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ABSTRACT

In recent years, the suggestion of combining models as an alternative to
selecting a singlemodel froma frequentist prospective has been advanced in a
number of studies. In this article, we propose a new semiparametric estimator
of regression coe�cients, which is in the form of a feasible generalized ridge
estimator by Hoerl and Kennard (1970b) but with di�erent biasing factors. We
prove that after reparameterization such that the regressors are orthogonal,
the generalized ridge estimator is algebraically identical to the model average
estimator. Further, the biasing factors that determine the properties of both
the generalized ridge and semiparametric estimators are directly linked to
the weights used in model averaging. These are interesting results for the
interpretations and applications of both semiparametric and ridge estimators.
Furthermore,wedemonstrate that theseestimators basedonmodel averaging
weights can have properties superior to the well-known feasible generalized
ridge estimator in a large region of the parameter space. Two empirical exam-
ples are presented.
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1. Introduction

Ordinary least squares (OLS) is a widely used estimator of the coe�cients in a linear regression model
in econometrics and statistics (Schmidt, 1976; Greene, 2011). It is shown here that the OLS estimator
can also be obtained by estimating population moments (variances and covariances) of the economic
variables involved in the regression by using empirical densities of their data sets. Further, we propose a
new estimator of the regression coe�cients by estimating population moments based on smooth kernel
nonparametric density estimation. This proposed estimator, in contrast to theOLS estimator, is robust to
multicollinearity, and we refer to this as the semiparametric (SP) estimator of the regression coe�cients.
Although there are di�erences, this SP estimator turns out to be in the form of the generalized ridge
regression (GRR) estimator developed by Hoerl and Kennard (1970b). Ridge regression (RR) (Hoerl
and Kennard, 1970a,b) is a common shrinkage technique in linear regression when the covariates are
highly collinear, and among the various ridge techniques, the GRR estimator is arguably the one that has
attracted the most attention. The GRR estimator allows the biasing factor that controls the amount of
ridging to be di�erent for each coe�cient; when the biasing factors are the same for all coe�cients, the
GRR estimator reduces to the ordinary RR estimator. However, because the biasing factors are unknown,
the GRR estimator is not feasible. On the other hand, our SP estimator is based on the information
contained in the kernel density estimation of regressors, and the biasing factors are calculated using the
data-based window-widths of the regressors. Thus, in contrast to the GRR estimator, the SP estimator
is a feasible estimator. This SP estimator is compared with Hoerl and Kennard’s (1970b) feasible GRR
(FGRR) estimator based on the �rst step of a data-based iterative procedure for estimating the biasing

CONTACT Aman Ullah aman.ullah@ucr.edu Department of Economics, University of California, Riverside, CA, USA.

© 2017 Taylor & Francis Group, LLC

http://dx.doi.org/10.1080/07474938.2015.1114564
mailto:aman.ullah@ucr.edu


ECONOMETRIC REVIEWS 371

factors. We note from Hemmerle and Carey (1983) that the FGRR estimator is more e�cient than the
estimator based on the closed form solution of Hoerl and Kennard’s iterative method. For more details
of the GRR estimators, see Vinod and Ullah (1981) and Vinod et al. (1981). A related article by Cheng
et al. (1997) has considered the incorporation of a ridging strategy in the local linear nonparametric
estimator that alleviates the numerical instability issue in cases of sparse design density.

Yet another independently developed technique closely related to shrinkage estimation is model
averaging, which is an alternative to model selection. While the process of model selection is an attempt
to �nd a single best model for a given purpose, model averaging compromises across the competing
models, and by so doing includes the uncertainty associated with the individualmodels in the estimation
of parameter precision. Bayesian model averaging (BMA) has long been a popular statistical technique.
In recent years, frequentist model averaging (FMA) has also been garnering interest. A major part of
this literature is concerned with ways of weighting models. For BMA, models are usually weighted by
their posterior model probabilities, whereas FMAweights can be based on scores of information criteria
(e.g., Buckland et al., 1997; Claeskens et al., 2006; Zhang and Liang, 2011; Zhang et al., 2012). Other
FMA strategies that have been developed include adaptive regression bymixing by Yang (2001),Mallows
model averaging (MMA) by Hansen (2007, 2008) (see alsoWan et al., 2010), optimal mean square error
averaging by Liang et al. (2011), and Jackknife model averaging (JMA) by Hansen and Racine (2012)
(see also Zhang et al., 2013). As well, Hjort and Claeskens (2003) introduced a local misspeci�cation
framework for studying the asymptotic properties of FMA estimators.

Given these two independent, but parallel, developments of research in ridge type shrinkage estima-
tors and FMA estimators, the objective of this article is to explore a link between them. An initial attempt
in establishing this connection was made by Leamer and Chamberlain (1976), where a relationship
between the ridge estimator and a model average estimator (which they called “search estimator”) was
noted. We emphasize that the ridge and the search estimators considered by Leamer and Chamberlain
(1976) are di�erent from the ridge and model averaging estimators considered in this article. Most
importantly, our results permit an exact connection between model averaging weights and ridge biasing
factors, whereas their results do not allow the same. In addition, we propose a new SP ridge estimator
and investigate its properties. The biasing factors of the SP estimator are also linked to the FMAweights.
On the basis of these relationships, the selection of biasing factors in the GRR and SP estimators may be
converted to the selection of weights in the FMA estimator. Our �nding also implies that if the goal is to
optimallymix the competingmodels based on a chosen criterion, e.g.,Hansen’s (2007)Mallows criterion,
then there is always a GRR estimator that matches the performance of the resultant FMA estimator. We
demonstrate via a Monte Carlo study that the GRR estimators with biasing factors derived from the
weights used for Hansen’s (2007) MMA and Hansen and Racine’s (2012) JMA estimators perform well,
in terms of risk, in a large region of parameter space.

