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A Seemingly Unrelated Nonparametric Additive Model
with Autoregressive Errors
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This article considers a nonparametric additive seemingly unrelated regression model with
autoregressive errors, and develops estimation and inference procedures for this model. Our
proposed method first estimates the unknown functions by combining polynomial spline
series approximations with least squares, and then uses the fitted residuals together with
the smoothly clipped absolute deviation (SCAD) penalty to identify the error structure
and estimate the unknown autoregressive coefficients. Based on the polynomial spline
series estimator and the fitted error structure, a two-stage local polynomial improved
estimator for the unknown functions of the mean is further developed. Our procedure
applies a prewhitening transformation of the dependent variable, and also takes into account
the contemporaneous correlations across equations. We show that the resulting estimator
possesses an oracle property, and is asymptotically more efficient than estimators that neglect
the autocorrelation and/or contemporaneous correlations of errors. We investigate the small
sample properties of the proposed procedure in a simulation study.

Keywords Additive structure; Asymptotic normality; Autoregression; Local polynomial;
SCAD penalty; SUR.

JEL Classification C14; C39; C51.

1. INTRODUCTION

The seemingly unrelated regression (SUR) introduced by Zellner (1962) is an important
tool in econometric modeling involving pooled data. The classical SUR model consists
of a set of linear regression equations in which the errors are contemporaneously
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Hong Kong, Tat Chee Ave., Kowloon, Hong Kong, China; E-mail: msawan@cityu.edu.hk
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A SEEMINGLY UNRELATED NONPARAMETRIC ADDITIVE MODEL 895

correlated across the equations. Because the equations are stochastically related through
the error terms, efficiency may be gained by treating the equations as a system and
using generalized least squares estimation. The SUR model has found considerable use in
applied work. The monograph by Srivastava and Giles (1987) provides a good coverage of
the SUR literature until the late 1980s. Recent applied studies in economics that involve
the SUR model include Thompson et al. (2002), Wang (2010), and Shukur and Zeebari
(2011), among others.

Most of the literature on SUR model estimation assumes that the functional forms
of the equations are linear, but for many practical econometric problems the functional
forms are actually unknown, so a more flexible nonparametric approach may be more
attractive. Smith and Kohn (2000) gave two examples to illustrate their Bayesian
hierarchical nonparametric SUR model. Their first example relates three different
advertisement exposure scores to the position of the advertisement in an Australian
women’s magazine. In their second example, two separate nonparametric regressions are
formulated to explain electricity load in two adjacent states in Australia. In both cases,
they identified significant nonlinear relationship between the dependent and explanatory
variables. Koop et al. (2005) used a two-equation nonparametric SUR model to examine
the dependence of wage levels and years of schooling on a range of economic and
social variables including labor market experience, arms force qualifying test score,
local unemployment rate, weeks of tenure at current job, and so on. Other recent
studies in econometrics that approach SUR modeling nonparametrically include Xu et al.
(2008), who considered a nonparametric SUR model under a constrained covariance
structure of the disturbances, Singh and Wang (2012), who analyzed the properties of
a semiparametric estimator for the coefficients in a two-equation SUR equation system,
and You and Zhou (2014), who considered a fixed effects panel data SUR partially linear
models. In the statistics literature, recent contributions to nonparametric SUR models
include Wang et al. (2000), He and Lawless (2005), Carroll et al. (2006), Welsh and
Yee (2006), Xu et al. (2011), and Zhou et al. (2011). Although these studies are mostly
motivated by problems in biostatistics, many of the methods developed are in fact general
methods with potential for applications in economics and other fields.

Nonparametric approaches are not without drawbacks, however. There is evidence
that the small sample properties of the multivariate kernel estimator can be quite
unsatisfactory (Silverman, 1986). Interpretability is another problem with nonparametric
regression based on kernel and smoothing splines. More importantly, as the dimension
of the model grows, the convergence rate of the kernel estimator decreases, and this is
the so-called curse of dimensionality. One way to ameliorate the latter problem is to
reduce dimension. Methods based on this approach include the projection pursuit (Huber,
1985), single index models (Härdle and Stoker, 1989), and sliced inverse regression
(Li, 1991). However, for these methods, the curse of dimensionality remains when the
underlying dimension is large. Another approach is to relax the conditions on the
traditional parametric models and explore the hidden structure. One prominent method
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896 A. T. K. WAN ET AL.

that uses this approach is the additive model proposed by Stone (1985) and Hastie and
Tibshirani (1990). This model is based on an additive approximation to the nonparametric
regression function, and because each of the individual additive terms is estimated using
a univariate smoother, the curse of dimensionality is avoided. It also has the advantage
of interpretability as estimates of the individual terms explain how the dependent variable
changes with the corresponding independent variables. Moreover, Stone (1985) showed
that the unknowns in the additive model can be estimated at the optimal rate of
convergence for univariate functions. For more recent theoretical work on the additive
model, see Linton and Nielsen (1995), Linton (1997), Huang and Yang (2004), Fan
and Jiang (2005), Xue (2009), and Xue and Liang (2010). The additive model has been
applied in a number of studies in economics and finance. There are a few such examples
in the fields of empirical demand analysis (Lyssiotou et al., 2002), hedonic house price
modeling (Martins-Filho and Bin, 2005; Bontemps et al., 2008), and stock market analysis
(Eisenbeiss et al., 2007).

In this article, we extend the idea of the additive model to a system of SUR equations.
Our model takes the form

Yst = �s0 + �s1(Xst1) + · · · + �sps (Xstps ) + �st, s = 1, � � � , m, t = 1, � � � , T , (1.1)

where Yst’s are responses, (�10, � � � , �m0)
� are unknown constants, (�11(·), � � � , �1p1(·), � � � ,

�mpm(·))’s are unknown smooth functions, (X1t1, � � � , X1tp1 , � � � , Xmtpm)�’s are the design
points, and �st’s are random errors. Although the equations in (1.1) are nonlinear, they
each retain the interpretable additive form of linear regression through the additive
approximation to the true model by the nonparametric functions. For the error terms, it
is assumed that

�st = �s1�s,t−1 + · · · + �sds �s,t−ds + est, s = 1, � � � , m, t = 1, � � � , T , (1.2)

with E(est) = 0, E(e2
st) = �2

ess, and E(es1tes2t) = �2
s1s2

for s1 �= s2, and E(es1t1 es2t2) = 0 when
t1 �= t2 irrespective of the values of s1 and s2. Thus, the m equations are stochastically
related through the contemporaneous correlations of the error terms, but each of
them purports to explain a different dependent variable through a different set of
covariates. The error process of (1.2) also assumes that the error term in each equation
follows an autoregressive (AR) process, thus allowing for serial correlations in each of
the disturbances in addition to contemporaneous correlations among the disturbances.
The pure AR specification is justified given that AR processes are usually good
approximations to the general autoregressive moving average (ARMA) process provided
that the latent roots of the MA polynomial lie inside the unit circle (Brockwell and
Davis, 1991). As is well-known, the original SUR model of Zellner (1962) allows only
for contemporaneous but not serial correlation. Later, Kmenta and Gilbert (1970),
Guilkey and Schmidt (1973), Doran and Griffiths (1983), Turkington (2000), Foschi and
Kontoghiorghes (2003), Koebel (2004), and others modified the original SUR model to
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A SEEMINGLY UNRELATED NONPARAMETRIC ADDITIVE MODEL 897

allow for both contemporaneous and serial correlations in the errors, but these findings all
focused on parametric linear SUR equations. Due to the relevance of serial correlations
to economic phenomena, the large majority of this work was published in econometric
journals.

It is well-known that for a parametric model with serially correlated errors, efficient
estimators of the mean parameters of the regression can be obtained by weighting
methods. However, the same is not generally true in the case of nonparametric models.
As Lin and Carroll (2000) pointed out, standard kernel or local polynomial weighting
methods can often result in estimates that are worse than ignoring the serial correlations.
Several recent studies, including Wang (2003), Xiao et al. (2003), Li and Li (2009),
Martins-Filho and Yao (2009), and Liu et al. (2010), considered the alternative approach
of a prewhitening transformation of the dependent variable. Our analysis here is
complicated by the existence of both serial and contemporaneous correlations in the
errors. A central question of interest is how to take both types of correlations into account
to yield an efficient estimator of the additive components. We propose a method that first
estimates the unknown functions by combining polynomial spline series approximation
with least squares, and then uses the SCAD penalty function together with the estimated
residuals to determine the order of the AR error process and estimate the unknown
autoregressive coefficients. Furthermore, based on the polynomial spline series estimator
and the fitted error structure, we develop a two-stage local polynomial estimator of the
unknown functions of the mean. Our method extends some of the existing prewhitening
methods to account for the possibility of contemporaneous correlations in the errors.
We demonstrate that first, our procedure is asymptotically more efficient than methods
that neglect either or both types of correlations, and second, estimators of additive
components have the same distribution that they would have if the nonparametric
components were known in advance; thus, our estimators have the oracle property in
the sense of Fan and Li (2001) and Fan and Peng (2004). We establish these asymptotic
properties under the �-mixing condition.

To summarize, the nonparametric additive model has considerable appeal and is
widely popular among statisticians. By extending the additive model to SUR, which has
continued to attract significant attention from economists, this article hopes to bring
further awareness of the additive model to economists and strengthen the interface
between econometrics and statistics . Another important strength of our analysis is
that it allows errors in the SUR model to be serially correlated in addition to being
contemporaneously correlated. As mentioned before, SUR model with autocorrelation
has inspired a large econometric literature although nearly all previous studies on this
aspect have assumed linear functional forms of the SUR equations.

The layout of the remainder of this article is as follows. In Section 2, we present an
initial estimator of the unknown mean functions. Section 3 considers the identification
of the error structure, and the subsequent estimation of the autoregressive coefficients,
error variance and correlation parameters. In Section 4, we develop a two-stage local
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898 A. T. K. WAN ET AL.

polynomial estimation method for model (1.1)–(1.2). Section 5 reports results of a
simulation study designed to investigate the small sample properties of estimators. The
proofs of the main results are contained in the Appendix.

2. INITIAL ESTIMATION BY POLYNOMIAL SPLINE SERIES APPROXIMATION

As E��sj(Xstj)	 = 0, �s0 can be consistently estimated by �̂s0 = ∑T
i=1 Yst/T at the rate of

1/
√

T—a rate faster than rate of convergence for estimating nonparametric functions. For
notational convenience and without loss of generality, we assume that �s0 = 0. Assume
also that the nonparametric explanatory variable Xstj is distributed on a compact interval
[asj , bsj] for s = 1, � � � , m and j = 1, � � � , ps, and without loss of generality, we let [asj , bsj] =
[0, 1] for s = 1, � � � , m and j = 1, � � � , ps.

