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ABSTRACT
The varying coefficient (VC) model introduced by Hastie and Tib-
shirani [26] is arguably one of the most remarkable recent devel-
opments in nonparametric regression theory. The VC model is an
extensionof theordinary regressionmodelwhere the coefficients are
allowed to vary as smooth functions of an effectmodifier possibly dif-
ferent from the regressors. The VCmodel reduces themodelling bias
with its unique structurewhile also avoiding the ‘curse of dimension-
ality’ problem. While the VCmodel has been applied widely in a vari-
ety of disciplines, its application in economics has beenminimal. The
central goal of this paper is to apply VC modelling to the estimation
of a hedonic house price function using data from Hong Kong, one
of theworld’smost buoyant real estatemarkets.Wedemonstrate the
advantages of the VC approach over traditional parametric and semi-
parametric regressions in the face of a large number of regressors.
We further combine VCmodelling with quantile regression to exam-
ine the heterogeneity of the marginal effects of attributes across the
distribution of housing prices.
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1. Introduction

Since Lancaster’s [33] and Rosen’s [54] seminal work, the hedonic pricing method has
become the most employed revealed preference technique for non-market valuation of
goods and amenities. Hedonic pricing, in particular, is widely utilised in housing studies
and real estate appraisals. This method allows house prices to be deconstructed into values
and quantities of trait variables such as living area, age of the dwelling, and neighbourhood
characteristics, thus providing an important advantage in comparison to other methods.
Traditionally, hedonic housing price models are estimated in a linear regression frame-
work [29,61], but some studies have allowed for nonlinear relationships, mostly through
the applications of Box–Cox transformations [23,24]. An increasing number of hedonic
pricing studies for housing also makes use of spatial econometrics to control for spatial
dependence and spatial heterogeneity, which are two well-established aspects of house
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1980 A. T. K. WAN ET AL.

price developments [9,10,13,14,43,48]. Hedonic pricing models for housing informed by
Bayesian considerations have also been examined [11,22,60].

Although there already exists a large body of literature on hedonic pricing, research con-
tinues on the development of new approaches to the formulation and estimation of hedonic
relationships. Until the 1990s, virtually all published work on hedonic modeling of house
prices was based on parametric models that involved assertions about the functional rela-
tions between house prices and the trait variables as well as their distributions. It has been
argued [42] thatmore often than not, economic theories offer researchers little guidance on
specifying the functional form of the hedonicmodel; thus we should let the data determine
an appropriate model, which is the essence of nonparametric methodology. Indeed, during
the past 20 years, nonparametric and semi-parametric methods, which impose either no
or minimal parametric assumptions about the data- generating process, have undergone
significant outgrowth, and are increasingly replacing parametric models for the latter’s lack
of sufficient flexibility. There is now a vast array of texts on thesemethods including several
tailored to the needs of applied econometricians [27,36,49,63].

Most of the literature on nonparametric regression deals with the kernel method and its
variants, primarily because of their mathematical and intuitive simplicity. Traditional ker-
nel methods are based on local mean smoothing, although local polynomial smoothing
[16] has recently gained prominence. Empirical applications of kernel regression methods
to hedonic house price modelling can be found in the work of Pace [46,47], Anglin and
Gencay [1], McMillen and Thorsnes [44] and Parmeter et al. [51]. While kernel methods
are by far the most popular, they are just one of the many approaches for constructing
flexible models. Other well-known nonparametric approaches include spline smoothing,
locally weighted regression, and nearest neighbour. These methods have all been success-
fully applied to the estimation of hedonic house price models [2,45,52,58]. One common
feature of nearly all published studies is that they approach the nonparametric estima-
tion problem by retreating it as a semi-parametric problem whereby the discrete housing
attributes, such as view, enter the model in a linear parametric fashion, while the contin-
uous attributes such as dwelling size enter the model nonparametrically. This is because
conventional nonparametric methods generally do not handle discrete variables satisfac-
torily .1 The development of a full-fledged nonparametric regression approach in the face
of discrete variables is still an ongoing problem, but some progress has been made by
Racine and Li [53]. An application of Racine and Li’s [53] method to hedonic house price
modelling is given in [51].

Although nonparametric methods have been extensively applied in a wide array of
empirical domains, these methods do come with some costs. First, in order to yield any
merit, nonparametric methods all require very large samples. Second, and more impor-
tant, the rate of convergence of nonparametric estimators tends to decrease rapidly as
the number of regressors grows. The latter is the well-known curse of dimensionality that
afflicts virtually all standard nonparametric methods including those mentioned above,
rendering these methods ineffectual when there is a large number of regressors in the
model. This is clearly an issue with hedonic housing price modelling because many dif-
ferent characteristics can affect prices. Over the past two decades, econometricians and
statisticians have spent a great deal of time and have made some progress in developing
alternative approaches for alleviating the curse of dimensionality. The additive nonpara-
metric model [25] is among the earliest approaches proposed to alleviate this problem.
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An application of the additive model to hedonic house price modeling was undertaken
by Martins-Filho and Bin [41], using data from Portland, Oregon, USA. An alternative
to the additive model is the varying coefficient (VC) model (sometimes referred to as
the functional-coefficient model) popularised in the work of Hastie and Tibshirani [26].
The greatest appeal of the VC model is that it allows the unknown coefficients to vary as
smooth functions of a small number of (non-discrete) variables, known as effect mod-
ifiers. Estimation of the VC model thus involves only low-dimensional smoothing, as
opposed to the high-dimensional smoothing required for standard nonparametric pro-
cedures. Because only low-dimensional nonparametric functions are estimated, the curse
of dimensionality can be circumvented even if there is a large number of regressors. More-
over, unlikemany other nonparametricmodels, theVCmodel assumes that there is a linear
relationship between the dependent variable and regressors, albeit a changing one. The
VC model thus has the flexibility of a nonparametric model and the easy interpretabil-
ity of an ordinary linear regression. One further advantage of the VC model is that by
allowing the coefficients to vary with the effect modifiers, it permits nonlinear interac-
tions between the effect modifiers and other regressors. This is an important merit of the
VC model relative to the additive model mentioned above. Moreover, the additive model
utilised by Martins-Filho and Bin [41] assumes all regressors are continuous.2 In a typical
hedonic house pricing analysis, discrete housing attributes are common and often out-
number continuous housing attributes. The VC model we consider here does not suffer
from the same deficiency. The VC models have been exhaustively studied and applied to
a variety of domains, including time series analysis [5], panel data analysis [18], duration
analysis [19], and finance [62], and an array of estimation and inference procedures have
been developed. Fan and Zhang [21] and Park et al. [50] provide comprehensive surveys
of this material. However, to the best of our knowledge, the VC approach has not been
applied to hedonic price modelling, and the purpose of this paper is to take steps in this
direction.3