This article is organized as follows. In Section 2, we present the SP and GRR estimators of the
regression coe�cients. In Section 3, we derive the exact algebraic relationship between the biasing factors
of the SP and GRR estimators and the weights in the FMA estimator. Section 4 presents asymptotically
optimal procedures for choosing window-widths. Section 5 reports the results of a Monte Carlo study
comparing the risks of the SP and FGRR estimators with biasing factors based on weights of the MMA
and JMA estimators. Section 6 provides two empirical applications of the SP and GRR estimators using
the equity premiumdata in Campbell and Thompson (2008) and the wage data fromWooldridge (2003).
Section 7 o�ers some concluding remarks.

2. Semiparametric estimator of regression coe�cients

Let us consider the population multiple regression model as follows:

y = x1β1 + · · · + xqβq + u

= x′β + u, (1)

where y is a scalar dependent variable, x = (x1, . . . , xq)
′ is a vector of q regressors, β is an unknown

vector of regression coe�cients, and u is a disturbance with Eu = 0 and V(u) = σ 2 conditional on x.
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If we minimize Eu2 = E(y − x′β)2 with respect to β , and x is a random design vector of regressors,
we obtain

β = [Exx′]−1Exy, (2)

where Exx′ is a q×qmomentmatrix of q variables with the jth diagonal element and (j, j′)th o� diagonal
elements given by

Ex2j =

∫

xj

x2j f (xj)dxj, j = 1, . . . , q, (3)

and

Exjxj′ =

∫

xj

∫

xj′

xjxj′ f (xj, xj′)dxjdxj′ , j 6= j′ = 1, . . . , q,

respectively.
If the sample observations {yi, xi1, . . . , xiq}, i = 1, . . . , n, are available, then the population averages

in (3) can be estimated by their sample averages

Êx2j =
1

n

n∑

i=1

x2ij and Êxjxj′ =
1

n

n∑

i=1

xijxij′ . (4)

It is straightforward to show that

Êx2j =

∫

xj

x2j f̂ (xj)dxj =

∫

xj

x2j dF̂(xj)

=
1

n

n∑

i=1

x2ij (5)

by using the empirical distribution of F̂(·). The results for Êxjxj′ in (4) and Êxjy =
∑n

i=1 xijyi/n follow
similarly.

Using (4) and (5) in (2), we obtain, for all j and j′,

β̂ = (̂Exx′)−1Êxy

= (X′X)−1X′Y , (6)

where X is an n × qmatrix of observations on q variables, Y is an n× 1 vector of n observations, and β̂

is the well-known OLS estimator.
Now, we consider the estimation of Ex2j and Exjxj′ by a smooth nonparametric kernel density instead

of the empirical distribution function. This results in

Ẽx2j =

∫

xj

x2j f̃ (xj)dxj

=
1

nhj

n∑

i=1

∫

xj

x2j k

(
xij − xj

hj

)
dxj

=
1

n

n∑

i=1

∫

9ij

(xij − hj9ij)
2k(9ij)d9ij

=
1

n

n∑

i=1

∫

9ij

(x2ij + h2j 9
2
ij − 2xijhj9ij)k(9ij)d9ij

=
1

n

n∑

i=1

x2ij + h2j µ2, (7)
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where f̃ (xj) = 1
nhj

∑n
i=1 k

(
xij−xj
hj

)
is a kernel density estimator, 9ij =

xij−xj
hj

is a transformed variable,

µ2 =
∫
v2k(v)dv > 0 is the second moment of kernel function, k(9ij) is a symmetric second order

kernel, and hj is window-width. For implementation, hj can be selected by biased cross-validation based
on the Normal or Epanechnikov kernel as in Scott and Terrell (1987). For more details, see Pagan and
Ullah (1999).

Similarly, it can be shown easily that

Ẽ(xjxj′) =

∫

xj

∫

xj′

xjxj′ f̃ (xj, xj′)dxjdxj′

=
1

nhjhj′

n∑

i=1

∫

xj

∫

xj′

xjxj′k

(
xij − xj

hj
,
xij′ − xj′

hj′

)
dxjdxj′

=
1

nhjhj′

n∑

i=1

∫

xj

∫

xj′

xjxj′k

(
xij − xj

hj

)
k

(
xij′ − xj′

hj′

)
dxjdxj′

=
1

n

n∑

i=1

∫

9ij

∫

9ij′

(xij − hj9ij)(xij′ − hj′9ij′)k(9ij)k(9ij′)d9ijd9ij′

=
1

n

n∑

i=1

xijxij′ (8)

and

Ẽ(xjy) =
1

n

n∑

i=1

xijyi, (9)

where the product kernels have been used without loss of generality and 9ij′ =
xij′−xj′

hj′
. Also, Ẽ(xj) =

1
n

∑n
i=1 xij = x̄j.