By Definition 4.1 of Schumaker (1981, p. 108), we define the polynomial splines
as follows. Let 0 = 
0 < 
1 < · · · < 
� < 
�+1 = 1 be a partition of [0, 1] into � + 1
subintervals I�s = [
s, 
s+1), s = 0, � � � , � − 1 and I�� = [
�, 
�+1], where � ≡ �T = T �, with
0 < � < 0�5 being a positive integer such that max0≤s≤� |
s+1 − 
s| = O(T �). Let �T be the
space of polynomial splines of degree l ≥ 1, comprising functions f(·) that satisfy the
following conditions: (i) the restriction of f(·) to I�s is a polynomial of degree l for 0 ≤
s ≤ �; and (ii) for l ≥ 2 and 0 ≤ l′ ≤ l − 2, f(·) is l′ times continuously differentiable
on [0, 1]. Denote NT ≡ �T + l. Then there exists a normalized polynomial spline basis
�Bsjk, 1 ≤ k ≤ NT 	 in �T such that each �sj(x) can be approximated by

�sj(x) ≈
NT∑

k=1


sjkBsjk(x), s = 1, � � � , m and j = 1, � � � , ps,

where �sj = (
sj1, � � � , 
sjNT )� is an unknown NT -vector. See Wang and Yang (2007) for
details. Model (1.1) can then be approximated by

Yst ≈
NT∑

k=1


s1kBs1k(Xst1) + · · · +
NT∑

k=1


spskBspsk(Xstps ) + �st, s=1, � � � , m and t=1, � � � , T �

(2.1)

From (2.1), for any fixed s, we can estimate �s = (��
s1, � � � , ��

sps
)� by least squares, resulting

in the estimator

�̂s = (�̂�
s1, � � � , �̂�

sps
)� = argmin

(�̂�
s1,���,�̂�

sps )�

1
n

⎧⎨⎩Ys −
ps∑

j=1

Bsj�sj

⎫⎬⎭
�⎧⎨⎩Ys −

ps∑
j=1

Bsj�sj

⎫⎬⎭ ,

where Ys = (Ys1, � � � , YsT )�, and Bsj = (Bsj(Xs1j), � � � , Bsj(XsTj))
�, with Bsj(Xstj) =

(Bsj1(Xstj), � � � , BsjNT (Xstj))
�. Hence, �sj(x) may be estimated by

�̂sj(x) = �Bsj(x)	� �̂sj ,

with Bsj(x) = (Bsj1(x), � � � , BsjNT (x))�.
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A SEEMINGLY UNRELATED NONPARAMETRIC ADDITIVE MODEL 899

To develop asymptotic properties of these initial estimators, we first introduce some
notations and technical assumptions. The following definitions and notations are adopted
from Fan and Yao (2003, Ch. 2).

Definition 1. A sequence of random vectors �Zt, t = 0, ±1, ±2, � � � 	 is said to be strictly
stationary if �Z1, � � � , ZT 	 and �Z1+k, � � � , ZT+k	 have the same joint distribution for any
integer T ≥ 1 and integer k.

Denote � j
i as the �-algebra generated by events �Zi, i ≤ t ≤ j	, and let �2(� j

i )

consist of � j
i -measurable random variables all with finite second moment. Intuitively, � j

i

assembles all information on the sequence collected between time i and j. Define

�(T) = sup
A∈� 0−∞ ,B∈�∞

T

|P(A)P(B) − P(AB)|�

Assumption 2.1. For any fixed s and j, the random variable Xstj has a bounded
support on [0, 1], and its density function psj(·) is Lipschitz continuous and bounded
away from 0 on its support.

Assumption 2.2. The function �sj(·) has continuous second derivative in [0, 1].

Assumption 2.3. For any fixed s, the sequence of random vectors
(Xst1, � � � , Xstps , �st)

�, t = 1, 2, � � � , is strictly stationary and satisfies the following mixing
condition for the �-mixing process: for some �1 > 2 and �2 > 1 − 2/�1,∑

l

l�2 [�(l)]1−2/�1 < ∞, E|�s1|�1 < ∞, p(Xst1,���,Xstps ,�st)|�st ((x1, � � � , xps , �)|�) ≤ c1 < ∞,

where p(Xst1,���,Xstps ,�st)|�st (·|·) is a density function of (Xst1, � � � , Xstps , �st) conditional on �st,
and c1 is a constant.

Assumption 2.4. As T → ∞, NT → ∞, NT = o(T
1
2 ) and T

1
2 N −4

T = o(1).

Theorem 1 describes the asymptotic properties of �̂sj and �̂sj(x).

Theorem 1. Let Assumptions 2.1 to 2.4 hold. Then we have as follows:

i) ‖�̂sj − �sj‖ = Op(
√

NT /T + N −2
T ) for s = 1, � � � , m and j = 1, � � � , ps, where || · || is the

Euclidean norm, given by ||a|| = √
a�a for any column vector a; and

ii)
∫

x∈[0,1][�̂sj(x) − �sj(x)]2psj(x) = Op(NT /T + N −4
T ) for s = 1, � � � , m and j = 1, � � � , ps.

Remark 1. If we let NT = O(T 1/5), then
∫

x∈[0,1][�̂sj(x) − �sj(x)]2psj(x) = Op(T −4/5) for
s = 1, � � � , m and j = 1, � � � , ps. That is, �̂sj(x) converges to �sj(x) at the optimal rate of
convergence.
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900 A. T. K. WAN ET AL.

Notwithstanding the above theoretical development, it is difficult to derive the
asymptotic distribution of �̂sj(·). More importantly, this estimator does not take
into account the information of the serial and contemporaneous correlations of the
disturbances, and thus cannot be efficient. An improved estimation method is developed
in the next section.

3. IDENTIFYING THE ERROR STRUCTURE

Traditionally, the order of autoregressive processes is identified by information criterion-
based methods. These methods are based on best subset selection or its stepwise variants.
However, it is well-known that best subset selection is computationally infeasible when
the AR process is of high order. Likewise, these methods are sensitive to small changes in
the data and thus are unstable. In this section, we will apply the smoothly clipped absolute
deviation (SCAD) (Fan and Li, 2001) penalty variable selection method to identify the
order of the AR process. The SCAD penalty method selects the significant variables and
estimates their coefficients simultaneously.

3.1. Determining the Order of the AR Process

The residuals result from the estimator �̂sj(x) are

�̂st = Yst − �̂s1(Xst1) − · · · − �̂sps (Xstps ), for s = 1, � � � , m and t = 1, � � � , T �

Suppose that the true order of the error process is d0
s . The penalized least squares

approach is based on the objective function

�(�s) = 1
2

T∑
t=ds+1

(
�̂st − �s1�̂s,t−1 − · · · − �sds �̂s,t−ds

)2 + T
ds∑

j=1

�jT pj(|�sj|), (3.1)

where the pj(·)’s are penalty functions, and �jT ’s are tuning parameters that control the
model complexity. For purposes of simplicity, we denote �jT pj(·) by p�jT (·).

Antoniadis and Fan (2001) and Fan and Li (2001) maintained that a good penalty
function should yield an estimator satisfying the properties of unbiasedness, sparsity (i.e.,
assigning a zero estimate to a coefficient close to zero to reduce model complexity), as
well as continuity to avoid the unnecessary variations in model prediction. Fan and Li
(2001) proposed the SCAD penalty p�(·), which differs from the Lq penalties in that it
can produce estimators that possess all of the above three properties simultaneously. The
SCAD penalty has the first derivative

p′
�(�) = ��I(� ≤ �) + (a� − �)+

(a − 1)�
I(� > �)	, for some a > 2 and � > 0,
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A SEEMINGLY UNRELATED NONPARAMETRIC ADDITIVE MODEL 901

with p�(0) = 0. The SCAD penalty p�(·) involves two unknown parameters, � and a. Fan
and Li (2001) suggested setting a = 3�7 from a Bayesian point of view.

For our purpose, we assume that p�jT
(·)’s are negative and nondecreasing, and

p�jT
(0) = 0. Denote

aT = max
j

{
|p′

�jT
(|�sj|)| : �sj �= 0

}
, and bT = max

j

{
|p′′

�jT
(|�sj|)| : �sj �= 0

}
�

We have the following theorem.

Theorem 2. Let Assumptions 2.1 to 2.4 hold. If aT and bT tend to zero as T → ∞,
then with probability tending to one, there exists a local minimizer �̂s of �(�s) such that
||�̂s − �s|| = Op(T −1/2 + aT ), where �s = (�s1, � � � , �sds )

� and �̂s = (�̂s1, � � � , �̂sds )
�.

The minimizer �̂s is called the penalized residual-based least squares estimator of �.
Theorem 2 exhibits the manner in which the rate of convergence of �̂s depends on �jT .
Specifically, to achieve the

√
T convergence rate, �jT must be sufficiently small in order

for aT = O(T −1/2). To further study the properties of �̂s, we assume, without the loss
of generality, that the first d0

s components of the true �s are nonzero, and all other
components are 0. Also, define

D = diag
{

p
′′
�1T

(|�s1|), � � � , p
′′
�

d0
s T

(|�sd0
s
|)
}

and

b =
(

p
′
�1T

(|�s1|)sgn(�s1), � � � , p
′
�d0

s T (|�sd0
s
|)sgn(�sd0

s
)
)

,

and let �(1)
s and �(2)

s contain the first d0
s and last ds − d0

s components of �s, respectively,
and �̂(1)

s and �̂(2)
s contain the first d0

s and last ds − d0
s components of �̂s, respectively.

Theorem 3 (Oracle property). For j = 1, � � � , ds, assume that as T → ∞, �jT → 0, and√
T�jT → ∞, and that p�jT

(·) satisfies

lim inf
T→∞

lim inf
�sj→0+

p�jT (�sj)/�jT > 0�

Suppose that Assumptions 2.1 to 2.4 hold, and bT → 0. If aT = O(T −1/2), then with
probability tending to 1, the local minimizer �̂s = (�̂(1)�

s , �̂(2)�
s )� satisfies the following

properties:

(i) Sparsity: �̂(2)
s = 0ds−d0

s
;

(ii) Asymptotic normality:

√
T ��s11 + D	

[
�̂(1)

s − �(1)
s + ��s11 + D	−1b

] D−→ N (0, �s11),
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902 A. T. K. WAN ET AL.

where �s11 consists of the first d0
s rows and columns of �s, with

�s =

⎡⎢⎢⎢⎣
�s(0) �s(1) � � � �s(ds − 1)
�s(1) �s(0) � � � �s(ds − 2)

���
���

���
���

�s(ds − 1) �s(ds − 2) � � � �s(0)

⎤⎥⎥⎥⎦ and �s(l) = E(�s1�s,1+l)�

In other words, provided that the assumptions stated under Theorem 3 are satisfied,
the penalized least squares procedure would select the correct covariates and estimates
the unknown coefficients as efficiently as if the true model were known in advance. If the
SCAD penalty function is applied to all cases, then aT = 0 when T is sufficiently large,
and aT = O(T −1/2) is satisfied by default.

On the other hand, it is challenging to find a minimizer to the penalized weighted
partial least squares objective function of (3.1) because the SCAD penalty is irregular
at the origin, and its second derivative may not exist at certain points. To reconcile
this difficulty, we locally approximate the penalty function by quadratic functions as in
Fan and Li (2001). The procedure is as follows. Let �0

s be an initial value close to the
minimizer of (3�1). If |�0

sj| ≥ c0 (a predetermined value), then we approximate p�jT
(·) using

the relationship

[p�jT
(|�sj|)]′ = p

′
�jT

(|�sj|)sgn(�sj) ≈
{

p
′
�jT

(|�0
sj|)/|�0

sj|
}

�sj�

The Newton–Raphson algorithm is then implemented on the approximated penalty
function to minimize �(�s).

