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ABSTRACT
This paper considers model averaging for the ordered probit and
nested logit models, which are widely used in empirical research.
Within the frameworks of these models, we examine a range of
model averaging methods, including the jackknife method, which is
proved tohave anoptimal asymptotic property in this paper.Wecon-
duct a large-scale simulation study toexamine thebehaviour of these
model averaging estimators in finite samples, and draw comparisons
with model selection estimators. Our results show that while nei-
ther averaging nor selection is a consistently better strategy, model
selection results in the poorest estimates far more frequently than
averaging, and more often than not, averaging yields superior esti-
mates. Among the averagingmethods considered, the one based on
a smoothed version of the Bayesian Information criterion frequently
produces themost accurate estimates. In three real data applications,
we demonstrate the usefulness of model averaging in mitigating
problems associatedwith the ‘replication crisis’ that commonly arises
with model selection.
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1. Introduction

Model selection lies at the heart of statistical modelling. It is of particular relevance to
business, economics and social science research where the relevant theories often do not
provide researchers with an apparatus that can guide them in formulating their statistical
models with a high degree of certainty. Formany researchers, themost common practice is
to try many models, each containing a different combination of regressors, and eventually
select the best of all models considered and report results based on this single ‘champion’
model.While expert judgment often helps establish the initial conceptualmodel and trans-
late it into a quantitative model, the subsequent model selection is usually an automated
data-driven exercise with minimal human intervention. Typically, model selection entails
the cumbersome step of significance testing to decide which regressors to retain and which
to drop. It is also common to select a model by information or out-of-sample prediction
criteria.However, due to sampling fluctuations it is highly unlikely for the best fittingmodel
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in one sample to be the preferred model across all samples. This points towards a ‘replica-
tion crisis’, a term used by scientists to refer to the inability to replicate results (and hence
generalise findings) obtained in a single sample across situations .1 The sensitivity ofmodel
selection techniques, even to slight variations in data [44], also contributes to the difficulty
with replicating results. Moreover, when model selection is done in a single sample, sub-
sequent inferences typically do not account for the fact that model selection is a random
event; rather, inferences are contingent on the best fitting model, assuming that it is known
in advancewithout accounting for the aforementioned uncertainty. Thismakes the analysis
potentially vulnerable to over-confident inferences [9,14,27].

One way to circumvent model uncertainty is to replace the practice of discontinuously
switching betweenmodels by smoothly interpolating the different models. The latter strat-
egy is known asmodel averaging or combining .2 Amodel averaged estimate of a parameter
is a weighted mean of a set of single model estimates for the parameter. The weights reflect
the degrees to which different models are trusted or supported by the data. The model
averaging estimator has a distribution that is unconditional on the model selected, and
provided that one works with this distribution, inference after averaging will not suffer
from the same distortions associated with selection. By pooling the findings from differ-
ent models, model averaging can also circumvent the replication crisis. As has been noted,
replication failures arise partly as a result of model selection uncertainty. Yuan and Yang
[44] advocated the use ofmodel selection diagnostics to examine if selection is stable across
samples. Their numerical results suggest that model selection can often lead to very unsta-
ble results; on the other hand, averaging can substantially reduce this instability. Liu and
Yang [30] concluded the same when interest focuses on panel data models.

Bayesian model averaging (BMA) has been widely applied in many disciplines.
Although BMA provides a formal approach for incorporating prior knowledge, its esti-
mates can be sensitive to the choice of the prior. In recent years, frequentistmodel averaging
(FMA) has also garnered interests. FMA precludes the need to specify any prior distribu-
tion, although how to determine an optimal weight choice by a data-driven method is a
challenge for the frequentist formulation. A common approach is to construct weights
based on information criterion values obtained from the different models. This is the
approach taken by Buckland et al. [3] and Hjort and Claeskens [21]. Other weight selec-
tion approaches that have been proposed include those based on the Mallows’ criterion
[16,41], minimisation of MSE [28,40], cross-validation [2,18], and minimisation of Kull-
back–Leibler distance [48]. Some studies have shown that simple equally weighted average
estimator can sometimes performwell [40]. Others have shown that screening out the very
poor models prior to combining can often yield superior estimates [44]. FMA strategies
have also been considered when data are missing from the sample [35,36]. The state of
art of this rapidly expanding field is summarised in [5,8,33]. FMA has been successfully
applied in many disciplines including biomedical sciences [37], climatology [11], ecology
[25], health economics [23], growth economics [1], and tourism research [39]. Despite
these advances, FMA has not come into usage in many other disciplines of social sciences
such as political science and sociology, although arguments in favour of combiningmodels
over selecting a single model in sociological research have been put forward by Burnham
and Anderson [4].

In this paper, we explore the promising approach of FMAwithin the context of two dis-
crete choice models, the ordered probit and nested logit models, which are widely applied
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in social science research. The ordered probit model is frequently preferred over its logit
counterpart for ordinal data that containmany of the two extreme outcome values because
the probit is tied to the normal distribution that has thicker tails than the logistic distri-
bution. Well-known applications of the ordered probit model in social science research
include [31], where the impacts of social background on educational attainment were
investigated, and [15], who examined nurses’ perception of the spiritual nature of their
profession. The nested logit model has an advantage over the multinomial logit model in
that it reconciles problems associated with the often unrealistic assumption of indepen-
dence of irrelevant alternatives (IIA) embedded in the latter model. The nested logit model
is the analytical platform of a seminal paper in sociology on the influence of personality
on teenage premarital pregnancy by Plotnick [34]. The much-cited article by Knapp et al.
[26] on household mobility in the US is also based on a nested logit model. Although FMA
methods for the ordered probit and nested logit models are heretofore unexplored, there
have been related studies of FMA for the simpler types of logit models. Claeskens et al. [6]
considered the binary logit model and constructed model weights based on the scores of
an information criterion. Wan et al. [40] used a weight choice method based on the min-
imisation of a plug-in estimator of the asymptotic squared error risk of the FMA estimator
for the multinomial and ordered logit models.

We consider a wide range of FMA strategies including equal weighting (EW), weights
based on a variety of information criterion scores, weights based on jackknife or leave-one-
out cross validation, and weights based on two minimisation schemes related to the mean
squared error of the FMA estimator. Our work is the first study that examines jackknife
model averaging outside the framework of the linearmodel, andwe prove that the jackknife
estimator results in an optimal property within the context of the two model frameworks
being examined.We also investigate the merit of a screening step that eliminates all but the
very best subset of candidate models based on an information criterion [44]. Using data
from the USGeneral Social Survey of 2008, the AsiaBarometer surevy of 2007, and a brand
choice study, we demonstrate the difficulty of relying on a single best fitting model without
acknowledging the anticipated replication problem, and show that model averaging can
help mitigate this problem.

Our presentation proceeds as follows. In the next section, we describe the ordered probit
andnested logitmodels. Section 3 discusses the various FMAmodel strategies. In Section 4,
we conduct a comprehensiveMonteCarlo study to compare the performance of these FMA
methods with several traditional model selectionmethods. Section 5 contains applications
to three large datasets, illustrates the replication crisis and further demonstrates the advan-
tages of model averaging over selection. We offer our conclusions in Section 6. Proofs of
theoretical results are contained in the appendix.

2. The ordered probit and nested logit models

2.1. Ordered probit model

The ordered probit model is an appropriate analytical framework when the response cat-
egories have a natural ordering. Suppose there are J ordered alternatives indexed by the
subscript j, and n independent observations indexed by the subscript i. Let Yi be the choice
made by the ith individual. If individual i selects alternative j, then Yi = j. We divide the
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independent variables into mandatory and optional variables according to the analytical
framework of Hjort and Claeskens [20]. The mandatory variables are those that must be
included in themodel on theoretical or other grounds, while the optional regressors can be
excluded from anymodel. This framework is for convenience only, and poses no restriction
to the model set-up because the mandatory variable vector can potentially be a null matrix
when no variable is considered mandatory for inclusion. Let Xi(p × 1) be the manda-
tory regressors and Zi(q × 1) be the optional regressors. The probability that individual
i chooses a response category lower than or equal to j can be written as:

P(Yi ≤ j |Xi,Zi) =
∫ αj+X′

iβ+Z′
iγ

−∞
1√
2π

exp
{
− t2

2

}
dt for j = 1, . . . , J − 1,

P(Yi ≤ J) = 1,
(1)

where β and γ are slope coefficients of the regressor variables common for all categories,
and αj is an intercept coefficient that differs across the categories. The common method of
estimating the unknown parameters is maximum likelihood (ML) in conjunction with an
iterative procedure such as the Newton–Raphson algorithm. With q optional regressors in
Zi, there are 2q sub-models to choose between. Let α̂(s)

1 , . . . , α̂(s)
J−1, β̂

(s), and γ̂ (s) be the ML
estimators of the unknown parameters in the sth sub-model; some elements of γ̂ (s) will be
zero by default if the corresponding variables in Zi are not included in the sth sub-model.

Suppose that there is a new observation 0 with an unknown response Y0 and regressor
variables (X0,Z0), the probability of selecting the jth category based on the sth sub-model
can be written as

p̂(s)
0j = P̂(Y0 ≤ j |X0,Z0) − P̂(Y0 ≤ j − 1 |X0,Z0)

=
∫ α̂

(s)
j +X′

0β̂
(s)+Z′

0γ̂
(s)

−∞
1√
2π

exp
{
− t2

2

}
dt

−
∫ α̂

(s)
j−1+X′

0β̂
(s)+Z′

0γ̂
(s)

−∞
1√
2π

exp
{
− t2

2

}
dt (2)

if j< J, or

p̂(s)
0j = 1 − P̂(Y0 ≤ J − 1 |X0,Z0) = 1 −

∫ α̂
(s)
J−1+X′

0β̂
(s)+Z′

0γ̂
(s)

−∞
1√
2π

exp
{
− t2

2

}
dt

if j= J.

2.2. Nested logit model

The nested logit model assumes that the J alternatives can be partitioned into K clusters,
that is (1, 2, . . . , J) = B1 ∪ B2 ∪ · · · ∪ BK , such that each cluster consists of similar alter-
natives and each alternative belongs to exactly one nest. The probability that individual i
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chooses alternative j can be written as:

pij = P(Yi ∈ Bk) × P(Yi = j |Bk), (3)

where P(Yi ∈ Bk) is themarginal probability that individual imakes a choice within cluster
Bk, and P(Yi = j |Bk) is the conditional probability that the jth choice is selected within
cluster Bk.

More explicitly, the conditional probability P(Yi = j |Bk) can be written as:

P(Yi = j |Bk) =
exp

(
αj |Bk+X′

i,j |Bkβ+Z′
i,j |Bkγ

τk

)
∑

j∈Bk exp
(

αj |Bk+X′
i,j |Bkβ+Z′

i,j |Bkγ
τk

) , (4)

where Xi,j |Bk and Zi,j |Bk are, respectively, the mandatory and optional variables that deter-
mine the choice of alternative j within cluster Bk, β and γ are the slope coefficients of the
regressor variables that are common for all the alternatives, αj |Bk is an intercept coefficient
that varies across the alternatives, and τk is an index of dissimilarity for the alternatives in
Bk - a small τk indicates less dissimilarity, and vice versa. For ease of parameter identifi-
cation and without loss of generality, we set the intercept coefficient corresponding to the
last category in each cluster to zero.

The marginal probability P(Yi ∈ Bk) may be expressed as

P(Yi ∈ Bk) = exp{τkIVi,Bk}∑K
k=1 exp{τkIVi,Bk}

, (5)

where

IVi,Bk = ln

⎡
⎣∑
j∈Bk

exp

(
αj |Bk + X′

i,j |Bkβ + Z′
i,j |Bkγ

τk

)⎤⎦ .

The quantity τk × IVi,Bk is the expected utility that individual i derives from choosing
among the alternatives in cluster Bk.

Again, there are 2q sub-models to choose between when Zi,j |Bk contains q variables.
The probability of individual 0 selecting alternative j in cluster Bk based on the sth
sub-model is

p̂(s)
0j = exp{τ̂ (s)

k IV(s)
0,Bk}∑K

k=1 exp{τ̂ (s)
k IV(s)

0,Bk}

exp

(
α̂

(s)
j |Bk+X′

0,j |Bk β̂
(s)+Z′

0,j |Bk γ̂
(s)

τ̂
(s)
k

)

∑
j∈Bk exp

(
α̂

(s)
j |Bk+X′

0,j |Bk β̂
(s)+Z′

0,j |Bk γ̂
(s)

τ̂
(s)
k

) , (6)

where

IV(s)
0,Bk = ln

⎡
⎣∑
j∈Bk

exp

⎛
⎝ α̂

(s)
j |Bk + X′

0,j |Bk β̂
(s) + Z′

0,j |Bk γ̂
(s)

τ̂
(s)
k

⎞
⎠
⎤
⎦ ,
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and τ̂
(s)
k , α̂(s)

j |Bk , β̂
(s) and γ̂ (s) are the ML estimators of their respective unknown param-

eters in the sth sub-model. Again, some elements in γ̂ (s) will be zero by default if the
corresponding variables in Z0,j |Bk are excluded from the sth sub-model.

3. Model averaging

Typically, an investigator would identify one single best model from the 2q candidate mod-
els based on an information criterion such as the Akaike information criterion (AIC) and
Bayesian information criterion (BIC), then proceed with this model to calculate p̂0j for
the new observation 0. As discussed in Section 1, model selection ignores the randomness
embodied in the selection process, and reports the final results as if the selectedmodel were
not a random choice. On the other hand, model averaging combines forecasts obtained
from the different models by the following weighted average:

p̂w0j =
2q∑
s=1

wsp̂
(s)
0j , (7)

where ws(0 ≤ ws ≤ 1) is the weight given to the sth sub-model, and
∑2q

s=1 ws = 1. Thus,
the model averaged predicted probability p̂w0j smoothes across the predicted probabilities
from the 2q candidate models.

3.1. Model averagingmethods

A preponderance of the literature on model averaging emphasises the weight choice of the
model average. Variousmethods of weight choice leading tomodel average estimators with
optimal properties have been proposed. Here, we consider a broad range of FMAmethods
originated in the literature on econometrics and statistics. All methods have been shown
to work well in other contexts. Several of these methods have been developed under the
local misspecification framework (LMF). Readers are referred to Hjort and Claeskens [20]
and Claeskens and Hjort [7] for a detailed description of this framework.