Another frequent concern in the literature of hedonic house price modelling is the het-
erogeneity of the marginal effects of attributes across the distribution of housing prices.
Indeed, it is not uncommon for a given housing characteristic to be priced differently for
different dwellings; for example, buyers of lower priced dwellings likely value proximity to
transport higher than buyers of high-priced dwellings, who probably consider attributes
such as the presence of car parking spaces or recreational facilities as more important.
Common hedonic models, parametric and nonparametric, typically estimate the marginal
effects of the attributes as conditional mean functions of house prices, neglecting the pos-
sible heterogeneity of price behaviour. Zietz et al. [65], Mak et al. [40], Liao and Wang
[37], Wang et al. [59], and Kim et al. [31] have attempted to address this issue using quan-
tile regression (QR), but their approaches are parametric, and as such they suffer from
the potentially serious consequences of functional form mis-specification as discussed
above. Recent advances in the statistics literature have developed methods of varying-
coefficients to the estimation of regression quantiles [7,28,30,62]. This approach has the
potential of permitting heterogeneity in the implicit price of attributes at different points
in the distribution of housing prices, as well as being flexible in terms of functional form
and computational feasibility even in the face of a large number of attributes. A second pur-
pose of the present paper is to exploit the recent theoretical advances in varying coefficient
quantile regression (VC-QR) in hedonic house price modelling.
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1982 A. T. K. WAN ET AL.

As our empirical framework, we choose a hedonic house price model with data from
Hong Kong, one of the world’s most active real estate investment markets. We extract
our data from a database maintained by the Centaline Property Agency Ltd, the terri-
tory’s largest real estate agency company. There have been several recent studies published
on hedonic house pricing in Hong Kong using data from this same database [2–4,31,39],
which contains detailed information on transactions and dwelling characteristics of more
than 550,000 condominium units across 118 private housing complexes (estates) in Hong
Kong. A typical housing estate comprises some 10–30 high-rise buildings, with each build-
ing containing 20–40 floors with 4–6 condos on each floor. Many of the newer estates are
equipped with their own leisure and sports facilities. It is also not uncommon for a hous-
ing estate with more than one thousand condo units to have as few as four to six different
floor plans, yet these floor plans can be so vastly different that there are large price differ-
ences between the most expensive and cheapest units within the same estate. Nevertheless,
given the relative uniformity of floor plans, many condos in the same estate are identi-
cal in terms of living area, i.e. kitchen size and number of bedrooms and bathrooms, but
differ in terms of floor levels, views and direction. The housing estate being considered
in this study is South Horizons, located on the southern side of Hong Kong Island near
‘Ocean Park’ and the industrial suburb of Aberdeen. Our observation period is 3 Decem-
ber 2007–14 February 2013, during which a total of 2683 transactions were recorded for
South Horizons. Magnus et al. [39] also considered the same housing estate in their study
based on a parametric model averaging technique but a much shorter observation period.
Neither our nor Magnus et al.’s [39] investigation invokes spatial analysis because in both
studies, the data are obtained from a single housing complex; heterogeneous markets spa-
tial dependence therefore does not play as significant a role as it would had the data been
obtained from different estates. Kim et al. [31] recently estimated a hedonic house price
function for another major housing estate in Hong Kong by Box–Cox QR, which is para-
metric and hence less flexible than the semi-parametric VC-QR approach considered in
the present paper. Their study is also based on a sample substantially smaller than ours.

In Section 2, we introduce the VCmodel along with a description of a benchmark semi-
parametric model for subsequent comparison purposes. Section 3 contains a description
of the data. Section 4 reports the estimation results and compares the performance of the
VC model to that of the benchmark parametric linear and semi-parametric models. In
Section 5, we discuss the VC-QRmodelling framework and demonstrate how the response
of housing prices to various housing traits can vary across quantiles. Our concluding
remarks are in Section 6.

