Let us consider the following
definition taken from Li (2000) and Baltagi and Li (2002).

Definition 1. A function ¢(z),z = (21, . . ., z4), is said to belong to an additive class + if it satisfies (i) ¢(z) = Zle or(zr),
where ¢, (+) is twice differentiable in the mterlor of its support and square integrable; and (ii) E(¢; (z;)) = Oforr =1, ..., q.

We use E 4/ (z) to denote the projection of a scalar or vector function v (z) onto the additive class +. Thus, E 4 (z) is an
element belonging in + and the closest function to v (z) among all the functions in 4. More precisely,

E{(¥(2) — EA¥ @) (¥ (2) — EA¥(2))" }— lnf E{(¥(@) —9@) (W@ —9@) ") (3.1)

Now, let ||¢;ll2 = {[,1 $?(2)dz}"/? be the L,-norm of a square integrable function ¢ (z) on R'. We say that an estimator

Gr.n Of ¢, is consistent if | ¢, — |2 = 0,(1).
The following regularity conditions are needed for establishing the asymptotic properties of the resultant estimators.

Assumption (A1). {(Yi, X, Ziy) : k = 1,...,p;r = 1,...,q} are independent and identically distributed, and
sup, E(lIxic[13 4 l1zicll3 + leie|*) < o0

Assumption (A2). The marginal densities of Z. forr = 1,...,q, defined as f;(z), are Lipschitz continuous and satisfy
0 < min, inf; f;(z) < max, sup, f;(z) < oo.

Assumption (A3). The functions {¢, (z)}f:1 and g(z) = E4(E(y, X|z)) have continuous and bounded ¢th derivative (¢ > 3).
Moreover, J2/n — 0 and /nJ;* — 0asn — oc.

Assumption (A4). TTX'T and ¥ are positive definite matrices, and their eigenvalues are bounded away from 0 and
infinity, where © = (T*) 'E{(W; — E,W;) BB (W; — E,W)}, T = (T*)'E{((AYY, AX;) — E4(AY?, AX{))T (W; —
EAW])}, AXq = (AX](dJrg,), e AX]T)T and AYcli = (Aycli(d+3), ey qui-r)-r
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Assumption (A5). For any given consistent estimator , of § = (7, 87,07)T, K' W "W K + nT* B, (8,)/2 is positive
definite in the sense that its eigenvalues are bounded away from 0 and infinity, where K = (AYY, AX, N), and B, 2,0 (8,)
is a block diagonal matrix defined in (4.5).

Remark 2. Assumptions (A1)and (A2) are standard conditions for nonparametric and semiparametric models (e.g., Li, 2000;
Baltagi and Li, 2002 and Huang and Shen, 2004). Assumption (A3) determines the rate of convergence of nonparametric
estimators, which is similar to Assumption 3 in Li (2000), Assumption 2.3 in Baltagi and Li (2002) and Assumption (d) of
Huang and Yang (2004). Assumptions (A4) and (A5) are needed to circumvent the singularity of matrices when constructing
estimators and establishing their asymptotic properties.

Theorem 1. (i) Suppose that Assumptions (A1)-(A4) hold. Then asn — oo,

nT* (Z" - ”) —pN@©, 03Tz T (32)
ﬂn - ﬂ
where
1 TapT
= FE{(Wl - E W;) BB (W; — E, W)}
and

r= %E{((Avd, AXq) — E4(AYY, AX) T (W; — E, W)}

(ii) The random variables

1. .
Xh = w (InT* - M)(ln ® BB )(lnT* - M)W

nT*
and
T 1 d T
I, = T (AYY, AX) " (In;+ — M)W
n *

are consistent estimators of T and X respectively.

Theorem 2. Assume that (A1)-(A4) hold, and g, the degree of the B-spline, is no smaller than ¢ defined in Assumption (A3).
Then as n — oo, we have

max [§n = ¢rll2 = Op(/n/n + ;7). (33)

Theorem 2 provides a consistent estimator of ¢, (-) when J;, =< n* with t > 1/(2¢ + 1). In particular, if J, = nl/ @+
then ||y — ¢rll2 = 0, (n~¢/@+D),

Theorem 3. (i) Under the same conditions as in Theorem 1. Asn — oo,

VnT*(G?% — 0%) —p N(0, k), (3.4)

where k = {2T* — 1)E(e},) + o*}/2T*.
(ii) A consistent estimator of « is

= -] ii&?“—ﬁ&“ 4 Lg (3.5)
"Toar T & S o TR '

where
Z\<‘3it = Ay — (AY,'EI[)T/};n - Ax;trﬂn - N(i—l)T*-H,*am
with N_1)7 4., being the ((i — 1)T* + t)th row of N.

Theorem 3 shows the property of ,/n-consistency of the variance estimator that would be required for inference purposes
but further investigation of its properties is beyond the scope of this paper.

4. Identifying the lag order and significant covariates

This section is devoted to a discussion on the selection of the lag order for the dynamic component and exogenous
variables of the parametric and nonparametric components of (2.1). As mentioned in Section 1, we adopt the semiparametric
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SCAD method to achieve this task. The objective function for estimating the unknowns with the SCAD penalty is

1 . -
Qi (y,B,0) = e (Ay — AY'y — AXB — NO)"WQ W' (Ay — AY'y — AXB — NO)
d P q
+ > pe;, (nsD) + D pes, (1B + D pes,, (16: 11y, (4.1)
s=1 k=1 r=1

where Ay, and A,, are tuning parameters controlling the model complexity and can be selected by data driven methods,
and [|6, ||y = (OrTNrTNrOr)l/Z. The penalized semiparametric GMM estimator would satisfy

oT 51 3T .
Py, B,.0,)" =argminQ}(y, B, 6). (4.2)
We use the local quadratic approximation-based iterative algorithm (Fan and Li, 2001) to find solutions to (4.2). Now,
given an initial y, = (0.1, - - - » yo,d)T, for some yp5,s =1, ..., d, and y; in a close neighbourhood of y; s, we have

G
2|04l

In the same manner we can obtain the approximation for pe,, (|x|) and pe;, (||6;||x). Substituting (4.3) into (4.1) and
removing the irrelevant constant terms, the desired estimator can be written as

pe;,, (lvs)) =~ pey, (Ivosh + v =759 (4.3)

nT*

2

-1
8, = {I(TWSZ_lel(—}— E5, (5n)} K'we 'w' Ay, (44)

which resembles a ridge regression estimator, where 8, is an initial estimator of § = (p ", ﬂT, 017 and

pe, (Pal)  pe,, (Panl) pe;, (BinD) e}, (1Bpal)

Eqnion (8,) = blkdiag {

Pl Tl 1Bl T Bl
Pe;2n(||01,n”N) T pe;2n(||0q,n||N) T
— = I\q I T — qu . (4.5)
161 1llx 1800

It is well-known that the choice of tuning parameter plays an important role for shrinkage estimators. Wang et al. (2007)
proposed a BIC-based selector and demonstrated its selection consistency in the penalized least squares context. Here, we
choose A1, and Ay, such that

. log(nT*)
BIC;, .15, = 108(67) + DFs, 3, — (4.6)
attains a minimum, where 52 = ||Ay — AY";”',, — AXBn — NénH%/Z(nT* —d — p — qJ») and DFy, , 5, , is the generalized
degrees of freedom (Fan and Li, 2001), defined as

o~ -1
I R— {K (KTwsz—leK + T E), sy, (Be) /2) KTwsz—le} . (4.7)
or notational convenience, let = . wit! = 1y« + 5 Vd, enotlng the nonzero Con’lponent an
F ional ience, let y = (¢}, 7)) " withyyy) = (¥ ¥4,)" denoting th d

Y = (Wdg+1. - - ¥a) | = Og_g,. Similarly, write B = (B, Bio,)) " with B3y = (B1. ..., By,) T and ¢ = (@), é ) " with
¢;r1) = (¢1, ...,¢q0)T. Let Ay = {(s, k, 1) : s #£ 0, B # 0,¢:(z) #£ 0}, Ay = {(s,k, 1) : s =0, By =0, ¢, = 0}, and
A1 and Ay, be their estimated sets. Moreover, let AY{;) and AX;) be the columns of AY? and AX corresponding to the
selected nonzero coefficients respectively. Now, define

a, = max(pe;, (1)), pe;,, (1B, pes,, (10: 1) = 5.k, 1 € Aq}
and
by = max{pe;, (1), pes,, (1B, pes,, (10: 1) s k. 1€ Aq.

Also, assume, for s, k, r € A,, that

pe,_ (lys) pe, . (18] pey, ([10:11x)
min{liminflim inf Lot S inflim inf”’iﬂk,liminf lim inf *2”'} >0 (4.8)

n—0o00  ys—0+ AMn n—o00  fr—0+ Mn n—00 (Nr6r)—0+ Aon
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Theorem 4. Let Assumptions (A1)-(A5) hold, and b, — 0 asn — oo. Then
(i) 17 = ¥ll2 = 0p((AT*) ™2 + ap);
(ii) 1B, — Bll2 = Op((nT*)~"/2 + ay); and
(iii) ¢rn — @rll2 = Op((NT*) "> +ay), forr =1,..., qwhen], = (nT*)'/>.