The tuning parameters (�1T , � � � , �dsT ) control the model complexity and can be selected
by data-driven methods such as the Bayesian Information Criterion (BIC) (Wang et al.,
2007), or the Generalized Information Criterion (GIC) (Zhang et al., 2010).

3.2. Estimation of the Error Variance and Contemporaneous Correlation Coefficients

By our assumption, E(es1tes2t) = �2
es1s2

and E(es1t1 es2t2) = 0 for s1, s2 = 1, � � � , m; t, t1, t2 =
1, � � � , T and t1 �= t2. Thus, by using

êst = �̂st − �̂s1�̂s,t−1 − · · · − �̂sd̂s
�̂s,t−d̂s

, s = 1, � � � , m, t = d̂s + 1, � � � , T ,

we can estimate �2
es1s2

by

�̂2
es1s2

= 1

T − max(d̂s1 + 1, d̂s2 + 1)

T∑
t=max(d̂s1 +1,d̂s2 +1)

ês1t ês2t,
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A SEEMINGLY UNRELATED NONPARAMETRIC ADDITIVE MODEL 903

where d̂s = max1≤j≤ds �j : �̂sj �= 0	. For �̂e = (�̂2
es1s2

)m
s1,s2=1, we have the following

asymptotic result.

Theorem 4. Suppose that all of the assumptions stated in Theorem 3 hold. Then

√
T(Vech(�̂e) − Vech(�e)) →D N (0, LmCov(et ⊗ et)L�

m), as T → ∞,

where Vech is a column stacking operator that stacks only the elements on and below
the main diagonal of a matrix, Lm is the 1

2 m(m + 1) × m2 elimination matrix, and et =
(e1t, � � � , emt)

�.

3.3. Estimation of Autoregressive Coefficients

The estimator �̂s does not take the into account the contemporaneous correlations across
equations. Here, we propose an improved estimator of the autoregressive coefficients � =
(��

1, � � � , ��
m)� along the lines of weighted least squares estimation (Zellner, 1962). Let d̂ =

max�d̂s, 1 ≤ s ≤ m	,

�̂∗
s =

⎡⎢⎢⎢⎣
�̂sd̂ �̂s,d̂−1 � � � �̂s,(d̂−d̂s)+1

�̂s,d̂+1 �̂sd̂ � � � �̂s,(d̂−d̂s)+2
���

���
���

���
�̂s,T−1 �̂s,T−2 � � � �̂s,T−d̂s

⎤⎥⎥⎥⎦ ,

and �̂∗∗
s = (�̂s,d̂+1, � � � , �̂sT )�. The improved estimator of � = (��

1, � � � , ��
m)� has the form

�̂w = (�̂w�
1 , � � � , �̂w�

m )� = �diag(�̂∗
1, � � � , �̂∗

m)�(�̂e ⊗ IT−d̂)[diag(�̂∗
1, � � � , �̂∗

m)]	−1

· diag(�̂∗
1, � � � , �̂∗

m)(�̂e ⊗ IT−d̂)

⎛⎜⎝ �̂∗∗
1
���

�̂∗∗
m

⎞⎟⎠
with �̂e = (�̂2

es1s2
)m

s1,s2=1.
Denote �s1s2(l) = E(�s1t�s2,t+l) for s1, s2 = 1, � � � , m, and let

�s1s2 =

⎡⎢⎢⎢⎣
�s1s2(0) �s1s2(1) � � � �s1s2(d0

s2
− 1)

�s1s2(1) �s1s2(0) � � � �s1s2(d0
s2

− 2)
���

���
���

���
�s1s2(d0

s1
− 1) �s1s2(d0

s1
− 2) � � � �s1s2(d0

s1
− d0

s2
)

⎤⎥⎥⎥⎦
and

�w = (�s1s2
e �s1s2)

m
s1,s2=1,
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904 A. T. K. WAN ET AL.

with �−1
e = [(�2

es1s2
)m

s1,s2=1]−1 = (�s1s2
e )m

s1,s2=1. Then we have the following theorem relating
to some of the asymptotic properties of the estimator �̂w = (�̂w�

1 , � � � , �̂w�
m )�.

Theorem 5. Suppose that all of the assumptions in Theorem 3 hold.

(i)
√

T �(�̂w�
1 , � � � , �̂w�

m )� − (��
1, � � � , ��

m)��
D−→ N (0, (�w)−1) as T → ∞.

(ii) �̂w
s is asymptotically more efficient than �̂s, for s = 1, � � � , m.

The implementation of Theorem 5 requires a consistent estimator of �w. Let this
estimator be

�̂w = (�̂s1s2
e �̂s1s2)

m
s1,s2=1,

where

�̂s1s2 =

⎡⎢⎢⎢⎢⎣
�̂s1s2(0) �̂s1s2(1) � � � �̂s1s2(d̂s2 − 1)

�̂s1s2(1) �̂s1s2(0) � � � �̂s1s2(d̂s2 − 2)
���

���
���

���

�̂s1s2(d̂s1 − 1) �̂s1s2(d̂s1 − 2) � � � �̂s1s2(d̂s1 − d̂s2)

⎤⎥⎥⎥⎥⎦ ,

with �̂−1
e = [(�̂2

es1s2
)m

s1,s2=1]−1 = (�̂s1s2
e )m

s1,s2=1 and �̂s1s2(l) = 1
T−d̂

∑T−d̂
t=1 �̂s1t�̂s2t+l.

The following theorem shows that �̂w is a consistent estimator of �w.

Theorem 6. Suppose that all of the assumptions in Theorem 3 hold. Then �̂w →p �w

as T → ∞.

The estimators of (��
1, � � � , ��

m)� and �e facilitate the construction of efficient estimators
of the unknown functions.

4. TWO-STAGE LOCAL POLYNOMIAL ESTIMATION

With the results developed in Sections 2 and 3, we are now ready to construct
efficient estimators of the unknown functions by a two-stage local polynomial estimation
procedure that takes full account of the contemporaneous and serial correlations of the
residuals. Our two-stage procedure combines prewhitening transformation (Xiao et al.,
2003; Liu et al., 2010) with the seemingly local linear estimation method developed by
You et al. (2007). We show that the estimator obtained from this two-stage method is
asymptotically normal, as well as being more efficient than the estimator that neglects the
contemporaneous and/or serial correlations.
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A SEEMINGLY UNRELATED NONPARAMETRIC ADDITIVE MODEL 905

To describe our procedure, assume, temporarily, that d0
s , (��

1, � � � , ��
m)� and

(�s1(·), � � � , �sps (·))� are known, s = 1, � � � , m. We can then construct a pseudo response
with a mean of �sj(Xstj) and an error which has a smaller variance than that of est. Let

Y ∗
st = Yst − �s1

⎛⎝Ys,t−1 −
ps∑

j=1

�sj(Xs,t−1,j)

⎞⎠− · · · − �sd0
s

⎛⎝Ys,t−d0
s
−

ps∑
j=1

�sj(Xs,t−d0
s ,j)

⎞⎠ ,

s = 1, � � � , m; t = d0
s + 1, � � � , T . Denote Y∗

·t = (Y ∗
1t, � � � , Y ∗

mt)
�, e·t = (e1t, � � � , emt)

�, �e =
E(e·te�

·t) = (�2
es1s2

)m
s1,s2=1, and �−1

e = (�s1s2
e )m

s1,s2=1. The sth element of �−1
e Y∗

·t has the form

m∑
s1=1

�ss1
e Y ∗

s1t = �ss
e Y ∗

st +
m∑

s1 �=s

�ss1
e Y ∗

s1t�

It is easy to see that

Y ∗∗
stj = (�ss

e )−1

⎛⎝�ss
e Y ∗

st +
m∑

s1 �=s

�ss1
e Y ∗

s1t − �ss
e

ps∑
j1 �=j

�sj1(Xstj1) −
m∑

s1 �=s

�ss1
e

ps1∑
j2=1

�s1j2(Xs1tj2)

⎞⎠
has mean �sj(Xstj) and variance (�ss

e )−1, which is smaller than �2
ess. Now, we can apply

the local polynomial estimation method to Y ∗∗
stj to construct estimators of the unknown

functions of the mean in model (1.1). Fan and Gijbels (1996) showed that the local
polynomial smoother has more desirable properties than the kernel estimator. For
example, it has smaller bias than the Nadaraya–Watson estimator and smaller variance
than the Gasser–Müller estimator; it also adapts automatically to the boundary of design
points and requires no boundary modification, as well as being design adaptive.

Let d0 = max1≤s≤m�d0
s 	. For any Xstj in a close neighborhood of x, �sj(Xstj) can be

approximated by

�sj(Xstj) ≈ �sj(x) + ��sj(x)(Xstj − x) ≡ asj + bsj(Xstj − x),

where ��sj(x) = ��sj(x)/�x. This approximation results in the following local least
squares problem (see, for example, Fan and Gijbels, 1996).

Find �(asj , bsj)	 to minimize

T∑
t=d0+1

�Y ∗∗
stj − �asj + bsj(Xstj − x)	�2KhT (Xstj − x), (4.1)

where K(·) is a kernel function, hT is a bandwidth, and KhT (·) = h−1
T K(·/hT ).

Straightforward algebra yields

(â∗TS
sj , b̂∗TS

sj )� = (D�
sjxWsjxDsjx)

−1D�
sjxWsjxY∗∗

sj
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906 A. T. K. WAN ET AL.

as the solution to (4.1), where Y∗∗
sj = (Y ∗∗

s,d0+1,j , � � � , Y ∗∗
sTj)

�, Dsjx =
( 1 (Xs,d0+1,j−x)

���
���

1 (XsTj−x)

)
, and

Wsjx = diag(KhT (Xs,d0+1,j − x), � � � , KhT (XsTj − x)))�

The unknown function �sj(x) can be estimated by

�̂∗TS
sj (x) = 1

(T − d0)hT

T−d0∑
t=1

K∗
sj

(
Xstj − x

hT
, x
)

Y ∗∗
stj ,

where

K∗
sj(x1, x2) = (1, 0)(Ssj(x2))

−1(1, x1)
�KhT (x1),

Ssj(x) is a 2 × 2 matrix with its (i1, i2)th element being ssj,i1+i2−2(x), and

ssj,i1+i2−2(x) = 1
(T − d0)

T−d0∑
t=1

(
Xstj − x

hT

)i1+i2−2

KhT (Xstj − x), i1, i2 = 1, 2�

However, this estimator is of no practical utility because �̂∗TS
sj (x) depends on d0

s and
Y ∗∗

st depends on �sj(·), (��
1, � � � , ��

m)� and �̂e. To overcome this difficulty, we estimate d0

by d̂0 = max1≤s≤m�d̂0
s 	, �sj(·) by �̂sj(·), (��

1, � � � , ��
m)� by (�̂w�

1 , � � � , �̂w�
m )�, and �e by �̂e. Then,

(�sj(x), �′
sj(x)) may be estimated by

(âTS
sj , b̂TS

sj )� = (D�
sjxWsjxDsjx)

−1D�
sjxWsjxŶ

∗∗
sj ,

and our two-stage estimator of �j(x0) is

�̂TS
sj (x) = 1

(T − d̂0)hT

T−d̂0∑
t=1

K∗
s

(
Xstj − x

hT
, x
)

Ŷ ∗∗
stj , s = 1, � � � , m, and j = 1, � � � , ps,

where

Ŷ ∗∗
stj = (�̂ss

e )−1

⎛⎝�̂ss
e Ŷ ∗

st +
m∑

s1 �=s

�̂ss1
e Ŷ ∗

s1t − �̂ss
e

ps∑
j1 �=j

�̂sj1(Xstj1) −
m∑

s1 �=s

�̂ss1
e

ps1∑
j2=1

�̂s1j2(Xs1tj2)

⎞⎠ ,

Ŷ ∗
st = Yst − �̂w

s1

⎛⎝Ys,t−1 −
ps∑

j=1

�̂sj(Xs,t−1,j)

⎞⎠− · · · − �̂w
sd̂s

⎛⎝Ys,t−d̂s
−

ps∑
j=1

�̂sj(Xs,t−d̂s ,j)

⎞⎠ ,

t = d̂0 + 1, � � � , T

and Ŷ
∗∗
sj = (Ŷ ∗∗

s,d0+1,j , � � � , Ŷ ∗∗
sTj)

�.
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A SEEMINGLY UNRELATED NONPARAMETRIC ADDITIVE MODEL 907

In order to develop asymptotic properties of �̂TS
sj (x), we require the following technical

assumptions.