2. Model descriptions

2.1. A VC hedonic housing pricemodel

A VC hedonic housing price model may be expressed as follows:

Yi = a1(Ui)Xi1 + a2(Ui)Xi2 + · · · + ap(Ui)Xip + εi, i = 1, 2, . . . , n, (1)

where Y is the sale price of the dwelling (or its transformation such as the log transfor-
mation), X.j is the value of the jth housing characteristic, U is a housing characteristic
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not belonging in the set containing X.1, . . . ,X.p that modifies the effects of X.j’s in a non-
parametric way through the unspecified coefficient functions aj(U)’s that vary smoothly
over U, and ε is a random disturbance term such that E(εi |Xi1, . . . ,Xip,Ui) = 0 for all i′s.
Model (1) says that Y is linearly dependent on X.1,X.2, . . .X.p, but U changes the coeffi-
cients of the X.j’s through a1(U), a2(U), . . . ap(U). Suppose that U and X.1 are the floor
level and size of the dwelling, respectively. The VC model allows the marginal effect of an
increase in dwelling size (say, a square foot) on the sale priceY to change smoothly with the
floor level. Thus, the VCmodel simultaneously possesses the flexibility of a nonparametric
model and the easy interpretability of a linear regression, while allowing a special kind of
interaction between the effect modifier and each of the regressors. We typically estimate
aj(U)′s by a kernel method, and because kernel smoothing acts only on the space of U, a
single variable, the estimators have one-dimensional convergence rates [57], making them
far more accurate than traditional kernel estimators of a p-dimensional function. Hence,
the VC model can avoid the curse of dimensionality even in the face of a large number of
X.j’s. Although U is usually taken to be a one-dimensional variable, in general it can be a
low-dimensional vector of variables.

The usual and simplest estimator of aj(U) is local least squares, although more compli-
cated local polynomial fitting methods are also available. The local least-squares method
possesses a number of desirable properties, including those of optimal asymptotic mini-
max efficiency, design adaptation, and good boundary behaviour [15,16,55]. Now, let a =
(a1, . . . , ap)T and b = (b1, . . . , bp)T = (a′

1(·), . . . , a′
p(·))T be vectors of constants. Assume

that aj(u) is twice continuously differentiable so that the function aj(·) can be approxi-
mated locally by aj ≈ aj + bj(u − u0), where u is a point in the neighbourhood of a given
point u0. Write β = (aT, hbT)T and let β0 = (aT0 (·), ha′

0(·)T)T be a vector comprising the
unknown coefficient functions. The local least-squares estimator β̂ = (âT, hb̂T)T of β0 is
obtained by a minimisation of

1
n

n∑
i=1

⎡
⎣Yi −

p∑
j=1

(aj + bj(Ui − u0)Xij)

⎤
⎦2

× Kh(Ui − u0), (2)

where Kh(·) = K(·/h)/h, K(·) is a kernel function, and h = hn > 0 is a bandwidth. In
matrix notation, β̂ may be written as

β̂ = (âT, hb̂T)T = {DT
u0Wu0Du0}−1DT

u0Wu0Y, (3)

where

Du0 =

⎛
⎜⎜⎜⎜⎝
XT
1

U1 − u0
h

XT
1

...
...

XT
n

Un − u0
h

XT
n

⎞
⎟⎟⎟⎟⎠ ,

Xi = (Xi1, . . . ,Xip)
T, Wu0 = diag(Kh(U1 − u0), . . . ,Kh(Un − u0)), and Y = (Y1, . . . ,

Yn)
T.
As in linear regression, a test that is always of interest is whether the housing attribute

X.j is significant or helps explain the variation in the sale price Y. Fan and Zhang [20] show
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1984 A. T. K. WAN ET AL.

that the hypothesis

H0 : aj(u) = 0 vs. H1 : aj(u) �= 0

may be tested using the statistic

T1 = (−2 loge(h))
1/2(‖{v̂ar(âj(u) |G)}−1/2(âj(u) − b̂ias(âj(u)|G))‖∞ − d),

where âj(u) is the estimator of aj(u) atU=u, G = (U1, . . . ,Un,X11, . . . ,Xn1, . . . ,X1p, . . . ,
Xnp)

T is the observed regressor vector, b̂ias(âj(u) |G)) and v̂ar(âj(u) |G) are estimators of
the conditional bias and variance of âj(u), respectively, and d is a constant that depends
on the kernel function and bandwidth. We reject H0 if T1 exceeds the asymptotic critical
value cα = − loge(−0.5 loge(α)) at a given significant level α.

More generally, T1 may be modified to

T2 = (−2 loge(h))
1/2(‖{v̂ar(âj(u) |G)}−1/2(âj(u) − β̂j − b̂ias(âj(u) |G))‖∞ − d),

for testing

H2 : aj(u) = βj vs. H3 : aj(u) �= βj,

based on the same decision rule as for testing H0. If H2 is rejected then aj does vary with
U. On the other hand, if H2 cannot be rejected at least for some k<p coefficients, then
the VC model becomes the semi-VC model studied by Zhang et al. [64], where k of the p
coefficient functions in Equation (1) reduce to constants that are independent of U.

2.2. A benchmark semi-parametric model

We consider the following partially linear semi-parametric model as a benchmark model
for comparison:

Yi = Zi1β1 + · · · + Zip1βp1 + g(Wi1, . . . ,Wip2) + εi, i = 1, 2, . . . , n, (4)

where Y is dwelling price, Z.1, . . . ,Z.p1 are dummy variables representing the qualitative
characteristics of housing, β1, . . . ,βp1 are unknown coefficients, W.1, . . . ,W.p2 are (non-
dummy) variables representing quantitative housing characteristics, g(·) is an unknown
functional form and ε, the disturbance term, is assumed to be i.i.d. This model allows the
qualitative variables to enter the model linearly and the quantitative variables to enter the
model nonparametrically.