Theorem 5. Suppose that max(Ai,, A2n) — 0 and min(Aq,, AZH)/max(]n“, Jn/n) — o0 asn — oo. Further, assume

that ¥, — ll2 = (T2 B, — Bl = ()72 and |§ra(@) — ¢ @Iz = (nT*)~Y/@+V. Combined with
Assumptions (A1)-(A5) and (4.8), these conditions lead to the following so-called variable selection consistency property:

P(Ayn = A7) — 1.

By Theorem 5, the SCAD-based semiparametric GMM estimator is “selection consistent” in the sense that it can identify
the significant regressors correctly with probability approaching 1 as the sample size grows to infinity.

Theorem 6. Assume that (A1)-(A5) and (4.8) hold. If b, — 0asn — oo, then

v (22 - zi:?) —pN©.0* (T TiTh) ™D, (4.9)
with

B = - E(Wop1 — EaWi, ) BB (W, — EaWo, )
and

1
Tay = FE{((AY%),1, AXy.1) — EA(AYY) 1, AX1).1) T (W1 — EAWy.1)},
where W) 1, AY‘?U’1 and AX).1 are defined analogously to W, AY and AX respectively.

Remark 3. Theorem 6 shows that the identified significant estimators have an oracle property in the sense that they have
the same joint asymptotic distribution as when the zero coefficients were known in advance. That being said, we do not know
to which estimated parameters this theorem can be applied because in practice, it is unknown as to which coefficients are
zero and which are non-zero.

5. Numerical experiments

5.1. Monte Carlo simulations

This section reports the results of Monte Carlo studies undertaken to investigate the empirical performance of the
proposed procedure. Designs 1 and 2 are for the purpose of investigating the asymptotic properties of the GMM estimators
assuming that the lag order and significant exogenous variables are known in advance. The effectiveness of the SCAD-GMM
procedure is examined under Design 3.

Design 1. The data were generated by the panel process with an AR(1) dynamic order:
Yie = Wi + VYie—1) + BXie + $1(Zie1) + d2Zie2) + &, i=1,...,mt=2,...,T,

where u; = (T — 1)7! ZLZ Xit, X ~ LLD.Bernoulli(1, 0.5), ziy1 = —3 + 5uj1, ziyp = 2 — 4uj, Uiy ~ LLD.U(O, 1),
¢1(z1) = (z; — 0.5)? and ¢,(z2) = z;(e22 — 1).Let B = 1.5and y = 0.1, —0.6, 0.9. We consider the following two error
scenarios:

Scenario I (homoscedastic errors): &; ~ LL.D.N(0, 1);
Scenario Il (heteroscedastic errors): &;; = +/hjt€;;, where €; ~ 1.LLD.N(0, 1), and h;; is described by: (1) h;; = 0.1—|—O.3yi2t_1
or (2) hy = 0.1+ 0.1y5_, + 0.1z7, + 0.1z2,.

We consider sample sizes of n = 50, 100, 200 and T = 5, 10, 15. The experiment is replicated for R = 1000 times for
y = 0.1and —0.6, and R = 100000 times for y = 0.9; it is found that when y is close to the unit-root, a larger number
of replications are required for the experiment to yield stable results. Our evaluations of the estimators ¥, 8, and E,f are in
terms the average of estimates (mean), standard deviation (std) of the estimates, standard errors (se), which are the square

. . . . S g 1T I .
roots of the diagonal elements in the asymptotic variance matrix onz (I'yX, T, ), and proximity of actual confidence interval
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coverage to the targeted coverage of 0.95 (cp). For the estimators of ¢1(z1) and ¢, (z;), evaluation of efficiency is based on
the mean of average squared error (MASE) measure defined as

1 R n

T
MASE(¢r.n(z)) = e 33N 3" @) - dr@n)

h=1 i=1 t=d+3

where T*, as defined previously, is T — d — 2, and 55“,3() is a GMM estimator of ¢, (-) in the fith simulation. We denote the

standard deviation of the average squared error as SASE.

In our implementation we use the univariate quadratic B-splines with uniform knots. We determine the number of
interior knots m, by the method prescribed by Wang and Yang (2007) via the formula

m, = min(Lc(n(T —d))"*] + 1, |(n(T —d)/2 — (p+d + q))/2]),

where n(T — d) is the total sample size, c is a tuning constant, and | a| denotes the largest integer of magnitude not greater
than a. For simplicity, we set ¢ = 1 as varying the value of ¢ generally makes no difference to the results. The constraint of
m, < (n(T —d)/2 — (p +d + q))/2 ensures that the number of terms in (2.6) is not larger than n(T — d)/2. This condition
is needed when the sample size is not large.

Tables 1(a) and 1(b) report the Monte Carlo results under the scenarios of homoscedastic and heteroscedastic errors
respectively. Turning first to the efficiency of the parametric estimates, the following observations are apparent. First, other
things being equal, the larger the value of n or T, the closer are the means of ¥,, B, and (’7\“2 to their true respective parameter
values. We take this as an indication that %, En and ?fnz are asymptotically unbiased. Second, as n or T increases, the standard
deviations of the estimators decrease, and std’s are invariably very close to the corresponding se’s. Third, in most cases, the
actual confidence interval coverages obtained based on the proposed estimators differ only marginally from the targeted
nominal level of 0.95, and as expected, their deviations from 0.95 decrease as n or T increases. The above comments also
apply to the estimators for the nonparametric component. It is observed that the MASE's of ¢ ,(zit1) and ¢, ,(zir2) decrease
as n or T increases, and their corresponding SASE’s decrease as the number of observations increases. A comparison of
results in Table 1(a) with the corresponding results in Table 1(b) shows that other things being equal, heteroscedasticity
in the errors generally has the effect of inflating the standard deviations and standard errors of the estimator although the
estimator remains asymptotically unbiased when the errors are heteroscedastic.

Additionally, we draw comparisons with results based on lagged level instruments as in Arellano and Bond (1991) under
the homoscedastic error scenario. The results are displayed in Table 1(c), where it is shown that when the panel is relatively
short (e.g., T = 5), the first difference-based instruments generally lead to an estimator (labelled as BB) with smaller
standard deviations than the estimator arising from lagged level-based instruments (labelled as AB). For longer panels,
results based on the two procedures are comparable. This finding concurs with that of Blundell and Bond (1998) under the
parametric dynamic model.

One reviewer has pointed that simulations with different ratios of the variances of idiosyncratic errors and individual
effects are also useful for evaluating the performance of our approach. For this purpose we consider cases of o2/ taking
on 0.5, 1 and 5. The results, displayed in Table 1(d), indicate that the estimators of the parametric and nonparametric
components commonly have smaller standard deviations when o2/ is small than when it is large.

Design 2. This experiment extends the last experiment to a more complex model setup where the lag order is increased to
2, and the model contains a second exogenous variable. We consider the model

Yie = Wi + ViYie—1) + VoYie—2) + BiXien + BaXiz + $1(Zie1) + 02(zir2) + &ie,

where p; = (T—2)"! 2323(&” +Xx;¢2) represents the fixed effect, x;;; and x;;, are each generated by a no-drift AR(1) process
with LLD.N(0, 1) errors, and an autocorrelation coefficient of 0.3 (for x;:;) and 0.5 (for xi2), ¢1(z) = sin(nz) + cos?(2z)
and ¢, (z) = sin?(2wz) + cos(wz), and z is defined as under Design 1. We let ,B—r = (1.2,-0.5) and " = (0.7, —0.4)
or (—0.9,0.1). As in Design 1, we consider the scenarios of homoscedastic errors for which ¢; ~ LLD.N(O, 1), and
heteroscedastic errors for which we assume g; = +/hj€;; with h;; = 0.1 + 0.3y,-2[_]. We setn = 50,100 and T = 10, 15,
and apply the same number of replications as in Design 1.

Table 2 reports the simulation results. As far as the performance of the various estimators is concerned, all of the general
comments reported under Design 1 above apply in broad terms. Specifically, as n or T increases, the biases of all estimates
decrease, as do the standard deviations of the estimates, which are never very different from the corresponding standard
errors, and in all cases, the actual confidence interval coverages exhibit close proximity to the targeted 0.95 level. Other
things being equal, heteroscedasticity has the effect of inflating the standard deviations of the estimates.