Thus, by using (7) to (9) in (2), we obtain the following new estimator of β :

β̃ = (̃Exx′)−1Ẽxy

= (X′X + D)−1X′Y , (10)

where D = diag(d1, . . . , dq) is a diagonal matrix with dj = nh2j µ2 as its jth element (j = 1, . . . , q). We

refer to β̃ as the SP estimator.
The estimators in (7) and (8) are based on kernel density estimation assuming that the continuous

regressors have support in the entire Euclidean space. In this article, we assume that all regressors satisfy
this property. However, when the regressors have a bounded support, it is well-known that the kernel
density estimator is asymptotically biased and one should use bias adjusted kernels instead; see Li and
Racine (2007) and Darolles et al. (2011). When the variables are discrete, and we consider an estimator
of their distributions with f (xj) = 1/n, then an estimator of Ex2j is

∑
i x

2
ij/n, and that of E(xjxj′ ) is∑

i xijxij′ /n. In this case, the estimator in (10) reduces to the OLS estimator. On the other hand, when

the regressor matrix contains a mixture of discrete and continuous regressors, the estimator again has
the form of (10), except that the matrix D is rede�ned with its diagonal elements corresponding to the
discrete variables set to zero.

Note that both the OLS and SP estimators are based on the population regression (1), where the
regression coe�cient vector depends on the populationmoments of the vector x and the scalar variable y.
These moments are then estimated using sample data by two di�erent methods. This leads to estimators
of the regression coe�cients in the sample linear regression model

Y = Xβ + U, (11)
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where the sample is drawn from the population linear regression model (1), and U is an n× 1 vector of
random errors withEU = 0 andEUU ′ = σ 2In conditional onX. By standard eigenvalue decomposition,
we can write X′X = G3G′, where G is an orthogonal matrix and 3 = diag(λ1, λ2, . . . , λq).

From Hoerl and Kennard (1970a,b), the GRR estimator of β is

β̂(K) = (X′X + GKG′)−1X′Y , (12)

where K = diag(k1, k2, . . . , kq) is a diagonal matrix with kj ≥ 0, j = 1, . . . , q. The k′
js are the biasing

factors controlling the amount of ridging in β̂(K). When k1 = k2 = · · · = kq = k, β̂(K) is commonly
called the ordinary ridge regression estimator. We note that the SP estimator in (10) is in the form of the
GRR estimator but these two estimators are not the same. However, one may de�ne an alternative SP-
type estimator by equating the diagonal matrixD to the diagonal of the matrixGKG′. Thus, the elements
ofD can be determined from the biasing factors of the GRR estimator. Of course, if K = kI, thenD = K
and the SP estimator is identical to the GRR estimator.

De�ne Z = XG and α = G′β . Then Z′Z = 3 and model (11) may be reparameterized as

Y = Zα + U. (13)

Correspondingly, the GRR estimator of α is

α̂(K) = (Z′Z + K)−1Z′Y = (3 + K)−1Z′Y = BZ′Y , (14)

where B = (3 + K)−1 is a diagonal matrix. It is straightforward to show that

α̂(K) = G′β̂(K). (15)

Hence

E(α̂(K) − α)′(α̂(K) − α) = E(β̂(K) − β)′(β̂(K) − β). (16)

That is, the trace of the mean squared error matrix (or equivalently, the risk under squared error loss)
of the GRR estimator of α is the same as that of β , and the matrix K that minimizes the risk of α̂(K) also
minimizes that of β̂(K). It is well-known that the GRR estimator in (12) can be derived by minimizing
u′u with respect to β subject to the restriction that β ′GKG′β is bounded. Similarly, the SP estimator in
(10), derived fromusing smooth kernel density estimators ofmoments, also results fromminimizing u′u
with respect to β subject to a bounded restriction of β ′Dβ . Note that both the GRR and SP estimators are
robust to multicollinearity, a property not shared by the OLS estimator derived using empirical density
estimation of moments. In Sections 4 and 5, we will show that the proposed SP and GRR estimators have
superior performance to the OLS estimator in risk under squared error loss sense.

3. Connection between SP and ridge estimators andmodel averaging

To examine the connection between the SP and GRR estimators andmodel averaging, let us consider an
averaging scheme across the submodels

Y = Zsαs + U, s = 1, 2, . . . , S, (17)

where Zs is a submatrix containing qs ≤ q columns of Z, and αs is the corresponding coe�cient vector.
Least squares estimation of the models in (17) yields the OLS estimators

α̂s = (Z′
sZs)

−1Z′
sY . (18)

Let us write αs = Asα, where As = (Iqs : 0qs×(q−qs)) (or its column permutation) is a qs × q selection
matrix. Conformably, we write Zs = ZA′

s.
The model averaging (MA) estimator of α,

α̂(w) =

S∑

s=1

wsA
′
sα̂s, (19)
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wherew = (w1,w2, . . . ,wS)
′ is the weight vector withws ≥ 0 and

∑S
s=1 ws = 1, is formed by a weighted

combination of coe�cient estimators across the S submodels.
We can equivalently write α̂(w) in (19) as

α̂(w) =

S∑

s=1

wsA
′
s(AsZ

′ZA′
s)

−1AsZ
′Y

= CZ′Y , (20)

where

C =

S∑

s=1

[wsA
′
s(AsZ

′ZA′
s)

−1As]

=



w∗
1λ

−1
1 · · · 0
...

. . .
...

0 · · · w∗
qλ

−1
q


 (21)

and

w∗
j =

S∑

s=1

wsI(j ∈ 9s), (22)

with I(·) being an indicator function that takes on 1 if j ∈ 9s and 0 otherwise, and 9s being a set
comprising the column indices of Z included in the sth submodel. For example, if the regressor matrix
of the sth submodel comprises the �rst, second, and fourth columns of Z, then 9s = {1, 2, 4}. In view of
the relationship between w∗

j and ws, we can write (20) as

α̂(w∗) = CZ′Y = α̂(w), (23)

where w∗ = (w∗
1 , . . . ,w

∗
q)

′.
Comparing equations (14) and (20), we notice an algebraic similarity between the GRR estimator

α̂(K) = BZ′Y and the MA estimator α̂(w∗) = CZ′Y . Clearly, α̂(K) = α̂(w∗) if B = C, or more
explicitly,

w∗
1λ

−1
1 = (λ1 + k1)

−1

...