Assumption 4.1. � = c1T 1/5/(log T) for some constant c1.

Assumption 4.2. The kernel function K(·) is a density function with a compact
support.

Assumption 4.3. The bandwidth hT = c2T −1/5 for some constant c2.

Now, define

�k =
∫ ∞

−∞
xkK(x)dx, and �k =

∫ ∞

−∞
xkK2(x)dx, k = 0, 1, 2, 3�

Then for (�̂TS
sj (x), �̂

′
TS
sj (x))� = (âTS

sj , b̂TS
sj )�, we have the following theorem.

Theorem 7. Let Assumptions 4.1 to 4.3 and all of the assumptions in Theorem 3 hold.
Then

√
ThT

[
H−1

T

{(
�̂TS

sj (x)

�̂
′
TS
sj (x)

)
−
(

�sj(x)
�

′
sj(x)

)}
− h2

T

2

(�1�
′′
sj(x)

�2�
′′
sj(x)

)
+ o(h2

T )

]
D−→ N (0, �TS

(�sj ,�′
sj)

),

as T → ∞, where HT = diag(1, hT ), �
′′
sj(x) = �2�sj(x)/�x2,

�TS
(�sj ,�′

sj)
= (�ss

e )−1 �psj(x)	−1
( �11�12

�21�22

)
, �1 = �2 − �1�3

�2 − �2
1

, �2 = �3 − �1�2

�2 − �2
1

,

�11 = �2
2�0 − 2�1�2�1 + �2

1�2, �12 = (�2
1 + �2)�1 − �1�2�0 − �1�2,

�21 = (�2
1 + �2)�1 − �1�2�0 − �1�2, and �22 = �2 − �1(2�1 + �1�0)�

Theorem 7 leads to the following corollary relating to the properties of �̂TS
sj (x).

Corollary 1. Let Assumptions 4.1 to 4.3 and all of the assumptions in Theorem 3 hold.
Then

√
ThT

{
�̂TS

sj (x) − �sj(x) − h2
T

2
�2

2 − �1�3

�2 − �2
1

�
′′
sj(x) + o(h2

T )

}
D−→ N (0, ��TS

sj
) as T → ∞,
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908 A. T. K. WAN ET AL.

where

�TS
�sj

= (�ss
e )−1 �psj(x)	−1 (�2

3�0 + 2�3�4�1 + �2
4�2),

with �3 = �2/(�2 − �2
1) and �4 = −�1/(�2 − �2

1).

Remark 2. If we consider only serial correlation but ignore contemporaneous
correlation in the disturbances, then the two-stage estimator is denoted by (�sj(·), �

′
sj(·))�,

which has the form

(�̌TS
sj (x), �̌

′
TS
sj (x))� = (D�

sjxWsjxDsjx)
−1D�

sjxWsjxŶ
∗
s ,

where Ŷ
∗
s = (Ŷ ∗

s,d̂0+1
, � � � , Ŷ ∗

sT )�. Applying Theorem 7, for (�̌TS
sj (x), �̌

′
TS
sj (x))�, we have the

following asymptotic result:

√
ThT

[
H−1

T

{(
�̌TS

sj (x)

�̌
′
TS
sj (x)

)
−
(

�sj(x)
�

′
sj(x)

)}
− h2

T

2

(�1�
′′
sj(x)

�2�
′′
sj(x)

)
+ o(h2

T )

]
D−→ N (0, �̌TS

(�sj ,�′
sj)

)

as T → ∞, where

�̌TS
(�sj ,�′

sj)
= �2

ess �psj(x)	−1
( �11 �12

�21 �22

)
�

Since �2
ess ≥ (�ss

e )−1, we have �̌TS
(�sj ,�′

sj)
≥ �TS

(�sj ,�′
sj)

; that is, (�̂TS
sj (x), �̂

′
TS
sj (x))� is asymptotically

more efficient than (�̌TS
sj (x), �̌

′
TS
sj (x))�.

On the other hand, if we incorporate only serial correlation but ignore
contemporaneous correlation, the two-stage estimator is denoted by (�sj(·), �

′
sj(·))�, which

has the form

(�̃TS
sj (x), �̃

′
TS
sj (x))� = (D�

sjxWsjxDsjx)
−1D�

sjxWsjx
̂̃Y∗

s ,

where ̂̃Y∗
s = (̂̃Y ∗

s,d̂0+1, � � � , ̂̃Y ∗
sT )� and

̂̃Y ∗
st = (�̂ss

� )−1

⎛⎝�̂ss
� Yst +

m∑
s1 �=s

�̂ss1
� Ŷs1t − �̂ss

�

ps∑
j1 �=j

�̂sj1(Xstj1) −
m∑

s1 �=s

�̂ss1
�

ps1∑
j2=1

�̂s1j2(Xs1tj2)

⎞⎠ �

Applying Theorem 7, for (�̃TS
sj (x), �̃

′
TS
sj (x))�, we have the following asymptotic result:

√
ThT

[
H−1

T

{(
�̃TS

sj (x)

�̃
′
TS
sj (x)

)
−
(

�sj(x)
�

′
sj(x)

)}
− h2

T

2

(�1�
′′
sj(x)

�2�
′′
sj(x)

)
+ o(h2

T )

]
D−→ N (0, �̃TS

(�sj ,�′
sj)

)
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A SEEMINGLY UNRELATED NONPARAMETRIC ADDITIVE MODEL 909

as T → ∞, where

�̃TS
(�sj ,�′

sj)
= (�ss

� )−1 �psj(x)	−1
( �11 �12

�21 �22

)
�

Because (�ss
� )−1 ≥ (�ss

e )−1, we have �̃TS
(�sj ,�′

sj)
≥ �TS

(�sj ,�′
sj)

, that is, (�̂TS
sj (x), �̂

′
TS
sj (x))� is

asymptotically more efficient than (�̃TS
sj (x), �̃

′
TS
sj (x))�.

We require a consistent estimator of ��TS
sj

or �TS
(�sj ,�′

sj)
in order to apply Corollary 1 or

Theorem 7 to conduct statistical inference for �sj(·) or (�sj(·), �′
sj(·))�. Since �1, �2, �3, �0,

�1, and �2 are known constants, we only need to estimate �ss
e and psj(·) for s = 1, � � � , m

and j = 1, � � � , ps. According to Theorem 4, �̂ss
e is a consistent estimator of �ss

e . As well,
we can use the usual kernel density method to estimate psj(·), namely,

p̂sj(x) = 1
hT

T∑
t=1

KhT (Xstj − x)�

It should be noted that �̂TS
sj (·) involves the smoothing parameters hT and NT . The

asymptotic result of Theorem 7 shows that the smoothing parameter hT is of the standard
order. However, the smoothing parameter NT of the initial estimators �̂sj(·) should be of
order larger than the standard one. That is, undersmoothing is required in the preliminary
stage of the estimation. In practice, standard smoothing parameter selection can be
used in the second stage. Our simulation results show that the findings are relatively
insensitive to the choice of the smoothing parameter NT , and the usual optimal smoothing
parameters multiplied by a constant, say, 1.5 or 2, can be used. Undersmoothing is widely
applied in two-stage estimation. See, for instance, Wang and Yang (2007), Horowitz and
Mammen (2004), and Liu et al. (2010).

5. A SIMULATION STUDY

In this section, we conduct a simulation study to evaluate the finite sample performance
of the proposed estimators. The data are generated from the following nonparametric
additive SUR model

Yst = �s1(Xst1) + �s2(Xst2) + �st, s = 1, 2 and t = 1, � � � , T , (5.1)

where Xst1 = X∗
st1/2 and Xst2 = X∗

st2/2 with X∗
st1 = 0�2X∗

s,t−1,1 + �st1 + �t1, X∗
st2 =

−0�1X∗
s,t−1,2 + �st2 + �t2, �st1 ∼ i�i�d� U(−0�5, 0�5), �st2 ∼ i�i�d� U(−0�5, 0�5), �t1 ∼

i�i�d� U(−0�5, 0�5), �t2 ∼ i�i�d� U(−0�5, 0�5),

�11(X1t1) = 2 sin(2�(X1t1 + 0�5)) − 2E �sin(2�(X1t1 + 0�5))	 ,
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910 A. T. K. WAN ET AL.

�12(X1t2) = 2(0�5X1t2 − 1)2 − 2E�(0�5X1t2 − 1)2	,

�21(X2t1) = 2 cos(2�(X2t1 + 1�5)) − 2E �cos(2�(X2t1 + 1�5))	 ,

�22(X2t2) = g(X2t2) − E�g(X2t2)	 and

g(X2t2) = 3
[
0�1 sin(0�75�X2t2) + 0�2 cos(0�75�X2t2) + 0�3�sin(0�75�X2t2)	

2

+ 0�4�cos(0�75�X2t2)	
4 + 0�5�sin(0�5�X2t2)	

3
]
�

Additionally, we let �st = �s�s,t−1 + est for s = 1, 2 and t = 1, � � � , T , T = 200, 300, 500,
(�1, �2) = (0�3, 0�3), (0�5, 0�5), and (0�75, 0�75), and (�2

e11, �2
e12, �2

e22) = √
0�75(1, 0, 1) and√

0�75(1, 0�5, 1).
In each case, we set the number of simulated samples to 1000. We use univariate

quadratic polynomial splines with uniform knots to approximate each function �sj(·). As
in Wang and Yang (2007), NT is determined by the sample size T , and the tuning constant
is taken to be 0�5. The tuning parameter �T is selected by the the Bayesian Information
Criterion (e.g., (Wang et al., 2007). In Table 1, we compare the variable selection results
for different T , �2

e12 and (�1, �2) over the replicated samples. We see from Table 1 that for
each �2

e12 and (�1, �2), the percentage of the method selecting the correct model increases
as T increases, and approaches 100% very quickly.