Design 3. The purpose of this experiment is to evaluate the performance of the SCAD-GMM procedure described in Section 4.
The panel process being considered is

5 10 9
Yie = mi + VsYit—s + inrkﬁk + Z O (Zier) + i (5.1)
- =1

s=1 r=1
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Table 1(a)
Monte Carlo results under Design 1 with homoscedastic errors.
T 5 10 15
n 50 100 200 50 100 200 50 100 200
y =0.1
Vn mean 0.1006 0.1006 0.0993 0.0996 0.0996 0.0999 0.0994 0.0999 0.0999
std 0.0328 0.0233 0.0152 0.0139 0.0097 0.0070 0.0100 0.0066 0.0050
se 0.0301 0.0237 0.0147 0.0139 0.0098 0.0069 0.0100 0.0068 0.0052
cp 0.9290 0.9480 0.9400 0.9460 0.9430 0.9500 0.9500 0.9610 0.9560
En mean 1.5074 1.4959 1.4994 1.5036 1.4990 1.5012 1.4977 1.4992 1.5006
std 0.1852 0.1306 0.0915 0.1225 0.0857 0.0596 0.0931 0.0627 0.0458
se 0.1773 0.1372 0.0917 0.1193 0.0852 0.0588 0.0906 0.0649 0.0463
cp 0.9390 0.9570 0.9490 0.9440 0.9420 0.9470 0.9400 0.9550 0.9510
o2 mean 0.9313 1.0148 0.9966 0.9521 0.9728 0.9886 0.9666 0.9824 0.9908
std 0.1298 0.0975 0.0649 0.0796 0.0590 0.0406 0.0646 0.0468 0.0333
se 0.1443 0.1121 0.0785 0.0854 0.0617 0.0445 0.0670 0.0483 0.0345
cp 0.9050 0.9690 0.9380 0.9010 0.9210 0.9520 0.9110 0.9170 0.9560
al_"(z) MASE 0.0670 0.0321 0.0163 0.0254 0.0132 0.0062 0.0155 0.0080 0.0039
SASE 0.0369 0.0177 0.0085 0.0141 0.0070 0.0034 0.0085 0.0043 0.0021
?4;2,,1 (2) MASE 0.0667 0.0318 0.0160 0.0262 0.0120 0.0062 0.0159 0.0077 0.0040
SASE 0.0347 0.0166 0.0086 0.0144 0.0065 0.0033 0.0088 0.0040 0.0022
y =—0.6
Vn mean —0.5989 —0.5994 —0.5996 —0.5992 —0.5996 —0.6000 —0.6000 —0.5999 —0.6001
std 0.0209 0.0135 0.0096 0.0100 0.0063 0.0049 0.0074 0.0049 0.0037
se 0.0209 0.0128 0.0095 0.0094 0.0063 0.0048 0.0072 0.0050 0.0037
cp 0.9470 0.9390 0.9450 0.9330 0.9520 0.9460 0.9460 0.9590 0.9460
E,, mean 15016 1.5044 1.5003 1.5036 1.5006 1.4973 1.5025 1.5009 1.5004
std 0.1930 0.1490 0.0994 0.1169 0.0869 0.0588 0.0934 0.0664 0.0479
se 0.1909 0.1437 0.0952 0.1158 0.0857 0.0595 0.0946 0.0668 0.0469
cp 0.9460 0.9370 0.9340 0.9470 0.9560 0.9550 0.9600 0.9500 0.9430
G2 mean 0.9853 0.9823 0.9931 0.9721 0.9789 0.9864 0.9681 0.9818 0.9904
std 0.1246 0.0939 0.0659 0.0842 0.0580 0.0413 0.0665 0.0472 0.0339
se 0.1518 0.1084 0.0778 0.0872 0.0622 0.0444 0.0670 0.0482 0.0345
cp 0.9570 0.9620 0.9770 0.9330 0.9360 0.9470 0.9090 0.9290 0.9300
$1_,. (2) MASE 0.0644 0.0303 0.0158 0.0257 0.0126 0.0064 0.0165 0.0080 0.0039
SASE 0.0354 0.0156 0.0081 0.0134 0.0068 0.0034 0.0090 0.0041 0.0020
$2_,.(z) MASE 0.0679 0.0324 0.0160 0.0270 0.0125 0.0062 0.0155 0.0078 0.0041
SASE 0.0349 0.0167 0.0088 0.0141 0.0067 0.0032 0.0083 0.0043 0.0021
y =0.9
Va mean 0.8133 0.8522 0.8814 0.8828 0.8869 0.8890 0.8911 0.8946 0.8960
std 0.2265 0.1563 0.0906 0.0353 0.0306 0.0285 0.0164 0.0118 0.0111
se 0.2142 0.1553 0.0913 0.0349 0.0298 0.0281 0.0167 0.0123 0.0113
cp 0.9430 0.9660 0.9440 0.9090 0.9230 0.9210 0.9080 0.9370 0.9420
E,. mean 1.4117 1.4570 1.4874 1.4921 1.4858 1.4955 1.4915 1.4952 1.5000
std 0.2842 0.1857 0.1077 0.1276 0.0852 0.0642 0.0911 0.0666 0.0472
se 0.2894 0.1922 0.1110 0.1205 0.0877 0.0614 0.0907 0.0670 0.0479
cp 0.9460 0.9490 0.9560 0.9340 0.9570 0.9400 0.9330 0.9510 0.9530
o2 mean 1.0428 1.0543 0.9942 0.9335 0.9712 0.9804 0.9646 0.9776 0.9892
std 0.4936 0.3028 0.1159 0.0836 0.0597 0.0490 0.0646 0.0466 0.0332
se 0.1588 0.1180 0.0784 0.0839 0.0618 0.0441 0.0664 0.0482 0.0344
cp 0.7560 0.8190 0.8530 0.8430 0.9120 0.8810 0.9010 0.9160 0.9350
$1_,.(z) MASE 0.2018 0.1237 0.0413 0.0294 0.0152 0.0091 0.0167 0.0081 0.0042
SASE 0.2953 0.1724 0.0414 0.0163 0.0086 0.0061 0.0087 0.0043 0.0022
252_,, (2) MASE 0.1544 0.0823 0.0322 0.0290 0.0144 0.0075 0.0164 0.0081 0.0041
SASE 0.2117 0.1033 0.0289 0.0159 0.0082 0.0044 0.0087 0.0043 0.0023

where y = (0,0.7,0, —0.4, y5) T 0r (0,0.9,0,0.1, y5)T, 8 = (0,0, 1.2, 0, 85,0, —0.5, 0, 0, 0) T, with 5 and B5 both being

1/4/nT*log(nT*), $1(z1) = 3 c0s(z1—0.5)+2%, ¢4(22) = 22,/(1.2—5in(22)), $2(22) = P3(23) = ¢P5(25) = - -+ = Po(29) =0,
z ~ 1p.U0,0.1) forr = 1,...,9, i = (T —5) " 3¢ S0_, Xiswo With X, k = 6, ..., 10, being LLD.N(0, 0.5)
distributed, and x4, k = 1, ..., 5, following an AR(1) process with L.L.D.N (0, 1) disturbances, no drift and an autocorrelation

coefficient of 0.5, and ¢;; ~ L.L.D.N(0, 1). We consider the same values of n = 50, 100, 200, T = 10, 15 and the same number
of replications as in the previous two designs. When fitting the model, we allow a maximum of 5 lag dependent variables,
10 exogenous covariates and 9 nonparametric functions. We also compare the selection performance of SCAD-GMM with a
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Table 1(b)
Monte Carlo results under Design 1 with heteroscedastic errors.
Case (1) Case (2)
T 10 15 10 15
n 50 100 50 100 50 100 50 100
y =0.1
Vn mean 0.0935 0.0941 0.0921 0.0962 0.0928 0.0946 0.0945 0.0966
std 0.0533 0.0408 0.0397 0.0293 0.0557 0.0394 0.0407 0.0290
se 0.0535 0.0406 0.0381 0.0298 0.0545 0.0396 0.0392 0.0297
cp 0.9440 0.9430 0.9330 0.9420 0.9390 0.9540 0.9350 0.9520
;3\,1 mean 1.4993 1.4976 1.5016 1.4893 1.4985 1.4990 15113 1.5031
std 0.3152 0.2328 0.2153 0.1793 0.2991 0.2439 0.2360 0.1786
se 0.3001 0.2221 0.2116 0.1791 0.2764 0.2311 0.2398 0.1746
cp 0.9360 0.9410 0.9430 0.9510 0.9210 0.9420 0.9530 0.9430
G2 mean 0.9278 0.9588 0.9505 0.9761 0.9178 0.9556 0.9457 0.9762
std 0.1533 0.1254 0.1316 0.0975 0.1547 0.1122 0.1282 0.0862
51.,,(2) MASE 0.2375 0.1096 0.1304 0.0757 0.2111 0.1147 0.1489 0.0728
N SASE 0.1406 0.0621 0.0736 0.0426 0.1239 0.0633 0.0842 0.0410
P2.0(2) MASE 0.2166 0.1069 0.1365 0.0724 0.2349 0.1157 0.1704 0.0695
SASE 0.1270 0.0589 0.0759 0.0382 0.1455 0.0619 0.1019 0.0373
y =—0.6
Vn mean —0.6039 —0.6002 —0.6054 —0.6013 —0.6002 —0.5998 —0.6022 —0.6009
std 0.0541 0.0402 0.0412 0.0293 0.0521 0.0392 0.0410 0.0294
se 0.0496 0.0387 0.0381 0.0285 0.0503 0.0382 0.0384 0.0297
cp 0.9250 0.9380 0.9310 0.9480 0.9410 0.9480 0.9380 0.9510
En mean 1.5062 1.5081 1.5100 1.4957 1.5013 1.5216 1.4771 1.5155
std 0.3524 0.2703 0.2845 0.2142 0.3677 0.2883 0.2895 0.2259
se 0.3402 0.2625 0.2709 0.2093 0.3611 0.2803 0.2764 0.2212
cp 0.9470 0.9440 0.9450 0.9450 0.9530 0.9440 0.9280 0.9480
'a\nz mean 0.9179 0.9526 0.9416 0.9669 0.9195 0.9576 0.9453 0.9644
std 0.1657 0.1335 0.1473 0.1248 0.1604 0.1300 0.1291 0.0989
?51,,1(2) MASE 0.3260 0.1877 0.2374 0.1106 0.3048 0.1912 0.2347 0.1194
SASE 0.2187 0.1220 0.2133 0.0673 0.2266 0.1157 0.1495 0.0735
$z,n(l) MASE 0.3335 0.1535 0.2417 0.1103 0.3264 0.1665 0.2297 0.1207
SASE 0.2097 0.0917 0.2048 0.0729 0.2183 0.0999 0.1654 0.0713
y =0.9
Vn mean 0.7430 0.7464 0.7714 0.7808 0.7513 0.7528 0.8171 0.8357
std 0.1360 0.1175 0.0597 0.0556 0.1267 0.1213 0.0665 0.0619
se 0.1114 0.1049 0.0585 0.0525 0.1156 0.1029 0.0618 0.0540
cp 0.7010 0.7030 0.7170 0.7480 0.7230 0.7380 0.7220 0.6990
En mean 1.4096 1.3780 1.4629 1.4659 1.4269 1.3986 1.4473 1.4363
std 0.4559 0.4171 0.4343 0.3398 0.5173 0.3722 0.4410 0.3577
se 0.4349 0.3924 0.4209 0.3359 0.4970 0.3597 0.4115 0.3386
cp 0.9240 0.9250 0.9390 0.9370 0.9300 0.9250 0.9390 0.9270
G2 mean 0.8453 0.8699 0.8952 0.9292 0.8483 0.8675 0.9205 0.9261
std 0.2769 0.2188 0.2533 0.1842 0.2449 0.2136 0.2390 0.1957
$1,,,(z) MASE 0.7453 0.5034 0.5868 0.3981 0.8166 0.5893 0.7742 0.4722
SASE 0.5177 0.3604 0.4824 0.2969 0.5360 0.3359 0.5288 0.3147
az,n(l) MASE 0.6454 0.4332 0.5660 0.3910 0.8836 0.5896 0.7768 0.4791
SASE 0.4487 0.2859 0.3769 0.2001 0.6418 0.4576 0.5919 0.3681