The FMA weight choice schemes we considered are as follows:3

• Smoothed-AIC (S-AIC) and Smoothed-BIC (S-BIC) weights, by which

ws = exp{−xICs/2}∑2q
s=1 exp{−xICs/2}

, (8)

where xICs is the AIC or BIC score of the sth model. The smoothed information crite-
rion weighting scheme was proposed by Buckland et al. [3], and subsequently used in
a number of FMA studies. Buckland et al. [3] justified this weighting scheme by noting
that for the S-AIC, the ratio in Equation (8) is the relative penalised likelihood factor,
and for the S-BIC, it is Schwarz’s (1978) approximation to the Bayes factor. Hence the S-
BIC is a BMA strategy.Hansen [16] also considered the S-BIC a simplified formof BMA.
To the best of our knowledge, the S-AIC and S-BIC weights have not been proven to be
asymptotically optimal, possibly because these weighs are developed as variants of the
AIC and BIC, but not as an optimal solution to any criterion.
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• Smoothed-FIC (S-FIC) weights. The FIC, developed by Hjort and Claeskens [20] is a
model selection criterion tailored to the parameter singled out for interest. Let μ be
the parameter of interest. For the ordered Probit and nested Logit Models, μ can be
one of p01, . . . , p0J . Hjort and Claeskens [20] showed that under the LMF, the FIC for
minimising the MSE of the estimator of μ in the sth sub-model is

FICs
MSE =

(
ω̂′(Iq − � ′

s K̂s�sK̂−1)δ̂
)2 + 2ω̂′� ′

s K̂s�sω̂, (9)

where ω̂ and δ̂ are the ML estimators of ω and δ (defined in the appendix) using the
full model, K̂ ≡ (Jn,11 − Jn,10J −1

n,00Jn,01)
−1 is a consistent estimator of K (defined in

the appendix), K̂s is obtained by replacing K with K̂ in Ks = (�sK−1� ′
s )

−1, and �s
is a projection matrix that maps the vector δ to its subvector �sδ = δs that contains
the elements of δ in the sth sub-model. As it is difficult to justify Equation (8) when
using FICs

MSE as xICs, Hjort and Claeskens [20] suggested assigning the weight to the
sth model by

ws =
exp

{
−FICs

MSE/2
ω̂′K̂ω̂
}

∑2q
s=1 exp

{
−FICs

MSE/2
ω̂′K̂ω̂
} , (10)

where 
 is an algorithmic parameter that bridges from the uniformweighting (
 near 0)
to ‘hard’ FIC. Hjort and Claeskens [20] demonstrated that Equation (10) has an empiri-
cal Bayes justification. Following Zhang et al. [46], we set 
 = 1. The S-FICmethod has
been used in various FMA studies including [6,45,46]. There is no result in the literature
that shows the S-FIC-based FMA estimator leads to any asymptotic optimal property.

• Weight based on minimising the trace of an unbiased estimator of the FMA esti-
mator’s mean square error [28] (LZWZ). Again, this has been developed under the
LMF described in the appendix. Liang et al. [28] derived an unbiased estimator of the
trace of the MSE of the FMA estimator, and suggested choosing w = (w1, . . . ,w2q) by
minimising

R̂(μ̂w) =
(
ω̂′K̂1/2L̂(w)K̂−1/2δ̂

)2 + 2ω̂′K̂1/2Ĥ(w)K̂1/2ω̂ (11)

subject to the constraints 0 ≤ ws ≤ 1 and
∑2q

s=1 ws = 1. This can be readily performed
using routines in STATA, GAUSS or Matlab. The Appendix gives a description of
the derivation of Equation (11) based on the LMF and explanations of the notations
in Equation (11). Zhang et al. [49] proved that the LZWZ method minimises the
asymptotic expected squared error of the resultant FMA estimator.

• Weight based on minimising a plug-in estimator of the asymptotic squared error risk
of the FMA estimator [40] (A-opt). A-opt method chooses the weight vector w =
(w1, . . . ,w2q) by minimising

R̂a(μ̂w) =
(
ω̂′K̂1/2L̂(w)K̂−1/2δ̂

)2 + ω̂′K̂1/2Ĥ2(w)K̂1/2ω̂ (12)

subject to the constraints 0 ≤ ws ≤ 1 and
∑2q

s=1 ws = 1. Again, this is a standard
minimisation problem that can be readily solved using STATA or other software.
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A description of the derivation of Equation (12) based on the LMF is given in the
Appendix. Wan et al. [40] showed that A-opt is asymptotically optimal in the sense
that their weights converges to the infeasible optimal weights that minimise the asymp-
totic expected squared estimation error of the estimator. Wan et al. [40] considered the
plug-in estimator of the asymptotic squared error risk because the plug-in estimator is
a consistent estimator of the asymptotic squared error risk. Thus, by minimising the
plug-in estimator, the resulting weights converge to the optimal weights.

• Weight based on Jackknife or leave-one-out cross validation criterion [18,47] (JMA). It
has been shown that in a linear model, the JMA estimator has squared errors that are
asymptotically identical to those of the infeasible best possible model averaging estima-
tor. Our present analysis is complicated by the fact that the relationship between the
dependent and explanatory variable is nonlinear. The known results therefore do not
directly apply. To the best of our knowledge, our work is the first analysis of the JMA
method outside the linear model. To construct the JMA criterion, let p̂(s)

ij be the forecast
of pij based on the sth model. The criterion is defined as:

CV(w) =
n∑
i=1

J∑
j=1

⎛
⎝ 2q∑

s=1
w(−i)
s p̂(s)

ij − I(Yi = j)

⎞
⎠

2

, (13)

where I(Yi = j) is an indicator function that takes on the value of 1 if the ith individ-
ual selects category j, and 0 otherwise, (−i)p̂(s)

ij is the estimator of pij based on the sth

sub-model with the ith observation deleted from the sample, and
∑2q

s=1 w
(−i)
s p̂(s)

ij is the

weighted average of (−i)p̂(s)
ij ’s across the 2

q models. Clearly, the best forecast of pij is 1
when Yi = j, while the best forecast of pij is 0 when Yi 	= j. Hence we define the fore-
cast error associated with the model average as

∑2q
s=1 w

(−i)
s p̂(s)

ij − I(Yi = j). The overall
accuracy of the model average is evaluated in terms of its squared forecast errors across
all n observations in the sample. Our JMA weight selection strategy seeks a weight vec-
torw thatminimisesCV(w). Denote the weightsminimisingCV(w) in Equation (13) as
ŵ = (ŵ1, . . . , ŵ2q). Let W = {w : 0 ≤ ws ≤ 1,

∑2q
s=1 ws = 1} be the weight set. In the

appendix, we prove that under some regular conditions,

∑n
i=1
∑J

j=1

(∑2q
s=1 ŵsp̂

(s)
ij − pij

)2
infw∈W

∑n
i=1
∑J

j=1

(∑2q
s=1 wsp̂

(s)
ij − pij

)2 → 1 (14)

in probability, as n → ∞. Equation (14) implies that the JMA estimator
∑2q

s=1 ŵsp̂
(s)
ij

has a squared error that is asymptotically identical to that of the infeasible best possible
model average estimator. The JMA estimator is thus optimal.
The steps of the JMA strategy are as follows:
Step 1: Calculate (−i)p̂(s)

ij , i = 1, . . . , n, j = 1, . . . , J, s = 1, . . . , 2q by ‘leaving out’ the ith
observation from the sample. The calculations may be based on Equation (2) in the case
of the ordered probit model, and Equation (6) in the case of the nested logit model.
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Step 2: Seek w = (w1, . . . ,w2q) that minimises CV(w) in Equation (13), subject to the
constraints 0 ≤ ws ≤ 1 and

∑2q
s=1 ws = 1. This can be handled readily by software such

as STATA, GAUSS or MATLAB.
Step 3: Substitute w obtained from Step 2 in Equation (7) to obtain the model aver-
aged predictions p̂w0j of p0j, j = 1, . . . , J. The forecast of Y0 is Ŷ0 = c, the category that
corresponds to p̂w0c = max{p̂w01, . . . , p̂w0J}.

• EW, by which ws = 1/2q.

4. AMonte Carlo study

In this section, by means of a Monte Carlo study, we evaluate the finite sample perfor-
mance of the various FMA strategies discussed in Section 3, and compare themwith several
common model selection strategies including the AIC, BIC and FIC. We also examine if
anything can be gained by implementing a model screening step to remove the very poor
models prior to combining. The screening procedure we consider is the ‘topm’ procedure
[44] that removes all but them(< 2q)models corresponding to them smallest values of an
information criterion. In our analysis, we setm to 5 and choose the BIC as the information
criterion. An alternativemethod is backward elimination discussed in [6,46].However, this
method suffers from the deficiency that it always maintains one single model of each size
in the final set of models. This means that a model that is not considered the best among
the models of the same size will always be excluded even if it outperforms the best model
of another size.

We consider the following two simulation designs:
Design 1: The data are generated based on the ordered probit model in Equation (1),

with J=3, p=1, q=4, (α1,α2,β) = l(−0.15, 0.5, 0.2), Xi, Zi1,Zi2 and Zi4 each distributed
as i.i.d N(0, 1), Zi3 distributed as i.i.d Bernoulli(0.4), and γ set to one of the following
scenarios:

S1: γ = l(0.3, 0.7, 0.15,−0.04)
S2: γ = l(0.3, 0.7, 0, 0)
S3: γ = l(0.3, 0, 0, 0)

The parameter l, which takes on 0.5, 1 or 2, has the purpose of controlling themagnitude
of the coefficients. The three scenarios represent different sparsity levels of non-zero coef-
ficients. Under S1, the true model contains no zero coefficients, and all sub-models except
the full model are under-fitted. In contrast, under S3, the majority of the coefficients are
zero and consequently most sub-models are over-fitted. Scenario S2 with two zero coeffi-
cients is an intermediate scenario of the other two. As q=4, there are 24 = 16 sub-models
within the model average. The number of sub-models reduces to m=5 if screening is
implemented prior to averaging.

Design 2: Our second simulation design is based on the nested logit model in Equations
(4) and (5). We let τ = l × 0.25, and set all other parameters to the same values as in the
previous design.

Let n1 and n2 be the number of observations in the training and test samples. We
consider the following combinations of (n1, n2) : (300, 100), (500, 200). Each part of our
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simulation is based on 500 replications. We evaluate the performance of the various
strategies in terms of mean squared error of forecasts (MSEF), mean absolute error of
forecasts (MAEF) and hit rate (HitRate). These measures are defined as follows:

MSEF = 1
500 × n2

500∑
r=1

n2∑
i=1

J∑
j=1

(pij,r − p̂ij,r)2, (15)

MAEF = 1
500 × n2

500∑
r=1

n2∑
i=1

J∑
j=1

|pij,r − p̂ij,r|, (16)

and

HitRate = 1
500 × n2

500∑
r=1

n2∑
i=1

I(Yi,r = Ŷi,r), (17)

where pij,r is the probability of the ith observation selecting category j in the rth replication,
p̂ij,r is its forecast based on a given strategy, Ŷi,r = c is the category that corresponds to
p̂ic,r = max{p̂i1,r, . . . , p̂iJ,r}, Yi,r is the actual category of Yi in the rth replication, and I(.) is
an indicator function that equals unity if the event inside the bracket occurs, and otherwise
equals zero. Thus, I(Yi,r = Ŷi,r) = 1 if Ŷi,r correctly predicts Yi,r, and I(Yi,r = Ŷi,r) = 0
otherwise. The hit rate is therefore the percentage of observations in the test sample that is
correctly predicted by the model.

The results of the Monte Carlo study comparing the efficiency of various estimators are
reported in Tables 1–6. To facilitate comparisons, the best, second best, third best, third
worst, secondworst, andworst estimators in each case are flagged by (1), (2), (3), (−3), (−2)
and (−1), respectively, and if the performance of a given averaging strategy is improved
after screening out the poor models beforehand, it is flagged with a ‘↑’.

The major conclusions of the Monte Carlo study may be summarised as follows:
It is clear from the results that in terms of the performance yardsticks considered no
one strategy uniformly dominates any of the others. Neither model selection nor model
averaging is always a better strategy than the other. That being said, for (n1, n2) =
(300, 100), (500, 200), the screened version of the S-BIC averaging strategy is frequently
the best strategy and one of the best three strategies across all cases considered with
respect to all three performance yardsticks. Among the three model selection methods,
the BIC method generally performs the best, and can sometimes provide more accu-
rate estimates than several FMA methods. Remarkably, the screened versions of all FMA
methods are rarely among the three worst strategies. On the other hand, although selec-
tion can sometimes outperform averaging, it also delivers very poor estimates far more
often than its averaging counterparts, especially when n1 and n2 are small. For example,
in terms of the frequency in delivering the best estimates, the BIC selection is some-
times rated among the top three of all methods, but when (n1, n2) = (300, 100), it also
delivers one of the three worst estimates thrice with respect to MSEF, MAEF and hit
rate. When (n1, n2) = (500, 200), it again yields one of the three least accurate estimates
thrice with respect to MSEF and MAEF, and once with respect to hit rate. On the other
hand, when (n1, n2) = (300, 100), the screened versions of the S-AIC, S-BIC, A-opt and
JMA methods never result in the three worst estimates regardless of the performance
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Table 1. MSEF results with (n1, n2) = (300, 100).

Model selection Model averaging without screening

l S AIC BIC FIC S-AIC S-BIC S-FIC LZWZ A-opt JMA EW

Design 1
0.5 1 0.00884 0.00987(−2) 0.00915(−3) 0.00795(1) 0.00858 0.00830 0.00838 0.00834 0.00796(2) 0.01454(−1)

2 0.00835 0.00938(−2) 0.00905(−3) 0.00769(3) 0.00820 0.00822 0.00834 0.00831 0.00767(2) 0.01447(−1)

3 0.00820(−3) 0.00862(−1) 0.00828(−2) 0.00715 0.00712 0.00704 0.00757 0.00791 0.00691(2) 0.00652(1)

Design 2
1 0.00788 0.00786 0.01034(−2) 0.00725(3) 0.00738 0.00933 0.00974(−3) 0.00894 0.00766 0.03080(−1)

2 0.00688 0.00610(1) 0.00915(−2) 0.00650 0.00617(3) 0.00909(−3) 0.00903 0.00857 0.00684 0.03051(−1)

3 0.00710 0.00576(3) 0.01172(−1) 0.00647 0.00562(2) 0.00961 0.01114(−2) 0.00886 0.00665 0.01094(−3)

Design 1
1 1 0.00710 0.00713 0.00779(−2) 0.00647(2) 0.00678 0.00719 0.00751(−3) 0.00734 0.00674 0.03304(−1)

2 0.00612 0.00578 0.00728(−3) 0.00577 0.00566(2) 0.00689 0.00728(−2) 0.00718 0.00590 0.03303(−1)

3 0.00663 0.00517(1) 0.00747(−3) 0.00601 0.00539(3) 0.00699 0.00723 0.00749(−2) 0.00597 0.01044(−1)

Design 2
1 0.00857 0.00869 0.01188(−2) 0.00778 0.00785 0.00960 0.01098(−3) 0.01056 0.00805 0.04649(−1)

2 0.00704 0.00609(3) 0.01044(−2) 0.00663 0.00606(2) 0.00884 0.01019(−3) 0.01001 0.00680 0.04574(−1)

3 0.00710 0.00560(3) 0.00868(−2) 0.00644 0.00554(2) 0.00831 0.00856(−3) 0.00814 0.00652 0.01457(−1)

Design 1
2 1 0.00726 0.00837 0.00880 0.00661(3) 0.00721 0.00748 0.00931(−2) 0.00896(−3) 0.00687 0.07015(−1)

2 0.00567 0.00477(3) 0.00743 0.00525 0.00468(2) 0.00661 0.00869(−2) 0.00858(−3) 0.00536 0.07029(−1)

3 0.00598 0.00452(3) 0.00636 0.00533 0.00444(2) 0.00582 0.00655(−3) 0.00674(−2) 0.00537 0.02116(−1)

Design 2
1 0.00855 0.00944 0.01414(−2) 0.00779(3) 0.00818 0.01087 0.01335(−3) 0.01266 0.00805 0.06660(−1)

2 0.00685 0.00584(3) 0.01178 0.00638 0.00573(2) 0.00966 0.01216(−2) 0.01185(−3) 0.00657 0.06587(−1)

3 0.00697 0.00530(3) 0.00784(−2) 0.00623 0.00527(2) 0.00725 0.00770 0.00781(−3) 0.00629 0.01969(−1)

(1) 0 2 0 1 0 0 0 0 0 1
(2) 0 0 0 1 8 0 0 0 3 0
(3) 0 7 0 4 2 0 0 0 0 0
(−3) 1 0 4 0 0 1 7 4 0 1
(−2) 0 2 9 0 0 0 5 2 0 0
(−1) 0 1 1 0 0 0 0 0 0 16

(continued).
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Table 1. Continued.