TABLE 1
Autoregressive Error Order Selection Results

�1 �2

Number of Number of Number of Number of Number of Number of
�2

e12 (�1, �2) T correct-fitting under-fitting over-fitting correct-fitting under-fitting over-fitting

0 (0.3,0.3) 200 828 51 121 830 50 120
300 936 13 51 943 7 50
500 978 0 22 975 0 25

(0.5,0.5) 200 866 0 134 870 0 130
300 919 0 81 913 0 87
500 980 0 20 973 0 27

(0.75,0.75) 200 777 0 223 758 0 242
300 872 0 128 853 0 147
500 918 0 82 922 0 78

0.5 (0.3,0.3) 200 853 55 92 850 52 98
300 929 14 57 929 18 53
500 982 0 18 975 2 23

(0.5,0.5) 200 857 0 143 855 0 145
300 917 0 83 919 0 81
500 978 0 22 974 0 26

(0.75,0.75) 200 756 0 244 757 0 243
300 884 0 116 874 0 126
500 914 0 86 916 0 84
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A SEEMINGLY UNRELATED NONPARAMETRIC ADDITIVE MODEL 911

TABLE 2
Finite Sample Performance of Estimators of the Autoregressive Coefficients

�̂1 �̂2 �̂w
1 �̂w

2

�2
e12 (�1, �2) T sm std sm std sm std sm std

0 (0.3,0.3) 200 0.2682 0.0670 0.2760 0.0684 0.2680 0.0667 0.2759 0.0682
300 0.2811 0.0567 0.2826 0.0549 0.2812 0.0565 0.2824 0.0548
500 0.2825 0.0444 0.2810 0.0426 0.2825 0.0444 0.2810 0.0425

(0.5,0.5) 200 0.4578 0.0651 0.4522 0.0629 0.4580 0.0650 0.4521 0.0627
300 0.4603 0.0523 0.4717 0.0522 0.4603 0.0521 0.4718 0.0522
500 0.4728 0.0408 0.4738 0.0394 0.4729 0.0407 0.4738 0.0394

(0.75,0.75) 200 0.6837 0.0529 0.6870 0.0535 0.6837 0.0529 0.6871 0.0534
300 0.7088 0.0417 0.7145 0.0408 0.7089 0.0416 0.7146 0.0408
500 0.7208 0.0314 0.7243 0.0317 0.7207 0.0314 0.7243 0.0316

0.5 (0.3,0.3) 200 0.2729 0.0677 0.2682 0.0665 0.2679 0.0612 0.2653 0.0604
300 0.2786 0.0564 0.2794 0.0534 0.2746 0.0512 0.2756 0.0487
500 0.2857 0.0435 0.2843 0.0426 0.2821 0.0397 0.2811 0.0377

(0.5,0.5) 200 0.4543 0.0647 0.4480 0.0646 0.4475 0.0590 0.4426 0.0594
300 0.4685 0.0534 0.4676 0.0537 0.4633 0.0484 0.4617 0.0481
500 0.4800 0.0382 0.4844 0.0395 0.4761 0.0339 0.4803 0.0349

(0.75, 0.75) 200 0.6964 0.0538 0.6955 0.0509 0.6884 0.0492 0.6875 0.0464
300 0.7125 0.0413 0.7132 0.0404 0.7065 0.0388 0.7079 0.0371
500 0.7204 0.0315 0.7238 0.0308 0.7160 0.0294 0.7183 0.0287

We also calculate the sample means (sms) and standard deviations (stds) of (�̂1, �̂2) and
(�̂w

1 , �̂w
2 ). The results are summarized in Table 2. The results clearly show that taking the

contemporaneous correlation into account improves the performance of the estimator of
the autoregressive coefficients.

Furthermore, we compute the root average squared error (RASE)

RASE(�̌sj) =
[

T −1
T∑

t=1

��̌sj(Xstj) − �sj(Xstj)	
2

]1/2

,

where �̌sj is one of �̂sj(x), which ignores both types of correlations, �̃TS
sj (x), which

takes into account only the serial correlation, and �̂TS
sj (x) which takes both serial and

contemporaneous correlations into account. The performance of these three estimators
of the unknown additive function �sj(x) in (5.1) is assessed through the sample means
(sms) and standard deviations (stds) of the RASE values. The results are reported in
Tables 3. The results show that the estimator that takes both the contemporaneous and
serial correlations into account invariably outperforms the estimators that neglect either
one or both of the correlations. The improvement is especially significant when (�1, �2)
and �2

e12 are large.
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912 A. T. K. WAN ET AL.

TABLE 3
Finite Sample Performance of the Estimators of the Unknown Additive Functions

�11(·) �12(·) �21(·) �22(·)

�2
e12 (�1, �2) T sm(RASE) std(RASE) sm(RASE) std(RASE) sm(RASE) std(RASE) sm(RASE) std(RASE)

0 (0.3,0.3) 200 �̂ 0�1771 0�0431 0�1556 0�0498 0�1950 0�0445 0�1687 0�0520
�̃TS 0�1681 0�0455 0�1368 0�0432 0�1622 0�0439 0�1377 0�0423
�̂TS 0�1684 0�0458 0�1370 0�0432 0�1625 0�0439 0�1378 0�0427

300 �̂ 0�1684 0�0331 0�1426 0�0409 0�1543 0�0388 0�1483 0�0411
�̃TS 0�1554 0�0391 0�1237 0�0351 0�1461 0�0367 0�1225 0�0357
�̂TS 0�1554 0�0393 0�1239 0�0351 0�1460 0�0367 0�1225 0�0357

500 �̂ 0�1391 0�0251 0�1141 0�0296 0�1403 0�0287 0�1301 0�0314
�̃TS 0�1218 0�0307 0�0990 0�0273 0�1132 0�0259 0�0969 0�0261
�̂TS 0�1219 0�0308 0�0990 0�0274 0�1132 0�0259 0�0968 0�0261

(0.5,0.5) 200 �̂ 0�2180 0�0615 0�1923 0�0628 0�2382 0�0475 0�1902 0�0591
�̃TS 0�1957 0�0583 0�1494 0�0503 0�1787 0�0458 0�1496 0�0451
�̂TS 0�1958 0�0585 0�1495 0�0505 0�1788 0�0459 0�1497 0�0456

300 �̂ 0�1777 0�0399 0�1556 0�0441 0�1677 0�0404 0�1532 0�0450
�̃TS 0�1478 0�0391 0�1308 0�0394 0�1478 0�0373 0�1226 0�0343
�̂TS 0�1478 0�0393 0�1307 0�0395 0�1477 0�0372 0�1227 0�0342

500 �̂ 0�1397 0�0317 0�1178 0�0363 0�1519 0�0304 0�1270 0�0366
�̃TS 0�1227 0�0345 0�1017 0�0304 0�1170 0�0269 0�0974 0�0288
�̂TS 0�1227 0�0345 0�1017 0�0303 0�1171 0�0269 0�0974 0�0287

(0.75,0.75) 200 �̂ 0�2309 0�0683 0�2303 0�0832 0�2338 0�0729 0�2187 0�0684
�̃TS 0�1799 0�0550 0�1853 0�0631 0�1678 0�0486 0�1522 0�0510
�̂TS 0�1802 0�0552 0�1854 0�0634 0�1681 0�0486 0�1523 0�0512

300 �̂ 0�2046 0�0561 0�1871 0�0600 0�1933 0�0494 0�1848 0�0569
�̃TS 0�1604 0�0454 0�1337 0�0452 0�1428 0�0367 0�1255 0�0390
�̂TS 0�1605 0�0454 0�1337 0�0453 0�1429 0�0368 0�1256 0�0390

500 �̂ 0�1764 0�0415 0�1503 0�0468 0�1586 0�0412 0�1513 0�0438
�̃TS 0�1354 0�0371 0�1025 0�0305 0�1175 0�0266 0�0975 0�0268
�̂TS 0�1355 0�0372 0�1026 0�0304 0�1175 0�0266 0�0976 0�0268

0.5 (0.3,0.3) 200 �̂ 0�1781 0�0473 0�1686 0�0543 0�1764 0�0476 0�1714 0�0506
�̃TS 0�1714 0�0474 0�1557 0�0502 0�1664 0�0435 0�1358 0�0431
�̂TS 0�1568 0�0434 0�1396 0�0461 0�1507 0�0401 0�1204 0�0383

300 �̂ 0�1594 0�0316 0�1291 0�0412 0�1476 0�0377 0�1403 0�0404
�̃TS 0�1529 0�0364 0�1193 0�0350 0�1412 0�0340 0�1172 0�0337
�̂TS 0�1362 0�0337 0�1054 0�0309 0�1249 0�0300 0�1043 0�0297

500 �̂ 0�1385 0�0239 0�1161 0�0300 0�1212 0�0302 0�1204 0�0325
�̃TS 0�1201 0�0290 0�0952 0�0286 0�1138 0�0269 0�1037 0�0274
�̂TS 0�1083 0�0270 0�0842 0�0248 0�1005 0�0247 0�0918 0�0242

(0.5,0.5) 200 �̂ 0�1979 0�0483 0�1758 0�0536 0�1879 0�0542 0�1957 0�0536
�̃TS 0�1764 0�0461 0�1434 0�0437 0�1684 0�0465 0�1467 0�0452
�̂TS 0�1588 0�0421 0�1284 0�0400 0�1555 0�0426 0�1313 0�0403

300 �̂ 0�1661 0�0392 0�1479 0�0431 0�1789 0�0384 0�1559 0�0467
�̃TS 0�1491 0�0404 0�1268 0�0354 0�1350 0�0346 0�1233 0�0352
�̂TS 0�1344 0�0359 0�1122 0�0322 0�1223 0�0322 0�1105 0�0317

500 �̂ 0�1363 0�0301 0�1158 0�0350 0�1184 0�0315 0�1263 0�0309
�̃TS 0�1207 0�0302 0�1000 0�0278 0�1136 0�0271 0�0992 0�0262
�̂TS 0�1098 0�0289 0�0888 0�0247 0�1022 0�0251 0�0883 0�0247

(0.75,0.75) 200 �̂ 0�2314 0�0675 0�1969 0�0651 0�2178 0�0652 0�2224 0�0719
�̃TS 0�1913 0�0557 0�1508 0�0445 0�1684 0�0454 0�1524 0�0498
�̂TS 0�1741 0�0516 0�1363 0�0407 0�1554 0�0422 0�1400 0�0461

300 �̂ 0�1994 0�0544 0�1841 0�0575 0�1891 0�0540 0�1980 0�0604
�̃TS 0�1529 0�0394 0�1326 0�0411 0�1440 0�0379 0�1275 0�0398
�̂TS 0�1380 0�0358 0�1203 0�0382 0�1341 0�0371 0�1162 0�0372

500 �̂ 0�1936 0�0366 0�1595 0�0478 0�1496 0�0438 0�1452 0�0415
�̃TS 0�1355 0�0377 0�1100 0�0333 0�1167 0�0284 0�1033 0�0296
�̂TS 0�1222 0�0332 0�0999 0�0300 0�1063 0�0266 0�0942 0�0270
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A SEEMINGLY UNRELATED NONPARAMETRIC ADDITIVE MODEL 913

6. CONCLUDING REMARKS

In this article, we have developed a nonparametric additive SUR model with
autoregressive errors, and an inference procedure for the model. Our procedure
first estimates the unknown functions by combining the polynomial spline series
approximation and least squares, then uses the estimated residuals and the SCAD penalty
to fit the error structure. Based on the polynomial spline series estimator and the fitted
error structure, a two-stage local polynomial estimator for the unknown functions of the
mean is further proposed to improve efficiency. Our procedure applies a prewhitening
transformation of the dependent variable and the additive structure, and also takes into
account the contemporaneous correlations. The resulting estimator has several advantages
including the possession an oracle property, and being asymptotically more efficient than
the estimators that neglect the autocorrelation and/or contemporaneous correlation of
errors.