Lasso-based (Tibshirani, 1996) GMM. In all our simulations, we use the BIC criterion described in Section 4 to determine the
tuning parameter.

Table 3 reports the number of times in 1000 replications where the SCAD-GMM and Lasso-GMM procedures (labelled
as SD and LA respectively) can identify the non-zero coefficients and/or functions as non-zero (labelled as NZ) and zero
coefficients and/or functions as zero (labelled as Z) correctly. For example, when y = (0,0.7,0, —0.4, 5)", T = 10 and
n = 50, the SCAD (Lasso) procedure can correctly identify both of the two non-zero ¢(-) functions as non-zero 967 (502)
times, all of the seven zero ¢ (-) functions as zero 575 (497) times, all of non-zero coefficients and functions as non-zero 486
(392) times, and all of the zero coefficients and functions as zero 503 (364) times. The table reveals that by our criterion,
SCAD-GMM is clearly a superior procedure to Lasso-GMM. Other things being equal, the effectiveness of both procedures
improves as n or T increases. There is no substantial difference in results under the two specifications of y.
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Table 1(c)
Comparison of results based on lagged levels instruments and difference instruments under Design 1 with homoscedastic errors.
n 50 100
5 10 5 10
AB BB AB BB AB BB AB BB
y =0.5
Vn mean 0.5007 0.4980 0.4988 0.4987 0.4989 0.5002 0.4992 0.5000
std 0.0651 0.0531 0.0174 0.0166 0.0363 0.0277 0.0123 0.0108
se 0.0622 0.0497 0.0168 0.0157 0.0347 0.0303 0.0121 0.0107
cp 0.9410 0.9320 0.9450 0.9410 0.9480 0.9650 0.9490 0.9450
En mean 1.5126 1.5103 1.4995 1.5016 1.5059 1.5005 1.4983 1.5073
std 0.2220 0.1835 0.1178 0.1175 0.1457 0.1304 0.0844 0.0837
se 0.2089 0.1772 0.1200 0.1170 0.1371 0.1323 0.0837 0.0840
cp 0.9340 0.9400 0.9560 0.9480 0.9310 0.9500 0.9470 0.9490
G2 mean 0.9073 0.8778 0.9558 0.9501 0.9482 0.9426 0.9797 0.9714
std 0.1301 0.1266 0.0845 0.0817 0.0970 0.0947 0.0599 0.0555
se 0.1406 0.1358 0.0856 0.0810 0.1048 0.1045 0.0625 0.0616
cp 0.8570 0.8070 0.8880 0.8890 0.8990 0.9130 0.9320 0.9380
$m(z) MASE 0.0734 0.0665 0.0271 0.0255 0.0348 0.0343 0.0126 0.0123
SASE 0.0403 0.0352 0.0148 0.0137 0.0190 0.0184 0.0067 0.0065
$2_n(z) MASE 0.0670 0.0666 0.0255 0.0260 0.0357 0.0326 0.0128 0.0129
SASE 0.0375 0.0369 0.0138 0.0136 0.0192 0.0175 0.0070 0.0068
y =0.9
Vn mean 0.8698 0.8761 0.8828 0.8850 0.8868 0.8914 0.8882 0.8931
std 0.1313 0.1061 0.0378 0.0328 0.0975 0.0898 0.0307 0.0223
se 0.1249 0.1032 0.0359 0.0317 0.0963 0.0875 0.0290 0.0226
cp 0.9520 0.9450 0.9160 0.9130 0.9480 0.9460 0.9380 0.9460
E,. mean 1.4627 1.4795 1.4844 1.4866 1.4827 1.4931 1.4907 1.4933
std 0.2410 0.1948 0.1282 0.1218 0.1723 0.1459 0.0861 0.0834
se 0.2449 0.1862 0.1218 0.1166 0.1711 0.1483 0.0872 0.0845
cp 0.9510 0.9350 0.9330 0.9360 0.9460 0.9580 0.9410 0.9540
o2 mean 0.9578 0.9112 0.9494 0.9358 1.0026 0.9660 0.9693 0.9688
std 0.1839 0.1427 0.0853 0.0825 0.1328 0.1107 0.0646 0.0608
se 0.1769 0.1416 0.0851 0.0838 0.1339 0.1071 0.0616 0.0615
cp 0.8500 0.8590 0.8790 0.8500 0.9170 0.8830 0.8810 0.8960
?q;]_" (2) MASE 0.1077 0.0946 0.0313 0.0288 0.0561 0.0507 0.0153 0.0141
SASE 0.0773 0.0664 0.0173 0.0151 0.0504 0.0452 0.0087 0.0079
252_,, 2) MASE 0.1002 0.0967 0.0283 0.0275 0.0500 0.0450 0.0149 0.0130
SASE 0.0713 0.0662 0.0152 0.0142 0.0377 0.0325 0.0083 0.0069

5.2. Areal data application

This section presents a real data application of the proposed methodology. The data, extracted from Cornwell and Trum-
bull (1994), contains panel information on crime rate, the ratio of FBI index crimes to population, and its attributes in 90
counties in the state of North Carolina over the period 1981-1987. Our benchmark model is

3
CRie = i+ Y ¥sCRi¢—s) + P1AASic + B2POLic + BsWFic + BaWSic + BsWLic + BsPYi

s=1
+ o1 (PAi) + ¢2(PCyt) + ¢3(PPir) + Ppa(DENy) + 5 (TAXie) + e (WMie) + €4, i=1,...,90, t=1,...,7,

where the response variable CR;; is the crime rate of county i in the tth year, AS is the average prison sentence in days, POL
is the number of police per capita, WF, WS, WL and WM represent, respectively, the average weekly wages of employees of
federal government, state government, local government and manufacturing industries, and PY is the percentage of male
population between the ages of 15 and 24 in the county. In addition, PA is the probability of being arrested, PC is the proba-
bility of conviction after arrest, PP is the probability of imprisonment after conviction, DEN is the population density, being
the county’s population divided by the county’s land area and TAX represents per capita tax revenue.