Model averaging with screening

l S S-AIC S-BIC S-FIC LZWZ A-opt JMA EW

Design 1
0.5 1 0.00806 0.00860 0.00798↑ 0.00810↑ 0.00804↑ 0.00797(3) 0.00805↑

2 0.00773 0.00821 0.00780↑ 0.00803↑ 0.00797↑ 0.00766(1)↑ 0.00786↑
3 0.00725 0.00725 0.00725 0.00743↑ 0.00751↑ 0.00692(3) 0.00697

Design 2
1 0.00725 0.00737↑ 0.00717(1)↑ 0.00848↑ 0.00805↑ 0.00745↑ 0.00718(2)↑
2 0.00648↑ 0.00616(2)↑ 0.00661↑ 0.00768↑ 0.00747↑ 0.00663↑ 0.00657↑
3 0.00634↑ 0.00561(1)↑ 0.00599↑ 0.00667↑ 0.00688↑ 0.00645↑ 0.00592↑

Design 1
1 1 0.00647(1)↑ 0.00676↑ 0.00652(3)↑ 0.00676↑ 0.00675↑ 0.00671↑ 0.00678↑

2 0.00575(3)↑ 0.00564(1)↑ 0.00608↑ 0.00643↑ 0.00651↑ 0.00585↑ 0.00623↑
3 0.00578↑ 0.00533(2)↑ 0.00585↑ 0.00660↑ 0.00690↑ 0.00600 0.00592↑

Design 2
1 0.00778(3)↑ 0.00784↑ 0.00757(1)↑ 0.00895↑ 0.00862↑ 0.00793↑ 0.00776(2)↑
2 0.00663↑ 0.00606(1)↑ 0.00672↑ 0.00797↑ 0.00786↑ 0.00668↑ 0.00683↑
3 0.00629↑ 0.00553(1)↑ 0.00595↑ 0.00644↑ 0.00683↑ 0.00628↑ 0.00578↑

Design 1
2 1 0.00661(2)↑ 0.00721↑ 0.00627(1)↑ 0.00684↑ 0.00666↑ 0.00686↑ 0.00770↑

2 0.00525↑ 0.00468(1)↑ 0.00534↑ 0.00606↑ 0.00613↑ 0.00551 0.00646↑
3 0.00519↑ 0.00444(1)↑ 0.00499↑ 0.00543↑ 0.00584↑ 0.00526↑ 0.00466↑

Design 2
1 0.00779(2)↑ 0.00818↑ 0.00763(1)↑ 0.00944↑ 0.00902↑ 0.00797↑ 0.00838↑
2 0.00638↑ 0.00573(1)↑ 0.00652↑ 0.00805↑ 0.00794↑ 0.00648↑ 0.00722↑
3 0.00606↑ 0.00526(1)↑ 0.00579↑ 0.00629↑ 0.00670↑ 0.00611↑ 0.00554↑
(1) 1 8 4 0 0 1 0
(2) 2 2 0 0 0 0 2
(3) 2 0 1 0 0 2 0
(−3) 0 0 0 0 0 0 0
(−2) 0 0 0 0 0 0 0
(−1) 0 0 0 0 0 0 0

Note : (1), (2), (3), (−3), (−2), (−1) = Number of cases yielding the best, second best, third best, third worst, second worst and worst estimates, respectively.
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Table 2. MAEF results with (n1, n2) = (300, 100).

Model selection Model averaging without screening

l S AIC BIC FIC S-AIC S-BIC S-FIC LZWZ A-opt JMA EW

Design 1
0.5 1 0.11749 0.12395(−2) 0.11952(−3) 0.11217 0.11604 0.11432 0.11486 0.11481 0.11200(1) 0.15127(−1)

2 0.11325 0.12047(−2) 0.11827(−3) 0.10986(3) 0.11296 0.11333 0.11412 0.11416 0.10917(2) 0.15062(−1)

3 0.11142(−3) 0.11458(−1) 0.11333(−2) 0.10561 0.10555 0.10524 0.10883 0.11131 0.10351(2) 0.10192(1)

Design 2
1 0.11219 0.11162 0.12516(−2) 0.10748 0.10813 0.12338(−3) 0.12291 0.11953 0.11165 0.24541(−1)

2 0.10419 0.09780(1) 0.11712 0.10170 0.09881(3) 0.12135(−2) 0.11934(−3) 0.11755 0.10535 0.24406(−1)

3 0.10990 0.09916(3) 0.13539(−2) 0.10539 0.09849(2) 0.12954 0.13430(−3) 0.12349 0.10726 0.14007(−1)

Design 1
1 1 0.10925 0.10842 0.11302(−2) 0.10416(2) 0.10601 0.10935 0.11166(−3) 0.11106 0.10635 0.24306(−1)

2 0.10070 0.09599(1) 0.10826 0.09832 0.09643(3) 0.10693 0.10973(−2) 0.10971(−3) 0.09944 0.24243(−1)

3 0.10504 0.09216(1) 0.11020(−3) 0.10084 0.09471(3) 0.10814 0.10960 0.11195(−2) 0.10018 0.13191(−1)

Design 2
1 0.11523 0.11656 0.13159(−2) 0.10983(3) 0.11050 0.12178 0.12816(−3) 0.12606 0.11279 0.30754(−1)

2 0.10408 0.09697(1) 0.12165 0.10142 0.09710(3) 0.11682 0.12313(−2) 0.12270(−3) 0.10352 0.30473(−1)

3 0.10965 0.09779(3) 0.11825 0.10505 0.09758(2) 0.11940(−3) 0.11947(−2) 0.11830 0.10592 0.16295(−1)

Design 1
2 1 0.09971 0.10848 0.10678 0.09518(3) 0.10034 0.10046 0.11058(−2) 0.10961(−3) 0.09867 0.38980(−1)

2 0.08802 0.08115(3) 0.09720 0.08520 0.08072(2) 0.09467 0.10671(−3) 0.10711(−2) 0.08801 0.39046(−1)

3 0.09961 0.08699(3) 0.10161 0.09471 0.08674(2) 0.09865 0.10429(−3) 0.10633(−2) 0.09507 0.19440(−1)

Design 2
1 0.10828 0.11426 0.13141(−2) 0.10335(3) 0.10624 0.12043 0.12980(−3) 0.12708 0.10619 0.37255(−1)

2 0.09641 0.08953(3) 0.11801 0.09372 0.08908(2) 0.11338 0.12310(−2) 0.12258(−3) 0.09584 0.36996(−1)

3 0.10518 0.09208(1) 0.11031 0.10024 0.09227(3) 0.10845 0.11116(−3) 0.11248(−2) 0.10092 0.18797(−1)

(1) 0 5 0 0 0 0 0 0 1 1
(2) 0 0 0 1 5 0 0 0 2 0
(3) 0 5 0 4 5 0 0 0 0 0
(−3) 1 0 3 0 0 2 8 4 0 0
(−2) 0 2 6 0 0 1 5 4 0 0
(−1) 0 1 0 0 0 0 0 0 0 17

(continued).
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Table 2. Continued.

Model averaging with screening

l S S-AIC S-BIC S-FIC LZWZ A-opt JMA EW

Design 1
0.5 1 0.11278 0.11617 0.11219↑ 0.11303↑ 0.11277↑ 0.11207(2) 0.11216(3)↑

2 0.10996 0.11301 0.11038↑ 0.11208↑ 0.11184↑ 0.10910(1)↑ 0.11048↑
3 0.10626 0.10636 0.10639 0.10786↑ 0.10857↑ 0.10355(3) 0.10441

Design 2
1 0.10745(3)↑ 0.10805↑ 0.10685(1)↑ 0.11470↑ 0.11251↑ 0.10899↑ 0.10732(2)↑
2 0.10158↑ 0.09872(2)↑ 0.10257↑ 0.10911↑ 0.10831↑ 0.10263↑ 0.10257↑
3 0.10433↑ 0.09835(1)↑ 0.10170↑ 0.10536↑ 0.10799↑ 0.10535↑ 0.10127↑

Design 1
1 1 0.10412(1)↑ 0.10588↑ 0.10436(3)↑ 0.10631↑ 0.10622↑ 0.10597↑ 0.10580↑

2 0.09817↑ 0.09631(2)↑ 0.10059↑ 0.10341↑ 0.10430↑ 0.09894↑ 0.10130↑
3 0.09884↑ 0.09421(2)↑ 0.09926↑ 0.10498↑ 0.10773↑ 0.10076 0.09987↑

Design 2
1 0.10982(2)↑ 0.11046↑ 0.10825(1)↑ 0.11640↑ 0.11457↑ 0.11104↑ 0.11083↑
2 0.10139↑ 0.09706(2)↑ 0.10221↑ 0.10949↑ 0.10932↑ 0.10177↑ 0.10388↑
3 0.10381↑ 0.09750(1)↑ 0.10124↑ 0.10475↑ 0.10810↑ 0.10373↑ 0.09998↑

Design 1
2 1 0.09518(2)↑ 0.10034↑ 0.09275(1)↑ 0.09685↑ 0.09580↑ 0.09720↑ 0.10665↑

2 0.08520↑ 0.08072(1)↑ 0.08575↑ 0.09131↑ 0.09213↑ 0.08642↑ 0.09775↑
3 0.09344↑ 0.08669(1)↑ 0.09168↑ 0.09534↑ 0.09905↑ 0.09413↑ 0.08915↑

Design 2
1 0.10335(2)↑ 0.10624↑ 0.10216(1)↑ 0.11128↑ 0.10933↑ 0.10464↑ 0.10924↑
2 0.09372↑ 0.08908(1)↑ 0.09465↑ 0.10249↑ 0.10256↑ 0.09426↑ 0.10129↑
3 0.09885↑ 0.09220(2)↑ 0.09685↑ 0.10044↑ 0.10395↑ 0.09925↑ 0.09502↑
(1) 1 5 4 0 0 1 0
(2) 3 5 0 0 0 1 1
(3) 1 0 1 0 0 1 1
(−3) 0 0 0 0 0 0 0
(−2) 0 0 0 0 0 0 0
(−1) 0 0 0 0 0 0 0

Note : (1), (2), (3), (−3), (−2), (−1) = Number of cases yielding the best, second best, third best, third worst, second worst and worst estimates, respectively.



3026
L.C

H
EN

ET
A
L.

Table 3. HitRate results with (n1, n2) = (300, 100).

Model selection Model averaging without screening

l S AIC BIC FIC S-AIC S-BIC S-FIC LZWZ A-opt JMA EW

Design 1
0.5 1 0.55466 0.55238(−2) 0.55306(−3) 0.55522 0.55350 0.55368 0.55322 0.55454 0.55528(3) 0.54616(−1)

2 0.55206 0.55054 0.54960(−2) 0.55282(1) 0.55176 0.55044(−3) 0.55070 0.55162 0.55166 0.54352(−1)

3 0.48450 0.47836(−1) 0.48398 0.48496(2) 0.48262 0.48266 0.48334 0.48484(3) 0.48302 0.48232

Design 2
1 0.55150 0.55248 0.55008(−3) 0.55250(3) 0.55288(2) 0.55132 0.54976(−2) 0.55022 0.55170 0.53750(−1)

2 0.55192 0.55250(2) 0.55108 0.55164 0.55210 0.54970(−2) 0.54954(−3) 0.55002 0.55098 0.53540(−1)

3 0.47990 0.48104(3) 0.47192(−1) 0.47996 0.48154(2) 0.47694 0.47382(−2) 0.47740 0.47960 0.47514(−3)

Design 1
1 1 0.61230 0.61148 0.61124 0.61246(1) 0.61230 0.61120 0.61082(−3) 0.61134 0.61212 0.60090(−1)

2 0.60726 0.60736 0.60562 0.60766(2) 0.60768(1) 0.60536(−2) 0.60536(−3) 0.60576 0.60756 0.59498(−1)

3 0.49184 0.49396(3) 0.49106 0.49200 0.49428(1) 0.49102 0.49012(−2) 0.49020(−3) 0.49152 0.48514(−1)

Design 2
1 0.63002 0.63030 0.62896 0.63066(3) 0.63030 0.62946 0.62802(−2) 0.62852(−3) 0.63002 0.61418(−1)

2 0.63252 0.63366(1) 0.63110 0.63256 0.63318(2) 0.63074 0.63014(−3) 0.63010(−2) 0.63204 0.61422(−1)

3 0.53108(−3) 0.53278 0.53116 0.53250 0.53294(3) 0.53126 0.53136 0.53106(−2) 0.53236 0.52352(−1)

Design 1
2 1 0.69274 0.69208(−2) 0.69244(−3) 0.69324 0.69322 0.69286 0.69266 0.69250 0.69316 0.66842(−1)

2 0.68898(3) 0.68966(1) 0.68748 0.68862 0.68934(2) 0.68686 0.68594(−3) 0.68604(−2) 0.68892 0.66450(−1)

3 0.54300(−2) 0.54444 0.54392 0.54418 0.54552(2) 0.54384 0.54328(−3) 0.54372 0.54386 0.53108(−1)

Design 2
1 0.71668 0.71626 0.71564(−2) 0.71810(1) 0.71790(2) 0.71752 0.71662 0.71724 0.71776 0.69564(−1)

2 0.72024(1) 0.71996 0.71750(−3) 0.72000(3) 0.71994 0.71894 0.71724(−2) 0.71762 0.71962 0.69722(−1)

3 0.61800 0.62020(1) 0.61720(−2) 0.61866 0.61966(3) 0.61786 0.61752(−3) 0.61760 0.61838 0.60770(−1)

(1) 1 3 0 3 2 0 0 0 0 0
(2) 0 1 0 3 5 0 0 0 0 0
(3) 0 2 0 2 3 0 0 1 1 0
(−3) 1 0 4 0 0 3 4 3 0 1
(−2) 1 2 3 0 0 0 8 2 0 0
(−1) 0 1 1 0 0 0 0 0 0 16

(continued).
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Table 3. Continued.