One method that is frequently used to estimate β1, . . . ,βp1 and g(·) is profile least
squares (PLS) developed originally by Speckman [56]. Here, we briefly describe this
method. Let us rewrite Equation (4) as

Y∗
i = g(Wi1, . . . ,Wip2) + εi, i = 1, 2, . . . , n, (5)

where Y∗
i = Yi − Zi1β1 − · · · − Zip1βp1 . This transforms the partially linear semi-

parametric model into a nonparametric regression. Denote Wi = (Wi1, . . . ,Wip2)
T and
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let w0 = (w01, . . . ,w0p2)
T be a vector of fixed points in the neighbourhood of Wi. Then

the kernel estimator of the coefficient function g at w0 is

ĝ(w0) =
∑n

i=1 Kh((Wi − w0)/h)Y∗
i∑n

i=1 Kh((Wi − w0)/h)
. (6)

This leads to, in matrix notations,

ĝ = (ĝ(W1), . . . , ĝ(Wn))
� = �Y∗ = �(Y − Zβ), (7)

where the (l, s)th element of the matrix � is [�]l,s = Kh((Ws − Wl)/h)/
∑n

i=1 Kh((Wi −
Wl)/h), Y∗ = (Y∗

1 , . . . ,Y
∗
n )T, Z = (Z1, . . . ,Zn)

T, Zi = (Zi1, . . . ,Zip1)
T and β = (β1, . . . ,

βp1)
T. Now, substituting ĝ(·) into Equation (4) yields

(I − �)Y = (I − �)Zβ + ε. (8)

Applying OLS to Equation (8), we obtain

β̂ = {ZT(I − �)T(I − �)Z}−1ZT(I − �)T(I − �)Y , (9)

which in turn yields

ĝ = �(Y − Zβ̂). (10)

3. Data

As described in Section 1, we estimate our hedonic price function based on sales data for
the estate South Horizons between 3 December 2007 and 14 February 2013, during which
the Hong Kong Land Registry recorded n=2683 transactions. South Horizons comprises
a total of 9812 condos across 34 high-rise blocks, each containing 25–42 floors. The sizes
of these condos range between 632 and 1633 square feet, and the majority of them have
2–3 bedrooms and 1–2 bathrooms. The age of these condos also varies as South Horizons
was completed in four stages between 1991 and 1995. The geographical location of South
Horizons is shown in Figure 1. The estate is connected to the northern part of Hong Kong
Island through the Aberdeen Tunnel, and is on the Mass Transit Railway’s South Island
Line that is currently nearing completion. The new railway line will reduce travelling time
from South Horizons to the central business district to 10 minutes as compared to 25–30
minutes on the road. This improved travel link is expected to boost property prices in South
Horizons and its vicinity.

The transaction prices available at the Centaline database are in nominal terms. As the
objective of our study is to examine the impacts of housing attributes on housing prices,
we convert the nominal transaction prices into real prices using the sub-index pertaining
to South Horizons in the Centa-City Index (CCI) as a deflator.4 The CCI, based on 118
constituent estates, is the most widely quoted property price index for Hong Kong. This
index reflects real estate price movements after removing the effects of attributes.5 In Hong
Kong, property prices are commonly reported in terms of price per square foot. We denote
the (CCI-deflated) real price/foot2 as P. Figure 2 shows the plot of the estimated density
of P corresponding to the 2683 observations in our sample based on the kernel method
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1986 A. T. K. WAN ET AL.

Figure 1. Geographical location of South Horizons.
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Figure 2. Estimated density of house prices.

with bandwidth set to the default value in MATLAB. The plot shows that there is high
level of price dispersion with the bulk of the properties sold between HKD3000 /foot2 and
HKD10,000/foot2 (1USD ≈ 7.75HKD). The average real sales price is HKD6340 /foot2.
The density has a skewness of 0.5330, indicating that price distribution is mildly right-
skewed, and a kurtosis 3.3695, indicating that the density is leptokurtic with a peak higher
than that of a normal distribution.
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It is well known that a log transformation can often reduce heteroscedasticity as it com-
presses the scale in which the variable is measured [38]. Many studies in the hedonic house
pricing literature use the natural log of house prices as the dependent variable in order to
alleviate heteroscedasticity associated with skewed sales price data [1,51]. We follow this
practice in our study and denote the natural log of real sales price/foot2 as LP. Twelve other
variables containing a wealth of information on the condos’ characteristics obtained from
the Centaline database are included in our hedonic model. These include the natural log-
arithm of gross area in square feet (LGAREA), floor level (FLOORL), age (AGE), direction
(DIR) and various characteristics on views. AGE is coded as 4,5,6 or 7, and the higher the
value of AGE, the older is the building.DIR is a binary variable that takes on 1 if the condo
faces east, south, south east or south west, and 0 otherwise. From a ‘feng-shui’ perspective
(which plays a significant role in the culture ofHongKong), condoswith a east-facing expo-
sure are normally preferred as they face the direction of the sunrise; south-facing condos,
which tend to be warmer in winter and more breezy in summer, are also expected to com-
mand a premiumprice over condos that face north. Among the various views thatmight be
visible from condos in South Horizons, a view of the gardens within the estate (GARDV)
generally adds value to the price of the condo, as does a sea view of the nearby East Lamma
Channel and Shek Pai Wan. The presence of a sea view, especially an unobstructed one,
is expected to have a positive influence on property prices. In the case of South Horizons,
the impact of a sea view can differ depending on whether it is full unobstructed sea view
(SEAV F), a semi-sea view (SEAV S) or a minor-sea view (SEAV M), and we distinguish
between them accordingly. On the other hand, buyers usually shy away from properties
from which the Aberdeen cemetery (CEMV) is visible. Some condos have a distant view
of Brick Hill (MONV ) where Ocean Park is located. Although a view of greenery is gen-
erally considered good feng-shui, in the case of South Horizons, the view of Brick Hill
does not yield the expected added value because it also includes the view of some pub-
lic housing estates located nearby. Street views within the estate (STRI) and surrounding
areas tend to negatively affect sales prices due to traffic noise. It is also not uncommon
to find condos in South Horizons that have no street view at all (STRN), a factor we
also consider.