For ease of interpretation, we scale all values of the covariates to between 0 and 1. The results are reported in Table 4,
where EST, SE and CI denote the coefficient estimate associated with the corresponding variable shown on the first column
of the table, its standard error, and the associated 95% confidence interval constructed using the wild bootstrap procedure
proposed by Hardle et al. (2004). Three sets of GMM results are presented: those without the implementation of SCAD or
other diagnostic tests are shown on the far left panel of the table; the middle panel presents the re-estimated results after
removing the insignificant variables; the far right panel are results based on the SCAD-GMM procedure. The GMM results
without variable selection by SCAD shows that, POL, the number of police per resident, and WS, the state government salary
level, exert no significant effect on crime rate, while WF, the federal government salary level exerts a positive effect on crime
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Table 1(d)
Monte Carlo results under Design 1 with different ratio of variance of idiosyncratic errors and individual effects.
o?/|ul T =5n=50 T =5n=100 T=10,n=50
0.5 1 5 0.5 1 5 0.5 1 5
y =0.1
Vn mean 0.1000 0.0999 0.1025 0.1001 0.1003 0.1010 0.1000 0.0999 0.0996
std 0.0106 0.0135 0.0404 0.0073 0.0096 0.0205 0.0036 0.0041 0.0095
se 0.0109 0.0130 0.0390 0.0070 0.0093 0.0211 0.0037 0.0040 0.0094
cp 0.9600 0.9460 0.9500 0.9440 0.9350 0.9640 0.9570 0.9430 0.9340
En mean 1.5000 1.5003 1.5018 1.4997 1.4978 1.5019 1.4989 1.4990 1.4988
std 0.0604 0.0769 0.1837 0.0388 0.0574 0.1112 0.0265 0.0352 0.0772
se 0.0607 0.0757 0.1733 0.0384 0.0592 0.1121 0.0270 0.0335 0.0757
cp 0.9480 0.9450 0.9360 0.9430 0.9500 0.9500 0.9560 0.9400 0.9400
52 mean 1.0337 0.9628 0.9220 0.9331 0.9921 1.0042 0.9963 0.9532 0.9637
std 0.1450 0.1461 0.1533 0.1004 0.1036 0.1184 0.0991 0.1087 0.1099
$1,,,(z) MASE 0.0072 0.0124 0.0680 0.0033 0.0061 0.0291 0.0017 0.0027 0.0117
SASE 0.0042 0.0070 0.0385 0.0017 0.0032 0.0150 0.0010 0.0015 0.0060
?52,"(2) MASE 0.0071 0.0107 0.0593 0.0030 0.0067 0.0284 0.0017 0.0028 0.0112
SASE 0.0041 0.0059 0.0330 0.0017 0.0035 0.0162 0.0009 0.0015 0.0061
y =0.9
Vn mean 0.8917 0.8724 0.8755 0.8992 0.8970 0.8464 0.8994 0.8972 0.8883
std 0.0607 0.1093 0.1437 0.0327 0.0491 0.1660 0.0086 0.0150 0.0285
se 0.0767 0.1187 0.1557 0.0390 0.0506 0.1665 0.0083 0.0146 0.0285
cp 0.9960 0.9810 0.9870 0.9930 0.9670 0.9620 0.9370 0.9480 0.9250
E,, mean 1.4982 1.4674 1.4957 1.4992 1.4972 1.4549 1.4998 1.4990 1.4921
std 0.0580 0.1588 0.1567 0.0405 0.0725 0.1815 0.0252 0.0405 0.0796
se 0.0750 0.1773 0.1758 0.0479 0.0750 0.1934 0.0247 0.0395 0.0802
cp 0.9890 0.9720 0.9690 0.9810 0.9590 0.9680 0.9440 0.9520 0.9530
G2 mean 1.3233 1.2456 1.2503 1.1479 1.0842 1.1062 0.9583 1.0240 0.9471
std 0.2659 0.2715 0.2852 0.1525 0.1563 0.1832 0.1018 0.1037 0.1055
$1,n(z) MASE 0.0166 0.0504 0.1203 0.0057 0.0132 0.1022 0.0015 0.0037 0.0169
SASE 0.0178 0.0742 0.1292 0.0052 0.0116 0.1414 0.0009 0.0021 0.0096
52.,,(2) MASE 0.0124 0.0375 0.0797 0.0044 0.0108 0.0882 0.0014 0.0035 0.0163
SASE 0.0114 0.0505 0.0602 0.0032 0.0084 0.1193 0.0008 0.0019 0.0091

rate. On the other hand, AS, the duration of prison sentence, WL, the local government salary level, and PY, the percentage
of young male population, all have the effect of reducing crime rate. We find the last result somewhat surprising as we
would expect crime rate to be positively associated with the percentage of young male population, ceteris paribus. When
SCAD-GMM is used, the SCAD procedure selects only WS and PY. Interestingly, the coefficient estimate of PY by SCAD-
GMM is positive, which is the opposite to the result obtained without SCAD selection. Both the GMM without SCAD and
SCAD-GMM methods find d = 1 to be the most appropriate lag order.

Fig. 1 exhibits the estimated nonparametric functions based on the SCAD-GMM method. The procedure selects all but
the variable PP specified for the nonparametric component of the model. Fig. 1 shows that when PA, the probability of being
arrested, is greater than 0.4, an increase in PA has the effect of reducing crime rate, and the rate of reduction increases as
PA increases. The variable PC, which represents the probability of conviction, does not appear to have any significant effect
on crime rate, except when PC > 0.8, a noticeable decline in CR is observed as PC increases. On the other hand, DEN, the
population density, has the effect of increasing crime rate at an increasing rate. As well, a very high value of TAX, the tax
rate, can escalate crime rate, but an increase in WM, the salary level of manufacturing employees, generally reduces crime
rate. The estimated nonparametric functions based on GMM without SCAD variable selection are shown in Fig. 2. There are
similarities as well as differences between the results shown in Figs. 1 and 2; for example, the estimated function of ¢»; based
on the GMM method without SCAD selection shows that for very large values of PA, crime rate decreases at a decreasing
rate in absolute terms when PA increases; also, without using SCAD selection, the GMM results show that an increase in
manufacturing salary level from a moderately high level can increase the crime rate. These differ from those observed under
the SCAD-GMM estimation procedure.
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Table 2
Monte Carlo results under Design 2.
Homoscedastic errors Heteroscedastic errors
T 10 15 10 15
50 100 50 100 50 100 50 100
(y1,2) = (0.7, -0.4)
Yin mean 0.7014 0.6994 0.6951 0.7007 0.6936 0.6916 0.6932 0.6981
std 0.0339 0.0254 0.0217 0.0166 0.0635 0.0517 0.0464 0.0334
se 0.0328 0.0260 0.0223 0.0165 0.0612 0.0486 0.0455 0.0330
cp 0.9460 0.9570 0.9430 0.9530 0.9370 0.9480 0.9330 0.9520
Vo mean —0.3948 —0.4092 —0.4088 —0.3958 —0.4038 —0.4051 —0.4028 —0.4013
std 0.0303 0.0230 0.0211 0.0152 0.0449 0.0324 0.0319 0.0219
se 0.0296 0.0233 0.0212 0.0157 0.0426 0.0323 0.0307 0.0214
cp 0.9440 0.9410 0.9270 0.9550 0.9270 0.9390 0.9410 0.9420
El,n mean 1.2011 1.1985 1.1974 1.2076 1.2033 1.1977 1.2068 1.1931
std 0.0676 0.0522 0.0508 0.0355 0.1087 0.0803 0.0821 0.0622
se 0.0681 0.0515 0.0516 0.0373 0.1050 0.0801 0.0816 0.0618
cp 0.9470 0.9450 0.9570 0.9550 0.9390 0.9490 0.9460 0.9480
Ez.n mean —0.5183 —0.5074 —0.4994 —0.5119 —0.5089 —0.5076 —0.4963 —0.4985
std 0.0760 0.0508 0.0558 0.0386 0.1091 0.0876 0.0869 0.0659
se 0.0733 0.0517 0.0542 0.0390 0.1055 0.0866 0.0826 0.0621
cp 0.9330 0.9490 0.9310 0.9470 0.9440 0.9480 0.9330 0.9300
o2 mean 0.9979 1.0337 1.0216 0.9993 0.9348 0.9807 0.9722 0.9917
std 0.0936 0.0659 0.0737 0.0505 0.1528 0.1442 0.1618 0.1180
se 0.0960 0.0706 0.0737 0.0536 - - - -
cp 0.9380 0.9530 0.9500 0.9460 - - - -
am(z) MASE 0.0564 0.0481 0.0475 0.0399 0.1226 0.0778 0.0900 0.0607
SASE 0.0157 0.0081 0.0098 0.0045 0.0616 0.0269 0.0369 0.0187
az_,. (2) MASE 0.0668 0.0490 0.0542 0.0447 0.1304 0.0826 0.0845 0.0694
SASE 0.0158 0.0078 0.0095 0.0046 0.0600 0.0256 0.0319 0.0181
(1, 72) = (=0.9,0.1)
Yin mean —0.9112 —0.9091 —0.9063 —0.8991 —0.9059 —0.9051 —0.9055 —0.9032
std 0.0475 0.0327 0.0306 0.0201 0.0844 0.0696 0.0699 0.0491
se 0.0456 0.0321 0.0299 0.0209 0.0789 0.0654 0.0581 0.0457
cp 0.9250 0.9410 0.9380 0.9620 0.9410 0.9330 0.9160 0.9320
Youn mean 0.0890 0.0909 0.0918 0.0986 0.0903 0.0920 0.0873 0.0903
std 0.0522 0.0365 0.0323 0.0211 0.0823 0.0646 0.0508 0.0388
se 0.0506 0.0355 0.0319 0.0221 0.0733 0.0625 0.0469 0.0377
cp 0.9420 0.9400 0.9480 0.9500 0.9180 0.9450 0.9330 0.9320
El,n mean 1.1878 1.2342 1.1955 1.1925 1.1970 1.1972 1.1885 1.2184
std 0.0717 0.0497 0.0515 0.0365 0.1203 0.1009 0.1049 0.0817
se 0.0692 0.0519 0.0528 0.0367 0.1132 0.0990 0.1017 0.0816
cp 0.9440 0.9020 0.9590 0.9470 0.9260 0.9450 0.9250 0.9340
Ez,n mean —0.4880 —0.4965 —0.4923 —0.4918 —0.4930 —0.5004 —0.5000 —0.4954
std 0.0634 0.0521 0.0518 0.0384 0.1270 0.0953 0.0987 0.0857
se 0.0650 0.0531 0.0535 0.0389 0.1154 0.0925 0.0937 0.0831
cp 0.9580 0.9560 0.9500 0.9500 0.9240 0.9400 0.9290 0.9310
(’7\,12 mean 0.9785 1.0115 1.0030 0.9974 0.9022 0.9506 09133 0.9539
std 0.0900 0.0648 0.0721 0.0549 0.2056 0.2001 0.2689 0.2255
se 0.0941 0.0692 0.0726 0.0511 - - - -
cp 0.9380 0.9640 0.9490 0.9280 - - - -
&_,, (2) MASE 0.0604 0.0452 0.0482 0.0391 0.1528 0.1049 0.1863 0.1274
SASE 0.0169 0.0079 0.0092 0.0050 0.0818 0.0528 0.2009 0.0842
$2_,. (2) MASE 0.0649 0.0512 0.0532 0.0466 0.1650 0.1099 0.2073 0.1294
SASE 0.0158 0.0075 0.0090 0.0044 0.1070 0.0457 0.1831 0.0908

the Program for Changjiang Scholars and Innovative Research Team (IRT13077). The authors thank the Associate Editor and
two anonymous referees for helpful comments and suggestions. The usual disclaimer applies.