Model averaging with screening

l S S-AIC S-BIC S-FIC LZWZ A-opt JMA EW

Design 1
0.5 1 0.55514 0.55330 0.55432↑ 0.55458↑ 0.55556(2)↑ 0.55586(1)↑ 0.55416↑

2 0.55240(2) 0.55190↑ 0.55238(3)↑ 0.55136↑ 0.55184↑ 0.55204↑ 0.55184↑
3 0.48318 0.48182 0.48164(−3) 0.48310 0.48546(1)↑ 0.48320↑ 0.48112(−2)

Design 2
1 0.55250 0.55294(1)↑ 0.55180↑ 0.55130↑ 0.55202↑ 0.55174↑ 0.55166↑
2 0.55164 0.55200 0.55230↑ 0.55244(3)↑ 0.55270(1)↑ 0.55138↑ 0.55178↑
3 0.48016↑ 0.48158(1)↑ 0.48010↑ 0.48026↑ 0.47964↑ 0.48072↑ 0.48040↑

Design 1
1 1 0.61244(2) 0.61236↑ 0.61206↑ 0.61164↑ 0.61152↑ 0.61176(3) 0.61066(−2)↑

2 0.60766(3) 0.60760 0.60726↑ 0.60666↑ 0.60658↑ 0.60730 0.60654↑
3 0.49288↑ 0.49408(2) 0.49310↑ 0.49232↑ 0.49126↑ 0.49202↑ 0.49372↑

Design 2
1 0.63066(3) 0.63034↑ 0.63132(2)↑ 0.62992↑ 0.63024↑ 0.63000 0.63134(1)↑
2 0.63254 0.63314(3) 0.63196↑ 0.63072↑ 0.63104↑ 0.63248↑ 0.63190↑
3 0.53244 0.53308(2)↑ 0.53274↑ 0.53282↑ 0.53196↑ 0.53242↑ 0.53336(1)↑

Design 1
2 1 0.69324 0.69322 0.69454(1)↑ 0.69354(3)↑ 0.69406(2)↑ 0.69332↑ 0.69286↑

2 0.68862 0.68934(2) 0.68822↑ 0.68764↑ 0.68764↑ 0.68856 0.68790↑
3 0.54452↑ 0.54566(1)↑ 0.54500(3)↑ 0.54472↑ 0.54386↑ 0.54412↑ 0.54468↑

Design 2
1 0.71810(1) 0.71790(2) 0.71778(3)↑ 0.71626(−3) 0.71724 0.71756 0.71720↑
2 0.72000(3) 0.71994 0.71946↑ 0.71840↑ 0.71820↑ 0.71994(2)↑ 0.71896↑
3 0.61872↑ 0.61960 0.61920↑ 0.61826↑ 0.61780↑ 0.61854↑ 0.61978(2)↑
(1) 1 3 1 0 2 1 2
(2) 3 3 1 0 2 0 1
(3) 2 3 2 2 0 0 0
(−3) 0 0 1 1 0 0 0
(−2) 0 0 0 0 0 0 2
(−1) 0 0 0 0 0 0 0

Note : (1), (2), (3), (−3), (−2), (−1) = Number of cases yielding the best, second best, third best, third worst, second worst and worst estimates, respectively.
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Table 4. MSEF results with (n1, n2) = (500, 200).

Model selection Model averaging without screening

l S AIC BIC FIC S-AIC S-BIC S-FIC LZWZ A-opt JMA EW

Design 1
0.5 1 0.00534 0.00655(−2) 0.00551 0.00491(2) 0.00571 0.00514 0.00512 0.00503 0.00501 0.01292(−1)

2 0.00480 0.00601(−2) 0.00539(−3) 0.00468(3) 0.00533 0.00505 0.00509 0.00499 0.00467(2) 0.01285(−1)

3 0.00482 0.00553(−1) 0.00518(−2) 0.00448(3) 0.00480 0.00462 0.00478 0.00490(−3) 0.00432(1) 0.00463

Design 2
1 0.00481 0.00499 0.00647(−2) 0.00440(3) 0.00454 0.00526 0.00586(−3) 0.00554 0.00466 0.02932(−1)

2 0.00413 0.00358(3) 0.00575(−2) 0.00386 0.00354(2) 0.00499 0.00559(−3) 0.00541 0.00399 0.02896(−1)

3 0.00379 0.00292(3) 0.00620(−2) 0.00342 0.00292(2) 0.00555 0.00613(−3) 0.00496 0.00348 0.00871(−1)

Design 1
1 1 0.00449 0.00454 0.00478(−2) 0.00396(2) 0.00410 0.00435 0.00471(−3) 0.00455 0.00418 0.03142(−1)

2 0.00364 0.00308(1) 0.00428 0.00342 0.00314(3) 0.00409 0.00457(−2) 0.00447(−3) 0.00348 0.03140(−1)

3 0.00391 0.00290(1) 0.00428 0.00352 0.00291(3) 0.00403 0.00428(−3) 0.00443(−2) 0.00353 0.00859(−1)

Design 2
1 0.00503 0.00559 0.00801(−2) 0.00457(3) 0.00493 0.00615 0.00749(−3) 0.00716 0.00475 0.04447(−1)

2 0.00418 0.00356(3) 0.00680 0.00393 0.00353(2) 0.00565 0.00711(−2) 0.00702(−3) 0.00397 0.04410(−1)

3 0.00399 0.00302(3) 0.00440(−3) 0.00357 0.00300(2) 0.00417 0.00438 0.00442(−2) 0.00356 0.01227(−1)

Design 1
2 1 0.00427 0.00559 0.00568 0.00403(3) 0.00477 0.00480 0.00673(−2) 0.00634(−3) 0.00414 0.06852(−1)

2 0.00318 0.00262(3) 0.00440 0.00295 0.00262(2) 0.00383 0.00588(−2) 0.00585(−3) 0.00301 0.06856(−1)

3 0.00330 0.00251(3) 0.00356 0.00298 0.00247(2) 0.00322 0.00377(−3) 0.00381(−2) 0.00302 0.01939(−1)

Design 2
1 0.00528 0.00652 0.01046(−2) 0.00494(2) 0.00558 0.00774 0.01029(−3) 0.00978 0.00496 0.06523(−1)

2 0.00435 0.00367(3) 0.00843 0.00405 0.00362(2) 0.00668 0.00943(−2) 0.00929(−3) 0.00407 0.06443(−1)

3 0.00386 0.00290(3) 0.00442(−3) 0.00344 0.00287(2) 0.00398 0.00439 0.00443(−2) 0.00346 0.01742(−1)

(1) 0 2 0 0 0 0 0 0 1 0
(2) 0 0 0 3 8 0 0 0 1 0
(3) 0 8 0 5 2 0 0 0 0 0
(−3) 0 0 3 0 0 0 8 6 0 0
(−2) 0 2 7 0 0 0 5 4 0 0
(−1) 0 1 0 0 0 0 0 0 0 17

(continued).
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Table 4. Continued.

Model averaging with screening

l S S-AIC S-BIC S-FIC LZWZ A-opt JMA EW

Design 1
0.5 1 0.00498 0.00573(−3) 0.00499↑ 0.00491(3)↑ 0.00483(1)↑ 0.00494↑ 0.00514↑

2 0.00469 0.00534 0.00484↑ 0.00486↑ 0.00476↑ 0.00459(1)↑ 0.00493↑
3 0.00453 0.00483 0.00469 0.00473↑ 0.00475↑ 0.00437(2) 0.00471

Design 2
1 0.00440(2)↑ 0.00454↑ 0.00429(1)↑ 0.00518↑ 0.00494↑ 0.00454↑ 0.00449↑
2 0.00386↑ 0.00354(1)↑ 0.00391↑ 0.00473↑ 0.00461↑ 0.00390↑ 0.00401↑
3 0.00333↑ 0.00292(1)↑ 0.00314↑ 0.00334↑ 0.00356↑ 0.00339↑ 0.00308↑

Design 1
1 1 0.00396(3) 0.00410↑ 0.00388(1)↑ 0.00411↑ 0.00405↑ 0.00415↑ 0.00432↑

2 0.00342↑ 0.00313(2)↑ 0.00352↑ 0.00386↑ 0.00392↑ 0.00346↑ 0.00380↑
3 0.00342↑ 0.00290(2)↑ 0.00332↑ 0.00368↑ 0.00393↑ 0.00347↑ 0.00322↑

Design 2
1 0.00457(2)↑ 0.00493↑ 0.00448(1)↑ 0.00550↑ 0.00524↑ 0.00473↑ 0.00497↑
2 0.00393↑ 0.00353(1)↑ 0.00399↑ 0.00485↑ 0.00478↑ 0.00395↑ 0.00436↑
3 0.00348↑ 0.00300(1)↑ 0.00328↑ 0.00354↑ 0.00377↑ 0.00350↑ 0.00315↑

Design 1
2 1 0.00403(2)↑ 0.00477↑ 0.00391(1)↑ 0.00426↑ 0.00411↑ 0.00412↑ 0.00582↑

2 0.00295↑ 0.00262(1)↑ 0.00298↑ 0.00351↑ 0.00352↑ 0.00299↑ 0.00451↑
3 0.00290↑ 0.00247(1)↑ 0.00279↑ 0.00303↑ 0.00326↑ 0.00294↑ 0.00263↑

Design 2
1 0.00494(1)↑ 0.00558↑ 0.00495↑ 0.00639↑ 0.00603↑ 0.00494(3)↑ 0.00615↑
2 0.00405↑ 0.00362(1)↑ 0.00414↑ 0.00525↑ 0.00514↑ 0.00407↑ 0.00501↑
3 0.00335↑ 0.00287(1)↑ 0.00320↑ 0.00347↑ 0.00372↑ 0.00338↑ 0.00305↑
(1) 1 8 4 0 1 1 0
(2) 3 2 0 0 0 1 0
(3) 1 0 0 1 0 1 0
(−3) 0 1 0 0 0 0 0
(−2) 0 0 0 0 0 0 0
(−1) 0 0 0 0 0 0 0

Note : (1), (2), (3), (−3), (−2), (−1) = Number of cases yielding the best, second best, third best, third worst, second worst and worst estimates, respectively.
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Table 5. MAEF results with (n1, n2) = (500, 200).

Model selection Model averaging without screening

l S AIC BIC FIC S-AIC S-BIC S-FIC LZWZ A-opt JMA EW

Design 1
0.5 1 0.09062 0.09866(−2) 0.09210 0.08720(3) 0.09342 0.08927 0.08913 0.08869 0.08776 0.14131(−1)

2 0.08430(3) 0.09331(−2) 0.09018(−3) 0.08435 0.08931 0.08796 0.08822 0.08781 0.08367(2) 0.14048(−1)

3 0.08371 0.08918(−1) 0.08777(−2) 0.08232(3) 0.08482 0.08427 0.08530 0.08672(−3) 0.08057(1) 0.08504

Design 2
1 0.08792 0.08970 0.09858(−2) 0.08421(3) 0.08566 0.09177 0.09526(−3) 0.09329 0.08739 0.23966(−1)

2 0.08130 0.07629(3) 0.09214(−3) 0.07913 0.07605(2) 0.08925 0.09279(−2) 0.09212 0.08076 0.23798(−1)

3 0.08005 0.07067(1) 0.09510 0.07663 0.07094(3) 0.09691(−3) 0.09758(−2) 0.09154 0.07750 0.12433(−1)

Design 1
1 1 0.08605 0.08712 0.08809(−2) 0.08085(3) 0.08242 0.08438 0.08747(−3) 0.08668 0.08308 0.23530(−1)

2 0.07696 0.07093(1) 0.08244 0.07487 0.07148(3) 0.08163 0.08587(−2) 0.08583(−3) 0.07546 0.23497(−1)

3 0.08011 0.07024(1) 0.08345 0.07715 0.07066(3) 0.08219 0.08429(−3) 0.08599(−2) 0.07699 0.11886(−1)

Design 2
1 0.08831 0.09341 0.10522(−2) 0.08440(3) 0.08766 0.09627 0.10293(−3) 0.10116 0.08663 0.30129(−1)

2 0.08043 0.07478(3) 0.09569 0.07838 0.07469(2) 0.09221 0.09978(−3) 0.09986(−2) 0.07933 0.29977(−1)

3 0.08180 0.07156(1) 0.08488 0.07802 0.07180(3) 0.08426 0.08574(−3) 0.08663(−2) 0.07798 0.14904(−1)

Design 1
2 1 0.07633 0.08814 0.08439 0.07423(3) 0.08120 0.07986 0.09137(−3) 0.09017 0.07621 0.38534(−1)

2 0.06571 0.05994(1) 0.07332 0.06364 0.06006(3) 0.07122 0.08469(−3) 0.08541(−2) 0.06523 0.38635(−1)

3 0.07315 0.06404(3) 0.07490 0.07010 0.06404(2) 0.07264 0.07792(−3) 0.07916(−2) 0.07038 0.18557(−1)

Design 2
1 0.08477 0.09455 0.10892(−3) 0.08214(3) 0.08761 0.09959 0.11009(−2) 0.10795 0.08306 0.36961(−1)

2 0.07725 0.07164(3) 0.09585 0.07507 0.07138(2) 0.09243 0.10385(−3) 0.10401(−2) 0.07557 0.36684(−1)

3 0.07837 0.06814(2) 0.08224 0.07444 0.06815(3) 0.07994 0.08327(−3) 0.08433(−2) 0.07467 0.17742(−1)

(1) 0 5 0 0 0 0 0 0 1 0
(2) 0 1 0 0 4 0 0 0 1 0
(3) 1 4 0 7 6 0 0 0 0 0
(−3) 0 0 3 0 0 1 11 2 0 0
(−2) 0 2 4 0 0 0 4 7 0 0
(−1) 0 1 0 0 0 0 0 0 0 17

(continued).
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Table 5. Continued.