4. Estimation results

The marginal prices of housing attributes are rarely constants. Typically, in a multi-storey
condo complex, floor level impacts strongly the marginal prices of attributes, such as the
direction the condo faces and the views [34]. One distinct merit of the VC approach,
as described in Section 1, is that it allows some attributes to modify the effects of
other attributes. We take advantage of this feature to investigate the modifying effects of
floor levels on the effects of other attributes on property prices. It is noted that in the
case of South Horizons, no block contains more than 40 storeys, although some floors
are labelled as levels higher than 40 because the lowest levels in some blocks are not
labelled as level one. We define FLOOR = min(FLOORL, 40), and let U = (FLOOR −
min(FLOOR))/(max(FLOOR) − min(FLOOR)) be the effect modifier in our VC model,
where max(FLOOR) and min(FLOOR) are the highest and lowest ordinal floor levels in
the building where the condo is housed. The variable U thus converts FLOOR to standard
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Table 1. p-value for tests of H0 : aj(u) = 0 and H2 : aj(u) = βj .

j = 1 2 3 4 5 6

H0 : aj(u) = 0 0.0233 0.0001 0.0002 0.0018 0.0766 0.0303
H2 : aj(u) = βj 0.1033 0.0010 0.0288 0.0258 0.2065 0.1371

j = 7 8 9 10 11 12
H0 : aj(u) = 0 0.1206 0.2085 0.0881 0.0374 0.0046 0.0000
H2 : aj(u) = βj 0.1923 0.2469 0.0747 0.0391 0.2393 0.0056

units. Moreover, floor levels beyond 40 are sparely observed – there are only 9 and 2 obser-
vations for levels 41 and 42, respectively. It makes sense to convert these values to 40 to
avoid the adverse effects owing to the sparse observations on the right tail of the observa-
tion set on the performance of the local least-squares estimator.WeuseU instead ofFLOOR
because housing blocks in South Horizons do not all have the same number of floors. As
well, floor levels are sometimes labelled differently across the different blocks because in
Cantonese culture the number 4 is commonly associated with bad luck; for example, in
some blocks, levels 4, 14 and 24 are labelled as levels 5, 15 and 25 respectively. We use
the first 2383 transactions for model estimation and the remaining 300 observations for
out-of-sample forecast evaluation.

The following VCmodel, which includes all of the 12 housing attributes, forms the basis
of our investigation at the initial stage:

LPi = a0(Ui) + a1(Ui)AGEi + a2(Ui)DIRi + a3(Ui)SEAVFi + a4(Ui)SEAVSi
+ a5(Ui)SEAVMi + a6(Ui)GARDVi + a7(Ui)MONVi + a8(Ui)STRNi

+ a9(Ui)STRIi + a10(Ui)INDUSTVi + a11(Ui)CEMVi

+ a12(Ui)LGAREAi + εi, i = 1, . . . , 2383. (11)

Our estimation of aj(U)’s in (11) is based on the local least-squares method described in
Section 2.1. We use the Epanechnikov kernel K(u) = 3(1 − u2)(|u| ≤ 1)/4 and set the
bandwidth to h = 0.20 × (max(U) − min(U)) using Silverman’s rule of thumb. Table 1
shows that the p-values of the hypothesis tests of H0 : aj(u) = 0 and H2 : aj(u) = βj.
It is observed that at the 5% level of significance, H0 : aj(u) = 0 is rejected except for
j = 5, 7, 8 and 9, indicating that SEAV M (minor-sea view), MONV (mountain view),
STRN (no street view) and STRI (internal street view) have no significant effect on the
log of house prices. Results of the tests of H2 : aj(u) = βj show that for the remaining
nine coefficient functions that differ significantly from zero, a1(U) (AGE = dwellingage),
a6(U) (GARDV = gardenview) and a11(U) (CEMV = cemeteryview) are invariant
with respect to U, but a2(U) (DIR = direction), a3(U) (SEAVF = full − seaview),
a4(U) (SEAVS = semi − seaview), a10(U) (INDUSTV = industrialview) and a12(U)

(LGAREA = loggrossarea) are varying functions of U. With respect to a0(U), the test
results also suggest that standardised floor level has a significant and varying effect on the
prices of dwellings.

We then re-estimate the VCmodel by removing SEAV M,MONV, STRN and STRI from
the full model, and treat the coefficients of AGE, GARDV and CEMV as constants. This
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Figure 3. Plots of the estimated coefficient functions (solid curve) and the 95% simultaneous confi-
dence bands (dashed curves) for estimated coefficient functions for the semi-VC model (12).

results in the following estimated semi-VC model:

L̂Pi = â0(Ui) + â2(Ui)DIRi + â3(Ui)SEAVFi + â4(Ui)SEAVSi + â10(Ui)INDUSTVi

+ â12(Ui)LGAREAi − 0.0136
(0.0062)

× AGEi + 0.0355
(0.0057)

× GARDVi

− 0.0315
(0.0074)