...

w∗
qλ

−1
q = (λq + kq)

−1. (24)

This is the essence of the algebraic equivalence between the GRR and MA estimators. Note that λ′s
depend on the data, and w∗′s can be determined by the MA weights w′s derived under a given criterion.
Subsequently, the biasing factors k′s of the GRR estimator in (12) can be obtained from (24).

As a simple illustration, suppose that q = 2 in model (11) and the data observations are such that
λ1 = 1 and λ2 = 1.5. In this case, the model average is a combination of S = 3 candidate models
including the full model. The two submodels contain the �rst and second regressors, respectively, while
the full model contains both regressors. Now, suppose that the weights assigned to the three models are
ŵ1 = 0.5, ŵ2 = 0.2, and ŵ3 = 0.3, respectively. By (22), we have

ŵ∗
1 =

3∑

s=1

ŵsI(1 ∈ 9s) = ŵ1 + ŵ3 = 0.8
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and

ŵ∗
2 =

3∑

s=1

ŵsI(2 ∈ 9s) = ŵ2 + ŵ3 = 0.5.

Then

k̂1 = ŵ∗−1
1 λ1 − λ1 = 0.25

and

k̂2 = ŵ∗−1
2 λ2 − λ2 = 1.5.

Equation (24) also shows that when k1 = k2 = · · · = kq = 0 such that the GRR estimator reduces
to the OLS estimator, the MA estimator reduces to the OLS estimator in the full model. It should be
mentioned that although (22) allows unique w∗

j to be determined from the given values of w′
js, the

converse need not to be true. Thus, while one can obtain unique GRR biasing parameters from the
MA weights using (24), the reverse derivation of unique MA weights from the GRR biasing parameters
is not always feasible.

Note that the connection between model averaging and ridge estimators has been established on the
basis of the orthogonal model. If we apply model averaging to the original regressors X directly, we
cannot write the resulting model averaging estimator as a GRR estimator (see (12)), especially since
X′X + GKG′ is not a diagonal matrix. It is only through orthogonalization that the GRR estimator (14)
and model averaging estimator (20) have a common structure, i.e., a diagonal matrix multiplied by Z′Y .
Due to the convenience it o�ers, orthogonalization is commonly used in the ridge literature (see Vinod
and Ullah, 1981). It has also been used in recent model averaging studies (e.g., Magnus et al., 2010, and
Magnus et al., 2011).

It is also instructive to note that if model averaging is applied to the original regressors, no direct
connection can be established for the SP estimator in (12) and the model averaging estimator since
X′X + D is not a diagonal matrix. Additionally, the estimator for the orthogonal model is α̃ =

(3 + GDG′)−1Z′y, for which no algebraic relationship with the model averaging estimator is apparent.
However, if we write model (1) as y = x′GG′β+U = z′α+U, with z′ = x′G and α = G′β , then by using
the technique of moments based on kernel density estimation with respect to (7) and (8), we can obtain
α̂ = (Z′Z+Dz)

−1Z′Y = (3+Dz)
−1Z′Y , whereDz is identical toD in (10) except that hj, the window-

width for the jth variable xj, is replaced by thewindow-widthhjz used for the density estimation of the j-th
variable zj. Thus, there is a direct linkage between the SP estimator applied to the transformed population

model and the model averaging estimator. However, although β̃(Dz) = G′−1
α̂ = (X′X +GDzG

′)−1X′Y
is identical to the GRR estimator except for the replacement of Dz by K, it is not the same as the SP
estimator (X′X+D)−1X′Y unlessX′X+D = X′X+GDzG

′, i.e., they are identical onlywhenD = GDzG
′.

Although not reported here, our simulation results show that these two di�erent looking SP estimators
yield similar risk performance. Furthermore, as D and K are diagonal matrices, the optimal choice of K
will uniquely determine the optimal choice of Dz; in other words, kj uniquely determines hj.

4. Asymptotically optimal selection of window-width in β̃

4.1. Unbiased estimator of the exact risk of the SP estimator and prediction

From (10) and (11),

β̃ − β = (X′X + D)−1(X′U − Dβ), (25)

which yields

(β̃ − β)′(β̃ − β) = β ′D(X′X + D)−2Dβ + U ′X(X′X + D)−2X′U − 2β ′D(X′X + D)−2X′U. (26)
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Throughout Section 4, the results on risk are obtained conditional on X (�xed design). Therefore, by
taking expectations on both sides of (26), we can write

R(h) = R(β̃) = β ′A1β + σ 2trA2, (27)

where A1 = D(X′X + D)−2D, A2 = (X′X + D)−2X′X, and h = (h21, . . . , h
2
q)

′.