Appendix

Our proofs of results require the following lemmas.
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Table 3
Monte Carlo results under Design 3.
T n b4 B d(2) Combined
NZ Z NZ Z Nz Z NZ Z
SD LA SD LA SD LA SD LA SD LA SD LA SD LA SD LA

=(0,0.7,0, —0.4, ys)

10 50 984 571 841 397 978 651 648 416 967 502 575 497 486 392 503 364
100 1000 769 860 581 984 730 745 713 979 890 742 588 906 571 681 491

200 1000 887 903 793 996 901 816 841 989 914 819 832 925 712 724 665

15 50 1000 613 922 436 1000 567 653 536 965 544 646 423 965 436 534 389
100 1000 690 939 713 1000 802 807 845 983 903 784 591 983 548 709 507

200 1000 901 966 835 1000 879 863 904 997 950 843 790 997 771 782 689

T =(0,0.9,0,0.1, y5)
10 50 526 439 968 455 978 599 682 451 986 674 789 543 515 408 603 372
100 859 651 993 681 989 657 692 706 960 681 919 631 827 553 539 525
200 983 793 934 856 993 803 850 817 979 785 821 895 962 639 737 634
15 50 800 563 981 728 1000 627 623 499 965 498 781 612 932 405 491 312
100 957 711 965 819 1000 802 785 613 947 722 693 508 947 519 560 398
200 968 846 977 905 1000 879 829 768 981 894 775 605 944 702 719 577

<
Il

Table 4
Estimates for the parametric component for the real data example.
GMM estimates without SCAD GMM estimates without SCAD (after SCAD-GMM estimates
removing insignificant variables)
EST SE Cl EST SE Cl EST SE Cl
CR_4 0.4856  0.1603  [0.3629, 0.8038] 0.8025 0.0997  [0.7341,0.9914] 0.4574  0.1335  [0.3796, 0.6995]
CR_,  —0.0279 0.0368 [—0.0522,0.0408] - - - - - -
CR_3 0.0348 0.0593  [—0.0025,0.1478] - - - - -. -
AS —0.0346 0.0157 [—0.0446, —0.0042] —0.0152  0.0097 [—0.0214, —0.0028] - - -
POL —0.0303 0.0626  [—0.0802,0.1018] - - - - - -
WF 0.0496 0.0358 [0.0194, 0.1146] 0.0280 0.0328 [0.0070, 0.0923] - - -
WS —0.0615 0.0472 [—0.1028,0.0078] - - - —0.1018  0.0342 [—0.1244, —0.0356]
WL —0.0534 0.0227 [—0.0756,—0.0133] —0.0282 0.0169  [—0.0390, —0.0064] - - -
PY —1.3523 04584 [—1.4567, —0.2382] —0.7793  0.2909  [—0.9430, —0.2119] 0.0687  0.4060 [—0.1834,0.8613]

0.4 0.2

-0.2

-0.4

-0.6

-0.2 -0.8
01 02 03 04 05 06 07 08 0.2 0.4 0.6 0.8 1

Fig. 1. The estimated nonparametric function (solid curve), its 95% point-wise confidence bands (dash-dotted lines) and the bootstrap-based
nonparametric function (dashed curves) with SCAD selection.

Lemma 1. Let Assumptions (A1)-(A3) hold. Then

n T q
DI Z br(zir))?
Osup l:Tl [:; =! - 1 = OP(1)7
A= E Y e ain)?
t=1 r=1
where }fron, =1, ..., q are the polynomial spline spaces. See Section 2 for similar definitions.
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Fig. 2. The estimated nonparametric function (solid curve), its 95% point-wise confidence bands (dash-dotted lines) and the bootstrap-based
nonparametric function (dashed curves) without SCAD selection.

Proof. This lemma can be proved by applying Lemma 1 of Huang and Shen (2004). We omit the details for brevity. =

Lemma 2. For each function g(z) satisfying Assumptions (A1)-(A3),eg., g(z) = f:] ¢r(z) and g(z) = E4(E(y, X|2)), there
exist a quantity C > 0 and a polynomial spline function h(z) € #? such that

lg@ —h@)le < ;"
This implies that there is @ € R'" such that
sup [g(z) —N' (2)0] = 0(; ).

zeRr!
Proof. Lemma 2 is a direct result of Theorem XII.1 of de Boor (2001). =

Lemma 3. Let Assumptions (A1)-(A4) hold. Then as n — oo, we have

1
nT*

1
(AYY, AX) T (Iyr+ — M)W —p ;E[{(AY", AX) — E4(AYY, AX))}T (W — E,W))].

Proof. Write V = (AY’, AX) and V; = (AY{, AX) with AY] = (Ay{,5..... Ay} and AX; = (AXigs3). . ... Axir) "

fori=1,...,n. Note that (nT*)"1(AY?, AX)T (I,;+ — M)W can be expressed as the summation of the following terms:
1 1
Dy = — (V—EV) (- =MW —E,W), Dy = —(V—EV)" (s — M)E4W,
1

D; =

1
7 EaV) (s = M)W —E,W),  and Dy = ——(E4V) " (Iyr — M)ELW.

Using Assumption (A1) and the Law of Large Numbers, we can show that

1 1 &
(V—EV) (W —EsW) = — ) "(V; — E,V) " (W; — E,W))
nT* nT* =
1
= BV - EAVD) | (W; — ELWy)}, (A1)
and
1 T 1 T ~T~ =T
. (V—E4 V) TM(V—E,V) = = (V—E4,V)'N(N N)"'N (V—E,V)
1 WoEWTRN (V-EW)
T (nT*)2q; * *
1

_ % 2 *
= aTdl (VnT*qJp)? = qJp/nT* — 0. (A2)
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Applying arguments similar to those in (A.2) implies that (W —E W) "M(W—E W) /(nT*) = 0p(1), which, when combined
with (A.2) and the Cauchy-Schwarz inequality, leads to

%(v —EAV) "M(W — E, W) —5 0. (A.3)
Now, by (A.1) and (A.3),

D, —p %E[{(Avd, AX1) — Ex(AY], AX)}T (W — E,W))].
The lemma holds if each of D,, D3 and Dy is of order 0,(1). Consider the (u, v)th element of D; first,

1
(DZ)u,v = W(V*,u - EAV*,u)T(InT* - M)E.AW*,U

IA

1 1/2
{nT*(V*,u - EAV*,U)T(lnT* - M)(V*,u - E.A"*,u)}

1 B B 1/2
: {W@w*,u —NO) " (Lr — M)(E W, , — No)}

1 2 (4 y R
= {nT*(V*,u - EAV*,u)T(V*,u - EAV*,U)} {W(EAW*,v - No)T(EAW*.v - N0)}

12
1 < 1 < ~
= { = Z (Vi) wu — E,A("i)*,u”%} !T* Z IEA(Wi)so — N[i]0”%}
= i3

1
= ——E[[(VD)wu — E4(V)ull2(1 + 0,(1)0p(q), ) = 0,(1),

/T*
where v, , and w, , are the uth column of V and the vth column of W respectively. Similarly, (V;). , and (W), , are the uth

and vth column of V; and W; respectively, and 1(1[,-] is the same as V;. This implies that D, = 0,(1). In the same manner we
can show that D3 = D4 = 0,(1). The proof then follows. &

1/2

Lemma 4. Under the same conditionsas in Lemma 1, we have

1 kT *k 1 T
W @ W —p —E {(W; —E,W;) THW; — E, W)},

whereH = BB'.

Proof. Note that (nT*)""W* (I, ® H)W* can be decomposed into the following terms:

E; = n;* (W — E,W) T (s — M)(I, ® H) (L7 — M)(W — E W),
E = n;* (EAW — NO) T (I« — M)(I, ® H) (I« — M)(W — E,W),
E; = n;* (W — E W) (s — M)(I, ® H)(I7+ — M)(E,W — N6),
and
Es = n;* (EAW — NO) T (Ir+ — M)(I, ® H) (I« — M)(E,W — N@).
We can write
1

Ei = ——{(W—EW)" (I, ® H)(W — E,W) — (W — E\W) M(I, ® H)(W — E W)

nT
— (W—=EW) " (I, ® HMW — E,W) + (W — E,W) 'M(I, ® H)M(W — E W)}
défEn +Ei2 + Ei3 + Eqa.