× CEMVi, i = 1, . . . , 2383, (12)

where the figures inside the parentheses are standard errors of the estimates. The esti-
mates of the (non-varying) coefficients suggest that the view of garden has a large positive
impact on house prices. On the other hand, a view of the Aberdeen cemetery and the
age of the building have a negative impact on condo prices. Plots of the estimated VC
functions and their corresponding 95% confidence bands versus FLOOR are shown in
Figure 3(a)–(f). The strong desire to live as high as possible is illustrated in Figure 3(a),
where â0(U) is invariably positive and large, although as the floor level goes beyond 25,
there is a noticeable decline in the additional premium one is willing to pay for higher
level living, reflecting possibly a diminishing marginal utility of living even higher when
one already lives on a very high level. Figure 3(b) shows that condoswhich are not north- or
directly west-facing are generally preferred, but it is also observed that â2(U) first decreases
as FLOOR increases, bottoming-out near zero at FLOOR=15 before increasing again for
FLOOR>15. This suggests that the differentials in directions have little impact on prices
for condos in the middle levels. A partial sea-view (SEAS) is value-adding, and its impact
becomes more pronounced as the standardised floor level rises beyond 30, as shown in
Figure 3(d). In comparing the values of the estimated coefficient functions for SEAV F in
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Figure 3(c) and SEAV S in Figure 3(d), it is apparent that a full sea-view is usually preferred
over a semi sea-view, although the finding of the price premium associated with full sea-
view going down with floor level but that with partial sea-view going up with floor level as
FLOOR increases beyond about 30 is puzzling. It is difficult to offer an undisputable expla-
nation for this finding. A possible explanation could be that when FLOOR rises beyond
a certain level, the full sea-view will become more distant and less visible, resulting in a
decrease in the price premium, as observed in Figure 3(c). On the other hand, for con-
dos with only a partial sea-view, an increase in FLOOR could lead to a less obstructed
view, resulting in an increase in the premium, as observed in Figure 3(d). The impact of a
view of the nearby industrial plants in Aberdeen is not strong, but is more often negative
than positive, as shown in Figure 3(e). The invariably positive values of â12(U) revealed
in Figure 3(f) indicate that consumers are willing to pay a higher price per square foot
in order to live in a larger condo. It must be stressed that some of these results should be
interpreted with caution as the confidence bands associated with the estimated coefficient
functions are in fact quite big in some cases.

We consider two other models for comparisons with the VC model. The first is the
conventional semi-log linear model .6 Initially, we include all attributes and the interaction
terms betweenU and the other attributes in themodel.We find that none of the interaction
terms is significant. The following is our final model after eliminating the insignificant
attributes:

L̂Pi = 7.8407
(0.0804)

+ 0.0535
(0.0102)

× DIRi + 0.0975
(0.0134)

× SEAVFi + 0.0572
(0.0117)

× SEAVSi

+ 0.0293
(0.0089)

× GARDVi − 0.0427
(0.0103)

× STRIi − 0.0435
(0.0141)

× INDUSTVi − 0.0422
(0.0094)

× CEMVi + 0.3536
(0.0402)

× LGAREAi + 0.1486
(0.0140)

× Ui, i = 1, . . . , 2383. (13)

The signs of the estimates produced by the linear model are all consistent with prior
expectations. Several of the attributes found to be significant under the semi-VCmodel are
also significant under the linear model; in particular, the coefficient estimates for GARDV
and CEMV are very close to the corresponding (non-varying) estimates produced under
the semi-VC model. The estimates of DIR, SEAV F, SEAV S, INDUSTV and LGAREA
obtained under (14) are about the same as the means of the corresponding semi-VC
coefficient functions produced by Equation (12).

Our second benchmark model is a partially linear semi-parametric model, of which
the nonparametric and parametric components are represented by the unspecified smooth
function g(LGAREA,U), and a linear combination of the dummyattributes and interaction
terms of each pair of these attributes respectively. Our estimation of this model follows
the two-step profile estimation procedure described in Section 2.2, with kernel smoothing
based on the Gaussian kernel K2(x1, x2) = (2π)−1 exp(−(x21 + x22 + 2x21x

2
2)/2) applied to

the estimation of the g(·, ·). After eliminating the insignificant attributes, our final model is

L̂Pi = 0.0565
(0.0101)

× DIRi + 0.1153
(0.0165)

× SEAVFi + 0.0800
(0.0126)

× SEAVSi + 0.0260
(0.0116)

× SEAVMi

+ 0.0277
(0.0096)

× GARDVi − 0.0310
(0.0144)

× STRIi − 0.0424
(0.0098)

× CEMVi

+ ĝ(LGAREAi,Ui), i = 1, . . . , 2383. (14)
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Figure 4. Surface plot of the estimated g(·, ·) as a varying function of LGAREA and FLOOR.

The coefficient estimates in the linear part of the semi-parametric model all have the
expected signs and are very close to those obtained under the semi-VC and linear mod-
els. The plot of ĝ(LGAREA,U) in Figure 4 shows that ĝ(LGAREA,U) is always positive,
and large condos located on high floors are the most expensive in terms of price per square
foot. Larger condos are generally priced higher (in price per square foot terms) than smaller
condos located on the same floor, except for condos located on very low levels, where there
is a tendency for the condo price/foot2 to first increase then decrease as the condo size
increases. Generally speaking, the impact of LGAREA on house prices is larger for condos
located on higher floors than for those located on lower floors. This is consistent with the
findings obtained under the semi-VC model (Figure 3(f)).

We also evaluate the in-sample and out-of-sample predictive accuracy of P based on the
three models in terms of the mean predictive squared errors (MPSE). Our out-of-sample
evaluation is based on the last 300 observations in the sample not included in the estimation
of themodels. It is found that the semi-VC, linear, and the semi-parametricmodels yield in-
sampleMPSE of 0.0283, 0.0339 and 0.0333, respectively. The corresponding out-of-sample
MPSE values are 0.1274, 0.1330 and 0.1352. The semi-VC model thus outperforms both
benchmark models under both in-sample and out-of-sample evaluations. We have also
tested the equality of the MPSE values using the sign test and Wilcoxon’s signed-rank test
[12]. We are able to reject the hypotheses of the linear model and the semi-parametric
model yielding the same predictive accuracy as the semi-VC model using both of these
tests. Table 2 reports the test results.