Model averaging with screening

l S S-AIC S-BIC S-FIC LZWZ A-opt JMA EW

Design 1
0.5 1 0.08763 0.09357(−3) 0.08788↑ 0.08714(2)↑ 0.08671(1)↑ 0.08720↑ 0.08903↑

2 0.08432↑ 0.08935 0.08586↑ 0.08587↑ 0.08552↑ 0.08306(1)↑ 0.08652↑
3 0.08232 0.08501 0.08416↑ 0.08494↑ 0.08542↑ 0.08088(2) 0.08405↑

Design 2
1 0.08420(2)↑ 0.08565↑ 0.08315(1)↑ 0.08959↑ 0.08805↑ 0.08569↑ 0.08567↑
2 0.07913↑ 0.07604(1)↑ 0.07959↑ 0.08530↑ 0.08496↑ 0.07942↑ 0.08087↑
3 0.07569↑ 0.07090(2)↑ 0.07361↑ 0.07558↑ 0.07808↑ 0.07627↑ 0.07304↑

Design 1
1 1 0.08085(2)↑ 0.08237↑ 0.07980(1)↑ 0.08208↑ 0.08146↑ 0.08274↑ 0.08378↑

2 0.07484↑ 0.07145(2)↑ 0.07586↑ 0.07918↑ 0.08001↑ 0.07514↑ 0.07833↑
3 0.07606↑ 0.07056(2)↑ 0.07515↑ 0.07841↑ 0.08111↑ 0.07646↑ 0.07408↑

Design 2
1 0.08440(2)↑ 0.08766↑ 0.08346(1)↑ 0.09053↑ 0.08887↑ 0.08595↑ 0.08880↑
2 0.07838↑ 0.07469(1)↑ 0.07905↑ 0.08487↑ 0.08487↑ 0.07862↑ 0.08332↑
3 0.07705↑ 0.07177(2)↑ 0.07508↑ 0.07760↑ 0.08018↑ 0.07731↑ 0.07385↑

Design 1
2 1 0.07423(2)↑ 0.08120↑ 0.07311(1)↑ 0.07587↑ 0.07499↑ 0.07526↑ 0.09278(−2)↑

2 0.06364↑ 0.06006(2)↑ 0.06397↑ 0.06877↑ 0.06944↑ 0.06408↑ 0.08182↑
3 0.06916↑ 0.06401(1)↑ 0.06788↑ 0.07054↑ 0.07328↑ 0.06948↑ 0.06618↑

Design 2
1 0.08214(2)↑ 0.08761↑ 0.08210(1)↑ 0.09034↑ 0.08845↑ 0.08230↑ 0.09392↑
2 0.07507↑ 0.07138(1)↑ 0.07567↑ 0.08199↑ 0.08200↑ 0.07497↑ 0.08451↑
3 0.07338↑ 0.06812(1)↑ 0.07197↑ 0.07461↑ 0.07742↑ 0.07374↑ 0.07061↑
(1) 0 5 5 0 1 1 0
(2) 5 5 0 1 0 1 0
(3) 0 0 0 0 0 0 0
(−3) 0 1 0 0 0 0 0
(−2) 0 0 0 0 0 0 1
(−1) 0 0 0 0 0 0 0

Note : (1), (2), (3), (−3), (−2), (−1) = Number of cases yielding the best, second best, third best, third worst, second worst and worst estimates, respectively.
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Table 6. HitRate results with (n1, n2) = (500, 200).

Model selection Model averaging without screening

l S AIC BIC FIC S-AIC S-BIC S-FIC LZWZ A-opt JMA EW

Design 1
0.5 1 0.55672 0.55547 0.55563 0.55762(1) 0.55528(−2) 0.55660 0.55578 0.55568 0.55630 0.54970(−1)

2 0.55330(3) 0.55245 0.55127(−2) 0.55355(2) 0.55283 0.55203 0.55192(−3) 0.55227 0.55315 0.54532(−1)

3 0.48583 0.48172(−1) 0.48612 0.48748(1) 0.48420(−3) 0.48640 0.48658 0.48748(3) 0.48700 0.48535

Design 2
1 0.55320 0.55317 0.55087(−2) 0.55390 0.55385 0.55387 0.55280 0.55293 0.55407(3) 0.53895(−1)

2 0.55318 0.55325 0.55050(−2) 0.55307 0.55382(2) 0.55235 0.55153(−3) 0.55157 0.55340 0.53853(−1)

3 0.47972 0.48050(3) 0.47425(−2) 0.47972 0.48120(1) 0.47667 0.47517(−3) 0.47808 0.47978 0.47217(−1)

Design 1
1 1 0.60788 0.60777 0.60782 0.60785 0.60817 0.60818 0.60790 0.60837(1) 0.60753(−2) 0.59778(−1)

2 0.60338 0.60447(1) 0.60248 0.60382 0.60433(2) 0.60278 0.60225(−2) 0.60238(−3) 0.60338 0.59470(−1)

3 0.49318 0.49412(3) 0.49240(−2) 0.49302 0.49435(1) 0.49342 0.49243(−3) 0.49253 0.49327 0.48763(−1)

Design 2
1 0.63073 0.63053 0.62978 0.63095 0.63110(3) 0.63085 0.62928(−2) 0.62945(−3) 0.63095 0.61632(−1)

2 0.63172 0.63303(3) 0.62995(−3) 0.63142 0.63313(1) 0.63087 0.62997 0.62967(−2) 0.63177 0.61713(−1)

3 0.53293 0.53387(1) 0.53255 0.53275 0.53375(2) 0.53248 0.53172(−3) 0.53157(−2) 0.53308 0.52478(−1)

Design 1
2 1 0.69380 0.69355 0.69335 0.69443 0.69483(2) 0.69428 0.69248(−3) 0.69220(−2) 0.69417 0.66623(−1)

2 0.68698 0.68793(3) 0.68690 0.68775 0.68808(1) 0.68725 0.68613(−3) 0.68595(−2) 0.68717 0.66232(−1)

3 0.54225 0.54372 0.54288 0.54293 0.54402(1) 0.54283 0.54212(−3) 0.54210(−2) 0.54353 0.53128(−1)

Design 2
1 0.71842 0.71907 0.71655(−2) 0.71887 0.71905 0.71883 0.71667(−3) 0.71738 0.71932(2) 0.69750(−1)

2 0.71847 0.71923(1) 0.71733 0.71922(2) 0.71918 0.71800 0.71692(−2) 0.71698(−3) 0.71908 0.69640(−1)

3 0.62043 0.62095 0.62020(−2) 0.62092 0.62093 0.62050 0.62038(−3) 0.62070 0.62097 0.60883(−1)

(1) 0 3 0 2 5 0 0 1 0 0
(2) 0 0 0 2 4 0 0 0 1 0
(3) 1 4 0 0 1 0 0 1 1 0
(−3) 0 0 1 0 1 0 10 3 0 0
(−2) 0 0 7 0 1 0 3 5 1 0
(−1) 0 1 0 0 0 0 0 0 0 17

(continued).
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Table 6. Continued.

Model averaging with screening

l S S-AIC S-BIC S-FIC LZWZ A-opt JMA EW

Design 1
0.5 1 0.55702(2) 0.55542(−3)↑ 0.55632 0.55638↑ 0.55638↑ 0.55653↑ 0.55692(3)↑

2 0.55387(1)↑ 0.55257 0.55307↑ 0.55227↑ 0.55285↑ 0.55323↑ 0.55267↑
3 0.48653 0.48398(−2) 0.48465 0.48633 0.48748(1) 0.48712↑ 0.48483

Design 2
1 0.55390 0.55387↑ 0.55423(2)↑ 0.55265(−3) 0.55315↑ 0.55368 0.55430(1)↑
2 0.55305 0.55382(2) 0.55302↑ 0.55163↑ 0.55183↑ 0.55380↑ 0.55393(1)↑
3 0.47970 0.48105(2) 0.48018↑ 0.48005↑ 0.47927↑ 0.48030↑ 0.47995↑

Design 1
1 1 0.60782 0.60812 0.60832(2)↑ 0.60782 0.60820(3) 0.60765↑ 0.60757(−3)↑

2 0.60378 0.60433(2) 0.60410↑ 0.60328↑ 0.60328↑ 0.60342↑ 0.60308↑
3 0.49367↑ 0.49418(2) 0.49397↑ 0.49362↑ 0.49347↑ 0.49365↑ 0.49403↑

Design 2
1 0.63097↑ 0.63110(3) 0.63148(1)↑ 0.63080↑ 0.63073↑ 0.63115(2)↑ 0.63088↑
2 0.63142 0.63313(1) 0.63162↑ 0.63023↑ 0.63003↑ 0.63177 0.63155↑
3 0.53287↑ 0.53370(3) 0.53363↑ 0.53292↑ 0.53213↑ 0.53342↑ 0.53357↑

Design 1
2 1 0.69443 0.69483(2) 0.69493(1)↑ 0.69438↑ 0.69460↑ 0.69405 0.69315↑

2 0.68775 0.68808(1) 0.68758↑ 0.68688↑ 0.68712↑ 0.68715 0.68742↑
3 0.54292 0.54397(2) 0.54342↑ 0.54235↑ 0.54252↑ 0.54383↑ 0.54383(3)↑

Design 2
1 0.71887 0.71905 0.71957(1)↑ 0.71802↑ 0.71827↑ 0.71915(3) 0.71883↑
2 0.71922(2) 0.71918 0.71910↑ 0.71850↑ 0.71868↑ 0.71917↑ 0.71830↑
3 0.62082 0.62100↑ 0.62103(3)↑ 0.62048↑ 0.62085↑ 0.62142(1)↑ 0.62113(2)↑
(1) 1 2 3 0 1 1 2
(2) 2 6 2 0 0 1 1
(3) 0 2 1 0 1 1 2
(−3) 0 1 0 1 0 0 1
(−2) 0 1 0 0 0 0 0
(−1) 0 0 0 0 0 0 0

Note : (1), (2), (3), (−3), (−2), (−1) = Number of cases yielding the best, second best, third best, third worst, second worst and worst estimates, respectively.
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yardsticks, while those of the S-FIC and LZWZ methods each yields the third worst esti-
mate once with respect to hit rate but never results in the three worst estimates with respect
to MSEF and MAEF; when (n1, n2) = (500, 200), these methods yield poor estimates
only very occasionally. Interestingly, the screened version of the EW method, arguably
the worst of all screened versions of FMA methods considered, yields the poorest esti-
mates far less frequently than BIC selection, the latter being the best of the three selection
methods. The AIC and FIC selectionmethods rarely perform at or near the top, but are fre-
quently rated among the bottom three of all methods. These findings again highlight one
major advantage of model averaging, that is, shielding against the selection of a very poor
model.

A close scrutiny of the performance of the three model selection methods reveals that
they usually perform better when l=1 or 2 than when l=0.5. This result is not surprising
because a small lmakes it difficult for a selection criterion to differentiate the correctmodel
from othermodels, especially those that includemany zero coefficients. Other things being
equal, a larger l makes it easier to identify the true model, which in turns makes model
selection amore viable strategy.Wan et al. [40] observed a similar finding in their study on
comparing model selection to FMA in the contexts of the multinomial and ordered logit
models.

Generally speaking, model averaging with screening is preferable to averaging with-
out screening. Our results show that the various FMA methods commonly experience a
deterioration in performance and deliver worse estimates far more frequently when the
models that fail the screening are included in the model average. In particular, the non-
screened version of the EW method frequently produces the worst of all 17 estimators
considered. The poor performance of EW may be explained by the fact that it assigns the
same weight to all sub-models, including those with very poor explanatory power. In most
cases,model screening improves the performance of FMAestimators; in the case of the EW
estimator, the improvement is especially noticeable. Having said that, the non-screened
versions of the S-AIC, S-BIC and S-FIC estimators are rarely the worst. Overall speaking,
the non-screened S-BIC estimator is second only to its screened counterpart in terms of the
frequency in producing the most precise estimates. With few exceptions, the screened ver-
sions of the LZWZ, A-opt, JMA and EWmethods are neither the best nor worst strategies
among all of the 17 strategies considered.4

Lastly, we apply the Wilcoxon signed rank test [43] to test for pairwise performance
equality of the methods. Our results show that in the overwhelming majority of cases, the
differences in MSEF and MAEF between the screened version of S-BIC and each of AIC,
BIC, and FIC reported in Tables 1 and 2 are statistically significant. On the other hand,
the same is not observed in terms of HitRate, because even if the methods produce dif-
ferent p̂0j’s, as long as the category that corresponds to max{p̂w01, . . . , p̂w0J} is the same for
the methods, they will yield the same forecast of Y0. We also applied the Wilcoxon signed
test to evaluate the difference inMSEF between the screened and non-screened versions of
each FMAmethod. The results show that there are significant differences inMSEF between
the screened and non-screened FMA methods in most cases. Similar results are observed
in terms of MAEF but the differences in the HitRates achieved as a result of screening are
found to be insignificant in most cases due to the reason given above. To conserve space,
the Wilcoxon tests results are not included in the paper but available upon request from
the authors.
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A referee has suggested that we conduct additional simulation experiments by increas-
ing the number of explanatory variables and sample size. The corresponding results are
contained in a supplementary file available at http://personal.cb.cityu.edu.hk/msawan/
researchprofile.htm.We find nomajor qualitative difference in results under the additional
experiments and those reported in the paper. Generally speaking, all the comments above
apply to the additional results in broad terms.

5. Empirical applications

In this section, we apply the various FMA methods to three real datasets. We evaluate the
strategies in terms of the HitRate only and not with respect to MSEF and MAEF, because
for each observation we can only observe the selected category and not the probability of
selecting the different categories.
Application 1: Analysis of the General Social Survey Data, 2008

Our first application is based on 667 observations obtained from the US General
Social Survey (GSS) of 2008. We use the data to investigate the relationship between
belief in an afterlife and a range of demographic and social variables. The respondents
were asked to indicate to what extent they believed in an afterlife (labelled as AFTER-
LIFE) on a 5-point scale that ranges from 1 = definitelybelieve to 5 = definitelynotbelieve.
They were also asked to indicate their gender (GENDER, 1 = male, 0 = female), and
give answers measured on a rating scale 1 to U to the following questions, with 1
and U representing the most and least affirmative answers to the question, respectively:
Do you consider yourself religious (RELIG, U=4)? Do you think society trusts too
much in science (TRUSTSCI, U=5)? Do you consider the Christian Bible the word
of God (BIBLE, U=3)? To what extent do you believe in heaven (HEAVEN, U=4)?
To what extent do you believe in hell (HELL, U=4)? Are you happy (HAPPY, U=3)?
Are you satisfied with your financial situation (SATFIN)? Do you consider yourself a
liberal (POLVIEW, U=7)? We treat AFTERLIFE as the dependent variable, and GEN-
DER, RELIG, TRUSTSCI, BIBLE, HEAVEN, HELL, HAPPY, SATFIN, and POLVIEW
as explanatory variables, resulting in 29 = 512 sub-models. We index these sub-models
as M1,M2, . . . ,M512, each containing a different set of explanatory variables. Given
the ordinal nature of AFTERLIFE, we use the ordered probit model as the basis of our
analysis.

The first goal of our study is to illustrate the replication failure that commonly arises
with model selection. We randomly divide the data into two sub-samples containing 467
and 200 observations, to be used as training and test samples, respectively. This process
is repeated five times, resulting in five cases of assessment, labelled as Cases 1–5. Clearly,
there are overlapping observations across the training samples of the five cases. In each case,
based on 467 training observations, we determine the best fitting ordered probit model
by the AIC, BIC and FIC. Table 7 shows the model chosen by each of the three selection
criteria for each of the five cases. The coefficient estimates and their standard errors pro-
duced by these three selection methods are also reported in the same table. We obtained
the standard errors of the estimates through the output of the Hessian matrix produced
by the procedure FSOLVE in Matlab. These standard errors are commonly reported in
practice but they do not take into account the uncertainty arisen from model selection

http://personal.cb.cityu.edu.hk/msawan/researchprofile.htm
http://personal.cb.cityu.edu.hk/msawan/researchprofile.htm
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Table 7. Coefficient estimates under the five assessment cases of Application 1.