Now, note that an unbiased estimator of β ′A1β is

β̂ ′A1β̂ − σ̂ 2tr(A1(X
′X)−1), (28)

where σ̂ 2 = (Y − Xβ̂)′(Y − Xβ̂)/(n − q) is an unbiased estimator of σ 2. This results in the following
unbiased estimator of R(h):

R̂∗(h) = β̂ ′A1β̂ + σ̂ 2tr(A2 − A1(X
′X)−1). (29)

This expression can be used to �nd an optimal h. On the other hand, we note that

tr(A2 − A1(X
′X)−1) = 2tr((X′X + D)−1) − tr((X′X)−1). (30)

Therefore, it can be veri�ed that

R̂(h) = β̂ ′A1β̂ + 2σ̂ 2tr((X′X + D)−1)

= (β̃ − β̂)′(β̃ − β̂) + 2σ̂ 2tr((X′X + D)−1) (31)

is an unbiased estimator of R(h) up to a term tr((X′X)−1) that does not depend on h. Thus, the
optimization of h based on (31) is the same as that obtained from (29).

Similarly, it can be shown that an unbiased estimator of the predictive risk of µ̃ = Xβ̃ , E((µ̃ − µ)′

(µ̃ − µ)) = β ′A3β + σ 2tr(A4) = R1(h), is

R̃∗
1(h) = β̂ ′A3β̂ + σ̂ 2tr(A4 − A3(X

′X)−1), (32)

where µ = Xβ , A3 = X′(X(X′X + D)−1X′ − I)2X, and A4 = ((X′X + D)−1X′X)2. Further, the
minimization of R̃∗

1(h) with respect to h is the same as the minimization of Mallows’ criterion

R̃1(h) = (µ̃ − Y)′(µ̃ − Y) + 2σ̂ 2tr((X′X + D)−1X′X),

which is an unbiased estimator of R1(h) up to a term unrelated to h.
In the following subsections, we show that h obtained by minimizing R̂(h) or R̃1(h) is asymptotically

optimal. Further, we refer β̃(h) based on R̂(h) as asymptotically optimal semiparametric (ASOP), and
based on R̃1(h) as AOSP1.

4.1.1. The choice of optimal bandwidth based on theMallows criterion

Let P(h) = X(X′X + D)−1X′. Then from Section 4.1

µ̃(h) = Xβ̃ = P(h)Y . (33)

The squared error loss function is L(h) = (µ̃(h)−µ)′(µ̃(h)−µ) and the corresponding risk is R1(h) =

E(L(h)).We consider the choice of h by aminimization of the followingMallows criterion de�ned above:

R̃1(h) = (µ̃(h) − Y)′(µ̃(h) − Y) + 2σ̂ 2tr(P(h)). (34)

When minimizing R̃1(h), we restrict h to the set H ⊂ Rq. Thus, the selected h is

ĥ = argminh∈HR̃1(h). (35)

Let ξ = infh∈H R1(h). We assume that

µ′µ = O(n),X′U = Op(n
1/2) and n−1X′X → 8, (36)

where 8 is a positive de�nite matrix, and

ξ → ∞, ξ−2µ′µ = o(1), (37)

which can be veri�ed by (36) and assumptions h∗ = h21 = · · · = h2q, h
∗ → 0, and infh∈H h∗2n1/2 → ∞.
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By using conditions (36) and (37), and the proof steps of Theorem 2.2 of Zhang et al. (2013), we
obtain the following asymptotic optimality property:

L(ĥ)

infh∈H L(h)
→p 1. (38)

Proof of (38). Observe that

R̃1(h) = (µ̃(h) − Y)′(µ̃(h) − Y) + 2σ̂ 2tr(P(h))

= L(h) + U ′U − 2U ′P(h)U − 2µ′P(h)U + 2µ′U + 2σ̂ 2tr(P(h)) (39)

and

R1(h) = (P(h)µ − µ)′(P(h)µ − µ) + σ 2tr(P2(h))

= L(h) − U ′P2(h)U − 2(P(h)µ − µ)′P(h)U + σ 2tr(P2(h)).

Hence to prove (38), it su�ces to show that

sup
h∈H

∣∣µ′P(h)U
∣∣

R1(h)
= op(1), (40)

sup
h∈H

∣∣U ′P(h)U
∣∣

R1(h)
= op(1), (41)

sup
h∈H

∣∣σ̂ 2tr(P(h))
∣∣

R1(h)
= op(1), (42)

sup
h∈H

∣∣U ′P2(h)U
∣∣

R1(h)
= op(1), (43)

sup
h∈H

∣∣(P(h)µ − µ)′P(h)U
∣∣

R1(h)
= op(1) (44)

and

sup
h∈H

∣∣tr(P2(h))
∣∣

R1(h)
= op(1). (45)

Let λ(A) be the largest eigenvalue of the matrix A. From condition (37) and the formulae

sup
h∈H

λ(P(h)) ≤ λ(X(X′X)−1X′) = 1,

sup
h∈H

tr(P(h)) ≤ tr(X(X′X)−1X′) = q,

sup
h∈H

U ′P(h)U ≤ U ′X(X′X)−1X′U,

(µ′P(h)U)2 ≤ µ′µU ′P2(h)U ≤ µ′µλ(P(h))U ′P(h)U,

and

((P(h)µ − µ)′P(h)U)2 ≤ (P(h)µ − µ)′(P(h)µ − µ)U ′P2(h)U ≤ R1(h)U
′P(h)U,

we need only to show that

U ′X(X′X)−1X′U = Op(1), (46)

and

σ̂ 2 = Op(1). (47)
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Equations (46) and (47) are implied by condition (36). The proof of (38) thus follows. In addition, by the
above proof, we also have

R1(ĥ)

infh∈H R1(h)
→p 1.

4.1.2. The choice of optimal bandwidth based on an unbiased estimator of R(h)

We restrict h to a set H ⊂ Rq. Thus, the selected h is

h̃ = argmin
h∈H

R̂(h).