5. A VC QRmodel for hedonic house pricing

Our hedonic pricing analysis based on the VCmodel has revealed that many housing char-
acteristics are not priced the same across different floor levels. This notwithstanding, the
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Table 2. P-values of statistical tests of predictive accuracy.

in-sample linear vs. semi-VC model semi-parametric vs. semi-VC model

Sign test <0.0001 <0.0001
Wilcoxon’s signed-rank test <0.0001 <0.0001

out-of-sample linear vs. semi-VC model semi-parametric vs. semi-VC model
Sign test 0.0921 0.0744
Wilcoxon’s signed-rank test 0.0939 <0.0001

VC model assumes that for a given standardised floor level, a housing characteristic has
the same effect on housing prices across the distribution of prices. As argued in Section 1,
the response of housing prices to various housing traits often vary across quantiles, and a
housing trait can have strong impact on prices at certain quantiles but little or no impact
at other quantiles. Floor level adjustments cannot fully account for all of the heterogeneity
in marginal effects, e.g. two condos located on the same floor of the same estate block can
have other, vastly different characteristics which contribute to large price differences.

To address the issue of possible heterogeneity in the marginal effects of a housing
attribute at different points in the distribution of prices, we apply the previously described
VC approach to QR. Building on the VC model formulated in the last section, at a given
quantile τ(0 < τ < 1) of LP, assuming that Pr(εi < 0 |Xi,Ui) = τ and εi follows a contin-
uous, but otherwise unspecified, distribution, the VC-QR of LP conditional on the housing
traits may be expressed as

Qτ (LPi |Xi,Ui) = c0,τ (Ui) + c1,τ (Ui)AGEi + c2,τ (Ui)DIRi + c3,τ (Ui)SEAVFi
+ c4,τ (Ui)SEAVSi + c5,τ (Ui)SEAVMi + c6,τ (Ui)GARDVi

+ c7,τ (Ui)MONVi + c8,τ (Ui)STRNi + c9,τ (Ui)STRIi
+ c10,τ (Ui)INDUSTVi + c11,τ (Ui)CEMVi

+ c12,τ (Ui)LGAREAi, i = 1, . . . , 2383, (15)

where cj,τ (U) is a smooth VC coefficient function ofU that captures themarginal effects of
the jth housing trait on the τ -quantile of LP as U varies; cj,τ (U) is thus different from the
corresponding aj(U) in Equation (11), which represents the effects of the same housing
trait on the mean of LP at varying values of U. When τ = 0.5, Equation (19) becomes a
median regression; the VC functions accordingly show the responses of the median of LP
to a one-unit change in the housing traits across different values of U.

To estimate cj,τ (U)’s, let c = (c1, . . . , cp)T, and b = (b1, . . . , bp)T = (c′1(·), . . . , c′p(·))T
be vectors of constants. Assume that cj(u) is twice continuously differentiable so that the
function cj(·) can be approximated locally by cj(u) ≈ cj + bj(u − u0), with u located in the
neighbourhood of a given point u0. Write β = (cT, bT)T, and let β0(·) = (cT(·), c′(·)T)T

be the vector of the true parameter functions. The local QR estimator β̂ = (ĉT, b̂T)T is
obtained by minimising

1
n

n∑
i=1

ρτ (Ti − ZT
i β)K

(
Ui − u0

h

)
, (16)

where ρτ (y) = y[τ − I(y < 0)] is the loss function for QR,Zi = (XT
i ,X

T
i (Ui − u0))T,K(·)

is a bounded kernel function, and h = hn > 0 is a bandwidth parameter. The first-order
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Table 3. Significant housing attributes at the three quantiles.

AGE DIR SEAVF SEAVS SEAVM GARDV

τ = 0.25
√ √ √ √

– –
τ = 0.50 –

√ √ √
– –

τ = 0.75 –
√ √ √

–
√

MONV STRN STRI INDUSTV CEMV LGAREA
τ = 0.25 – –

√
– –

√
τ = 0.50 – – –

√ √ √
τ = 0.75 – –

√ √ √ √

condition of the minimisation yields the sample estimating equation

	n(β) = 1
n

n∑
i=1

φτ (Ti − ZT
i β)Z∗

i K
(
Ui − u0

h

)
= 0, (17)

where φτ (y) = τ − I(y < 0), the derivative function of ρτ (y), Z∗
i = (XT

i ,X
T
i (Ui −

u0)/h)T = H−1Zi,H = Ip ⊗ diag(1, h), and Ip is a p-dimensional identity matrix.
Our estimation is based on the Epanechnikov kernelK(u) = 3(1 − u2)(|u| ≤ 1)/4 with

bandwidth h=0.3 using the multifold cross-validation criterion as in [6] (see also [62]). 7
We consider τ = 0.25, 0.50, 0.75. At each specified level of τ , we first estimate a full model
containing all of the 12 housing attributes as in Equation (19).We define a significant hous-
ing attribute as one whose coefficient’s interval estimate at the 95% confidence level based
on the full model does not contain 0 for at least 80% of the values of U. Table 3 shows the
significant housing attributes at τ = 0.25, 0.50 and 0.75.