Case criterion
model
selected α̂1 α̂2 α̂3 α̂4 GENDER RELIG TRUSTSCI BIBLE HEAVEN HELL HAPPY SATFIN POLVIEW

1 AIC M13 coef.est. 1.56256 2.39644 2.91305 3.82427 – −0.15967 – – −0.68391 – – – –
(s.e.) (0.06120) (0.05641) (0.06604) (0.12461) – (0.02277) – – (0.02900) – – – –

BIC M5 coef.est. 1.33136 2.15697 2.67335 3.59300 – – – – −0.76949 – – – –
(s.e.) (0.06073) (0.05619) (0.06617) (0.12579) – – – – (0.02898) – – – –

FIC M93 coef.est. 0.88166 1.53118 1.93473 2.76166 – – −0.29307 – – – −0.07230 – 0.06918
(s.e.) (0.05241) (0.04484) (0.05435) (0.11802) – – (0.01656) – – – (0.03093) – (0.01315)

S-AIC – coef.est. 1.70198 2.53596 3.05262 3.96774 0.02794 −0.08827 −0.05887 −0.00799 −0.66520 −0.05166 −0.00326 −0.02243 −0.00639
S-BIC – coef.est. 1.45590 2.28471 2.80091 3.71824 0.00459 −0.03717 −0.02079 −0.00045 −0.73058 −0.01367 −0.00098 −0.00322 −0.00048

2 AIC M275 coef.est. 2.26386 3.18417 3.59722 4.42705 – −0.13546 −0.12018 – −0.54051 −0.13571 – −0.15206 –
(s.e.) (0.06342) (0.05652) (0.06320) (0.12163) – (0.02327) (0.01737) – (0.03047) (0.02651) – (0.02914) –

BIC M13 coef.est. 1.68938 2.59711 3.00867 3.84405 – −0.20497 – – −0.66367 – – – –
(s.e.) (0.06270) (0.05617) (0.06313) (0.12254) – (0.02320) – – (0.03044) – – – –

FIC M93 coef.est. 0.80063 1.52471 1.85534 2.62770 – – −0.30995 – – – −0.08315 – 0.12369
(s.e.) (0.05499) (0.04566) (0.05290) (0.11688) – – (0.01682) – – – (0.03145) – (0.01346)

S-AIC – coef.est. 1.81533 2.72914 3.14271 3.97996 0.01643 −0.10277 −0.08243 −0.00839 −0.61765 −0.07148 −0.00098 −0.08675 −0.03244
S-BIC – coef.est. 1.59353 2.49768 2.90980 3.75190 0.00300 −0.08362 −0.03530 −0.00430 −0.69182 −0.02285 −0.00118 −0.01906 0.01425

3 AIC M172 coef.est. 1.31788 2.19635 2.64680 3.40649 −0.32311 −0.13612 – – −0.65010 – – – 0.09249
(s.e.) (0.06288) (0.05939) (0.06809) (0.12835) (0.08744) (0.02387) – – (0.03320) – – – (0.01380)

BIC M5 coef.est. 1.46182 2.31169 2.75658 3.52727 – – – – −0.78550 – – – –
(s.e.) (0.06148) (0.05827) (0.06780) (0.13034) – – – – (0.03309) – – – –

FIC M37 coef.est. 1.37023 2.15273 2.55682 3.28643 −0.45557 – – – – −0.48344 – – –
(s.e.) (0.05898) (0.05355) (0.06254) (0.12451) (0.08613) – – – – (0.02781) – – –

S-AIC – coef.est. 1.73460 2.61128 3.06105 3.82339 −0.26453 −0.06470 −0.3210 −0.06178 −0.66309 −0.00022 −0.07899 −0.03653 0.05517
S-BIC – coef.est. 1.57705 2.43910 2.88615 3.65249 −0.13112 −0.04323 −0.01012 −0.02252 −0.72571 −0.00087 −0.02483 −0.01041 0.02162

(continued).
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Table 7. Continued.

Case criterion
model
selected α̂1 α̂2 α̂3 α̂4 GENDER RELIG TRUSTSCI BIBLE HEAVEN HELL HAPPY SATFIN POLVIEW

4 AIC M250 coef.est. 1.34319 2.11072 2.64651 3.44509 −0.39249 – – – −0.71613 – – −0.12480 0.09296
(s.e.) (0.06073) (0.05909) (0.07170) (0.13176) (0.08655) – – – (0.03402) – – (0.02926) (0.01359)

BIC M33 coef.est. 1.52467 2.27943 2.80608 3.60544 −0.35618 – – – −0.73687 – – – –
(s.e.) (0.06007) (0.05819) (0.07094) (0.13215) (0.08640) – – – (0.03397) – – – –

FIC M123 coef.est. 1.58300 2.27409 2.75449 3.51988 −0.52482 – – – – −0.47154 – −0.11518 –
(s.e.) (0.05720) (0.05352) (0.06595) (0.12762) (0.08559) – – – – (0.02845) – (0.02908) –

S-AIC – coef.est. 1.67994 2.44595 2.97632 3.77342 −0.36295 −0.00343 −0.03650 −0.04419 −0.67714 −0.01090 −0.06819 −0.07458 0.05497
S-BIC – coef.est. 1.51720 2.27286 2.79957 3.59730 −0.27097 −0.00295 −0.00939 −0.01138 −0.73026 −0.00293 −0.02317 −0.02385 0.02410

5 AIC M226 coef.est. 2.10750 2.93258 3.43704 4.37213 −0.37614 – – −0.22567 −0.64215 – −0.20400 – –
(s.e.) (0.06113) (0.05823) (0.07068) (0.14649) (0.08422) – – (0.03050) (0.03380) – (0.03204) – –

BIC M33 coef.est. 1.47550 2.28504 2.78814 3.72405 −0.38925 – – – −0.72872 – – – –
(s.e.) (0.06032) (0.05769) (0.07058) (0.14600) (0.08387) – – – (0.03373) – – – –

FIC M43 coef.est. 0.54415 1.20480 1.62297 2.49166 −0.67299 – – – – – – 0.00925 –
(s.e.) (0.05320) (0.04826) (0.06071) (0.14017) (0.08133) – – – – – – (0.02842) –

S-AIC – coef.est. 1.87007 2.69434 3.19820 4.13184 −0.38315 −0.02741 −0.04122 −0.13099 −0.65312 −0.02226 -0.14621 −0.00669 0.03476
S-BIC – coef.est. 1.62379 2.43624 2.93788 3.87232 −0.32773 −0.01152 −0.01407 −0.05905 −0.69996 0.00215 −0.05052 −0.00285 0.01099
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and hence underestimate the true variability of the estimates. It is seen that the AIC, FIC
and BIC yield 5, 4 and 3 different models, respectively, across the five assessment cases.
More importantly, these models can be vastly different even when observations overlap
across the five training samples and the models are selected based on the same criterion.
For example, based on the AIC, while models for all cases contain HEAVEN as an explana-
tory variable, RELIG is included only for Cases 1, 2 and 3, but excluded for Cases 4 and 5;
GENDER, in contrast, is excluded from the first three cases but included in the last two;
each of SATFIN and POLVIEW is included twice, while each of the remaining variables,
TRUSTSCI, BIBLE, HELL and HAPPY, is included once. In most cases, when a model
includes a regressor that is excluded for another case, the coefficient estimate of this regres-
sor often has a non-negligible magnitude and the coefficient is significantly different from
zero. Clearly, these models all have very different conceptual interpretations. As expected,
the BIC usually results in a more parsimonious model; for Cases 1 and 3, the BIC-based
best fitting model includes only HEAVEN as an explanatory variable; for Cases 4 and 5,
it includes GENDER in addition to HEAVEN, while for Case 3, it includes RELIG and
HEAVEN. Interestingly, although HEAVEN is invariably included in the best fitted mod-
els determined by theAIC andBIC, it is never chosenwhen selection is based on the FIC; in
contrast, the FIC selects each of HAPPY and HELL twice, but the BIC never selects either
of these two variables. The lack of consistency produced by the different criteria, and by
the same criterion across different samples, clearly demonstrates the replication problem.
When results do not replicate, the conclusions are not generalisable. It may be argued that
the relatively small sample size used in this study is one reason for non-replication. Never-
theless, sample sizes similar to the magnitude used in the present study frequently arise in
practice.

Table 7 also reports the coefficient estimates that resulted from S-AIC and S-BIC
model averaging, obtained by combining estimates across 512 sub-models. Relative to
the selection-based estimates, the model average estimates are more stable across the five
assessment cases. The fact thatmodel averaging does not automatically translate any coeffi-
cient estimate to zero, also means that it is less probable for estimates to experience abrupt
changes across samples; a phenomenon commonly observed with model selection. Like
the S-AIC and S-BIC-based estimates, the coefficient estimates obtained using the S-FIC,
LZWZ, A-opt, JMA and EW averaging methods also do not differ substantially across the
five cases. They are not shown here to conserve space.

The hit rates obtained using the variousmethods in the test sample relevant to this exam-
ple are reported in the top panel of Table 10. The integer in the bracket next to a hit rate
represents the rank of the estimation method in a given case. We omit the EW averaging
estimator from the comparison because of the poor performance of this estimator shown in
the simulation study. With few exceptions, the S-AIC, S-BIC and S-FIC estimators deliver
estimates that are at least as good as their model selection counterparts; in most cases,
an improvement in hit rate is observed when model averaging is implemented. Although
there are exceptions, the ordinal rankings of the S-AIC, S-BIC and S-FIC model averaging
estimators, with and without screening, generally follow the same pattern as the ordinal
rankings of their model selection counterparts. In nearly all cases, the FIC selection esti-
mator yields the poorest estimates. This also results in the S-FIC estimator performing
poorly relative to the S-AIC and S-BIC methods. While the performance of the non-
screened versions of the LZWZ, A-opt and JMA estimators is unremarkable, a noticeable
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improvement in their performance is observed after model screening is implemented; the
screened versions of the LZWZ, A-opt and JMA estimators habitually provide better hit
rates than the threemodel selection estimators. The poor showing of the non-screened ver-
sions of these three model average estimators may be explained by the fact that a relatively
small number of observations (467) is used to estimate a large number of sub-models (512).
Because all three strategies involve the substitution of plug-in estimators in the objective
equations, the errors associated with the plug-in estimators accumulate as the number of
sub-models increases and impact the final results. This also explains the marked improve-
ment observed for these three estimators after model screening reduces the number of
sub-models from 512 to 5. We find the good performance of the screened version of the
S-BIC estimator particularly encouraging.
Application 2: Analysis of individual self-realisation data

The data used in this application are taken from the 2007 AsiaBarometer sur-
vey based on a sample of 990 ordinary residents of Indonesia.5 The respondents
were asked to rate their self-assessed level of life accomplishment on a scale of
1 to 3, with 1 = verylittle or none, 2 = some, and 3 = agreatdeal. The number of
respondents selecting categories 1, 2 and 3 are 154, 585 and 251, respectively. The
survey also provides information on the respondents’ personal and demographic
characteristics, which include gender (GENDER, 1 = male, 0 = female), age (AGE,
1 = 20–29 years old, 2 = 30–39 years old, 3 = 40–49 years old, 4 = 50–59 years
old, 5 = 60–69 years old), the highest level of education attainment (EDU, 1 =
no final education/elementary school/junior high school/middle school, 2 = high school,
3 = professional school/technical college/university), household annual income (INC,
1 = less than 7.2 million rupiah, 2 = 7.2 to 12 million rupiah, 3 = over 12 million
rupiah), employment status (EMP, 1 = employed, 0 = unemployed), and area of residence
(RES, 1 = urban, 0 = rural).

The intent of the analysis is to evaluate the levels of self-realisation among the survey
participants, with personal and demographic characteristics as explanatory variables. As
the responses are ordered, the ordered probit model is a meaningful framework for this
analysis. We treat all six explanatory variables as non-mandatory, resulting in 26 = 64 sub-
models. We index them as M1,M2, . . . ,M64. Applying the same top m model screening
procedure, and settingm=5 as in Section 4, reduces the number of sub-models within the
model average from 64 to 5. We randomly select 600 observations from the full sample for
model estimation, and use the remaining 390 observations for model evaluation. As in the
preceding example, we repeat this process five times, yielding 5 cases of assessment with
overlapping observations.

Table 8 presents the coefficient estimates and their (unadjusted) standard errors of the
models selected by AIC, BIC and FIC under the five cases, in a format similar to Table 7
reported for the last example. Table 8 shows that there is a lack of consistency in results
produced by a given model selection criterion across the different cases. The AIC, in par-
ticular, yields five different models for the five cases considered. By the AIC, the regressor
AGE is excluded for Cases 1 and 2 but included from all other cases. Similarly, for Cases 1
and 5, the AIC produces a zero coefficient for EMP, but for Cases 2, 3 and 4, it leads to esti-
mated effects of EMP that are not only non-zero but also quite large. Under Cases 1 and 2,
the lowest BIC occurs for amodel that includes EDU, INC andRES as regressors, but under
Cases 3 and 4, the model selected by the BIC includes neither EDU nor RES. Clearly, the
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Table 8. Coefficient estimates under the five assessment cases of Application 2.

Case criterion
model
selected α̂1 α̂2 GENDER AGE EDU INC EMP RES

1 AIC M40 coef.est. −0.10450 1.525258 – – −0.20228 −0.35729 – 0.41009
(s.e.) (0.0606) (0.053652) – – (0.029099) (0.020292) – (0.074329)

BIC M40 coef.est. −0.10450 1.525258 – – −0.20228 −0.35729 – 0.41009
(s.e.) (0.0606) (0.053652) – – (0.029099) (0.020292) – (0.074329)

FIC M26 coef.est. −1.2292 0.334712 −0.09405 0.092114 – – – 0.0228779
(s.e.) (0.058895) (0.052573) (0.072643) (0.018784) – – – (0.073541)

S-BIC – coef.est. −0.22222 1.401587 −0.00299 0.009511 −0.09829 −0.37884 0.00391 0.0393412
JMA – coef.est. −0.45813 1.150262 −0.06861 0.026234 −0.06176 −0.29918 0.073946 0.313859

2 AIC M57 coef.est. −0.24517 1.41514 – – −0.29317 −0.34306 0.148795 0.492503
(s.e.) (0.062982) (0.053262) – – (0.030582) (0.020884) (0.061325) (0.07581)

BIC M40 coef.est. −0.17999 1.477136 – – −0.28095 −0.33634 – 0.469174
(s.e.) (0.062932) (0.053187) – – (0.030559) (0.020871) – (0.075766)

FIC M26 coef.est. −1.27084 0.304245 −0.06882 0.074603 – – – 0.0224613
(s.e.) (0.060723) (0.05191) (0.071465) (0.018805) – – – (0.074785)

S-BIC – coef.est. −0.21392 1.441774 −0.00321 0.002272 −0.25731 −0.34209 0.018597 0.467407
JMA – coef.est. −0.42336 1.214645 −0.11727 0.0 −0.18633 −0.2879 0.171208 0.390863

3 AIC M46 coef.est. −0.68773 1.114487 −0.20072 0.087902 - −0.37062 0.189244 –
(s.e.) (0.068845) (0.053613) (0.07215) (0.01875) – (0.021229) (0.060008) –

BIC M5 coef.est. −0.44499 1.338675 – – - −0.37327 – –
(s.e.) (0.066431) (0.053308) – – – (0.021174) – –

FIC M8 coef.est. −1.37483 0.358116 −0.12845 0.106534 – – – –
(s.e.) (0.065039) (0.05261) (0.0715566) (0.0188566) – – – –

S-BIC – coef.est. −0.52415 1.264646 −0.00992 0.034211 −0.0083 −0.37141 0.012865 0.012095
JMA – coef.est. −0.73113 1.052285 −0.15705 0.048083 −0.05086 −0.28606 0.162969 0.101394

(continued).
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Table 8. Continued.