Let L̃(h) = (β̃(h) − β)′(β̃(h) − β) be the squared loss function, ξ̃ = infh∈H R(h), and h̄ =

max(h21, . . . , h
2
q). We assume that the following conditions are satis�ed:

h̄ → 0, X′U = Op(n
1/2), and n−1X′X → φ, where 8 is a positive de�nite matrix, (48)

and

n1/2ξ̃ → ∞. (49)

By using the conditions (48) and (49), we can obtain the following asymptotic optimality:

L̃(h̃)

infh∈H L̃(h)
→p 1. (50)

Proof of (50). Observe that β̃(h) = B(h)β̂ and B(h) = (X′X + D)−1X′X, from (31), we have

R̂(h) = (B(h)β̂ − β̂)′(B(h)β̂ − β̂) + 2σ̂ 2tr(B(h)(X′X)−1)

= L̃(h) + (β̂ − β)′(β̂ − β) − 2β̂ ′B′(h)(β̂ − β) + 2β ′(β̂ − β) + 2σ̂ 2tr(B(h)(X′X)−1)

≡ L̃(h) + 41(h) (51)

and

R(h) = (B(h)β − β)′(B(h)β − β) + σ 2tr(B′(h)B(h)(X′X)−1)

= L̃(h) + (β̂ − β)′B′(h)B(h)(β̂ − β)

− 2β̂ ′B′(h)B(h)(β̂ − β) + 2β ′B(h)(β̂ − β) + σ 2tr(B′(h)B(h)(X′X)−1)

≡ L̃(h) + 42(h). (52)

From condition (48), we have β̂ − β = Op(n
−1/2), which, together with conditions (48) and (49),

leads to

sup
h∈H

|41(h)|

R(h)
= op(1) (53)

and

sup
h∈H

|42(h)|

R(h)
= op(1). (54)

Hence we obtain (50). In addition, by using the above proof and the formula (51), we can also obtain
that

R(h̃)

infh∈H R(h)
→p 1. (55)

Here, we consider a simple case with h∗ = h21 = · · · = h2q. It can be easily veri�ed that, if h∗ = o(1)

and (n1/2h∗)−1 = O(1), then from (27), R(h) = O(h∗2). Hence, if h∗2 = O(n−1), then (19) is not
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satis�ed even though R(h) → 0 as n → ∞. However, if h∗2 = O(n−a) with 0 < a < 1/2, then (19) is
satis�ed and R(h) → 0.

5. AMonte Carlo study

The purpose of this section is to demonstrate via aMonteCarlo study the �nite sample properties of GRR
estimators with biasing factors obtained based on model weights of the MMA and JMA estimators. As
mentioned previously, these MA estimators were proposed by Hansen (2007) and Hansen and Racine
(2012). We denote the corresponding GRR estimators as GRRM and GRRJ estimators, respectively.

The weights of the MMA estimator are obtained by minimizing the quadratic form (Y − Zα̂(w))′

(Y−Zα̂(w))+2σ̂ 2tr(ZCZ′), where σ̂ 2 = (Y−Zα̂f )
′(Y−Zα̂f )/(n−q) and α̂f is the OLS estimator of α

in the fullmodel. On the other hand, theweights of the JMA estimator are determined byminimizing the
leave-one-out least squares cross-validation functionCVn(w) = (Y−ĝ(w))′(Y−ĝ(w))/n, where ĝ(w) =∑S

s=1 wsĝs, with ĝs = (ĝ1s, . . . , ĝns)
′, ĝis = xs′i (Xs′

−iX
s
−i)

−1Xs′
−iY−i, and Xs

−i and Y−i being, respectively,
the matricesXs (the regressor matrix of the sth submodel) and Y with the ith element deleted. Following
Hansen (2007), we assume that the candidate models in the model average are nested.

Our interest is focused on the risk performance under squared error loss of estimators in terms of
the β space in the original model. For purposes of comparisons, we also evaluate the risks of the OLS
estimator, the FGRR estimator α̂j = σ̂ 2/α̂2

j,f , with α̂j,f being the jth element of α̂f , the asymptotically

optimal GRR (AOGRR) estimator, with k′
js obtained by directly minimizing the Mallows criterion

(Y−Zα̂(K))′(Y−Zα̂(K))+2σ̂ 2tr(ZBZ′) as a function ofK, theAOSP estimator in Section 4.1.2 based on
the optimization of risk of β̃(h), and the asymptotically optimal SP (AOSP1) estimator, with the window-
widths obtained by minimizing the Mallows criterion (Y − Zα̂(D))′(Y − Zα̂(D)) + 2σ̂ 2tr(ZB1Z

′) as a
function of D (see Section 4.1.1), α̂(D) = (3 + G′DG)−1Z′Y = B1Z

′Y , and B1 = (3 + G′DG)−1.
Note that α̂(D) is the SP estimator. Recall from our discussion in Section 4.1 that optimization under
the Mallows criterion is equivalent to optimization with respect to unbiased estimator of the predictive
risk of β̃(h). When implementing the GRRM, AOGRR, AOSP, and AOSP1 estimators, we used the
routine “constrOptim” for optimization subject to linear inequality constraints in conjunction with the
routine “solve.QP” that implements Goldfarb and Idnani’s (1982, 1983) dual method for constrained
optimization available in the packages “stat” and “quadprog,” respectively, in R (version 2.13.1); when
executing these routines, we only restricted the bandwidth to be positive and imposed no other
restrictions on the parameters. When computing the AOGRR estimate, we used k′s from the FGRR
method as the initial value.