One interesting finding is that not all housing attributes are significant at all three lev-
els of τ , corroborating our postulation of the heterogeneity of marginal effects of housing
attributes across the distribution of housing prices. For example, AGE has a significant
impact on housing prices only at τ = 0.25, whereas GARDV is a significant attribute
only at τ = 0.75, which implies that the age of a building generally only affects prices
of low-market dwellings and the view of a garden generally concerns only buyers of up-
market dwellings. On the other hand, INDUSTV and CEMV are significant at τ = 0.50
and τ = 0.75, but insignificant at τ = 0.25, indicating that views of the industrial plants
and cemetery affect medium- and high-priced dwellings, but are unlikely to affect low-
priced dwellings. Attributes including DIR, SEAV F, SEAV S and LGAREA significantly
impact dwelling prices at all three levels of τ , whereas the opposite is observed for SEAV
M, MONV and STRN. Interestingly, STRI is a significant attribute except for τ = 0.50,
indicating that internal street view is an important factor for both low- and high-priced
dwellings but not for medium-priced dwellings.

Figures 5–7 provide plots of the estimated coefficient functions, and the corresponding
95% confidence intervals of the coefficients for the three quantiles. Some discussions of
the results are in order. The attribute AGE affects only the low-priced dwellings, and its
effect is negative and tends to decrease as floor level increases (Figure 5(b)). At all three
levels of τ , DIR is found to be a more important attribute for lower and higher floor con-
dos than for middle floor condos (Figures 5(c), 6(b) and 7(b)). Generally speaking, the
attribute SEAV F has a positive, and relatively stable, effect on prices; as is expected, its
effect is usually stronger than that of SEAV S (Figures 5(d), 6(c), 7(c), 5(e), 6(d), and 7(d)).
Exceptions occur at very high floor levels, where the impact of SEAV S is found to increase
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Figure 5. Plots of VC-QR estimated coefficient functions (solid curve) with 95% confidence interval
(dashed curves) for τ = 0.25.
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Figure 6. Plots of VC-QR estimated coefficient functions (solid curve) with 95% confidence interval
(dashed curves) for τ = 0.50.
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Figure 7. Plots of VC-QR estimated coefficient functions (solid curve) with 95% confidence interval
(dashed curves) for τ = 0.75.

substantially and can sometimes exceed that of SEAV F. A view of the garden, represented
by GARV, affects only high-priced dwellings, and its effect on prices is positive except for
very high floor condos (Figure 7(e)). The attribute STRI representing internal street view
affects only low-priced and high-priced condos and its impact on prices is largely negative
(Figures 5(f) and 7(f)). On the other hand, views of industrial plants and cemeteries, rep-
resented by INDUSTV and CEMV respectively, have negative effects only on the medium-
and high-priced condos (Figures 6(e), 6(f), 7(g), and 7(h)). The attribute LGAREA affects
prices positively for condos at all three price tiers and its effect is most substantial for high
floor condos (Figures 5(g), 6(g), and 6(i)).

6. Conclusions

Recent years have seen an increase in the application of nonparametric and semi-
parametric techniques in economics. Unfortunately, the literature on applied econometrics
has not kept pace with the theoretical advances, the VC model being one such important
development. This paper has taken steps in this direction by demonstrating the advan-
tages of VC modelling in hedonic house price modelling using data from the Hong Kong
property market. We have also utilised a VC-QR approach to examine the heterogeneity
of the marginal effects of housing attributes across the distribution of housing prices. We
have found that for the housing estate South Horizon, price behaviour can often be vastly
heterogenous across dwellings at different ends of the market. The lack of data preclude us
from studying other housing estates in Hong Kong but South Horizon should be a good
representative case given the large number of condos it contains.
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As discussed, the main advantages of the VCmodel lie in its ability to avoid the ‘curse of
dimensionality’ and its easy interpretability similar to an ordinary linear regression. There
have been some important theoretical advances in the VCmodeling approach in the statis-
tics literature that are largely ignored by econometricians. The paper is an attempt to put
the case for the inclusion of the VCmodel in the econometrician’s repertoire. It is our hope
that this paper will help increase the awareness of applied economists to this useful mod-
elling approach.8 Certainly, further exploration of this approach to modelling economic
data seems justified.
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Notes

1. Within the conventional nonparametric framework, categorical variables are handled by a
frequency-based approach that splits the sample into cells. However, when the number of cells
is large, each cell may have insufficient observations to estimate nonparametrically the relation-
ship among the remaining continuous variables. For this reasonmost empirical studies involving
discrete regressors use a semi-parametric approach.

2. Refinements to the additive model allowing for discrete regressors have been considered by Fan
et al. [17], and Camlong-Viot et al. [8].

3. The VC model considered here must not be confused with a different model bearing the same
name considered by Knight et al. [32]. The latter is essentially a parametric linear regression
model that allows the regression coefficients to vary.

4. The sub-indices are referred to as ‘adjusted unit prices’ within the CCI system.
5. See http://hk.centadata.com/cci/cci_e.htm, Bao andWan [2] and Bucchianeri [4] for a descrip-

tion of the index.
6. We choose the semi-log specification based on results of the Box-Tidwell test [35] with

LGAREA(λ1) andU(λ2) as transformation variables in themodel. The test suggests λ1 = λ2 = 1.
7. The multifold cross-validation criterion selects the optimal bandwidth h that minimises

the average mean-squared (AMS) error: AMS(h) = ∑H
k=1 AMSk(h), where AMSk(h) =

(1/m)
∑n−km+m

n−km+1 ρτ {Ti −
∑p

j=1 ĉj,k(Ui)Xi,j}, k = 1, . . . ,H, and ĉj,k’s are computed based on the
sub-sample {(Ui,Xi,Ti), 1 ≤ i ≤ n − km}. In our analysis, we set m = [0.1n],H = 4 and τ =
0.5 to obtain the bandwidth for QR.

8. We have made available to readers the Matlab codes for estimating the VC and VC-QR models
used in our analysis. The program may be downloaded from http://personal.cb.cityu.edu.hk/
msawan/research.htm
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