Compared with nonparametric regressions, parametric or semiparametric regression
models can often provide a more parsimonious description of the relationship between the
response variable and its covariates. For this reason, one may be interested in checking
whether all or some of �sj(·) can be described by a parametric structure. This amounts
to testing if all or some of �sj(·)’s are in a certain parametric form. Huang et al. (2012)
proposed a semiparametric model pursuit method for identifying the covariates with a
linear effect. It remains an interesting avenue for further research to extend Huang et al.
(2012)’s method to model (1.1)–(1.2) considered here.

APPENDIX: PROOFS OF TECHNICAL RESULTS

To prove the technical results we first introduce some lemmas. The following Lemma 1 is
adopted from Chapter 2 of Fan and Yao (2003).

Lemma 1. Let (U1, �1), � � � , (UT , �T ) be a strictly stationary sequence satisfying the
mixing condition �(l) ≤ cl−� for some c > 0 and � > 5/2. Assume further that for some
s > 2 and interval [0, 1],

E|�t|s < ∞ and sup
∀∈u∈[0,1]

∫
|�t|sp(u, �)d� < ∞,

where p(·) is the joint density of (Ut, �t). In addition, the conditional density pU1,Ut |�1,�t

satisfies (u1, ut|�1, �t) ≤ c2 < ∞ for all t ≥ 1, and K(·) satisfies Assumption 4.2. Then

sup
u∈[0,1]

∣∣∣∣∣ 1
T

T∑
t=1

�KhT (Ut − u)�t − E[KhT (Ut − u)�t]	
∣∣∣∣∣ = Op

({
log T
ThT

}1/2
)
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914 A. T. K. WAN ET AL.

provided that hT → 0, T 1−2s−1−2
hT → ∞ and T (�+1�5)(s−1+
)−�/2+5/4h−�/2−5/4
T → 0 as T → ∞

for for some 
 > 0.

Let

Zt =
(

KhT (Xstj − x)
Xstj−x

hT
KhT (Xstj − x)

) m∑
s1=1

(�ss
e )−1�ss1

e est, QT = 1
T

T∑
t=1

Zt and �=
(

�0 �1

�1 �2

)
�

Lemma 2. Suppose that Assumptions 4.1 to 4.3 hold. Then, as T → ∞, we have as
follows

(a) hT Cov(Zt) → (�ss
e )−1psj(x)�;

(b) hT
∑T−1

t=1

∣∣∣∣Cov(Z1, Zt+1)
∣∣∣∣ = o(1); and

(c) hT Cov(QT ) → (�ss
e )−1psj(x)�, where || · || denotes the Euclidean norm.

Proof. It is easy to see that Zt can be written as

Zt =
(

KhT (Xstj − x)
Xstj−x

hT
KhT (Xstj − x)

)
(0, � � � , (�ss

e )−1, � � � , 0)�−1
e (e1t, � � � , emt)

� �

Thus, we have

h∗Cov(Zt) = (�ss
e )−1hT E

{(
KhT (Xstj − x)

Xstj−x
hT

KhT (Xitj − x)

)(
KhT (Xstj − x)

Xstj−x
hT

KhT (Xstj − x)

)�
}

�

Using Theorem 1 of Sun (1984), we can show that

hT E �KhT (Xstj − x)KhT (Xstj − x)	 = hT

∫
psj(x) �KhT (xsj − x)	2 dxsj

=
∫

psj(x∗
sjhT + x)

{
K(x∗

sj)
}2

dx∗
sj = psj(x)�0 + o(1)�

Along the same lines of argument, we can show that

hT E
{

Xstj − x
hT

(
KhT (Xstj − x)

)2
}

= psj(x)�1 + o(1),

and

hT E

{(
Xstj − x

hT

)2 (
KhT (Xstj − x)

)2

}
= psj(x)�2 + o(1)�

D
ow

nl
oa

de
d 

by
 [

C
ity

 U
ni

ve
rs

ity
 o

f 
H

on
g 

K
on

g 
L

ib
ra

ry
] 

at
 1

7:
55

 2
8 

A
pr

il 
20

16
 



A SEEMINGLY UNRELATED NONPARAMETRIC ADDITIVE MODEL 915

This proves result (a). The proof of result (b) is same as that of Lemma 1 (b) of Cai et
al. (1999). The proof of result (c) follows straightforwardly by using (a) and (b) together
with

Cov(QT ) = 1
T

Cov(Z1) + 2
T

T−1∑
t=1

(
1 − t

T

)
Cov(Z1, Zt+1)�

Proof of Theorem 1. Let Bs = (Bs1, � � � , Bsps ). Based on the definition of �̂s, we have

�̂s − �s = (B�
sBs)

−1B�
sYs − �s = (B�

sBs)
−1B�

s�s +
⎧⎨⎩(B�

sBs)
−1Bs

ps∑
j=1

�sj − �s

⎫⎬⎭ = J1 + J2,

where �sj = (�sj(Xs1j), � � � , �sj(XsTj))
�. Now,

||J1||2 = ��
sBs(B�

sBs)
−2B�

s�s ≤ Op(T −2) · max
1≤j≤ps

[
�min

(
1
T

B�
sjBsj

)]−2 (
��

sBsB�
s�s

)
= Op(T −2) · Op(NT T) = Op(T −1NT ),

which implies ||J1|| = Op(
√

NT /T). Additionally,

||J2||2 =
∣∣∣∣∣∣
∣∣∣∣∣∣(B�

sBs)
−1B�

s

⎛⎝ ps∑
j=1

��
sj − Bs�s

⎞⎠∣∣∣∣∣∣
∣∣∣∣∣∣ = Op(T −1) ·

∣∣∣∣∣∣
∣∣∣∣∣∣

ps∑
j=1

��
sj − Bs�s

∣∣∣∣∣∣
∣∣∣∣∣∣
2

= Op(N −2
T ),

implying ||J2|| = Op(N −1
T ). Hence, result (i) holds.

By the definition of �̂sj(x),

∫
x∈[0,1]

��̂sj(x) − �xj(x)	
2 psj(x)dx

=
∫

x∈[0,1]
�(�̂sj(x) − (Bsj(u))��sj) − (�sj(u) − (Bsj(u))��sj)	

2 psj(x)dx

≤ 2�max

(∫
x∈[0,1]

(Bsj(x))�Bsj(x)psj(x)dx
)

· ||�̂sj − �sj||2

+ 2
∫

x∈[0,1]
(�sj(x) − (Bsj(u))��sj)

2psj(x)dx = Op(N −2
T + NT /T) + Op(N −2

T )�

This shows that result (ii) is also true.
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916 A. T. K. WAN ET AL.

Proof of Theorem 2. For convenience purposes, write

�̂o
s =

⎡⎢⎢⎢⎣
�̂sds �̂s,ds−1 � � � �̂s1

�̂s,ds+1 �̂sds � � � �̂s2
���

���
���

���
�̂s,T−1 �̂s,T−2 � � � �̂s,T−ds

⎤⎥⎥⎥⎦ , �̂oo
s = (�̂s,ds+1, � � � , �̂sT )�,

�̂o
s =

⎡⎢⎢⎢⎣
∑ps

j=1 �̂sj(Xsdsj)
∑ps

j=1 �̂sj(Xs,ds−1,j) � � �
∑ps

j=1 �̂sj(Xs1j)∑ps
j=1 �̂sj(Xs,ds+1,j)

∑ps
j=1 �̂sj(Xsdsj) � � �

∑ps
j=1 �̂sj(Xs2j)

���
���

���
���∑ps

j=1 �̂sj(Xs,T−1,j)
∑ps

j=1 �̂sj(Xs,T−2,j) � � �
∑ps

j=1 �̂sj(Xs,T−ds ,j)

⎤⎥⎥⎥⎦ ,

and

�̂oo
s =

⎛⎝ ps∑
j=1

�̂sj(Xs,ds+1,j), � � � ,
ps∑

j=1

�̂sj(XsTj)

⎞⎠�

�

Also, define �o
s and �oo

s as the matrices that result when �̂st in �̂o
s and �̂oo

s are replaced
by �st. Similarly, by replacing

∑ps
j=1 �̂sj(Xstj) by

∑ps
j=1 �sj(Xstj) in �̂o

s and �̂oo
s , we obtain �o

s

and �oo
s .

From the definition of �(�s),

�(�s) = 1
2

(�̂oo
s − �̂o

s �s)
�(�̂oo

s − �̂o
s �s) + T

ds∑
j=1

p�jT (|�j|)�

Denote �T = T −1/2 + aT . It suffices to show that for any given 
 > 0, there exists a large
constant c such that

P
{

inf
||u||=c

�(�s + �T u) ≥ �(�s)

}
≥ 1 − 
�

This implies, with probability no smaller than 1 − 
, that there exists a local minimizer in
��s + �nu : ||u|| ≤ c	. Define

DT (u) = �(�s + �T u) − �(�s)�

Note that p�jT (0) = 0, and p�jT (|�sj|) is nonnegative. Therefore, it holds that

T −1DT (u) ≥ 1
2T

�(�̂oo
s − �̂o

s (�s + �T u))�(�̂oo
s − �̂o

s (�s + �T u)) − (�̂oo
s − �̂o

s �s)
�(�̂oo

s − �̂o
s �s)	

+
ds∑

j=1

�p�jT (|�sj + �T uj|) − p�jT (|�sj|)	�
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A SEEMINGLY UNRELATED NONPARAMETRIC ADDITIVE MODEL 917

Obviously,

1
2T

�(�̂oo
s − �̂o

s (�s + �T u))�(�̂oo
s − �̂o

s (�s + �T u)) − (�̂oo
s − �̂o

s �s)
�(�̂oo

s − �̂o
s �s)	

= �2
T

2T
u�
{
�o

s + (�o
s − �̂o

s )
}� {

�o
s + (�o

s − �̂o
s )
}

u

− �T

T
u�
{
�o

s + (�o
s − �̂o

s )
} {

es − ((�oo
s − �̂oo

s ) − (�o
s − �̂o

s )�s)
}

= J1 + J2 (say)�

From Theorem 1, we have

J1 = �2
T

2T
u��o�

s �o
s u + �2

T ||u||2 · {Op(N −4
T + NT /T) + Op(T −1/2)

}
and

J2 = Op(�T ||u||) · Op(T − 1
2 �T ||u||)�

Note that when T is sufficiently large,

1
T

�o�
s �o

s = �s + Op(T − 1
2 ) > 0,

so J1 is of the order c2�2
T . Also note that T −1/2�T = Op(�2

T ). By choosing a sufficiently
large c, J1 will dominate the second term uniformly in ||u|| = c. Furthermore, by the
Taylor series expansion and Cauchy–Schwarz inequality,

ds∑
j=1

{
p�jT (|�sj + �T uj|) − p�jT (|�sj|)

}
is bounded by √

d0
s �T aT ||u|| + �2

T bT ||u||2 = c�2
T (
√

d0
s + bT c)�

By taking a sufficiently large c, c�2
T (
√

d0
s + bT c) is dominated by J1 as bT → 0. This

completes the proof of the theorem.