Case criterion
model
selected α̂1 α̂2 GENDER AGE EDU INC EMP RES

4 AIC M61 coef.est. −0.89723 1.08790 −0.27794 0.08689 - −0.31054 0.213804 0.172353
(s.e.) (0.068327) (0.055702) (0.071982) (0.019367) – (0.021527) (0.060379) (0.074044)

BIC M5 coef.est. −0.60911 1.3460 – – - −0.30966 – –
(s.e.) (0.067806) (0.05518) – – – (0.021441) – –

FIC M26 coef.est. −1.45539 0.47383 −0.17307 0.10935 – – – 0.12726
(s.e.) (0.066965) (0.054948) (0.071593) (0.019214) – – – (0.073442)

S-BIC – coef.est. −0.68849 1.27350 −0.03498 0.034317 −0.00652 −0.3073 0.01479 0.02659
JMA – coef.est. −0.87662 1.098186 −0.25123 0.0598 −0.02543 −0.26898 0.18491 0.17229

5 AIC M54 coef.est. −0.3917 1.40875 – 0.063832 −0.15446 −0.32234 – 0.395732
(s.e.) (0.060019) (0.057176) – (0.018437) (0.030454) (0.020904) – (0.070221)

BIC M21 coef.est. −0.35707 1.42860 – – - −0.36711 – 0.376983
(s.e.) (0.059708) (0.056934) – – – (0.020865) – (0.070031)

FIC M26 coef.est. −1.24718 0.48619 −0.02483 0.097902 – – – 0.236482
(s.e.) (0.058531) (0.056095) (0.069963) (0.018269) – – – (0.069471)

S-BIC – coef.est. −0.35517 1.43434 −0.00013 0.015139 −0.04931 −0.35283 0.002136 0.0378645
JMA – coef.est. −0.49814 1.27743 0.0 0.037696 −0.095 −0.25362 0.0 0.28190
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difficulty in replicating results is an issue here. For this data set, the FIC yields two models
and hence themost replicable results across the five assessment cases. Table 8 also provides
the estimates based on the S-BIC and JMA strategies. Compared to the estimates obtained
frommodel selection, the averaging-based estimates are more stable. For a given averaging
method, the estimate of a given coefficient is about the same across the five cases. Themid-
dle panel of Table 10 reports the hit rates based on the 390 observations in the test sample
for each of the five cases. Again, the S-AIC, S-BIC and S-FIC estimators generally yield
improved hit rates over their model selection counterparts. The LZWZ, A-opt and JMA
methods rarely yield very inferior hit rates and are often ranked among the most accu-
rate of all. Generally speaking, the results of this data example are consistent with those
observed under Application 1.
Application 3: Analysis of saltine cracker purchase data

The data in this application, taken from Jain et al. [24] and Franses and Paap [12],
contain 3292 observations of saltine cracker purchases in Rome, Georgia. The data pro-
vide information on consumers’ purchase decisions among four brands of saltine crackers:
Nabisco, Sunshine, Keebler, and Private labels, and factors affecting their decisions includ-
ing the price of the brand (PRICE), and whether the brand was on aisle display only
(DISP, 1 = yes, 0 = no), featured only (FEATU, 1 = yes, 0 = no), or jointly on display
and featured (DF, 1 = yes, 0 = no). In our application, we treat the intercept and the
price variable as mandatory explanatory variables, and the three dummy variables as
optional explanatory variables, resulting in 23 = 8 sub-models. We index these models
as M1,M2, . . . ,M8. Franses and Paap [12] used the same explanatory variables in their
analysis.

We begin our analysis by testing the IIA assumption. The Hausman andMcFadden [19]
test rejects the IIA assumption at the 5% significance level. This is consistent with the result
of Franses and Paap [12], who applied the same test to a subset of the data. Hence we adopt
the nested logit model as our analytical framework. Following Franses and Paap [12], we
split the four brands into two clusters, with Private label in the first, and the other three
brands in the second. When implemented without screening, model averaging combines
the forecasts obtained from all of the eight sub-models; with screening, the number of sub-
models is reduced to five.We randomly select 2492 observations for estimation and use the
remaining 800 observations as a test sample for evaluation. We repeat this process 5 times,
resulting in 5 cases of assessment with overlapping observations.

Table 9 presents the results. It is found that the AIC and FIC each delivers three, whereas
the BIC yields two different models for the five cases considered. The AIC amd FIC each
select the full model (M8) twice but the BIC never selects it. Model M4 that contains DF
but excludes the DISPLAY and FEATURE is also frequently selected. With the exception
of Case 2 in which the three criteria each select a different model, there is more uniformity
in results produced by model selection in the current example than in the previous two.
This is likely attributed to the much reduced number of candidate models as a result of a
smaller number of regressors. That said, the estimates of a given coefficient can still experi-
ence considerable variations across the cases when different models are selected by a given
model selection criterion. On the other hand, estimates obtained by model averaging are
generally more stable. In terms of hit-rate comparisons, while no one strategy is uniformly
the best, model averaging generally has an edge over model selection, as is evidenced from
the lower panel of Table 10.
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Table 9. Coefficient estimates under the five assessment cases of Application 3.

Case criterion model selected α̂1 α̂2 α̂3 τ̂ PRICE DISP FEATU DF

1 AIC M7 coef.est. −1.83782 −1.71443 −1.21627 0.62683 −2.65907 – 0.23612 0.29393
(s.e.) (0.04495) (0.05072) (0.04908) (0.01826) (0.09028) – (0.12337) (0.09782)

BIC M1 coef.est. −1.83512 −1.53760 −1.04877 0.54136 −2.58974 – – –
(s.e.) (0.04482) (0.04394) (0.04247) (0.01597) (0.08639) – – –

FIC M1 coef.est. −1.83512 −1.53760 −1.04877 0.54136 −2.58974 – – –
(s.e.) (0.04482) (0.04394) (0.04247) (0.01597) (0.08639) – – –

S-AIC – coef.est. −1.83513 −1.69188 −1.19458 0.61672 −2.64888 0.01176 0.16154 0.27317
S-BIC – coef.est. −1.83703 −1.58470 −1.09359 0.56401 −2.60855 0.00017 0.01593 0.10124

2 AIC M7 coef.est. −1.56761 −1.45750 −1.03269 0.51441 −2.10320 – 0.19353 0.29425
(s.e.) (0.04411) (0.04392) (0.04163) (0.01513) (0.08506) – (0.11070) (0.08681)

BIC M4 coef.est. −1.57411 −1.41146 −0.98948 0.49273 −2.09578 – – 0.26848
(s.e.) (0.04409) (0.04208) (0.03988) (0.01453) (0.08383) – – (0.08410)

FIC M1 coef.est. −1.55425 −1.26207 −0.85568 0.42735 −2.01034 – – –
(s.e.) (0.04399) (0.03656) (0.03462) (0.01271) (0.07923) – – –

S-AIC – coef.est. −1.56110 −1.44399 −1.02002 0.51011 −2.09401 0.02413 0.12850 0.28987
S-BIC – coef.est. −1.56558 −1.35539 −0.93934 0.46836 −2.06241 0.00107 0.01175 0.16389

3 AIC M4 coef.est. −1.56000 −1.41361 −1.03405 0.53576 −2.30458 – – 0.32078
(s.e.) (0.04370) (0.04225) (0.04280) (0.01619) (0.08476) – – (0.08998)

BIC M4 coef.est. −1.56000 −1.41361 −1.03405 0.53576 −2.30458 – – 0.32078
(s.e.) (0.04370) (0.04225) (0.04280) (0.01619) (0.08476) – – (0.08998)

FIC M7 coef.est. −1.55617 −1.44223 −1.06204 0.55109 −2.31393 – 0.15304 0.33855
(s.e.) (0.04372) (0.04344) (0.04400) (0.01662) (0.08556) – (0.11851) (0.09179)

S-AIC – coef.est. −1.54918 −1.43036 −1.05003 0.54693 −2.30333 0.02298 0.07644 0.33719
S-BIC – coef.est. −1.55820 −1.39688 −1.01720 0.52756 −2.29613 0.00146 0.00603 0.27262

(continued).
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Table 9. Continued.

Case criterion model selected α̂1 α̂2 α̂3 τ̂ PRICE DISP FEATU DF

4 AIC M8 coef.est. −2.10795 −2.35639 −1.55600 0.82855 −3.69735 0.14047 0.34099 0.47031
(s.e.) (0.04483) (0.07029) (0.06493) (0.02408) (0.09391) (0.06402) (0.14809) (0.11851)

BIC M4 coef.est. −2.17544 −2.28843 −1.49772 0.78339 −3.73642 – – 0.39414
(s.e.) (0.04478) (0.06647) (0.06152) (0.02293) (0.09301) – – (0.11493)

FIC M8 coef.est. −2.10795 −2.35639 −1.55600 0.82855 −3.69735 0.14047 0.34099 0.47031
(s.e.) (0.04483) (0.07029) (0.06493) (0.02408) (0.09391) (0.06402) (0.14809) (0.11851)

S-AIC – coef.est. −2.12876 −2.33858 −1.54092 0.81604 −3.71024 0.09513 0.25520 0.44607
S-BIC – coef.est. −2.17633 −2.28376 −1.49030 0.78096 −3.74394 0.00881 0.03356 0.33455

5 AIC M8 (0.044951198251968) −1.63508 −1.71526 −1.13393 0.61263 −2.42427 0.10832 0.25770 0.45524
(s.e.) (0.04428) (0.05278) (0.04720) (0.01806) (0.08898) (0.05290) (0.12964) (0.09931)

BIC M4 coef.est. −1.69372 −1.68202 −1.10389 0.58552 −2.47578 – – 0.39286
(s.e.) (0.04426) (0.05040) (0.04512) (0.01731) (0.08787) – – (0.09627)

FIC M8 coef.est. −1.63508 −1.71526 −1.13393 0.61263 −2.42427 0.10832 0.25770 0.45524
(s.e.) (0.04428) (0.05278) (0.04720) (0.01806) (0.08898) (0.05290) (0.12964) (0.09931)

S-AIC – coef.est. −1.69038 −1.68100 −1.10281 0.58573 −2.47252 0.00661 0.01748 0.38610
S-BIC – coef.est. −1.65721 −1.70322 −1.12306 0.60261 −2.44378 0.06688 0.16417 0.43165
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Table 10. HitRate comparisons for Applications 1, 2 and 3.

Model selection Model averaging without screening Model averaging with screening

Case AIC BIC FIC S-AIC S-BIC S-FIC LZWZ A-opt JMA S-AIC S-BIC S-FIC LZWZ A-opt JMA

Application 1
1 0.67416(2) 0.67041(7) 0.57678(15) 0.67790(1) 0.67041(7) 0.58427(14) 0.64794(11) 0.64794(11) 0.64794(11) 0.67416(2) 0.67041(7) 0.67041(7) 0.67416(2) 0.67416(2) 0.67416(2)
2 0.62547(1) 0.61049(8) 0.52434(14) 0.62547(1) 0.61423(5) 0.52434(14) 0.59925(11) 0.59925(11) 0.59925(11) 0.61423(5) 0.61423(5) 0.61049(8) 0.62172(3) 0.61798(4) 0.61049(8)
3 0.54682(6) 0.53933(9) 0.48315(15) 0.55056(3) 0.54682(6) 0.49813(14) 0.53558(11) 0.53558(11) 0.53558(11) 0.55056(3) 0.55056(3) 0.53933(9) 0.55805(1) 0.55805(1) 0.54682(6)
4 0.57678(2) 0.57303(3) 0.50936(15) 0.56929(7) 0.57303(3) 0.51685(14) 0.58427(1) 0.55805(11) 0.56554(9) 0.57303(3) 0.57303(3) 0.55056(13) 0.56554(9) 0.56929(7) 0.55805(11)
5 0.59176(10) 0.61423(1) 0.52434(15) 0.61423(1) 0.61049(5) 0.53558(14) 0.56929(11) 0.56929(11) 0.56929(11) 0.61049(5) 0.61423(1) 0.61423(1) 0.61049(5) 0.61049(5) 0.61049(5)

Application 2
1 0.63846(14) 0.63846(14) 0.65128(6) 0.64872(10) 0.65385(3) 0.65128(6) 0.65128(6) 0.65128(6) 0.65385(3) 0.64615(13) 0.65641(1) 0.65385(3) 0.64872(10) 0.64872(10) 0.65641(1)
2 0.62308(11) 0.62821(4) 0.65641(1) 0.62308(11) 0.62821(4) 0.65641(1) 0.62564(8) 0.62564(8) 0.63333(3) 0.62308(11) 0.62821(4) 0.62821(4) 0.62308(11) 0.62308(11) 0.62564(8)
3 0.59487(15) 0.60000(2) 0.60000(2) 0.60256(1) 0.60000(2) 0.60000(2) 0.60000(2) 0.60000(2) 0.60000(2) 0.60000(2) 0.60000(2) 0.60000(2) 0.60000(2) 0.60000(2) 0.60000(2)
4 0.51026(13) 0.51282(1) 0.51282(1) 0.51282(1) 0.51282(1) 0.51282(1) 0.51026(13) 0.51026(13) 0.51282(1) 0.51282(1) 0.51282(1) 0.51282(1) 0.51282(1) 0.51282(1) 0.51282(1)
5 0.57179(1) 0.56667(6) 0.56667(6) 0.56667(6) 0.56667(6) 0.56667(6) 0.57179(1) 0.57179(1) 0.56667(6) 0.56667(6) 0.56667(6) 0.56667(6) 0.57179(1) 0.57179(1) 0.56667(6)

Application 3
1 0.53875(2) 0.53500(11) 0.53500(11) 0.53875(2) 0.53375(14) 0.53750(6) 0.53750(6) 0.53625(9) 0.53500(11) 0.53875(2) 0.53375(14) 0.54000(1) 0.53750(6) 0.53625(9) 0.53875(2)
2 0.54000(9) 0.54125(4) 0.54000(9) 0.54125(4) 0.53750(12) 0.54250(1) 0.53750(12) 0.54250(1) 0.53000(15) 0.54125(4) 0.53750(12) 0.54125(4) 0.54250(1) 0.54125(4) 0.54000(9)
3 0.59250(12) 0.59250(12) 0.59500(2) 0.59500(2) 0.59250(12) 0.59500(2) 0.59500(2) 0.59500(2) 0.59500(2) 0.59625(1) 0.59250(12) 0.59500(2) 0.59500(2) 0.59500(2) 0.59500(2)
4 0.51000(14) 0.51875(3) 0.50875(15) 0.51750(8) 0.51875(3) 0.51500(13) 0.51875(3) 0.52000(1) 0.51750(8) 0.51750(8) 0.51875(3) 0.51750(8) 0.51875(3) 0.52000(1) 0.51750(8)
5 0.54625(3) 0.54375(12) 0.54125(15) 0.54625(3) 0.54375(12) 0.54625(3) 0.54625(3) 0.54500(10) 0.54750(1) 0.54625(3) 0.54375(12) 0.54625(3) 0.54625(3) 0.54500(10) 0.54750(1)

Note : The figure in bracket gives the rank of the estimator with respect to hit rate.
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6. Conclusions

The ordered probit and nested logit models have received both theoretical and empiri-
cal support in the literature. The ordered probit model is useful for modelling responses
that have a natural ordering. The nested logit model is an extension of the ordinary
logit model, needed to accommodate the unfulfillment of the IIA property. When apply-
ing these models, a researcher normally considers an array of models, each containing a
different combination of regressors, selecting the best combination according to an off-the-
shelf information criterion, and report results based on the final ‘best’ model. In recent
years, the practice of model selection has been criticised for ignoring the uncertainty
embedded in the model selection process, with the risk associated with some very poor
models being chosen. Model averaging, which smoothly interpolates estimates obtained
across the different models, is a strategy to overcome the above-mentioned deficiencies
of model selection. Model averaging within the frequentist paradigm has been widely
applied in a number of disciplines, but has not come into usage in many areas of social
science.