Using Assumption (A1) and Lemma 1,

1
B —p E{(W) — EAW;) "H(W; — E,W))}.
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Moreover, the orthogonality of W — E ,W and N implies that E1; = Eq3 = E14 = 0,(1/(nT*)) = 0,(1). Additionally,

(I, ® H)(E4W — N@) — (E,W — N8) "M, ® H)(E,W — N6)

E, =
— (EAW —N8) " (I, ® HM(E W — N@) + (E,W — N§) "M, ® HM(E,W — NO)}
et E4q1 + Eg + Eg3 + Eyy,

where E4; = ]2 — 0,and Egy = E43 = Eq4 = ]} 2°/(nT*) = 0,(1). Because E, and E; are of the same order, it suffices
to consider E3 only. Note that

E; = —EJW) " (I, ® H)(E,W — N6) — (W — E,W) 'M(I, ® H)(E,W — N§)

— (W—EW)" (I, ® HM(E,W — N6) + (W — E, W) M(I, ® HM(E ,W — N6)}
d—efE31 + E3p + E33 + Ea4,

which, when combined with the fact that (W — E,W) 1 E,W, leads to E3; = ];‘3/(nT*), and E3; = E33 = E3y =
q],}*‘/\/ nT* = o0,(1). The proof is thus completed. M

_Write §.zir) = (9r1(z) — br1(a-ne). - G, @) = by, Gia-n) T and @ = (..., ure g, With ¢, =
(¢r(zl(d+3)r)v e O i)y ¢r(znTr))T-

Lemma 5. Let Assumptions (A1)-(A4) hold. Then

1 -
——W' (s —M)$ = 0,(/, ).

/nT*
Proof. By Assumption (A3), there exists a vector § € R such that
1 ~ 1 -~ -
W' (I — M)$p = ——— (W — E,W) " (I,7+ — M)(¢ — NO
T (Int )¢ «/W( AW) " (It ) (@ )
1
+ W(EMNIHT* M)(@ — NO) £ G, + G,
where
1 _ T _ _ 122 gy T _ TN ke
G1 = e (W = EaW) T (lre — M)W — EaW)1'2 (@ = NO)T oy — M)(G — NO) |
1 -~ I 1/2
< = {W-EW W-EwW)]" |G —N0)" N
Fop(\fm ) = Op(] )
and G, has the property that
G < F{(mwf(EM)}”%(&» —N6O)' (¢ — NO)}'/

< FOP(nq} ) =0,(vV1; ).
These yield the desired result. ®

Proof of Theorem 1. (i) Simple calculations show that

T+ (2 Z) = {(AY, AX) T (s — MYWR™'WT (Ir — M)(AYY, AX)}

1 -
——(AYY, AX) T (I — MW ! [WT(IHT* — M) +W' (I« — M)Ae} )

A/nT*

Using results of Lemmas 1, 2, 3, and 4, Theorem 1 follows if we can prove that

1
——— W (I« — M)Ae > N(0, 0°%) asn — oo. (A4)

/nT*
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Note that
1 T
«/WW (L — M)Ae
1 1 .
= ﬁ(w - EAW)T(IHT* - M)Ae + ﬁ(E'AW - No)T(lnT* - M)Ae
1 1 1 -
- «/W(W —E W) Ae — ﬁ(w —E4W) MAe + ﬁ(mw —NO) " (I;+ — M) Ae,

for which the leading term is the first term on the r.h.s., while the second and third terms can be readily shown to have
orders 0,(J,/+/n) and O,(J;; £ respectively.
It is easily seen that E{(W — E ,W) T Ae|X, Z} = 0 by the exogeneity of W. Moreover,

var{(W — E,W) " Ae|X, Z} = 02(W — E,W) " (I ® H)(W — E, W)
2
o
—p (Wi - EAW1) "BB" (W; — E W)}

Hence (A.4) holds by utilizing Assumptions (A1) and (A4) and the Lindeberg-Levy Central Limit theorem. This completes
the proof.
(ii) This is an obvious result and we omit the proof for brevity. B

Proof of Theorem 2. The definition of #° and (2.2) imply that
1Brn — brllz < drn — Nebrlla + INB; — rlla < (180 — 0+ (A5)
Thus, it suffices to consider only the term ||§r,n — 0,]. Note that
0, — 0= "N N {§+ ae+ AV —F,) - AXB - B))] - 0
— (N'N)"'N' (¢ —NO) + (N N)"'N' Ae
+ NN @AY, A% DT - Gl BT
=4 e; +e; +es.

Let A = (0), r—1yn> Us 0y, (q—ryjn)» WE have/ém -0, = A(@n — 6). Hence,
- - T o AT~ ~T ~ ~ ~ ~
IAe; |2 = (¢ - No) NN N TATAN )N (¢ - NO)
- - -~ - ~ T
= 0,((nT*) )tr { (¢ - N0) NN’ (¢ - N()) }

< 0,((nT*) ™20, (nT*],2)0,(nT*)n) < Ja0pU, %) = 0,(; ),

E(JlAe;]12]Z) = O((nT*)"2)E{tr(Ae NN Ae)|Z} = O((nT*)2)tr{NN ' E(AeAeT |Z)}
= 0((nT*)?) - 0(nT*J,) = 0(Jn/n)
and
lAes]|2 = 0,((nT*)~%)0,((nT*) " Htr{(AY", AX)TNN' (AY?, AX))
= 0,((nT*)"*)0((nT*)*Jy) = O(Ja/1).
Combining the equations above, we can readily show that

1810 — 613 < 0, Uu/m) + 0,(;). m

Proof of Theorem 3. (i) Let K, = 2(nT* —d — p — qJ,,). From (2.9),
G =K, 'l Ael3 + K, I AY (y — P,) + AX(B — B,) +N@©@ — 6,) 13
— 2K HAY!(y — 7,) + AX(B — B,) + N(@ — 0,)) " Ae

di
Y F 4+ F +Fs.
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Using the results in Theorems 1 and 2, we have F, < Op(J,/nT*) 4+ ] 2t Coupled with the Cauchy-Schwarz inequality, this
implies that |F3| < |F;| with probability approaching 1. Hence it suffices to prove the asymptotic normality of F;. Clearly,

n T
Fr=K 'aeTAe =K' > > (e — i1’

i=1 t=d+3
Write ¢; = ZtT:d_B(S,‘[ - e,-(t,n)z. Clearly, v; is an i.i.d. random variable with mean

T

E(¥) = Z E(sir — &i¢—1))* = 2T*0?

t=d+3

and variance

T
var(¥;) = E Z (eir — ie—1)* +2 Z (8ir — &ie—1)) (60 — Sir/—l)z} — 470"

t=d+3 d+3<t’<t<T

= 2T"E(ef) + 6T 0" + 3T (T* = o' +2 > E(ef,_yep) — 4T0*
d+3<t/<t<T

=2T"E(e}) — (T2 =3T"0* +2 > E(f &) +2 Y. E@f &)
d+-4<t/+1<t<T d+-4<t/4+1=t<T

= 2T*E(e],) — (T** — 3T*)o* + (T* — 1)(T* — 2)0* + 2(T* — 1)E(e],)
= (4T* — 2)E(e},)) + 20

Further,

VT & .
var{ < ;ﬂi} 2T*{(zr — DEef; + 0%} +o(1).

Combining E|e11]* < oo in Assumption (A1) with the Lindeberg-Levy Central Limit Theorem, as n — oo, we obtain

" \/W - * 2
/nT*@; ~o*) = 2(nT*—d—p—qln)+Op(l);(ﬁi_ﬂG)

1
—pN ( S (@T7 = DEG) + o“})

This completes the proof.
(ii) Applying the results in Theorems 1 and 2, we have

AYYT T — ) + AX) By — B) + Ni 1)1 41,48 — 0)] < 0p(/Ju/nT*) +J;7¢.

which leads to

nT* Z Z E“ = nT* Z Z (Ay't - (Aylt) Yn Axlt :Bn - N(l 1T*+t, *0 )4

i=1 t=d+3 i=1 t=d+3

1 T R ~ - -
= T* Z Z {Agit - (Ay?t)T(yn - Y) - Ax;tr(ﬂn - ﬁ) - N(i_])'[*_'_t’*(on — 0)}4
LLE N g
1 n T
= T D> As+0,(1) = 2E(e)) + 60 + 0,(1).
LLE R g
Hence,
E@ef) = o Z Z Aer — 362,
i=1 t=d+3

yielding the desired result. B

Proof of Theorem 4. Let 1, = (nT*)""/2 + a,, my = (NT*) ™25 + ay, y* = y + mw1, B = B+ nwa, 07 = 0, + N3,
r=1,...,qgand w3 = (a);, .. (1)3(1)T € RYn. If we can show that for any € > 0, there is always a sufficiently large
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constant C such that

Q; (¥, B 0%) > Q,i‘(y,ﬂ,b’)} >1—¢,

1mn
lo1l+loz (I +ll@3)=C

then there must exist a local minimizer of Q,*(y*, B*, 6) for this same constant C. Specifically, recognizing the fact that
pe(0) = 0 and a non-decreasing penalty function, it holds that

Q:(y*! ﬂ*v 0*) - Q:(yv ﬂs 0)
Y — AXB* —NO*)TWQ W' (Ay — AY!py* — AXB* — NO¥)

do
— (Ay — AY'y — AXB — NO) 'WR™'W' (Ay — AY'y — AXB —N6O)} + > _(pe. (1))
s=1
Po do
—pes, (%D + Y _(per, (IBE) — per, (BDY + D _(pes,, (167 1) — pey,, (116 1)}
k=1 r=1

di
S Ry + Ry + Rs + Ry.