Our Monte Carlo experiments are based on following data generating processes (DGP’s):

DGP1: yi =
∑q

j=1 θjxij + ei, i = 1, . . . n, with xij being independent and identically distributed (iid)

N(0, 1), ei being either iid N(0, 1) or iid N(0, 25), and are uncorrelated with x′s. This same DGP was
considered by Hansen (2007) in his Monte Carlo study. We let θj = 0.7071j−3/2 and consider (n, q) =

(50, 11) and (150, 16). To facilitate the interpretation of the SP estimates, without loss of generality, we
assume that the DGP contains no intercept.

DGP2: The setup is the same as DGP1, except that xi2 is taken to be the sum of xi3, . . . , xi50 plus an
N(0, 1) distributed error term. The regressors are thus nearly perfectly correlated.

Our analysis is based on 1,000 replications.We adopt theGaussian kernelK(φ) = (2π)−1/2 exp[− 1
2φ

2],
resulting in µ2 = 1. Following Scott and Terrell (1987), we compute the window-widths of the SP
estimator using a biased cross-validation procedure that is based on a (slightly) biased estimator of
the mean integrated squared error of the density estimator. Scott and Terrell (1987) showed that using
this biased estimator instead of the usual unbiased estimator o�en results in large gains in asymptotic
e�ciency, especially when the density is reasonably smooth. Although we do not report the results
here, in our simulation experiments, we have also found that this biased cross-validation procedure
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Table 1. Risks of estimators.

σ = 1 σ = 5

DGP Estimators n = 50 n = 150 n = 50 n = 150

1 OLS 0.0267 0.0076 0.6762 0.1869
FGRR 0.0213 0.0071 0.3430 0.1051
GRRM 0.0369 0.0238 0.1126 0.0454
GRRJ 0.0369 0.0238 0.1085 0.0450
AOGRR 0.0228 0.0078 0.2683 0.0850
SP 0.0173 0.0062 0.3506 0.1292

AOSP1 0.0150 0.0045 0.2462 0.0762
AOSP 0.0143 0.0044 0.2329 0.0746

2 OLS 0.0270 0.0075 0.6813 0.1944
FGRR 0.0222 0.0070 0.3829 0.1096
GRRM 0.0357 0.0232 0.1079 0.0446
GRRJ 0.0357 0.0232 0.1027 0.0442
AOGRR 0.0232 0.0077 0.2698 0.0886
SP 0.0173 0.0062 0.3458 0.1337

AOSP1 0.0148 0.0044 0.2427 0.0791
AOSP 0.0145 0.0044 0.2295 0.0777

for window-width choice habitually improves over the naive and Akaike information criterion (AIC)
cross-validation procedures in terms of estimator’s risk. However, it should be noted that the optimal
window-width for density estimation is not necessarily the optimal window-width for the SP estimator
of the regression coe�cients. In our simulations, the AOSP1 and AOSP estimates are computed based
on the window-widths selected by the two criteria described in Section 4.

The simulation results reported in Table 1 show that, although the SP, AOSP1, and AOSP estimators
behave well when the error variance is small, the GRRM and GRRJ are clearly the preferred estimators
when the error variance is large, and o�en by a large margin. This �nding is consistent with the intuition
that the large variance associated with the true model makes it di�cult to identify the best model, thus
making model averaging, which shields against choosing a bad model, a more viable strategy. It is also
apparent fromTable 1 that FGRR andAOGRR estimators yield similar risk performance. This is perhaps
the result of the biasing factors chosen for the FGRR estimator being optimal (see Vinod et al., 1981, p.
363, and Hoerl and Kennard, 1970b, p. 63). Further, we observe that the AOSP estimator usually has a
slight edge over the AOSP1 estimator. This can be explained by noting that our comparison is in terms
of estimator’s risk; the slight disadvantage of the AOSP1 estimator is likely the result of its bandwidth
being selected based on the minimization of predictive risk (̃R1(h)) instead of the estimator’s risk (̃R(h))
as in the AOSP estimator. If the comparison is in terms of predictive risk, then the reverse will likely be
observed.

6. Empirical applications

This section considers two empirical data applications of the proposed methods. In these applications,
we use the proposed methods for forecasting excess stock returns and wages.

6.1. Forecasting excess stock returns

The data used in this application are taken from Campbell and Thompson (2008). Lu and Su (2015)
and Jin et al. (2014) also used the same data in their studies. The dataset contains n = 672 monthly
observations of Y , the excess returns of the S&P 500 Index from January 1950 to December 2005.
Thus, Y is the di�erence between the S&P 500 returns and the risk-free rate. Data observations are
also available for the following twelve explanatory variables over the same time period, ordered by
their magnitudes of correlations with Y : default yield spread (x1), treasury bill rate (x2), new equity
expansion (x3), term spread (x4), dividend price ratio (x5), earnings price ratio (x6), long term yield (x7),



382 A. ULLAH ET AL.

Table 2. Out-of-sample R2 .

Estimator n1 = 144 n1 = 180 n1 = 216 n1 = 336 n1 = 456

OLS −0.0390 0.0062 −0.0434 −0.0425 −0.0208
FGRR −0.0375 −0.0369 −0.0398 −0.0610 −0.0621
GRRM 0.0408 0.0895 0.0564 0.0103 −0.0003
GRRJ 0.0692 0.1079 0.0701 0.0180 0.0020
AOGRR −0.0375 −0.0369 −0.0398 −0.0610 −0.0621
AOSP1 −0.0302 0.0195 −0.0271 −0.0170 −0.0148

book-to-market ratio (x8), in�ation (x9), returns on equity (x10), the one-period lag of excess returns
(x11), and smoothed earnings price ratio (x12). Our model average thus contains the following 13 nested
models: {1}, {1, x1}, {1, x1, x2} . . . , {1, x1, x2, . . . , x12}.