Proof of Theorem 3. (i) The proof is same as that of Lemma A.1 in Fan and Li (2004).
We will show that with probability tending to 1, as T → ∞, for any d0

s dimensional
�(1)∗

s satisfying ||�(1)∗
s − �(1)

s || = Op(T −1/2) and ds − d0
s dimensional �(2)∗

s satisfying ||�(2)∗
s || ≤

cT −1/2, ��(�∗
s )/��sj and �∗

sj have the same sign, �∗
sj ∈ (−cT −1/2, cT −1/2) for j = d0

s +
1, � � � , ds, where �∗

s = (�(1)∗�
s , �(2)∗�

s )� and �∗
sj is the jth element of �∗

s . Thus, a minimum is
attained at �(2)

s = 0.
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918 A. T. K. WAN ET AL.

For �∗
sj �= 0 and j = d0

s + 1, � � � , ds,

��(�∗
s )

��sj
= �′

j(�
∗
s ) + Tp′

�jT
(|�∗

sj|)sgn(�∗
sj),

where �′
j(�

∗
s ) = ��(�∗

s )/��∗
sj . It is easy to see that

�′
j(�

∗
s ) = −

T−ds∑
t=1

{
�o

stj + (�o
stj − �̂o

stj)
} [{

�oo
st + (�oo

st − �̂oo
st )
}

−
{
�o

st + (�o
st − �̂o

st)
}�

�s

]

−
T−ds∑
t=1

{
�o

stj + (�o
stj − �̂o

stj)
} {

�o
st + (�o

st − �̂o
st)
}�

(�∗
s − �s)�

Note that ||�∗
s − �s|| = Op(T −1/2) by assumption. Then, using Theorem 1, we can show

that T −1�′
j(�s) is of the order Op(T −1/2). Therefore,

��(�∗
s )

��sj
= T�jT

{
�−1

jT p′
�jT

(|�∗
sj|)sgn(�∗

sj) + Op(T − 1
2 )
}

�

As

lim inf
T→∞

lim inf
�∗

sj→0+
�−1

jT p′
�jT

(|�∗
sj|) > 0 and T − 1

2 �jT → 0,

the sign of the derivative is completely determined by that of �∗
sj . This completes the proof

of part (i) of the theorem.
To prove part (ii), using an argument similar to the proof of Theorem 2, it can be

shown that there exists a �̂(1), a
√

T consistent minimizer of ��(�(1)�, 0�)�	, that satisfies
the penalized least squares equations

��
{
(�̂(1)�, 0�)�

}
/��(1) = 0�

Furthermore,

��
{
(�̂(1)�, 0�)�

}
��(1)

= −�̂o(1)
s (�̂oo

s − �̂o(1)
s �(1)) − T

{
b + �D + op(1)	(�̂(1) − �(1))

}
,

with �̂o(1)
s containing the first d0

s columns of �̂o
s . We can show that

− 1√
T

�̂o(1)
s (�̂oo

s − �̂o(1)
s �(1)) →D N (0, �s11) as T → ∞,
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A SEEMINGLY UNRELATED NONPARAMETRIC ADDITIVE MODEL 919

with �s11 containing the first d0
s rows and columns of �s. Thus, by Slutsky’s Theorem, it

follows that

√
T ��s11 + D	

{
�̂(1) − �(1) + (�s11 + D)−1b

} D−→ N (0, �s11) as T → ∞�

This completes the proof of (ii).

Proof of Theorem 4. It is easy to see that with probability tending to 1,

êst = �̂st − �̂s1�̂s,t−1 − · · · − �̂sd̂s
�̂s,t−d̂s

= est + {
(�s1 − �̂s1)�s,t−1 − · · · − (�sd̂s

− �̂sd̂s
)�s,t−d̂s

}
+

ps∑
j=1

(�sj(Xstj) − �̂sj(Xstj)) − �̂s1

ps∑
j=1

(�sj(Xs,t−1,j) − �̂sj(Xs,t−1,j)) − � � �

− �̂sd̂s

ps∑
j=1

(�sj(Xs,t−d̂s ,j) − �̂sj(Xs,t−d̂s ,j)) = est + J1st + J2st (say)�

Thus, �̂2
es1s2

can be decomposed as

�̂2
es1s2

= 1

T − max(d̂s1 + 1, d̂s2 + 1)

T∑
t=max(d̂s1 +1,d̂s2 +1)

(es1tes2t + J1s1tJ1s2t + J2s1tJ2s2t + J1s1tJ2s2t

+ J2s1tJ1s2t + es1tJ1s2t + es1tJ2s2t + J1s1tes2t + J2s1tes2t

= J 0
1 + · · · + J 0

9 , (say)

with probability tends to 1. Combining the
√

T consistency property of �̂s, we have

|J 0
2 | = Op

(
T −2

) ·
T∑

t=max(d̂s1 +1,d̂s2 +1)

(�2
s1t + �2

s2t) = Op

(
T −1

)
�

Using this same property together with Theorem 1, we obtain

|J 0
3 | = Op(

√
NT /T + N −2

T ) · Op(
√

NT /T + N −2
T ) = Op(NT /T + N −4

T ) = op(T − 1
2 )�

Denote T − max(d̂s1 + 1, d̂s2 + 1) = Ts1s2 , and max(d̂s1 + 1, d̂s2 + 1) = ds1s2 . By the
definition of �̂sj(x), we have

1
Ts1s2

T∑
t=ds1s2

(�s1j(Xs1tj) − �̂s1j(Xs1tj))�s2t
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920 A. T. K. WAN ET AL.

= 1
Ts1s2

T∑
t=ds1s2

{
�s1j(Xs1tj) − (0�

NT
, � � � , (Bs1j(Xs1tj))

�, � � � , 0�
NT

)(B�
s1

Bs1)
−1B�

s1

⎛⎝ ps1∑
j=1

�s1j(Xs11j), � � � ,
ps1∑
j=1

�s1j(Xs1Tj)

⎞⎠�⎫⎬⎭ �s2t

− 1
Ts1s2

T∑
t=ds1s2

(0�
NT

, � � � , (Bs1j(Xs1tj)
�), � � � , 0�

NT
)(B�

s1
Bs1)

−1B�
s1

(�s11, � � � , �s1T )��s2t

= J 0
10 − J 0

11 (say)�

Since

�s1j(Xs1tj) − (0�
NT

, � � � , (Bs1j(Xs1tj))
�, � � � , 0�

NT
)(B�

s1
Bs1)

−1B�
s1

·
⎛⎝ ps1∑

j=1

�s1j(Xs11j), � � � ,
ps1∑
j=1

�s1j(Xs1Tj)

⎞⎠�

= �s1j(Xs1tj) − (Bs1j(Xs1tj))
��s1 − (0�

NT
, � � � , (Bs1j(Xs1tj))

�, � � � , 0�
NT

)(B�
s1

Bs1)
−1B�

s1

·
⎧⎨⎩
⎛⎝ ps1∑

j=1

�s1j(Xs11j), � � � ,
ps1∑
j=1

�s1j(Xs1Tj)

⎞⎠�

− Bs1�s1

⎫⎬⎭ ,

we can show that J 0
10 = Op(T −1/2) · Op(NT /T + N −2

T ) = op(T −1/2). Also,

J 0
11 = 1

Ts1s2

��
s2

(0�
NT

, � � � , (Bs1j(Xs1tj))
�, � � � , 0�

NT
)(B�

s1
Bs1)

−1B�
s1

�s1

≤ 1
Ts1s2

√
��

s1
Bs1(B�

s1
Bs1)

−1B�
s1

�s1

·
√

��
s2

(0�
NT

, � � � , (Bs1j(Xs1tj))�, � � � , 0�
NT

)(B�
s1

Bs1)
−1(0�

NT
, � � � , (Bs1j(Xs1tj))�, � � � , 0�

NT
)�s2

= Op(T −1NT ) = op(T − 1
2 )�

Therefore,

1
Ts1s2

T∑
t=ds1s2

(�s1j(Xs1tj) − �̂s1j(Xs1tj))�s2t = op(T − 1
2 )�
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A SEEMINGLY UNRELATED NONPARAMETRIC ADDITIVE MODEL 921

Along the same lines, we can show that J 0
s = op(T −1/2), with s = 4, � � � , 9. Thus,

�̂2
ej1j2

= 1

T − max(d̂s1 + 1, d̂s2 + 1)

T∑
t=max(d0

s1
+1,d0

s2
+1)

es1tes2t + op(T − 1
2 )�

The proof is completed by combining the above with the Central Limit Theorem.

Proof of Theorem 5. To prove part (i), along the lines of proving Theorem 4, we can
show that

√
T(�̂w − �) = √

T

⎧⎪⎨⎪⎩�diag(�̂∗
1, � � � , �̂∗

m)�(�̂e ⊗ IT−d̂)[diag(�̂∗
1, � � � , �̂∗

m)]	−1

· diag(�̂∗
1, � � � , �̂∗

m)(�̂e ⊗ IT−d̂)

⎛⎜⎝ �̂∗∗
1
���

�̂∗∗
m

⎞⎟⎠− �

⎫⎪⎬⎪⎭
= √

T�diag(�∗
1, � � � , �∗

m)�(�e ⊗ IT−d̂)[diag(�∗
1, � � � , �∗

m)]	−1

· diag(�∗
1, � � � , �∗

m)(�e ⊗ IT−d̂)

⎛⎜⎝ e∗∗
1
���

e∗∗
m

⎞⎟⎠+ op(1)�

Also, with probability that tends to 1,

√
T�diag(�∗

1, � � � , �∗
m)�(�e ⊗ IT−d̂)[diag(�∗

1, � � � , �∗
m)]	−1diag(�∗

1, � � � , �∗
m)(�e ⊗ IT−d̂)

⎛⎜⎝ e∗∗
1
���

e∗∗
m

⎞⎟⎠
= √

T�diag(�∗
1, � � � , �∗

m)�(�e ⊗ IT−d)[diag(�∗
1, � � � , �∗

m)]	−1diag(�∗
1, � � � , �∗

m)

× (�e ⊗ IT−d)

⎛⎜⎝ e∗∗
1
���

e∗∗
m

⎞⎟⎠ �

Using the above results together with the Central Limit Theorem, the proof of part (i) is
completed. To prove part (ii), for purposes of convenience, and without loss of generality,
we focus on the case of m = 2. The asymptotic covariance matrix of �̂w

1 for this case is

{
(�11

e )−1�11 − (�12
e )−2(�22

e )−1�12�
−1
22 �21

}−1
�

D
ow

nl
oa

de
d 

by
 [

C
ity

 U
ni

ve
rs

ity
 o

f 
H

on
g 

K
on

g 
L

ib
ra

ry
] 

at
 1

7:
55

 2
8 

A
pr

il 
20

16
 



922 A. T. K. WAN ET AL.

Since �11 ≥ �12�
−1
22 �21, we have{

(�11
e )−1�11 − (�12

e )−2(�22
e )−1�12�

−1
22 �21

}−1 ≤ {
(�11

e )−1 − (�12
e )−2(�22

e )−1
}−1

�−1
11

= {
�2

e11�
2
e22 − (�2

e12)
2
} {

�2
e22 − (�2

e12)
2(�2

e11)
−1
}−1

�−1
11 = �2

e11�
−1
11 �

This implies that �̂w
1 has a smaller asymptotic covariance than �̂1. By the same argument

we can show that �̂w
2 has a smaller asymptotic covariance than �̂2.