Some calculations show that

Ri=—

AY 0 + 11 AX; + 17oNws) TWRTWT {Ae + (- No)}

— mAXw; — 1Nw3) 'WR W' (7 AY 01 — 11 AXw; — n2Nws)

d
ifRn + Riz.

Using similar steps to those used for proving Lemmas 2 and 3 and Theorem 1, we can show that
-2 2
R = = — (e, ® ZT)(AYU’, AX)TWR W' Ae — ﬁm(wI, ) )(AY?, AX) Twe'w’
2
x (¢ — NO) — n2w3 TN 'we 'wAe — —= 103 TN we- 'W' (¢ — N6)
n

= —0p{vnT* +Jn}(||w1|| +llwz)m — Op(v/nT* + I} |@s 112
= —0p{(VnT* + [} @1 ]| + lloz | + ll@s)) max(ipy. n2)
and
1
Ry = T*{'“(wl’ DAY, AX)TWR W (AYY, AX) (@], ©]) T + 120] N We ™' WRo;)
2 -
+ ﬁnmz(aﬁ, @, )(AY?, AX)TWR "W Neos

= 0,(nT*)(l@1|I” + llw211>)n7 + O, (nT*) |l @311°n3 + Op(nT*) (@1l lws | + llw2 ]l sl n1m2
= 0,(nT*)([l@1]I” + llw2|I* + llws]I*) max(n7, n3).
Furthermore,

do
Ry =) {pe;,, (Ivs + mous)) — pe,, (Iysh)

s=1
do
= (mpe},, (%:Dsen(r)ors + mipe}, (vt (1 +0p(1) < vdomanllo1ll + niballe: .

s=1

Using similar arguments, we have Ry < /don1a,||@2| + U]b l@2]|?. Moreover,

q0
= {pes,, (10: + m@s:|Ix) — pey,, (11611}

r=1
nape}, (10:1)@3,N N0, n3pe) (16 )8 N, "N.N, "N, || s, ||

do
< Z r r + r r
~ 16,11 16,112
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mpel, (161103, N: "News,  n3pel ([16:11x)8] N, NN, TN,6, [|ws ||
2 + 2
16112 16,112
< V/nT*qomaay||@s|| 4+ nT*/qon5 (bn + an)l|@s]|*.

Hence, for a sufficiently large constant C, Ry has the order || ||2+||@; |2+ || @3] that dominates the other terms uniformly.
The required conclusion thus follows. B

(1+0p(1)

Proof of Theorem 5. It suffices to prove that for (s, k, 1) € A,, the following results hold:

sgn{0Q; (Fns By» 01)/3ys) = sgn(ys), s € (—c(T*) V2, c(nT*)~ /),
Sgn{aQ:(i’n7 Bm én)/aﬂk} = Sgn(ﬂk)a ﬁk S (_C(nT*)il/zﬁ C(nT*)71/2)7
sgn{dQ; 7y, By, 0:)/30,} = sgn(@,), and 6, € (—c(nT*) =@V c(nT*)~/@H+ D),

We only consider the first derivative of y;. Results relating to the derivatives of 8, and 8, can be similarly obtained. Following

the proof in Theorem 1, AW' Ag = 0, (+/nT*), which, when combined with the consistency assumptions of (y,,, Bn, én) in
Theorem 5, implies that, when y; # 0,

3 *(i’ 7B 55 ) 1 — 9 y A o v
% = S (AYL) TWRTIWT(Ay — AY'Y, — AXB, — NOy) +pe (17snD)sgn(Fsn)
S
1
nT*

+ pey., (1Vs.nl)sgn(Ps.n)
= Op(\/ 1/”) + op(\/]n/n +];[) + pe;1n(|?s,n|)5gn(?s,n)
= Ain{A7, €, (1Ps.nD)sgn(Fsn) + 0p (A, (VIn/n + 17} (A6)

Under the conditions in Theorem 5, we can show that pe;m/)\ln > 0 and )L]_nl (Wa/n +]n*’5) — 0. Thus, the sign of (A.6) is
determined by sgn(ys ), meaning that for given values of 8 and 6, Q; (y,, B, ) is minimized at y, = (?1(]), 0H'". m

(AY! )TWR'WT {Ae + AY!(y — 7,) — AX(B — B,) — (¢ — N8,)}

Proof of Theorem 6. Denote 61, = (0, , ..., 6’;))T as the significant coefficient vector and let én,(l) be the shrinkage
estimator of ;). By Theorems 4 and 5, we have

. o T o T T s
(()’n—r,(])? OT)v (ﬂnq(])’ OT)a (on,(l)s 0T)> = arg min Qn (yﬂ ﬂv 0)
with probability tending to 1. Hence,
. oT oT
QI (1) 0N, By 1) 0N, (0,101 )
Y
= (T*) "1 (AY() TWRT'W  {Ae + AY, (1) — V1) — AXy(Byy — Brry)

— @) — N} + (€}, (171.0D580GF1n). - - - PE, ([Fag.n])5EN(Fapm)) T =0,
30 (1,01, By 1 01, By, 1), 01))
aﬂ(l)
= ("T*)_lAXE)Wﬂ_]WT{AS + AY?U(V(U - i’n,(])) - AX(U(ﬁ(l) - Bn,(l))
— @) — N} + (e}, (1Bralsgn(Brn). ... pe,, (1Bponl)sgn(Bpo.n))” =0,

and

. oT «T
3 (P10, Br1ys 07, (6,1,,0N)T)
80(])

P y - - -
= (nT") ]N(1)WSZ 1WT{A€ + AY?])()’(]) - )’n.(1)) - Ax(l)(ﬂ(u - ﬁn,u)) - (¢(1) - N(l)on,(l))}
(P, (W1l ) NN B3 /181l - DL, (1Ba.n 1) Ny NogBao.) /1850l ) = 0.

Recognizing that the Taylor expansion at y; satisfies

/"

pe;qn(h;s,nD = pe;qn(h/sl) +pexln(|ys|)5gn(ys)()’s,n —¥s) + Op();s,n —¥s),
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and noting that b, — 0 with A.x — 0, we obtain

(pe;m(l)v’1,n|)5gn(7v/1,n)v sy pe;m(|77d0,n|)5gn(7v/d0,n))T = 0p(Vn,1) — Y(1))-

Similarly, we can show that
(e}, (Bral)sgn(Bin). .- .. p€;. (1Bronl)sen(Bpon))” = 0p(By 1 — Byy) and
o o o o o o T
(pegzn<||01,n||N><NFN101,n)T/||01,n||N, D€}, (1840 l1n) (Ngy "Ngy8g0) ™ /1164, ||N)

= Op(én.(l) —01).
These yield

(TN (AY,), AXp) "W 'WT {Aé‘ + (AY), AX) Py = Paa) T By — Bn,(U)T)T

+ (¢ — Nyb1y) + Ny (1) — én,(l))} +o0p {(()’(1) —Vua) " Bay — Bn,(n)T)T} =0, (A7)
and

Eal _ v .
()N WRTIWT | e+ (AYE, AXa) () = Fu) T By = B DT

+ ((7’(1) —Niy0a)) + N0 — én,(]))} +0,(0(1) — én,(])) =0. (A.8)
For notational simplicity, write
¢ = ((}v’n,(n - )’(1))T’ (Bn,u) - ﬂ(]))T)T,
I, = (nT")"'N,,We "W N,
and
®, = (nT") "N, WQ "W (AYY, | AXp)).
Note that the solution of(v)n’(l) — 61 in Eq. (A.8) has the form
Bty — 01y = — (T, + 0, (1) ™' B0, + (T, + 0, (1)~ (nT*) "N WR W {Ae + (§1) — Niyybir))}-
Substituting the above into (A.7), we obtain
(T*)"N(AY,), AXq) TWRTWT{(AY{}), AX(1)) — Ny (L, + 0,(1) "' ®4}8, + 0p(Z,)
= (T (AYY), AXy) TWe W [Ae + @) — Nyby) — (1T "Ny,
x (L, + 0,(1)) "N, WR "W {Ae + ($,, — ﬁmo(l))}] . (A.9)
Some calculations show that
& T, "N WR W {(AYY), AX (1)) — Neyy (T, + 0,(1)) "' @,} = 0
and
& 11, "N, We "W’ [Ae + @y — Neybay) — (1T Ny (T, + 0, (1) Ny,
WRTWT (A6 + G, — Nib)] = 0.
Write W = (AYY), AX(1)) — Niy (T, + 0,(1)) "' @y, and note that "W~ "W 'N(;, = 0. Eq. (A.9) implies that

{(nT) "W TWRT'W W + 0,(1)}+/nT*¢,

1 1 - -
= VW W Ae + —— ¥ "W W' (¢, — N1y01y)
\/W (1) MY

~/nT*

def
=v + .

Along the same lines of the proof for Theorem 1, it can be shown that v; —p N(O0, 021"(1))3(’15

T(}) and v, = 0,(1), where
X1y and I'(yy are defined in Theorem 6. This completes the proof. =
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