Our estimation is based on n1 = 144, 180, 216, 336, and 456 observations, and we use the remaining
n − n1 observations for out-of-sample forecast accuracy assessment purposes. We evaluate forecast
accuracy using the following out-of-sample R2 measure:

R2 = 1 −

∑n−1
t=n1

(Yt+1 − Ŷt+1)
2

∑n−1
t=n1

(Yt+1 − Ȳ)2
,

where Ŷp is the prediction of Yp based on a given forecast method, and Ȳ is the average of the values of
Y across the n1 observations. This measure represents the relative di�erence in squared error predictive
risks. Although not considered here, alternative measures based on the squares of the correlation
betweenY and Ŷ , developed byDoksumand Samarov (1995) andYao andUllah (2013), can also be used.
The out-of-sample R2 is negative (positive) when Ŷ yields a larger (smaller) sum of squared one-period
ahead forecast errors compared with that obtained based on Ȳ . Table 2 reports the out-of-sample R2 for
six estimators considered in Section 5. We report the results for AOSP1 and not those for AOSP because
our evaluation here is in terms of predictive risk—recall that the AOSP1 is based on a minimization of
predictive risk, whereas AOSP is derived on the basis of minimizing the estimator’s risk. The results
show that except when n1 = 180, OLS forecasts are inferior to forecasts based on the historical average.
This is consistent with the �ndings of Welch and Goyal (2008), who used the same data in their study,
that the historical mean gives better forecasts when no restrictions are imposed. In all but one case, the
FGRR, AOGRR, and AOSP1 estimators are also inferior to the historical average in terms of prediction
accuracy. On the other hand, the GRRM and GRRJ model averaging estimators result in positive out-
of-sample R2, and thus are superior to the historial average, in the large majority of cases, with the GRRJ
estimator being the slightly superior estimator of the two.

6.2. Forecastingwages

This application example uses a cross-sectional sample of n=526 observations from the U.S. Current
Population Survey for the year 1976 given in Wooldridge (2003). The dependent variable is lwage, the
logarithm of average hourly earnings. We consider the following ten explanatory variables, ordered
according to theirmagnitudes of correlationswith the dependent variable: profocc (=1 if in a professional
occupation), educ (=years of education), tenure (=years with current employer), gender (=1 if female),
servocc (=1 if in a service occupation),marital status (=1 ifmarried), trade (=1 if employed inwholesale
or retail trade), SMSA (=1 if living in a standardmetropolitan statistical area), servocc (=1 if in a service
occupation), and clerkocc (=1 if in a clerical occupation). Thus, our model average comprises across 11
models nested in the same manner as described in the last data example. Our estimation is based on
n1 = 100, 200, 300, and 400 observations, and we use the remaining n − n1 observations for out-of-
sample forecast accuracy assessment purposes.

Table 3 reports the out-of-sample R2 values for the same six estimators as in the last example. The
results show that all six estimators yieldmore accurate forecasts than the historical average, but the GRRJ
andGRRM forecasts are inferior to theOLS, FGRR,AOGRR, andAOSP1 forecasts. The latter is the exact
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Table 3. Out-of-sample R2 .

Estimator n1 = 100 n1 = 200 n1 = 300 n1 = 400

OLS 0.4516 0.4465 0.4656 0.4450
FGRR 0.4514 0.4440 0.4658 0.4410
GRRM 0.3964 0.3366 0.3390 0.3644
GRRJ 0.3877 0.3357 0.3375 0.3627
AOGRR 0.4509 0.4418 0.4642 0.4390
AOSP1 0.4550 0.4477 0.4664 0.4470

opposite to the results observed under the last example, where it is found that the two model averaging
estimators generally yield the best forecasts. This is perhaps not surprising given that the variance noise
level for the current model is relatively low (R2 = 0.509) compared to the model of the last example
(R2 = 0.097)—recall from our simulation �ndings in Section 5 that the GRRM and GRRJ estimators
usually outperform other estimators when there is a large error variance associated with the model, but
are outperformed by the nonaveraging estimators when themodel is relatively stable in variance. For the
current model, of the two model averaging estimators, the GRRM estimator has a slight advantage over
the GRRJ estimator.

7. Conclusions

We have proposed a new SP estimator of regression coe�cients in the form of the GRR estimator of
Hoerl and Kennard (1970b). Unlike the GRR estimator, the biasing factors in our SP estimator can be
easily determined by the window-width and the second moment of the kernel function used in density
estimation.We have also consideredmethods of window-width selection based on theMallows criterion
and minimization of the estimator’s risk. Moreover, we have shown that the GRR estimator is a model
averaging estimator when the regressors are orthogonal, and there is an exact algebraic relationship
between the biasing factors of the GRR and SP estimators and the model average weights. Naturally, the
SP and GRR estimators that select the biasing factors based on this relationship have the same properties
as the corresponding model averaging estimator. This is an interesting �nding useful for interpretations
and future applications of the SP and GRR estimators. Our Monte Carlo results have shown that some
of the recently introduced weight choice strategies for model averaging can result in more accurate
estimators than the well-known FGRR and OLS estimators over a wide region of the parameter space.
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