In this study, we compare a range of model averaging strategies with several common
model selection methods for the ordered probit and nested logit models. We find that
overall, model averaging is preferable to model selection, and averaging with screening
generally compares favourably with the strategy of averaging without removing the very
poor models at the outset. One especially noteworthy aspect of our results is that model
averagingwith screening rarely if ever produces very poor results. By contrast, model selec-
tion can sometimes deliver very inaccurate and unstable estimates, especially in situations
where the correct model does not ‘stand out’ from the crowd. This finding reinforces a
major advantage of averaging over selection, which is, assuring against the selection of a
very poor model that may not withstand replications, and thereby mitigating the replica-
tion crisis that commonly arises in empirical research. Adding to this advantage is the fact
that some averaging strategies frequently outperform the selection strategies, even in sit-
uations where selection is known to perform well. For example, our Monte Carlo results
indicate that the S-BIC averaging methods frequently outperform all selection methods
across all performance yardsticks considered. Our analysis is also the first that considers
the jackknife averaging strategy outside the framework of the linear model. We prove that
the jackknife estimator achieves an asymptotic optimality.We consider this result a novelty
and an important theoretical advance.

As has been apparent from our preceding discussion, the emphasis of the model aver-
aging literature has been on the efficiency of point estimators of the unknowns. Relatively
little is known about model diagnosis and post-model averaging inference. To address this
lack of understanding, we need information on the full distributions on model average
estimators. The recent work of Hansen [17] and Liu [29] serves as a useful guide in this
regard. Also, in recent years, stability selection [32,38], which involves applying a variable
selection method to random sub-samples of data and choosing the variables that are most
frequently selected, is gaining popularity. This approach has the attractive advantage of
error control via an upper bound on the falsely selected variables. It remains for future
research to compare this enhanced approach to model selection with model averaging.
Clearly, more remains to be done, but hopefully this paper serves to pique an interest for
further explorations of model averaging in statistical applications.
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Notes

1. The subject of replication crisis has attracted enormous attention among scientists in recent
years. See [13] for a high-level introduction.AndrewGelman’s blog (http://andrewgelman.com/)
provides links to many interesting articles written on this subject.

2. Model averaging is a fundamentally different approach from boosting used extensively in
machine learning. In contrast to model averaging, boosting adds new models to the model
ensemble sequentially, creating a new model space that is more complex than the original.
Davidson and Fan [10] showed that when there exists considerable uncertainty in the origi-
nal model space, model averaging is often preferred to boosting which is perceived as building
an overly complex model out of insufficient data.

3. The Matlab codes for computing the FMA estimates are available for download from the
corresponding author’s website:http://personal.cb.cityu.edu.hk/msawan/researchprofile.htm.

4. With the exception of the Jackknife methods, the FMA methods considered in this paper are
not computationally demanding. To give an idea, in our simulations, under the nested logit
model with (n1, n2) = (300, 100), it takes 7–9 s to complete one round of replication if the JMA
estimators are excluded from the set; however, if the JMA estimators are also included, then the
corresponding computing time increases to 120–140 s. It is also observed that the time required
for computing the JMA estimates increases with the sample size. The scalability of the model
averaging methods in relation to computing time is not an issue except for the JMA methods.
For model averaging in a high-dimensionality setup, see [2].

5. The data are available online at www.asiabarometer.org/. Inoguchi et al. [22] provided a detailed
discussion of the survey.
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Appendix

A description of the LMF
As mentioned in Section 3, the LMF forms the basis for the development of the S-FIC, LZWZ and
A-opt averaging methods. This Appendix encapsulates the essence of this framework.

For notational convenience, let � be the vector of unknowns corresponding to the manda-
tory variables in a model. Thus, � = (α1, . . . ,αJ−1,β ′)′ for the ordered probit model and � =
(αj1 |B1 , . . . ,αjK |BK , τ1, . . . , τK ,β ′)′ for the nested logit models. Let the true parameter vector of the
model be (�′

true, γ ′
0 + δ′/n1/2)′, where �true is the vector containing the true values of the coefficients

in �, γ0 is a vector that consists of values of γ in the narrowmodel that only contains the mandatory
variables, and δ is a q × 1 vector of parameters that signals the various degrees of departure from the
narrow model. In our case, γ0 is equal to a null vector. Together, there exist 2q sub-models obtained
by setting different coefficients in δ to 0, leading to 2q estimators of μ = μ(�, γ ) to choose between
or combine. Denote the FMA estimator of μ as μ̂w.

Let L(�, γ ) be the likelihood function for the full model, and Jn,full = −(1/n)(∂2 logL(�, γ )/

∂(�′, γ ′)′∂(�′, γ ′)) =
(Jn,00 Jn,01
Jn,10 Jn,11

)
and JA,full =

(
J00 J01
J10 J11

)
be the corresponding information

matrix and limiting information matrix, respectively, where |�| is the length of � and Jij (i,j= 0,1)
is the limiting value of Jn,ij as n approaches infinity. Both Jn,full and JA,full are of dimension
(|�| + q) × (|�| + q). Let �s be the projection matrix that maps the vector δ = (δ1, . . . , δq) to the
sub-vector �sδ = δs that contains the coefficients of δ in the sth sub-model. Write K = (J11 −
J10J −1

00 J01)
−1, Ks = (�sK−1� ′

s )
−1, Hs = K−1/2� ′

sKs�sK−1/2, and ω = J10J −1
00 (∂μ/∂�) −
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∂μ/∂γ , with the partial derivatives evaluated at (�true, γ0). Note thatHs is a q × q projection matrix
that is orthogonal to Iq − Hs, and Iq is a q × q identity matrix. Hjort and Claeskens [20] showed that

√
n(μ̂w − μ)

d−→ � ≡
(

∂μ

∂�

)′
J −1
00 M + ω′

{
δ − δ̂(D)

}
, (A1)

where d−→ denotes convergence in distribution, D ∼ Nq(δ,K), M ∼ N|�|(0,J00) is independent of
D, and δ̂(D) = K1/2{∑2q

s=1 wsHs}K−1/2D ≡ K1/2H(w)K−1/2D.
It can be shown that the asymptotic squared error risk of μ̂w is

R(μ̂w) = E(�2) = ς2
0 + E

(
ω′δ̂(D) − ω′δ

)2
= ς2

0 + ω′K1/2H2(ω)K1/2ω + (
ω′K1/2L(w)K−1/2δ

)2 , (A2)

where ς2
0 = (∂μ/∂�)′J −1

00 (∂μ/∂�) andL(w) = Iq − H(w). Unfortunately, R(μ̂w) is of little practi-
cal utility for finding optimal values ofw becauseω,K and δ in R(μ̂w) are unknown. The LZWZ and
A-opt methods are based on feasible variants of (A.2); LZWZ selects w by minimising an approx-
imately unbiased estimator of R(μ̂w), while A-opt selects w by minimising a plug-in estimator of
R(μ̂w).

Specifically, Liang et al. [28] showed that

R̃(μ̂w) = ς2
0 + ω′Kω + (ω′K1/2L(w)K−1/2D)2 + 2ω′K1/2H(w)K1/2ω (A3)

is an unbiased estimator of R(μ̂w). The objective function R̂(μ̂w) associated with LZWZ method
given in Equation (11) is obtained by deleting the first two terms that are unrelated to w on the
r.h.s. of Equation (A.3), and replacing ω, K H(w), D and L(w) in the last two terms of the same
equation by their respective consistent estimators ω̂, K̂, Ĥ(w), δ̂ and L̂(w). Note that Ĥ(w) and
L̂(w) in Equation (11) have the same expressions as H(w) and L(w) in Equation (A.3), except that
K contained in H(w) and L(w) are replaced by K̂ in the construction of Ĥ(w) and L̂(w).

For the A-opt method, the objective function (12) is obtained by removing ς2
0 that is unrelated

to w from the r.h.s. of Equation (A.2), and replacing ω,K, H(w), L(w) in Equation (A.2) by δ with
ω̂, K̂, Ĥ(w), L̂(w) and δ̂, respectively. See [40] for details.

Proof of asymptotic optimality of the JMA estimator
Here, we show the proof of Equation (14). It is assumed that q and J are fixed. Let θ̂ (s) =
stack(α̂(s)

J−1, . . . , α̂
(s)
J−1, β̂

(s), γ̂ (s)), where the function stack(·) stacks the vectors inside the brackets
on top of one another in the order given. It can be seen from Assumptions A1–A3 of [42] that for
the sth candidate model, there exists a limit θ(s)∗ such that

θ̂ (s) − θ(s)∗ = Op(n−1/2). (A4)

Let p(s)∗
ij = p̂(s)

ij |
θ̂ (s)=θ(s)∗ and ξn = infw∈W

∑n
i=1
∑J

j=1(
∑2q

s=1 wsp
(s)∗
ij − pij)2.

The proof of Equation (14) requires the following technical conditions:

Condition 1: inf ξ−1
n n1/2 = o(1).

Condition 2: For any s, ∂ p̂(s)
ij /∂θ̂ (s) |

θ̂ (s)=θ̃
(s)
i

= Op(1) uniformly for i = 1, . . . , n and any θ̃
(s)
i that lies

between θ̂ (s) and its limit.

Condition 1 requires that as the sample size n increases, the minimum limiting squared error
expands at a faster rate than n−1/2. Condition 2 requires p̂(s)

ij to have uniformly bounded derivatives.
In layman’s terms, under Condition 1, all candidate models are misspecified and at best approx-
imations to the data generating process; under Condition 2, p̂(s)

ij are smooth with respect to the
parameters.
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Let p̂ij(w) = ∑2q
s=1 wsp̂

(s)
ij ,

(−i)p̂ij(w) = ∑2q
s=1 w

(−i)
s p̂(s)

ij , p∗
ij(w) = ∑2q

s=1 wsp
(s∗)
ij , p̂(w) =

(p̂11(w), . . . , p̂nJ(w))′, p̃(w) = ((−1)p̂11(w), . . . ,(−n) p̂nJ(w))′, p∗(w) = (p∗
11(w), . . . , p∗

nJ(w))′, p =
(p11, . . . , pnJ)′, and I = (I(Y1 = 1), I(Y1 = 2), . . . , I(Yn = J))′. We have

CVJ(w)

= ‖p̃(w) − I‖2

= ‖p̂(w) − p + p̃(w) − p∗(w) − (p̂(w) − p∗(w)) + p − I‖2

≤ ‖p̂(w) − p‖2 + ‖p̃(w) − p∗(w)‖2 + ‖p̂(w) − p∗(w)‖2
+ ‖p̂(w) − p∗(w)‖‖p̃(w) − p∗(w)‖ + ‖p∗(w) − p‖‖p̃(w) − p∗(w)‖
+ ‖p̂(w) − p∗(w)‖‖p̂(w) − p∗(w)‖ + ‖p∗(w) − p‖‖p̂(w) − p∗(w)‖
+ ‖p̂(w) − p∗(w)‖‖p − I‖ + |(p∗(w) − p)′(p − I)| + ‖p̃(w) − p∗(w)‖‖p̂(w) − p∗(w)‖
+ ‖p̃(w) − p∗(w)‖‖p − I‖ + ‖p̂(w) − p∗(w)‖‖p − I‖ + ‖p − I‖2

≡ ‖p̂(w) − p‖2 + �n(w) + ‖p − I‖2

and

‖p̂(w) − p‖2 = ‖p̂(w) − p∗(w) + p∗(w) − p‖2

= ‖p∗(w) − p‖2 + ‖p̂(w) − p∗(w)‖2 + 2(p̂(w) − p∗(w))′(p∗(w) − p)

≡ ‖p∗(w) − p‖2 + �n(w).

To prove Equation (14), we need only to verify that

sup
w∈W

�n(w)

‖p∗(w) − p‖2 = op(1) and sup
w∈W

�n(w)

‖p∗(w) − p‖2 = op(1). (A5)

Now, for any δ > 0,

Pr
{
sup
w∈W

ξ−1
n |(p∗(w) − p)′(p − I)| > δ

}
≤ Pr

⎧⎨
⎩ sup

w∈W
ξ−1
n

2q∑
s=1

ws|(p∗
m − p)′(p − I)| > δ

⎫⎬
⎭

= Pr
{
max
s

|(p∗
s − p)′(p − I)| > ξnδ

}
≤

2q∑
s=1

Pr{|(p∗
s − p)′(p − I)| > ξnδ}

≤ ξ−2
n δ−2

2q∑
s=1

E{(p∗
s − p)′(p − I)}2.

Together with Condition 1 and recognising that 0 ≤ pij ≤ 1, 0 ≤ p(s)∗
ij ≤ 1 and J is fixed, this implies

that

sup
w∈W

|(p∗(w) − p)′(p − I)|
‖p∗(w) − p‖2 = op(1). (A6)

Now, by Equation (A.4) and Condition 2, we have

sup
w∈W

‖p̂(w) − p∗(w)‖2 = Op(1) and sup
w∈W

‖p̃(w) − p∗(w)‖2 = Op(1). (A7)
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In addition,

‖p − I‖2 = Op(n) and sup
w∈W

‖p∗(w) − p‖‖p̂(w) − p∗(w)‖
‖p∗(w) − p‖2

= sup
w∈W

‖p̂(w) − p∗(w)‖
‖p∗(w) − p‖ . (A8)

Combining Equations (A.6)–(A.8) and Condition 1, we obtain Equation (A.5), which leads to
Equation (14).
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