Proof of Theorem 6. Theorem 6 can be easily proved by applying Theorems 1 and 4.
We omit the details for brevity.

Proof of Theorem 7. Denote

(�̃TS
sj (x), �̃

′
TS
sj (x))� = (D�

sjxWsjxDsjx)
−1D�

sjxWsjxỸ
∗∗
sj ,

where

Ỹ ∗∗
stj = (�ss

e )−1

⎛⎝�ss
e Ŷ ∗

st +
m∑

s1 �=s

�ss1
e Ŷ ∗

s1t − �ss
e

ps∑
j1 �=j

�̂sj1(Xstj1) −
m∑

s1 �=s

�ss1
e

ps1∑
j2=1

�̂s1j2(Xs1tj2)

⎞⎠ ,

Ŷ ∗
st = Yst − �̂w

s1

⎛⎝Ys,t−1 −
ps∑

j=1

�̂w
sj(Xs,t−1,j)

⎞⎠− · · · − �̂sd̂s

⎛⎝Ys,t−d̂s
−

ps∑
j=1

�̂sj(Xs,t−d̂s ,j)

⎞⎠ ,

and Ỹ ∗∗
stj is the tth element of Ỹ

∗∗
sj .

By the definition of (�̃TS
sj (x), �̃

′
TS
sj (x))�, (�̃TS

sj (x), �̃
′
TS
sj (x))� − (�sj(x), �

′
sj(x))� can be

decomposed as

(�̃TS
sj (x), �̃

′
TS
sj (x))� − (�sj(x), �

′
sj(x))�

= J1 + J2 + (D�
sjxWsjxDsjx)

−1
T−d̂∑
t=1

(
1

Xstj

)
1

hT
K
(

Xstj − x
hT

)
(�ss

e )−1

·
⎧⎨⎩�ss

e

(
ps∑

j1 �=j

�sj1(Xstj1) −
ps∑

j1 �=j

�̂sj1(Xstj1)

)
+

m∑
s1 �=s

�ss1
e

⎛⎝ ps1∑
j1=1

�s1j1(Xs1tj1) −
ps1∑

j1=1

�̂s1j1(Xs1tj1)

⎞⎠⎫⎬⎭
− (D�

sjxWsjxDsjx)
−1

T−d̂∑
t=1

(
1

Xstj

)
1

hT
K
(

Xstj − x
hT

) m∑
s1=1

(�ss
e )−1�ss1

e

·
⎧⎨⎩

ps1∑
j1=1

�s1j1(Xs1tj1) −
ps1∑

j1=1

�̂s1j1(Xs1tj1)

⎫⎬⎭
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− (D�
sjxWsjxDsjx)

−1
T−d̂∑
t=1

(
1

Xstj

)
1

hT
K
(

Xstj − x
hT

)

·
⎧⎨⎩�̂w

s1

⎛⎝ ps∑
j=1

�sj(Xs,t−1,j) −
ps∑

j=1

�̂sj(Xs,t−1,j)

⎞⎠+ · · · + �̂sd̂s⎛⎝ ps∑
j=1

�sj(Xs,t−d̂s ,j) −
ps∑

j=1

�̂sj(Xs,t−d̂s ,j)

⎞⎠⎫⎬⎭
− (D�

sjxWsjxDsjx)
−1

T−d̂∑
t=1

(
1

Xstj

)
1

hT
K
(

Xstj − x
hT

)
·
{
(�̂w

s1�s,t−1 + · · · + �̂w
sd̂s

�s,t−d̂s
) − (�s1�s,t−1 + · · · + �w

sd0
s
�s,t−d0

s
)
}

= J1 + J2 + J3 − J4 − J5 − J6, (say),

with

J1 = (D�
sjxWsjxDsjx)

−1
T−d̂∑
t=1

(
1

Xstj

)
1

hT
K
(

Xstj − x
hT

)
�sj(Xstj) − (�sj(x), �

′
sj(x))�

and

J2 = (D�
sjxWsjxDsjx)

−1
T−d̂∑
t=1

(
1

Xstj

)
1

hT
K
(

Xstj − x
hT

) m∑
s1=1

(�ss
e )−1�ss1

e es1t�

Note that

D�
sjxWsjxDsjx =

⎛⎝ ∑T−d̂
t=1 KhT (Xstj − x)

∑T−d̂
t=1

(
Xstj−x

hT

)
KhT (Xstj − x)∑T−d̂

t=1

(
Xstj−x

hT

)
KhT (Xstj − x)

∑T−d̂
t=1

(
Xstj−x

hT

)2
KhT (Xstj − x)

⎞⎠ ,

and each element of the above matrix is in the form of kernel regression. By Lemma 1, it
holds that

1
T

D�
sjxWsjxDsjx = psj(x) ⊗ HT

(
1 �1

�1 �2

)
HT · Op

[
1 +

{
log T
ThT

} 1
2

]

with probability tending to 1. Therefore, by the conventional properties of nonparametric
regression, we have

√
ThT

[
H−1

T J1 − h2
T

2

(�1�
′′
sj(x)

�2�
′′
sj(x)

)
+ o(h2

T )

]
= op(1)�
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Our next task is to show√
ThT H−1

n J2
D−→ N (0, �TS

(�sj ,�′
sj)

) as T → ∞� (7.1)

Let

Zt =
(

KhT (Xstj − x)
Xstj−x

hT
KhT (Xstj − x)

) m∑
s1=1

(�ss
e )−1�ss1

e es1t and QT = 1
T

T∑
t=1

Zt�

By Lemma 2, we can employ the Doob’s small-block and large technique (as in Cai et al.,
2000) to prove that

√
ThT

T
QT

D−→ N (0, �) as T → ∞, with � = (�ss
e )−1psj(x)

(
�0 �1

�1 �2

)
�

Therefore, (7.1) holds.
Now, we will show sequentially that Js = op(n− 2

5 ), s = 3, 4, 5, and 6. First, let us show
that∣∣∣∣∣∣

∣∣∣∣∣∣(D�
sjxWsjxDsjx)

−1
T−d̂∑
t=1

(
1

Xstj

)
1

hT
K
(

Xstj − x
hT

) (
�sj1(Xstj1) − �̂sj1(Xstj1)

)∣∣∣∣∣∣
∣∣∣∣∣∣ = op(T − 2

5 )�

(7.2)

Let Bsj(x) = (Bsj1(x), � � � , BsjNT (x))�, �sj = (�sj(Xstj), � � � , �sj(XsTj))
�, �s = (�s1, � � � , �sT )�,

and 	 = (0NT ×NT (j−1), INT , 0NT ×NT (ps−j−1)) �B�
sBs	

−1 B�
s , with Bs = (Bs1, � � � , Bsps ). Then we

have

�sj1(Xstj1) − �̂sj1(Xstj1) = �sj1(Xstj1) − B�
sj1

(Xstj1)	Ys

= {
�sj1(Xstj1) − B�

sj1
(Xstj1)�sj1

}− B�
sj1

(Xstj1)	

⎛⎝ ps∑
j=1

�sj − Bs�s

⎞⎠− B�
sj1

(Xstj1)	��

By the polynomial spline property,

1
T

⎛⎝ ps∑
j=1

�sj − Bs�s

⎞⎠�⎛⎝ ps∑
j=1

�sj − Bs�s

⎞⎠ = Op(N −2
T )�

It is easy to see that∣∣∣∣∣∣
∣∣∣∣∣∣(D�

sjxWsjxDsjx)
−1

T−d̂∑
t=1

(
1

Xstj

)
1

hT
K
(

Xstj − x
hT

){
�sj1(Xstj1) − B�

sj1
(Xstj1)�sj1

}∣∣∣∣∣∣
∣∣∣∣∣∣
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≤
∣∣∣∣∣∣
∣∣∣∣∣∣(D�

sjxWsjxDsjx)
−1

T−d̂∑
t=1

(
1

Xstj

)
1

hT
K
(

Xstj − x
hT

)∣∣∣∣∣∣
∣∣∣∣∣∣

· max
1≤t≤T

|�sj1(Xstj1) − B�
sj1

(Xstj1)�sj1 | = Op(N −2
T ) = Op

{
T − 2

5 (log T)−2
}

= op(T − 2
5 ),

and ∣∣∣∣∣∣
∣∣∣∣∣∣(D�

sjxWsjxDsjx)
−1

T−d̂∑
t=1

(
1

Xstj

)
1

hT
K
(

Xstj − x
hT

)
B�

sj1
(Xstj1)	

⎛⎝ ps∑
j=1

�sj − Bs�s

⎞⎠∣∣∣∣∣∣
∣∣∣∣∣∣

≤
∣∣∣∣∣∣
∣∣∣∣∣∣(D�

sjxWsjxDsjx)
−1

T−d̂∑
t=1

(
1

Xstj

)
1

hT
K
(

Xstj − x
hT

)∣∣∣∣∣∣
∣∣∣∣∣∣

· max
1≤t≤T

∣∣∣∣∣∣B�
sj1

(Xstj1)	

⎛⎝ ps∑
j=1

�sj − Bs�s

⎞⎠∣∣∣∣∣∣
≤ Op(1) · max

1≤t≤T

√√√√√
⎛⎝ ps∑

j=1

�sj − Bs�s

⎞⎠�

	�Bsj1(Xstj1)B�
sj1

(Xstj1)	

⎛⎝ ps∑
j=1

�j − Bs�s

⎞⎠
= Op(N −2

T ) = Op

{
T − 2

5 (log T)−2
}

= op(T − 2
5 )�

Along the lines of the proof of Lemma 5.1 in Wang and Yang (2007), we obtain∣∣∣∣∣
∣∣∣∣∣(D�

sjxWsjxDsjx)
−1

T∑
t=1

(
1

Xstj

)
1

hT
K
(

Xstj − x
hT

)
Bsj1(Xstj1)	�

∣∣∣∣∣
∣∣∣∣∣

= Op

{
NT (log T)2T −1

} = op(T − 2
5 )�

Combining these results, we obtain (7.2). Based on the latter, we can show that
J3 = op(T −2/5), J4 = op(T −2/5), and J5 = op(T −2/5). Additionally, combining Theorems 4
and 5, we can show that

J6 = (D�
sjxWsjxDsjx)

−1
T−d̂∑
t=1

(
1

Xstj

)
1

hT
K
(

Xstj − x
hT

)
·
{
(�̂w

s1�s,t−1 + · · · + �̂w
sd̂s

�s,t−d̂s
) − (�s1�s,t−1 + · · · + �sd0

s
�s,t−d0

s
)
}

= Op(T − 1
2 )�

Combining these results with the
√

T consistency property of �̂ss1
e , the proof of Theorem

7 is completed.
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